搜档网
当前位置:搜档网 › 动量守恒定律经典习题(带答案)

动量守恒定律经典习题(带答案)

动量守恒定律经典习题(带答案)
动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型)

例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少?

例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则

此过程经历的时间为多少?

例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点

的距离。(g取10m/s2)

例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。设小

车足够长,求:

(1)木块和小车相对静止时小车的速度。

(2)从木块滑上小车到它们处于相对静止所经历的时间。

(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。

例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞?

答案:1. 分析:以物体和车做为研究对象,受力情况如图所示。

在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。因此地面给车的支持力远大于车与重物的重力之和。

系统所受合外力不为零,系统总动量不守恒。但在水平方向系统不受外力作用,所以系统水平方向动量守恒。以车的运动方向为正方向,由动量守恒定律可得:

车 重物

初:v 0=5m/s 0

末:v v ?Mv 0=(M+m)v ?s m v m N M v /454

140=?+=+= 即为所求。

2、分析:以滑块和小车为研究对象,系统所受合外力为零,系统总动量守恒。

以滑块的运动方向为正方向,由动量守恒定律可得

滑块 小车

初:v 0=4m/s 0

末:v v ?mv 0=(M+m)v

?s m v m M M v /143

110=?+=+= 再以滑块为研究对象,其受力情况如图所示,由动量定理可得

ΣF=-ft=mv-mv 0

?s g v v t 5.110

2.0)41(0=?--=-=μ f=μmg

即为所求。

3、分析:手榴弹在高空飞行炸裂成两块,以其为研究对象,系统合外力不为零,总动量不守恒。但手榴弹在爆炸时对两小块的作用力远大于自身的重力,且水平方向不受外力,系统水平方向动量守恒,以初速度方向为正。

由已知条件:m 1:m 2=3:2

m 1 m 2

初:v 0=10m/s v 0=10m/s

末:v 1=-100m/s v 2=? ?(m 1+m 2)v 0=m 1v 1+m 2v 2 ?s m m v m v m m v /1752

)100(3105)(211021

2=-?-?=-+= 炸后两物块做平抛运动,其间距与其水平射程有关。

Δx=(v

1+v 2)t ?m g h v v x 27510

52)175100(2)(21=??+=+=? y=h=2

1gt 2 即为所求。

4、分析:(1)以木块和小车为研究对象,系统所受合外力为零,系统动量守恒,以木块速度方向为正方向,由动量守恒定律可得:

木块m 小车M

初:v 0=2m/s v 0=0

末:v v ?mv 0=(M+m)v ?s m v m M m v /4.026

.14.04.00=?+=+= (2)再以木块为研究对象,其受力情况如图所示,由动量定理可得

ΣF=-ft=mv-mv 0

?s g v v t 8.0410

2.0)24.0(0=??--=-=μ f=μmg

(3)木块做匀减速运动,加速度2

1/2s m g m

f a ===μ 车做匀加速运动,加速度22/5.06

.1104.02.0s m M mg M f a =??===μ,由运动学公式

v t 2-v 02=2as 可得: 在此过程中木块的位移m a v v S t 96.02224.022

22021=?--=-=

车的位移m t a S 16.08.05.02

1212222=??==

由此可知,木块在小车上滑行的距离为Δ

S=S 1-S 2=0.8m

即为所求。

另解:设小车的位移为S 2,则木块的位移为S 1+ΔS ,ΔS 为木块在小车上滑行的距离,也即小车与木块之间的位移差。作出木块、小车的v-t 图线如图所示,则木块在小车上的滑行距离数值上等于图中阴影部分的三角形的“面积”。

5、分析:设甲推出箱子后速度为v 甲,乙抓住箱子后的速度为v 乙。分别

以甲、箱子;乙、箱子为研究对象,系统在运动过程中所受合外力为零,总动量守恒。以甲的速度方向为正方向,由动量守恒定律可得:

甲推箱子的过程:

甲:M 箱子:m

初:v 0=2m/s v 0=2m/s

末:v 甲 v=? ?(M+m)v 0=Mv 甲+mv (1)

乙接箱子的过程

乙:M 箱子;m

初:v 0=-2m/s v

末:v 乙 v 乙 ?Mv 0+mv=(M+m)v 乙 (2)

甲、乙恰不相撞的条件:v 甲=v 乙

三式联立,代入数据可求得:v=5.2m/s :

反馈练习

1、质量分别为2kg 和5kg 的两静止的小车m 1、m 2中间压缩一根轻弹簧后放在光滑水平面上,放手后让小车弹开,今测得m 2受到的冲量为10N ·s ,则

(1)在此过程中,m 1的动量的增量为

A 、2kg ·m/s

B 、-2kg ·m/s

C 、10kg ·m/s

D 、-10kg ·m/s

(2)弹开后两车的总动量为

A 、20kg ·m/s

B 、10kg ·m/s

C 、0

D 、无法判断

2、质量为50kg 的人以8m/s 的速度跳上一辆迎面驶来的质量为200kg 、速度为4m/s 的平板车。人跳上车后,车的速度为

A 、4.8m/s

B 、3.2m/s

C 、1.6m/s

D 、2m/s

3、如图所示,滑块质量为1kg ,小车质量为4kg 。

小车与地面间无摩擦,车底板距地面1.25m 。现给滑块

一向右的大小为5N ·s 的瞬时冲量。滑块飞离小车后的

落地点与小车相距1.25m ,则小车后来的速度为

A 、0.5m/s ,向左

B 、0.5m/s ,向右

C 、1m/s ,向右

D 、1m/s ,向左

4、在光滑的水平地面上有一辆小车,甲乙两人站在车的中间,甲开始向车头走,同时乙向车尾走。站在地面上的人发现小车向前运动了,这是由于

A 、甲的速度比乙的速度小

B 、甲的质量比乙的质量小

C 、甲的动量比乙的动量小

D 、甲的动量比乙的动量大

5、A 、B 两条船静止在水面上,它们的质量均为M 。质量为2

M 的人以对地速度v 从A 船跳上B 船,再从B 船跳回A 船,经过几次后人停在B 船上。不计水的阻力,则

A 、A 、

B 两船速度均为零 B 、v A :v B =1:1

C 、v A :v B =3:2

D 、v A :v B =2:3

6、质量为100kg 的小船静止在水面上,船两端有质量40kg 的甲和质量60kg 的乙,当甲、乙同时以3m/s 的速率向左、向右跳入水中后,小船的速率为

A 、0

B 、0.3m/s ,向左

C 、0.6m/s ,向右

D 、0.6m/s ,向左

7、A 、B 两滑块放在光滑的水平面上,A 受向右的水平力F A 作用,B 受向左的水平力F B 作用而相向运动。已知m A =2m B ,F A =2F B 。经过相同的时间t 撤去外力F A 、F B ,以后A 、B 相碰合为一体,这时他们将

A 、停止运动

B 、向左运动

C 、向右运动

D 、无法判断

8、物体A 的质量是B 的2倍,中间有一压缩的弹簧,放在光滑的水平面上,由静止同时放开后一小段时间内

A 、A 的速率是

B 的一半 B 、A 的动量大于B 的动量

C、A受的力大于B受的力

D、总动量为零

9、放在光滑的水平面上的一辆小车的长度为L,质量等于M。在车的一端站一个人,人的质量等于m,开始时人和车都保持静止。当人从车的一端走到车的另一端时,小车后退的距离为

A、mL/(m+M)

B、ML/(m+M)

C、mL/(M-m)

D、ML/(M-m)

10、如图所示,A、B两个物体之间用轻弹簧连接,放在光滑的水平面上,物体A紧靠竖直墙,现在用力向左推B使弹簧压缩,然后由静止释放,则A、弹簧第一次恢复为原长时,物体A开始加速

B、弹簧第一次伸长为最大时,两物体的速度一定相同

C、第二次恢复为原长时,两个物体的速度方向一定反向

D、弹簧再次压缩为最短时,物体A的速度可能为零

11、如图所示,物体A、B并列紧靠在光滑水平面上,

m A=500g,m B=400g,另有一个质量为100g的物体C以10

m/s的水平初速度摩擦着A、B表面经过,在摩擦力的作用

下A、B物体也运动,最后C物体在B物体上一起以1.5m/s

的速度运动,求C物体离开A物体时,A、C两物体的速度。

12、如图所示,光滑的水平台子离地面的高度为h,质量为m的小球以一定的速度在高台上运动,从边缘D水平射出,落地点为A,水平射程为s。如果在台子边缘D处放一质量为M的橡皮泥,再让小球以刚才的速度在水平高台上运动,在边缘D处打中橡皮泥并同时落地,落地点为B。求AB间的距离。

动量守恒定律典型例题解析

动量守恒定律·典型例题解析 【例1】 如图52-1所示,在光滑的水平面上,质量为m 1的小球以速度v 1追逐质量为m 2,速度为v 2的小球,追及并发生相碰后速度分别为v 1′和v 2′,将两个小球作为系统,试根据牛顿运动定律推导出动量守恒定律. 解析:在两球相互作用过程中,根据牛顿第二定律,对小球1有:F ==,对有′==.由牛顿第三定律得=m a m m F m a m F 1112222????v t v t 12 -F ′,所以F ·Δt =-F ′·Δt ,m 1Δv 1=-m 2Δv 2,即m 1( v 1′-v 1)=-m 2(v 2′-v 2),整理后得:m 1v 1+m 2v 2=m 1v 1′+ m 2v 2′,这表明以两小球为系统,系统所受的合外力为零时,系统的总动量守恒. 点拨:动量守恒定律和牛顿运动定律是一致的,当系统内受力情况不明,或相互作用力为变力时,用牛顿运动定律求解很繁杂,而动量定理只管发生相互作用前、后的状态,不必过问相互作用的细节,因而避免了直接运用牛顿运动定律解题的困难,使问题简化. 【例2】 把一支枪水平地固定在光滑水平面上的小车上,当枪发射出一颗子弹时,下列说法正确的是 [ ] A .枪和子弹组成的系统动量守恒 B .枪和车组成的系统动量守恒 C .子弹、枪、小车这三者组成的系统动量守恒 D .子弹的动量变化与枪和车的动量变化相同 解析:正确答案为C 点拨:在发射子弹时,子弹与枪之间,枪与车之间都存在相互作用力,所以将枪和子弹作为系统,或枪和车作为系统,系统所受的合外力均不为零,系统的动量不守恒,当将三者作为系统时,系统所受的合外力为零,系统的动量守恒,这时子弹的动量变化与枪和车的动量变化大小相等,方向相反.可见,系统的动量是否守恒,与系统的选取直接相关. 【例3】 如图52-2所示,设车厢的长度为l ,质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来

(完整版)分离定律和自由组合定律练习题

分离定律练习题二 1.水稻某品种茎杆的高矮是由一对等位基因控制,对一纯合显性亲本与一个隐性亲本杂交产生的F1进行测交,其后代杂合体的几率是( ) A.0% B.25% C.50% D.75% 2.具有一对相对性状的显性纯合体杂交,后代中与双亲基因型都不同的占( ) A.25% B.100% C.75% D.0% 3.子叶的黄色对绿色显性,鉴定一株黄色子叶豌豆是否纯合体,最常用的方法是 A.杂交 B.测交 C.检查染色体 D.自花授粉 4.基因分离规律的实质是( ) A.等位基因随同源染色体的分开而分离 B. F2性状分离比为3:1 C.测交后代性状分离比为1:1 D. F2出现性状分离现象· 5.杂合体高茎豌豆(Dd)自交,其后代的高茎中,杂合体的几率是( ) A.1/2 B.2/3 C.1/3 D.3/4 6.一只杂合的白羊,产生了200万个精子,其中含有黑色隐性基因的精子的为( ) A.50万 B.100万 C.25万 D.200万 7.牦牛的毛色,黑色对红色显性。为了确定一头黑色母牛是否为纯合体,应选择交配的公牛是( ) A.黑色杂合体 B.黑色纯合体 C.红色杂合体 D.红色纯合体 8.下列关于表现型和基因型的叙述,错误的是( ) A.表现型相同,基因型不一定相同 B. 相同环境下,表现型相同,基因型不一定相同 C.相同环境下,基因型相同,表现型也相同 D. 基因型相同,表现型一定相同 9.下列生物属纯合子的是( ) A.Aabb B.AAbb C.aaBb D.AaBb 10.表现型正常的父母生了一患白化病的女儿,若再生一个,可能是表现型正常的儿子、患白化病女儿的几 率分别是( ) A.1/4,1/8 B.1/2,1/8 C.3/4,1/4 D.3/8,1/8 11.番茄中圆形果(B)对长形果(b)显性,一株纯合圆形果的番茄与一株长形果的番茄相互授粉,它们所结果 实中细胞的基因型为( ) A.果皮的基因型不同,胚的基因型相同 B. 果皮、胚的基因型都相同 C.果皮的基因型相同,胚的基因型不同 D. 果皮、胚的基因型都不同— 12.一株国光苹果树开花后去雄,授以香蕉苹果花粉,所结苹果的口味是( ) A.二者中显性性状的口味 B. 两种苹果的混合味 C.国光苹果的口味 D. 香蕉苹果的口味 13.粳稻(WW)与糯稻(ww)杂交,F1都是粳稻。纯种粳稻的花粉经碘染色后呈蓝黑色,纯种糯稻的花粉经碘 染色后呈虹褐色。F1的花粉粒经碘染色后( ) A.3/4呈蓝色,1/14呈红褐色 B. 1/2呈蓝黑色1/2呈红褐色 C. 都呈蓝黑色 D. 都呈红褐色 14.某男患白化病,他的父、母和妹妹均正常。如果他的妹妹与一个白化病患者结婚,则生出白化病孩子的 几率为( ) A.1/4 B.1/3 C.1/2 D.2/3 15、人类的并指(A)对正常指(a )为显性的一种遗传病,在一个并指患者(他的父母有一个是正常指)的下列各细胞中不含或可能不含显性基因A的是() ①神经细胞②成熟的红细胞③初级性母细胞④次级性母细胞⑤成熟的性细胞 A、①②④ B、④⑤ C、②③⑤ D、②④⑤ 16、调查发现人群中夫妇双方均表现正常也能生出白化病患儿。研究表明白化病由一对等位基因控制。判

孟德尔的自由组合定律练习题汇编

华兴中学高13级暑期复习 孟德尔的自由组合定律练习题 一选择题 1.AaBb和aaBb两个亲本杂交,在两对性状独立遗传、完全显性时,子一代表现型中新类型所占比例为() A.1/2 B.1/4 C.3/8 D.1/8 2.玉米籽粒黄色(Y)对白色(y)显性,糯性(B)对非糯性(b)显性。一株黄色非糯的玉米自交,子代中不可能有的基因型是() A.yybb B.YYBB C.Yybb D.YYbb 3.狗的黑毛(B)对白毛(b)为显性,短毛(D)对长毛(d)为显性,这两对基因独立遗传。现有两只白色短毛狗交配。共生出23只白色短毛狗和9只白色长毛狗。这对亲本的基因型分别是()A.bbDd和bbDd B.BbDd和BbDd C.bbDD和bbDD D.bbDD和bbDd 4.假如高杆(D)对矮杆(d)、抗病(R)对易感病(r)为显性,两对性状独立遗传。现用DdRr和ddrr两亲本杂交,F1的表现型有 A.2种B.3种C.4种D.6种 5.已知基因A、B、C及其等位基因分别位于三对同源染色体上。现有一对夫妇,妻子的基因型AaBBCc,丈夫的基因型为aaBbCc,其子女中的基因型为aaBBCC的比例和出现具有a B C 表现型女儿的比例分别为( ) A.1/8、3/8 B.1/16、3/16 C.1/16、3/8 D.1/8、3/16 6.基因型为AAbb和aaBB的个体杂交(两结基因独立遗传),其F2中能稳定遗传的新类型占F2新类型总数的() A.1/16 B.1/8 C.1/3 D.1/5 7.基因自由组合定律的实质是() A.子二代性状分离比为9:3:3:1 B.子二代出现与亲本性状不同的新类型 C.测交后代的分离比为1:1:1:1 D.在形成配子时,同源染色体上的等位基因分离的同时,非同源染色体上的非等位基因自由组合 8.基因型为RrYY的生物个体自交,产生的后代,其基因型的比例为 A.3︰1 B.1︰2︰1 C.1︰1︰1︰1 D.9︰3︰3︰1 9.某生物个体经减数分裂产生4种类型的配子,即Ab∶aB∶AB∶ab=4∶4∶1∶1,这个生物如自交,其后代中出现双显性纯合体的几率是() A.1/8 B.1/20 C.1/80 D.1/100 10.人类中,基因D是耳蜗正常所必需的,基因E是听神经正常所必需的,如果双亲的基因型是DdEe,则后代是先天性聋哑的可能性是 A.7/16 B.3/16 C.1/16 D.1/2 11.肥厚性心肌病是一种显性常染色体遗传病,从理论上分析,如果双亲中有一方患病,其子女患病的可能性是 A.25%或30% B.50%或100% C.75%或100% D.25%或75% 12.水稻的高秆(D)对矮秆(d)是显性,抗锈病(R)对不抗锈病(r)是显性,这两对基因自由组合。甲水稻(DdRr)与乙水稻杂交,其后代四种表现型的比例是3∶3∶1∶1,则乙水稻的基因型是( )。

最新物理动量守恒定律练习题20篇

最新物理动量守恒定律练习题20篇 一、高考物理精讲专题动量守恒定律 1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求: (1)A球与B球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B球的最小速度. 【答案】(1);(2);(3)零. 【解析】 试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有: 碰后A、B的共同速度 损失的机械能 (2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大 根据动量守恒定律有: 三者共同速度 最大弹性势能 (3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速. 弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有: 根据机械能守恒定律: 此时A、B的速度,C的速度

可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的 ,故B 的最小速度为零 . 考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞. 【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答 2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v

高中物理动量守恒定律练习题

一、系统、内力和外力┄┄┄┄┄┄┄┄① 1.系统:相互作用的两个(或多个)物体组成的一个整体。 2.内力:系统内部物体间的相互作用力。 3.外力:系统以外的物体对系统内部的物体的作用力。 [说明] 1.系统是由相互作用、相互关联的多个物体组成的整体。 2.组成系统的各物体之间的力是内力,将系统看作一个整体,系统之外的物体对这个整体的作用力是外力。 ①[填一填]如图,公路上有三辆车发生了追尾事故,如果把前面两辆车看作一个系统,则前面两辆车之间的撞击力是________,最后一辆车对前面两辆车的撞击力是________(均填“内力”或“外力”)。 答案:内力外力 二、动量守恒定律┄┄┄┄┄┄┄┄② 1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。 2.表达式:对两个物体组成的系统,常写成: p1+p2=或m1v1+m2v2=。 3.适用条件:系统不受外力或者所受外力的矢量和为0。 4.动量守恒定律的普适性 动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域。 [注意] 1.系统动量是否守恒要看研究的系统是否受外力的作用。

2.动量守恒是系统内各物体动量的矢量和保持不变,而不是系统内各物体的动量不变。 ②[判一判] 1.一个系统初、末状态动量大小相等,即动量守恒(×) 2.两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒(√) 3.系统动量守恒也就是系统的动量变化量为零(√) 1.对动量守恒定律条件的理解 (1)系统不受外力作用,这是一种理想化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。 (2)系统受外力作用,但所受合外力为零。像光滑水平面上两物体的碰撞就是这种情形。 (3)系统受外力作用,但当系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以忽略不计,系统的动量近似守恒。 (4)系统受外力作用,所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。 2.关于内力和外力的两点提醒 (1)系统内物体间的相互作用力称为内力,内力会改变系统内单个物体的动量,但不会改变系统的总动量。 (2)系统的动量是否守恒,与系统的选取有关。分析问题时,要注意分清研究的系统,系统的内力和外力,这是正确判断系统动量是否守恒的关键。 [典型例题] 例 1.[多选]如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是() A.两手同时放开后,系统总动量始终为零

自由组合定律 练习题

自由组合定律作业 1 一、单选题 1.在孟德尔的具有两对相对性状的遗传实验中,F2出现的重组性状类型中能够稳定遗传的个体约占F2总数的( ) A.1/4 B.1/8 C.1/16 D.1/9 2、豌豆中高茎(T)对矮茎(t)为显性,绿豆荚(G)对黄豆荚(g)为显性,这两对基因是自由组合的,则Ttgg 与TtGg杂交后代的基因型和表现型的数目依次是() A.5和3 B.6和4 C.8和6 D.9和4 3、假如水稻高秆(D)对矮秆(d)为显性,抗稻瘟病(R)对易感稻瘟病(r)为显性,两对性状独立遗传。现用一个纯合易感稻瘟病的矮秆品种(抗倒伏)与一个纯合抗稻瘟病的高秆品种(易倒伏)杂交,F2中出现既抗倒伏又抗病类型的比例为( ) A. 1/8 B. 1/16 C. 3/16 D. 3/8 4、牵牛花的红花A对白花a为显性,阔叶B对窄叶b为显性。纯合红花窄叶和纯合白花阔叶杂交的后代再与“某植株”杂交,其后代中红花阔叶、红花窄叶、白花阔叶、白花窄叶的比依次是3:1:3:1,遗传遵循基因的自由组合定律。“某植株”的基因型( ) A.aaBb B.aaBB C.AaBb D.AAbb 5、让独立遗传的黄色非甜玉米YYSS与白色甜玉米yyss杂交,得F1,F1自交得F2,在F2中得到白色甜玉米80株,那么F2中表现型不同于双亲的杂合植株应约为( ) A.160 B.240 C.320 D.480 6、白色盘状与黄色球状南瓜杂交,F1全是白色盘状南瓜,F1自交产生的F2中杂合的白色球状南瓜有3000株,则纯合的黄色盘状南瓜有多少株( ) A.1500 B.3000 C.6000 D.9000 7、下列各组杂交组合中,只能产生一种表现型子代的是( ) A.BBSsXBBSs B.BbSsXbbSs C.BbSsXbbss D.BBssXbbSS 8 A.6个亲本都是杂合体B.抗病对感病为显性 C.红种皮对白种皮为显性D.这两对性状自由组合 9、基因型Aabb与AaBb的个体杂交,按自由组合,其后代中能稳定遗传的个体占( ) A.3/8 B.1/4 C.5/8 D.1/8 10、基因型为AaBbCcDd和AABbCcDd的向日葵杂交,按自由组合定律,后代中基因为AABBCcdd 的个体所占的比例为( ) 全部为黄色圆粒。F1自交获得F2,在F2中让黄色圆粒的植株自交,统计黄色圆粒植株后代的性状分离比,理论值为( B ) A. 24:8:3:1 B. 25:5:5:1 C. 4:2:2:1 D. 15:9:5:3

高中物理动量守恒定律练习题及答案及解析

高中物理动量守恒定律练习题及答案及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求: (1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能; (3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =01 4 P E mgx =0(2043)v gx =+【解析】 试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°= 1 2 mv 12 解得:103v gx = 又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011 322 v v gx == (2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P + 1 2 ?2mv 22=0+2mg?x 0sin30° 解得:E P =2mg?x 0sin30°? 1 2?2mv 22=mgx 0?34 mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,

四动量守恒定律练习题及答案

四 动量守恒定律 姓名 一、选择题(每小题中至少有一个选项是正确的) 1.在下列几种现象中,动量守恒的有( ) A .原来静止在光滑水平面上的车,从水平方向跳上一个人,人车为一系统 B .运动员将铅球从肩窝开始加速推出,以运动员和球为一系统 C .从高空自由落下的重物落在静止于地面上的车厢中,以重物和车厢为一系统 D .光滑水平面上放一斜面,斜面光滑,一个物体沿斜面滑下,以重物和斜面为一系统 2.两物体组成的系统总动量守恒,这个系统中( ) A .一个物体增加的速度等于另一个物体减少的速度 B .一物体受的冲量与另一物体所受冲量相同 C .两个物体的动量变化总是大小相等,方向相反 D .系统总动量的变化为零 3.砂子总质量为M 的小车,在光滑水平地面上匀速运动,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为 ( ) A .v 0 B .m M Mv -0 A .m M mv -0 A .M v m M 0)(- 、B 两个相互作用的物体,在相互作用的过程中合外力为0,则下述说法中正确的是( ) A .A 的动量变大, B 的动量一定变大 B .A 的动量变大,B 的动量一定变小 C .A 与B 的动量变化相等 D .A 与B 受到的冲量大小相等 5.把一支枪水平固定在小车上,小车放在光滑的水平地面上,枪发射子弹时,关于枪、子弹、车的下列说法正确的有( ) A. 枪和子弹组成的系统动量守恒 B.枪和车组成的系统动量守恒 C .枪、弹、车组成的系统动量守恒 D .若忽略不计弹和枪筒之间的摩擦,枪、车组成的系统动量守恒 6.两球相向运动,发生正碰,碰撞后两球均静止,于是可以判定,在碰撞以前( ) A .两球的质量相等 B .两球的速度大小相同 C .两球的动量大小相等 D .以上都不能断定 7.一只小船静止在水面上,一个人从小船的一端走到另一端,不计水的阻力,以下说法正确的是( ) A .人在小船上行走,人对船的冲量比船对人的冲量小,所以 人向前运动得快,小船后退得慢 B .人在小船上行走时,人的质量比船的质量小,它们受到的 冲量大小是一样的,所以人向前运动得快,船后退得慢 C .当人停止走动时,因为小船惯性大,所以小船要继续后退 D .当人停止走动时,因为总动量守恒,所以小船也停止后退 8.如图所示,在光滑水平面上有一静止的小车,用线系一小球, 将球拉开后放开,球放开时小车保持静止状态,当小球落下以后 与固定在小车上的油泥沾在一起,则从此以后,关于小车的运动状态是 ( ) A .静止不动 B .向右运动 C .向左运动 D .无法判断 *9.木块a 和b 用一根轻弹簧连接起来,放在光滑水平面上,a 紧靠在墙壁上,在b 上施加向左的水平力使弹簧压缩,如图所示,当撤去外力后,下列说法中正确的是( ) A .a 尚未离开墙壁前,a 和b 系统的动量守恒 B .a 尚未离开墙壁前,a 与b 系统的动量不守恒 C .a 离开墙后,a 、b 系统动量守恒 D .a 离开墙后,a 、b 系统动量不守恒 *10.向空中发射一物体.不计空气阻力,当物体的速度恰好沿水平方向 时,物体炸裂为a,b 两块.若质量较大的a 块的速度方向仍沿原来的方向则 ( ) A .b 的速度方向一定与原速度方向相反 B .从炸裂到落地这段时间里,a 飞行的水平距离一定比b 的大

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

高中生物自由组合定律典型练习题与解答

专题练习自由组合定律 一 .选择题(共10小题) 1 . (2015?上海)早金莲由三对等位基因控制花的长度,这三对基因分别位于三对同源染色 体上,作用相等且具叠加性.已知每个显性基因控制花长为 5mm 每个隐性基因控制花长为 2mm 花长为24mm 勺同种基因型个体相互授粉,后代出现性状分离,其中与亲本具有同等 花长的个体所占比例是( A. 丄B.卫C. 16 2. (2015?黄 浦区一模) 验结论影响最小的 是( A. 所选实验材料是否为纯合子 B .所选相对性状的显隐性是否易于区分 C. 所选相对性状是否受一对等位基因控制 D. 是否严格遵守实验操作流程和统计分析方法 3. (2014?上海)某种植物果实重量由三对等位基因控制,这三对基因分别位于三对同源染 色体上,对果实重量的增加效应相同且具叠加性.已知隐性纯合子和显性纯合子果实重量 分别为150g 和270g .现将三对基因均杂合的两植株杂交,F 1中重量为190g 的果实所占比例 为( ) A. 2 B.卫 C. 64 64 (2015?海南)下列叙述正确的是( 孟德尔定律支持融合遗传的观点 孟德尔定律描述的过程发生 在有丝分裂中 按照孟德尔定律,AaBbCcD (个体自交,子代基因型有16种 按照孟德尔定律,对 AaBbCc 个体进行测交,测交子代基因型有 8种 (2013?山东)用基因型为Aa 的小麦分别进行连续自交、随机交配、连续自交并逐代淘 Aa 基因 型频率绘制曲线如图.下列 ) F 3中Aa 基因型频率为 F 2 中Aa 基因型频率为 F n 中纯合体的比例比上一代增加(吉) ■Zi D.曲线I 和W 的各子代间A 和a 的基因频率始终相等 6 . (2014?上海)一种鹰的羽毛有条纹和非条纹、黄色和绿色的差异,已知决定颜色的显性 基因纯合子不能存活.如图显示了鹰羽毛的杂交遗传,对此合理的解释是( ① 绿色对黄色完全显性 ② 绿色对黄色不完全显性 ③ 控制羽毛性状的两对基因完全连锁 ④ 控制羽毛性状的两对基因自由组合. A.①③ B.①④ C.②③ D.②④ 7. (2015春?高州市校级期中)番茄高蔓(H )对矮蔓(h )显性,红色果实( 实 (r )显性,这两对基因独立遗传.纯合高蔓红果番茄和矮蔓黄果番茄杂交, 亲本不同且 能稳定遗传的个体,其基因型及比例为( ) A. HHrr ,春 B . Hhrr , ) D.卫 若用玉米为实验材料验证孟德尔分离定律,下列因素对得出正确实 ) 5 16 4 . A. B. C D. 5 . 汰隐性个体、随机交配并逐代淘汰隐性个体,根据各代 分析错误的是( A.曲线n 的 B .曲线m 的 C. 曲线W 的 n+1 R )对黄色果 F 2中表现与 i C - hhR R 事 D. hhrr ,— 3

《动量守恒定律》单元测试题含答案(4)

《动量守恒定律》单元测试题含答案(4) 一、动量守恒定律 选择题 1.两滑块a 、b 沿水平面上同一条直线运动,并发生碰撞,碰撞后两者粘在一起运动.两者的位置x 随时间t 变化的图象如图所示.若a 滑块的质量a m 2kg =,以下判断正确的是 ( ) A .a 、b 碰撞前的总动量为3 kg m /s ? B .碰撞时a 对b 所施冲量为4 N s ? C .碰撞前后a 的动量变化为4 kg m /s ? D .碰撞中a 、b 两滑块组成的系统损失的动能为20 J 2.如图所示,固定的光滑金属水平导轨间距为L ,导轨电阻不计,左端接有阻值为R 的电阻,导轨处在磁感应强度大小为B 、方向竖直向下的匀强磁场中.质量为m 、电阻不计的导体棒ab ,在垂直导体棒的水平恒力F 作用下,由静止开始运动,经过时间t ,导体棒ab 刚好匀速运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触.在这个过程中,下列说法正确的是 A .导体棒ab 刚好匀速运动时的速度22 FR v B L = B .通过电阻的电荷量2Ft q BL = C .导体棒的位移222 44 FtRB L mFR x B L -= D .电阻放出的焦耳热22222 44 232tRF B L mF R Q B L -= 3.将质量为m 0的木块固定在光滑水平面上,一颗质量为m 的子弹以速度v 0沿水平方向射入木块,子弹射穿木块时的速度为 3 v .现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v 0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是()

A.若m0=3m,则能够射穿木块 B.若m0=3m,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动 C.若m0=3m,子弹刚好能射穿木块,此时子弹相对于木块的速度为零 D.若子弹以3v0速度射向木块,并从木块中穿出,木块获得的速度为v1;若子弹以4v0速度射向木块,木块获得的速度为v2;则必有v1<v2 4.在光滑水平面上,有两个小球A、B沿同一直线同向运动(B在前),已知碰前两球的动量分别为pA=10 kg·m/s、pB=13 kg·m/s,碰后它们动量的变化分别为ΔpA、ΔpB.下列数值可能正确的是( ) A.ΔpA=-3 kg·m/s、ΔpB=3 kg·m/s B.ΔpA=3 kg·m/s、ΔpB=-3 kg·m/s C.ΔpA=-20 kg·m/s、ΔpB=20 kg·m/s D.ΔpA=20kg·m/s、ΔpB=-20 kg·m/s 5.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图.跳楼机由静止从a自由下落到b,再从b开始以恒力制动竖直下落到c停下.已知跳楼机和游客的总质量为m,ab 高度差为2h,bc高度差为h,重力加速度为g.则 A.从a到b与从b到c的运动时间之比为2:1 B.从a到b,跳楼机座椅对游客的作用力与游客的重力大小相等 C.从a到b,跳楼机和游客总重力的冲量大小为m gh D.从b到c,跳楼机受到制动力的大小等于2mg 6.如图所示,小车质量为M,小车顶端为半径为R的四分之一光滑圆弧,质量为m的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g为当地重力加速度)() A.若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为mg B.若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为3 2 mg

高中物理动量守恒定律基础练习题及解析

高中物理动量守恒定律基础练习题及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求: (1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v ;②23 v 【解析】 试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v = ②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223 v v = 考点:动量守恒定律 2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m 的光滑 1 4 圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。一可看做质点的小物块从A 点由静止释放,滑到C 点刚好相对小车停止。已知小物块质量m =1kg ,取g =10m/s 2。求: (1)小物块与小车BC 部分间的动摩擦因数; (2)小物块从A 滑到C 的过程中,小车获得的最大速度。 【答案】(1)0.5(2)1m/s 【解析】 【详解】 解:(1) 小物块滑到C 点的过程中,系统水平方向动量守恒则有:()0M m v += 所以滑到C 点时小物块与小车速度都为0 由能量守恒得: mgR mgL μ= 解得:0.5R L μ= =

(2)小物块滑到B 位置时速度最大,设为1v ,此时小车获得的速度也最大,设为2v 由动量守恒得 :12mv Mv = 由能量守恒得 :221211 22 mgR mv Mv =+ 联立解得: 21/ v m s = 3.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角 o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=) (1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能. 【答案】(1)6/B v m s = (2)0.6P E J = 【解析】 试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2 cos 1sin 2 B B B B m gh m gh m v θμθ+?= ① (3分) 代入已知数据解得:6/B v m s = ② (2分) (2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得: 222 0111()222 A B P A A B B m m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分) 考点:本题考查了动能定理、动量守恒定律、能量守恒定律. 4.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s

分离定律和自由组合定律精选练习题

一、选择题 1. 下列对基因型与表现型关系的叙述中,错误的 是 ( ) A. 表现型相同,基因型不一定相同 B. 基因型相同,表现型不一定相同 C. 在不同生活环境中,基因型相同,表现型一定相同 D. 在相同生活环境中,表现型相同,基因型不一定相同 2 .下列有关基因分离定律和基因自由组合定律的说法,错误的是 ( ) A. 孟德尔在研究分离定律和自由组合定律时,都用到了假说一演绎法 B. 二者揭示的都是生物细胞核遗传物质的遗传规律 C. 在生物性状遗传中,两个定律各自发生 D. 基因分离定律是基因自由组合定律的基础 3 .自由组合定律中的“自由组合”是指 ( ) A. 带有不同遗传因子的雌雄配子间的组合 B. 决定同一性状的成对的遗传因子的组合 C. 两亲本间的组合 D. 决定不同性状的遗传因子的组合 4 .在下列各项实验中,最终能证实基因的自由组合定律成立的是 ( ) A. F 1个体的自交实验 B. 不同类型纯种亲本之间的杂交实验 C. F 1个体与隐性个体的测交实验 D. 鉴定亲本是否为纯种的自交实验 5 .用纯种高茎黄子叶(DDYY )和纯种矮茎绿子叶(ddyy )为亲本进行杂交实验,在 R 植株及其上 结出的种子中能统计出的数据是 ( ) A. 高茎 黄子叶占3/4 B .矮茎 绿子叶占1/4 C. 高茎 黄子叶占9/16 D .矮茎 绿子叶占1/16 6. 基因型分别为ddEeFF 和DdEeff 的两种豌豆杂交,在3对等位基因各自独立遗传的条件下, 其子代表现型不同于两亲本的个体数占全部子代的 ( ) A. 1/4 B. 3/8 C. 5/8 D.3/4 7. 甜豌豆的紫花与白花是一对相对性状,由非同源染色体上的两对基因共同控制,只有当同 时存在两个显性基因(A 和B )时花中的紫色素才能合成,下列说法正确的是 ( ) A. AaBb 的紫花甜豌豆自交,后代中紫花和白花之比为 9: T B. 若杂交后代性状分离比为 3: 5,则亲本基因型只能是 AaBb 和aaBb C. 紫花甜豌豆自交,后代中紫花和白花的比例一定是 3: 1 D. 白花甜豌豆与白花甜豌豆相交,后代不可能出现紫花甜豌豆 8. 已知某闭花受粉植物高茎对矮茎为显性,红花对白花为显性,两对性状独立遗传。用纯合的 高茎红花与矮茎白花杂交, F I 自交,播种所有的F 2,假定所有F 2植株都能成活,F 2植株开花时,拔 掉所有的白花植株,假定剩余的每株 F 2植株自交收获的种子数量相等,且 F s 的表现型符合遗传的 基本定律。从理论上讲 F 3中表现白花植株的比例为( ) A . 1/4 B . 1/6 C . 1/8 D . 1/16 9 .多指症由显性基因控制,先天性聋哑由隐性基因控制,这两种遗传病的基因位于非同源染 色体上。一对男性患多指、女性正常的夫妇,婚后生了一个手指正常的聋哑孩子。这对夫妇再生下 D . 1/4、1/2、1/8 10. 已知水稻高秆(T )对矮秆⑴ 为显性,抗病(R )对感病(r )为显性,这两对基因在非同源染色 体上。现将一株表现型为高秆、抗病的植株的花粉授给另一株表现型相同的植株,所得后代表现型 是高秆:矮秆=3: 1 ,抗病:感病=3: 1。根据以上实验结果,判断下列叙述错误的是 ( ) A. 以上后代群体的表现型有 4种 B. 以上后代群体的基因型有 9种 C 以上两株亲本可以分别通过不同杂交组合获得 D.以上两株表现型相同的亲本,基因型不相同 11. 某种药用植物合成药物 1和药物2的途径如下图所示: 基因A 和基因b 分别位于两对同源 染色体上。下列叙述不正确的是 ( ) 基因(A_) 基因(bb ) 前体物一酶→药物1—―→药物2 A. 基因型为AAbb 或Aabb 的植株能同时合成两种药物 B. 若某植株只能合成一种药物,则必定是药物 1 C. 基因型为AaBb 的植株自交,后代有 9种基因型和4种表现型 D. 基因型为AaBb 的植株自交,后代中能合成药 物 2的个体占3/16 12. 水稻的高秆(D )对矮秆(d )为显性,抗稻瘟病(R )对易感稻瘟病(r )为显性,这两对基因独立 遗传。将一株高秆抗病的植株 (甲)与另一株高秆易感病的植株 (乙)杂交,结果如下图所示。下面有 关叙述,哪一项是正确的 ( ) 75 50 25 高秆矮秆抗病易感精 A. 如只研究茎高度的遗传,图示表现型为高秆的个体中,纯合子的概率为 1/2 B. 甲、乙两植株杂交产生的子代有 6种基因型,4种表现型 C. 对甲植株进行测交,可得到能稳定遗传的矮秆抗病个体 D. 对乙植株自交,可培育出稳定遗传的高杆抗病个体 13. 南瓜果实的黄色和白色是由一对等位基因 (A 和a ) 控制的,用一株黄色果实南瓜和一株白 高二生物周末练习5――分离定律和自由组合定律 的孩子为手指正常、先天性聋哑、既多指又先天性聋哑这三种情况的可能性依次是( ) A . 1/2、1/4、1/8 B . 1/4 、 1/8 、 1/2 C. 1/8、1/2、1/4 IOO JL 和对值(建

动量守恒定律测试题及解析

动量守恒定律测试题及解析 1.(2019·北京海淀一模)如图所示,站在车上的人,用锤子连续敲打小车。 初始时,人、车、锤子都静止。假设水平地面光滑,关于这一物理过程,下列 说法正确的是( ) A .连续敲打可使小车持续向右运动 B .人、车和锤子组成的系统机械能守恒 C .当锤子速度方向竖直向下时,人和车水平方向的总动量为零 D .人、车和锤子组成的系统动量守恒 解析:选C 人、车和锤子整体看做一个处在光滑水平地面上的系统,水平方向上所受合外力为零,故水平方向上动量守恒,总动量始终为零,当锤子有相对地面向左的速度时,车有向右的速度,当锤子有相对地面向右的速度时,车有向左的速度,故车做往复运动,故A 错误;锤子击打小车时,发生的不是完全弹性碰撞,系统机械能有损耗,故B 错误;锤子的速度竖直向下时,没有水平方向速度,因为水平方向总动量恒为零,故人和车水平方向的总动量也为零,故C 正确;人、车和锤子在水平方向上动量守恒,因为锤子会有竖直方向的加速度,故锤子竖直方向上合外力不为零,竖直方向上动量不守恒,系统总动量不守恒,故D 错误。 2.质量为1 kg 的物体从距地面5 m 高处自由下落,落在正以5 m /s 的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4 kg ,地面光滑,则车后来的速度为(g =10 m/s 2)( ) A .4 m /s B .5 m/s C .6 m /s D .7 m/s 解析:选A 物体和车作用过程中,两者组成的系统水平方向不受外力,水平方向系统的动量守恒。已知两者作用前,车在水平方向的速度v 0=5 m/s ,物体在水平方向的速度v =0;设当物体与小车相对静止后,小车的速度为v ′,取原来小车速度方向为正方向,则根据水平方向系统的动量守恒得:m v +M v 0=(M +m )v ′,解得:v ′=m v +M v 0M +m =4×51+4 m /s =4 m/s ,故选项A 正确,B 、C 、D 错误。 3.[多选](2020·泸州第一次诊断)在2019年世界斯诺克国际锦标赛中,中国选手丁俊晖把质量为m 的白球以5v 的速度推出,与正前方另一静止的相同质量的黄球发生对心正碰,碰撞后黄球的速度为3v ,运动方向与白球碰前的运动方向相同。若不计球与桌面间的摩擦,则( ) A .碰后瞬间白球的速度为2v B .两球之间的碰撞属于弹性碰撞 C .白球对黄球的冲量大小为3m v D .两球碰撞过程中系统能量不守恒 解析:选AC 由动量守恒定律可知,相同质量的白球与黄球发生对心正碰,碰后瞬间白球的速度为 2v ,故A 正确。碰前的动能为12m (5v )2=252m v 2,碰后的动能为12m (3v )2+12m (2v )2=132 m v 2,两球之间的碰撞不属于弹性碰撞,故B 错误。由动量定理,白球对黄球的冲量I 大小就等于黄球动量的变化Δp ,Δp =

相关主题