搜档网
当前位置:搜档网 › 高中物理复习能量和动量经典习题例题含答案

高中物理复习能量和动量经典习题例题含答案

高中物理复习能量和动量经典习题例题含答案
高中物理复习能量和动量经典习题例题含答案

专题研究二

能量和动量

清大师德教育研究院物理教研中心李丽

}

`

1.功和能的关系及动能定理是历年高考的热点,近几年来注重考查对功的概念的理解及用功能关系研究物理过程的方法,由于所涉及的物理过程常常较为复杂,对学生的能力要求较高,因此这类问题难度较大。例如2005年江苏物理卷的第10题,要求学生能深刻理解功的概念,灵活地将变力分解。

2.动量、冲量及动量定理近年来单独出题不多,选择题中常考查对动量和冲量的概念及动量变化矢量性的理解。计算题常设置某个瞬时过程,计算该过程物体受到的平

均作用力或物体状态的变化。要求学生能正确地对物体进行受力分析,弄清物体状态变化的过程。

3.动量守恒定律的应用,近几年单独命题以选择题为主,常用来研究碰撞和类碰撞问题,主要判定碰撞后各个物体运动状态量的可能值,这类问题也应该综合考虑能量及是否符合实际情况等多种因素。机械能守恒定律的应用常涉及多个物体组成的系统,要求学生能正确在选取研究对象,准确确定符合题意的研究过程。这类问题有时还设置一些临界态问题或涉及运用特殊数学方法求解,对学生的能力有一定的要求。如2004年上海物理卷的10题,涉及到两个小球组成的系统,并且要能正确地运用数学极值法求解小球的最大速度。

4.动量和能量的综合运用一直是高考考查的重点,一般过程复杂、难度大、能力要求高,经常是高考的压轴题。要求学生学会将复杂的物理过程分解成若干个子过程,分析每一个过程的始末运动状态量及物理过程中力、加速度、速度、能量和动量的变化。对于生活、生产中的实际问题要建立相关物理模型,灵活运用牛顿定律、动能定理、动量定理及能量转化与守恒的方法解决实际问题。分析解答问题的过程中常需运用归纳、推理的思维方法。如:2003年全国卷第20题、2004年理综全国卷第25题的柴油机打桩问题、2004年江苏物理卷第18题、2004年广东物理卷第17题、2005年江苏物理卷第18题、2005年广东物理卷第18题等。值得注意的是2005年江苏物理卷的第18题把碰撞中常见的一维问题升级为二维问题,对学生的物理过程的分析及动量矢量性的理解要求更高了一个层次。

#

第5课时做功、能量和动能定理

[例1](2005江苏·10)如图5-1所示,固定的光滑竖直杆上套着一个滑块,用轻绳系着滑块绕过光滑的定滑轮,以大小恒定的拉力F拉绳,使滑块从A点起由静止开始上升.若从A点上升至B点和从B点上升至C点的过程中拉力F做的功分别为W1、W2,滑块经B、C两点时的动能分别为E KB、E Kc,图中AB=BC,则一定有()

(A)W l>W2 (B)W1E KC (D)E KB

析与解:该题考查了功的概念及功能关系,难点在于比较W l 和W 2,关键是要理解功是力在位移上的累积的本质;功的大小既可视为力F 与力的方向上的位移S 的乘积,又可视为位移S 与位移方向上的力的乘积;因此,可以将力F 在位移方向上进行分解,由于力F 在AB 段的分力均大于在BC 段的分力,则不难判断出W l >W 2,所以A 正确。

根据动能定理:K K G F E E W -'

=-W 因在两段中拉力做的功W F 与重力做的功W G 的大小关系不能确定,故无法比较E KB 与E Kc 的大小。

点评:解决该题的关键是能正确地理解功的定义,注意从不同的思维角度去分析问题。题中力F 为恒力,学生易从求力的作用点位移角度来比较两过程绳子缩短的长度,进而增加了思维难度,甚至造成错误。 [例2](2004广东·17)如图5-2所示,

轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态。另一质量与B 相同滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离1l 时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连。已知最后A 恰好返回出发点P 并停止。滑块A

和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大

形变量为2l ,求A 从P 出发时

的初速度0v 。 析与解:本题涉及物块A

及AB 共同体两个研究对象,涉及多个运动过程,且AB 共同体压迫弹簧及被弹簧推向

右端的过程受力复杂,属于多对象多过程的复杂问题。研究A 滑行至B 的过程,设A

刚接触B 时的速度为1v ,由功能关系有: 22

0111122

mv mv mgl μ-= A 与B 碰撞过程

中动量守恒,令碰后A 、B 共同运动的速度为2v ,有 122mv mv = A 与B 碰后先一起向左运动,接着A 、B 一起被弹回,当弹簧恢复到原长时,A 、B 分离,设此时A 、B 的共同速度为3v ,在这过程中,弹簧势能始末两态都相等,研究共同体与弹簧作用的全过

程,利用功能关系,有 23

23211(2)(2)(2)(2)22

m v m v m g l μ-=

此后A 、B 开始分离,A 单独向右滑到P 点停下,由功能关系有 ,

2

3112mv mgl μ= 由以上各式,可得 012(1016)v g l l μ=+

点评:A 、B 碰撞的瞬间有动能损失,A 、B 再次分离后各自己的运动独立,故不能研究整个过程运用动能定理求解。正确的分析出滑块运动的各个过程,判断出AB 两滑块分离时弹簧处于原长状态是题解的关键。对于多过程问题,在分析运动过程的同时还应注意找出前后各过程间的联系。

B A

{

2l 1l 图5-2

P 图5-1

[例3](2005黑龙江吉林·23)如图5-3所示,在水平桌面的边角处有一轻质光滑的定滑轮K ,一条不可伸长的轻绳绕过K 分别与物块A 、B 相连,A 、B 的质量分别为m A 、m B 。开始时系统处于静止状态。现用一水平恒力F 拉物块A ,使物块B 上升。已知当B 上升距离为h 时,B 的速度为v 。求此过程中物块A 克服摩擦力所做的功。重力加速度为g 。

析与解:由于连结AB 的绳子在运动过程中一直处于绷紧状态,故A 、B 速度的大小相等,对A 、B 组成的系统,由功能关系有: $

Fh -W -m B gh=1

2 (m A +m B )v 2

求得:W=Fh -m B gh -1

2 (m A +m B )v 2 点评:本题如果运用隔离法选择研究对象,运用牛顿运动定律求解,要求出摩擦力的大小则比较复杂,而运用功能原理求解时则就显得简单多了。在连结体问题中,若不涉及常系统内的相互作用时,常以整体为研究对象求解。

[例4] 如图5-4所示,质量m =的小球从距地面高H =5m 处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R =。小球第一次到达槽最低点时速率为10m/s ,并继续沿槽壁运动直到从槽右端边缘飞出……,如此反复几次,设摩擦力恒定不变,求:(设小球与槽壁相碰时不损失能量)

(1)小球第一次离槽上升的高度h ;

(2)小球最多能飞出槽外的次数(取g =10m/s 2)。 析与解:(1)小球从高处运动至槽口的过程中,只有重力做功;由槽口运动至槽底端的过程中,重力、摩擦力都做功,因摩擦力大小恒定不变,且方向总是与运动方向相反,故圆槽右半部分摩擦力对小球做的功与左半部分摩擦力对小球做的功相等。

分别研究小球从最高点落至槽底部和从槽底部运动至左侧上方

最高点的过程,设小球第一次离槽上升的高度h ,由动能定理得

22

1

)(mv W R H mg f =-+

!

22

1

)(mv W R h mg f -=-+-

得mg

mgR

W mv h f --=2

21=

(2)小球通过一次圆弧槽,需克服摩擦力做功2W f ,且小球飞出槽口一次,在小球多次通过圆弧槽后,当小球飞出槽口的速度小于等于零,则小球不能飞出槽口,设小球飞出槽外的次数为n ,用动能定理研究全过程得

02≥?-f W n mgH

∴25.64

25

2==≤

f W mgH n A B

K F

图5-3

图5-4

即小球最多能飞出槽外6次。

点评:小球在沿槽壁运动过程中摩擦力方向尽管不断变化,但摩擦力方向与运动方向始终在同一直线上,摩擦力功为力与路程的乘积。该题小球的运动具有往复性,用动能定理研究整个过程可直接求出问题的答案。本题中作了摩擦力不变的假设,学生应认真审题。

?

1、如图5′-1所示,木板长为l ,板的A 端放一质量为m 的小物块,物块与板间的动摩擦因数为μ。开始时板水平,在绕O 点缓慢转过一个小角度θ的过程中,若物块始

终保持与板相对静止。对于

这个过程中各力做功的情况,下列说法正确的是 ( )

A 、摩擦力对物块所做的功为mgl sin θ(1-cos θ)

B 、弹力对物块所做的功为mgl sin θcos θ

C 、木板对物块所做的功为mgl sin θ

D 、合力对物块所做的功为mgl cos θ ;

2、如图5′-2所示,一物体从高为H 的斜面顶端由静止开始滑下,滑上与该斜面相

连的一光滑曲面后又返回斜面,在斜面上能上升到的最大高度为1

2 H 。若不考虑物体经

过斜面底端转折处的能量损失,则当物体再一次滑回斜面时上升的最大高度为 ( )

A .0

B .1

4 H ,

C .14 H 与1

2 H 之间 D .0与1

4 H 之间

3、如图5′-3所示,重球m 用一条不可伸长的轻质细线栓住后悬于O 点,重球置于一个斜面不光滑的斜劈M 上,用水平力F 向左推动斜劈M 在光滑水平桌面上由位置(a )匀速向左移动到位置(b ),在此过程中,正确说法是:

( )

A .m 与M 之间的摩擦力对m 做正功;

B .M 与m 之间的摩擦力对m 做负功;

C .M 对m 的弹力对m 所做的功与m 对M 的弹力对M 所做的功的绝对值不相等;

D .F 对M 所做的功与m 对M 所做的功的绝对值相等。

图5′-2

4、(2005广东·18)如图5′-4所示,两个完全相同的质量为m 的木板A 、B 置于水平地面上,它们的间距s=。质量为2m ,大小可忽略的物块C 置于A 板的左端。C 与A 之间的动摩擦因数为μ1=,A 、B 与水平地面之间的动摩擦因数为μ2=,最大静摩擦力可以认为等于滑动摩擦力。开始时,三个物体处于静止状态。现给C 施加一个水平向右,大小为mg 5

2的恒力F ,假定

木板A 、B 碰撞时间极短且碰撞后粘连在一起,要使C 最终不脱离木板,每块木板

的长度至少应为多少

'

5.(05广州一模) 如图5′-5所示,EF 为水平地面,O 点左侧是粗糙的、右侧是光滑的.一轻质弹簧右端与墙壁固定,左端与静止在O 点质量为m 的小物块A 连结,弹簧处于原长状态. 质量为m 的物块B 在大小为 F 的水平恒力作用下由 C 处从静止开始向右运动 ,

已知物块B 与地面EO 段间的滑动摩擦力大小为4

F

,物块B 运动到O 点与物块A 相碰并一起

向右运动(设碰撞时间极短),运动到D 点时撤去外力F. 已知 CO =4S ,OD =S.

求撤去外力后:

(1) 弹簧的最大弹性势能. (2) 物块B 最终离0点的距离. .

/

A

C

B

F s

图5′-4

图5′-5

、·

?

附:第5课时巩固提高训练答案及解 1.答案:C

解:支持力对物体做正功 ,重力对物体做负功;由于静摩擦力始终与运动方向垂直,故摩擦力不做功,三力对物体做的总功为零。因重力对物体做功为θsin mg -,所以木板对物体支持力做功为θsin mg 。选项为C

2.答案B

解:由功能关系知物体下滑过程中机械能的损失等于克服摩擦力做的功,第一次从

H 高处下滑返回到最高点高度为2

H

,损失的能量为总机械能的一半;因摩擦力不变,故

可类比推知第二次回到最高点损失的能量也为一半,即最大高度为4

H

。选项为B

3.答案:A D &

解:小球受到的摩擦力的方向沿斜面向下,小球的运动方向垂直于细绳向上,故小球的运动方向与摩擦力的方向小于900,所以,A 选项正确。而M 对m 弹力作用的物点和m 对M 弹力作用的物点的位移相同,所做的功的绝对值相等。M 匀速运动,其所受外力做功为零。故D 选项正确。

4.答案:L=3m

解:第一阶段拉力F 小于C 、A 间最大静摩擦力,因此C 、A 共同加速到与B 相碰,该过程对C 、A 共同体用动能定理:(F-μ23mg )s=3mv 12/2,得v 1=83.0m/s

AB 相碰瞬间,AB 动量守恒,碰后共同速度v 2=43.0m/s

C 在AB 上滑行全过程,ABC 系统所受合外力为零,动量守恒,C 到B 右端时恰好达到共速:2m v 1+2m v 2=4m v ,因此共同速度v=63.0m/s

C 在AB 上滑行全过程用功能关系:F 2L=4m v 2/2-(2m v 12/2+2m v 22/2)+μ12mg 2L 得L=3m

5.答案:(1)FS E pm 2

5

= (2)x=5s

解:(1)B 与A 碰撞前速度由动能定理

W =(F-F/4)·4S =mv 2/2,

(

得v 0=m

FS

S m

F F 64)41(2=?-

?

B 与A 碰撞,由动量守恒定律 mv 0=2mv 1 , 得 v 1=

m

FS

621

碰后到物块A 、B 运动至速度减为零,弹簧的最大弹性势能

E pm =

F ·S+FS mv 2

5

22121=?

(2) 设撤去F 后,A 、B 一起回到0点时速度为v 2, 由机械能守恒得

E pm =

2

2

221mv ? V 2=m

FS 5 返回至0点时, A 、B 开始分离,B 在滑动摩擦力作用下向左作匀减速直线运动,设物块B

最终离O 点最大距离为x ,由动能定理:-2

1041-=Fx 2

2mv 解得 x=5s

第6课时 冲量、动量与动量定理

[例1](2004广东·14)一质量为m 的小球,以初速度v 0沿水平方向射出,恰好垂直地射到一倾角为300的固定斜面上,并立即反方向弹回。已知反弹速度的大小是入射

速度大小的3

4

,求在碰撞中斜面对小球的冲量大小。

析与解:小球在碰撞斜面前做平抛运动。设刚要碰撞斜面时小球速度为v .由题意,v 的方向与竖直线的夹角为30°,且水平分量仍为v 0,如右6-1图.由此得v =2v 0

碰撞过程中,小球速度由v 变为反向的v 4

3

,碰撞时间极

短,可不计重力的冲量,由动量定理,斜面对小球的冲量为

mv v m I +=)43

( 解得 04

7

mv I =

点评:本题为动量定理和平抛运动的综合应用题,必须先根据平抛运动的知识确定小球射到斜面上时的速度,再根据动量定理求冲量的大小。求力的冲量常从两个角度思考:(1)冲量的定义Ft I =,(2)动量定理P I ?=。在求斜面对小球的冲量时要注意动量的矢量性。 、

[例2](1995全国·17) 一粒钢珠从静止状态开始自由下落,然后陷入泥潭中。若

把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ, 则 ( )

A 、过程I 中钢珠动量的改变量等于重力的冲量

精典考题反思 图6-1

B 、过程Ⅱ中阻力冲量的大小等于过程I 中重力的冲量的大小

C 、I 、Ⅱ两个过程中合外力的总冲量等于零

D 、过程Ⅱ中钢珠动量的改变量等于零

析与解:在过程I 中,钢珠从静止状态自由下落。不计空气阻力,小球所受的合外力即为重力,因此钢珠动量的改变量等于重力的冲量,选项A 正确;全过程中始末状态动量的变化为零,所受的总冲量为零,故过程Ⅱ中阻力冲量的大小等于过程I 、Ⅱ中重力冲量的大小之和。显然B 选项不对,C 选项正确;在I 、Ⅱ两个过程中,每个过程钢珠动量的改变量各不为零,且它们大小相等、方向相反,故D 选项错误。因此,本题的正确选项为A 、C 。

点评:本题考查了动量定理的运用,动量定理不仅适用于单一物理过程同样也适用于复杂物理过程。在运用动量定理时应注意根据所求问题选取合适的物理过程,分析各物理过程中力的冲量及物体的始末状态量。运用动量定理时不能忽视对研究对象的受力分析。

[例3](2002全国·26)蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。一个质量为60kg 的运动员,从离水平网面高处自由下落,着网后沿竖直方向蹦回到离水平网面高处。已知运动员与网接触的时间为。若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小。(g =10m/s 2)

析与解:将运动员看作质量为m 的质点,从h 1高处下落,刚接触网时速度的大小 112gh v = 方向竖直向下 /

弹跳后到达的高度为h 2,刚离网时速度的大小 222gh v = 方向竖直向上 以向上为正向,由动量定理知: 12)(mv mv t mg F +=- 代入数据得:F =×103N

点评: 动量定理既适用于恒力作用下的问题,也适用于变力作用下的问题。在变力作用下由动量定理求出的力是在t 时间内的平均值。另注意本题中运动员触网过程中所受重力不能忽略。本题也可以先求出上升和下落时间,再研究全过程据动量定理列式求解。

[例4]如图6-2所示, 质量为M 的汽车带着质量为m 的拖车在平直公路上以加速度a 匀加速前进,当速度为V 0时拖车突然与汽车脱钩,到拖车停下瞬间司机才发现。若汽车的牵引力一直未变,车与路面的动摩

擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大

析与解:汽车和拖车脱钩后,汽车以大于a 的加速度作匀加速运动,拖车作匀减速运动,加速度为μg 。以汽车和拖车系统为研究对象,系统受的合外力不变,始终为()a m M +;该过程经历时间为V 0/μg ,末状态拖车的动量为零。对系统运用动量定理:

()()()()0

/0/0V Mg

g a m M V V m M MV g V a m M μμμ++=∴+-=?+,

点评:动量定理不仅适用于单个物体,对多个物体组成的系统同样也适用,合理在选取研究对象能简化研究问题。注意本题的研究过程为汽车和拖车脱钩后至拖车停下之前,因为拖车停下后,系统受的合外力中少了拖车受到的摩擦力,因此合外力大小不再是()a m M +。

图6-2

1.(1997全国·2)质量为m 的钢球自高处落下,以速率v 1碰地,竖直向上弹回,

碰撞时间极短,离地的速率为 v 2。在碰撞过程中,地面对钢球的冲量的方向和大小为 ( ) 、

A .向下,m (v 1-v 2)

B .向下,m (v 1+v 2)

C .向上,m (v 1-v 2)

D .向上,m (v 1+v 2) 2.以下说法中正确的是: ( )

A.动量相等的物体,动能也相等; B.物体的动能不变,则动量也不变;

C.某力F对物体不做功,则这个力的冲量就为零;

D.物体所受到的合冲量为零时,其动量方向不可能变化.

3.恒力F 作用在质量为m 的物体上,如图6′-1所示,由于地面对物体的摩擦力

较大,没有被拉动,则经时间t ,下列说法正确的是 ( )

A .拉力F 对物体的冲量大小为零 ,

B .拉力F 对物体的冲量大小为Ft

C .拉力F 对物体的冲量大小是Ftcos θ

D .合力对物体的冲量大小为零

4.一质量为m的物体从距地面h高处以一定的速度水平抛出(不计空气阻力),则

物体在落地前的运动过程中,下列说法中正确的有: ( )

A .连续相等的时间间隔内物体受到的冲量相同

B .连续相等的时间间隔内物体的动量变化相同

C .连续相等的时间间隔内物体的动能增量相等

D .连续相等的时间间隔内合外力所做的总功相等

5.两木块质量之比为1∶2,它们在粗糙程度相同的水平面上滑动,下列说法正确的是:( ) 】

① 若初速度相同,滑行的距离之比为1∶1,滑行所需时间之比为1∶1 ② 若初动量相同,滑行的距离之比为1∶1,滑行所需时间之比为1∶1 ③ 若初动能相同,滑行的距离之比为1∶1,滑行所需时间之比为1∶1

④ 若初动量相同,滑行的距离之比为4∶1,若初动能相同,滑行所需距离之比为2∶1。

A 、①②

B 、①④

C 、②③

D 、②④

6.在粗糙水平面上运动的物体,从A 点开始受水平恒力作用,作直线运动.已知

物体在B 点的速度与A 点的速度大小相等,则这个过程中: ( )

A.物体不一定做匀速直线运动 始终与摩擦力方向相反

巩固提高训练

图6′-1

与摩擦力对物体所做的总功为零 与摩擦力对物体的总冲量为零

·

7.如图6′-2所示,两个质量相等的物体在同一高度沿倾角不同的两个光滑斜面

由静止自由滑下,到达斜面底端,在这个过程中,两个物体具有的相同的物理量可能是 ( )

A 重力的冲量

B 合力的冲量

C 到达底端的动量大小

D 支持力的冲量

.

8.在光滑水平面上有质量均为2kg 的a 、b 两质点,a 质点在水平恒力F a =4N 作用下由静止出发运动4s 。b 质点在水平恒力F b =4N 作用下由静止出发移动4m 。比较这两

个质点所经历的过程,可以得到的正确结论是 ( )

A .a 质点的位移比b 质点的位移大

B .a 质点的末速度比b 质点的末速度小

C .力F a 做的功比力F b 做的功多

D .力F a 的冲量比力F b 的冲量小 9.一个质量为m=2kg 的物体,在F 1=8N 的水平推力作用下,从静止开始沿水平面运动了t 1=5s,然后推力减小为F 2=5N,方向不变,物体又运动了t 2=4s 后撤去外力,物体再经 过t 3=6s 停下来。试求物体在水平面上所受的摩擦力。

10.质量是60kg 的建筑工人,不慎从高空跌下,由于弹性安全带的保护作用,最后使人悬挂在空中.已知弹性安全带缓冲时间为,安全带伸直后长5m ,求安全带所受的平均冲力.( g= 10m /s 2)

11.(05 苏锡常镇一模)在宇宙飞船的实验舱内充满CO 2气体,且一段时间内气体的压强不 变,舱内有一块面积为S 的平板舱壁,如图6′-3所示.如果CO 2气体对平板的压强是由气体分子垂直撞击平板形成的,假设气体分子中各有l /6的个数分别向上、下、左、右、前、后六个方向运动,且每个分子的速度均为υ,设气体分子与平板碰撞后仍以原速反弹.已知实验舱中单位体积内CO 2的摩尔数为n ,CO 2的摩尔质量为μ,阿伏加德罗常数为N A .求

(1) 单位时间内打在平板上的CO 2分子个数. (2) 】 (3) CO 2气体对平板的压力。

12.如图6′-4所示,矩形盒B 的质量为M ,放在水平面上,盒内有一质量为m 的物体A ,A 与B 、B 与地面间的动摩擦因数分别μ1、μ2,开始时二者均静止。现瞬间使物体A 获取一向右且与矩形盒B 左、右侧壁垂直的水平速度V 0,以后物体A 在盒B 的

θ1

θ2 图6′-2

图6′-3

左右壁碰撞时,B 始终向右运动。当A 与B 最后一次碰撞后,B 停止运动,A 则继续向右滑行距离S 后也停止运动,求盒B 运动的时间t 。

`

,

附:第6课时巩固提高训练答与解 1.答案:D

解:碰撞时间极短,忽略重力。以向上为正向,)()(2112v v m mv mv I +=--=,故选D 。

2.答案:D

解:mv P =,2

2

1mv E k =;故m P E k 22=,动量相等的物体质量不一定相等,动能也

不一定相等。动能是标量,而动量是矢量,动能不变但其方向可能变化,即动量的方向可能变化。力不做功可能是在力的方向上不产生位移,但此时力的冲量不为零。由动量定理知,合力的冲量一定等于动量的变化,故选D 。

3.答案:B D

解:冲量Ft I =,故有力必有冲量,与物体的运动状态无关,与其他力无关,选B 。物体未动,合力为零,故冲量大小为零,选D 。

4.答案:A B

解:由Ft I =,知选项A 正确。由动量定理P I ?=知,动量的变化等于重力的冲量,故选B 。连续相等的时间间隔内物体在力的方向上的位移不等,故重力所做的功和动能的增量不等。 '

5.答案:B

解:由动量定理mv mgt -=-0μ和动能定理22

1

0mv mgs -=-μ,及化简后的表达式

g

v

t μ=,g v s μ22=,不难看出①、④正确,故选B 。

6.答案:A C

解:物体的受力方向有两种可能,即与初速度方向相同或相反。相同时物体必做匀速运动,相反则先做减速运动,后做加速运动亦满足题意。故A 选项正确。当力与速度方向相反时,易知A 、B

点速度方向相反,由动量定理知总冲量不为零。由动能定理易

图6′-4

知动能不变,合外力做功为零。故选AC 。

7.答案:C

解:运动时间不等,重力的冲量不同。末动量的方向不同,由动量定理知合力的冲量不可能相同。由机械能守恒知到达底端的末动能相等,故末动量大小相等。选C 。支持力的方向不同故冲量也不可能相同。

8.答案:AC

解:由牛顿第二定律知两物体加速度相同,2/2s m m

F

a ==,可解得a 质点的位移

为m at s 162

1

2==。可推知a 的运动时间长,故选A 、C 。

9.答案: N f 4=

解:规定推力的方向为正方向,在物体运动的整个过程中,物体的初动量P 1=0,末动量P 2=O 。据动量定理有: 0)((3212211=++-+t t t f t F t F )

即:0)645(4558=++-?+?f ,解得 N f 4= 10.答案: N F 1100=(方向竖直向下)

解:人下落为自由落体运动,下落到底端时的速度为: gh V 220= s m gh V /1020==∴ 取人为研究对象,在人和安全带相互作用的过程中,人受到重力mg 和安全带给的冲力 F ,取F 方向为正方向,由动量定理得:0)(mv mv t mg F -=-

所以N t mV mg F 11000

=+=,(方向竖直向下) 11.答案:(1)N =61n S N A υ (2) F 1 =3

1

n μS υ2

(1)设在△t 时间内,CO 2分子运动的距离为L ,则:L =υ△t

打在平板上的分子数:△N =6

1

n L S N A

故单位时间内打在平板上的C02的分子数为:t

N

N ??=

得 :N =6

1

n S N A υ

(2)根据动量定理: F △t=(2m υ)△N ;又 μ=N A m

解得 :F =31n μS υ2 ; 故CO2气体对平板的压力:F 1 = F =3

1

n μS υ2

12.答案: g

m M gS

m mV t )(2210+-=μμ

解:以物体A 、盒B 组成的系统为研究对象,它们在水平方向所受的外力就是地面盒B 所受的滑动摩擦力,而A 与B 间的摩擦力、A 与B 碰撞时的相互作用力均是内力。设B 停止运动时A 的速度为V ,且假设向右为正方向,由系统的动量定理得:

02)(mV mV gt M m -=+-μ

当B 停止运动后,对A

应用动能定理得:212

1

mV mgS ==μ

由以上二式联立解得:g

m M gS

m mV t )(2210+-=μμ。

|

)

第7课时 机械能守恒定律和动量守恒定律

[例1](2000上海·8)如图7-1所示,长度相同的三根轻杆构成一个正三角形支架,在A 处固定质量为2m 的小球,B 处固定质量为m 的小球,支架悬挂在O 点,可绕过O 点并与支架所在平面相垂直的固定轴转动,开始时OB 与地面相垂直,放手后开始运动,

在不计任何阻力的情况下,下列说法正确的是 ( )

A .A 球到达最低点时速度为零

|

B .A 球机械能减少量等于B 球机械能增加量

C .B 球向左摆动所能达到的最高位置应高于A 球开始运动时的高度

D .当支架从左向右回摆动时,A 球一定能回到起始高度

析与解 :若把支架看成一个整体,放开后,不计任何阻力,系统

只有重力做功,系统总的机械能不变,所以,A 球能回到起始高度;

因为A 小球质量为2m ,B 小球质量为m ,在A 球从初始位置运动到最低点的过程中,A 球势能的减少量大于B 球势能的增加量,故A 球到达最低点时速度大于零;B 球向左摆动所能达到的最高位置应高于A 球开始运动时的高度。故正确选项为B C D.

点评: 准确地选择研究对象,使之满足机械能守恒的条件,是本题求解的关键。本题单独对A 或B 来说,由于杆对两小球均做功,故运动过程中机械能不守恒。而对A 、B 组成的系统,只有重力做功,系统总的机械能保持不变。对于多个物体组成的系统还应注意寻找各物体之间的牵联关系。

[例2](2004天津·21)如图7-2所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动。两球质量关系为A B m m 2=,规定向右为正方向,A 、B 两球的动量均为

s m kg /6?,运动中两球发生碰撞,碰撞后A 球的动量增量为s m kg /4?-,则 ( )

A. 左方是A 球,碰撞后A 、B 两球速度大小之比为5:2

B. 左方是A 球,碰撞后A 、B 两球速度大小之比为10:1

C. 右方是A 球,碰撞后A 、B 两球速度大小之比为5:2

&

D. 右方是A 球,碰撞后A 、B 两球速度大小之比为10:1

析与解 :规定向右为正方向,因为两球动量相等且为正,要两球相碰,则左方球的速度必须大于右方球的速度,而A B m m 2=,故A 球的速度大于B 球的速度,左方为A 球。据动量守恒定律,两球的动量变化大小相等,方向相反,A 球的动量增量为-s m kg /4?,B 球的动量变化为s m kg /4?。据p p p -=?',算出碰撞后A 、B 两球的动量分别为 s m kg /2?,s m kg /10?,两球速度之比为5:2。故选项为(A )

点评:动量守恒定律的运用要注意其矢量性,本题中已规定了正方向,从题设条件得出两球运动方向相同且向右,是本题的关键。在判断A 、B 的位置时还应充分考虑运动中的实际情况,学生在分析的过程中可结合草图,增加空间认识,加深对题意的理解。

[例3](2005陕西、四川、云南理综·25)如图7-3所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自已刚好能回到高处A 。求男演员落地点C 与O 点的水

平距离s 。已知男演员质量m 1和女演员质量m 2之比m 1

m 2 =2,

秋千的质量不计,秋千的摆长为R , C 点比O 点低5R 。 析与解:一对杂技演员从A 点由静止出发绕O 点下摆

的过程中机械能守恒;设分离前男女演员在秋千最低点 B 的速度为v 0,则

(m 1+m 2)gR=1

2 (m 1+m 2)v 02

当摆到最低点B 时,由于女演员在极短时间内将男演员沿水平方向推出,在此过程

图7-1 图7-2 A B C

s

5R O "

R

图7-3

中,两者水平方向不受外力,故水平方向动量守恒;设刚分离时男演员速度的大小为v 1,女演员速度的大小为v 2;则

(m 1+m 2)v 0=m 1v 1-m 2v 2

分离后,男演员做平抛运动,设男演员从被推出到落在C 点所需的时间为t 。

4R=1

2 gt 2 s=v 1t

女演员刚好能回到A 点的过程中机械能守恒

m 2gR=1

2 m 2v 22 不难求得 s=8R —

点评:机械能守恒定律的运用,要选好研究对象,分析物体的运动过程,建立正确的物理模型。本题解题的关键是弄清一对演员的运动过程。男女演员一起绕o 点做圆周运动,满足机械能守恒。到达B 点后,男女演员相互作用,二人相互作用时间极短,满足动量守恒。相互作用后男演员从B 点出发做平抛运动。女演员由B 点回到A 点过程中也遵守机械能守恒。另注意运用机械能守恒定律时,恰当地选取零势能面,可使解题简洁。

[例4](2005江苏·18)如图7-4所示,三个质量均为m 的弹性小球用两根长均为L 的轻绳连成一条直线而静止在光滑水平面上.现给中间的小球B 一个水平初速度v 0,方向与绳垂直.小球相互碰撞时无机械能损失,轻绳不可伸长.求:

(1)当小球A 、C 第一次相碰时,小球B 的速度. (2)当三个小球再次处在同一直线上时,小球B 的速度.

(3)运动过程中小球A 的最大动能E KA 和此时两根绳的夹角θ.

(4)当三个小球处在同一直线上时,绳中的拉力F 的大小.

析与解:由于三个质量为m 的弹性小球在光滑水平面上相互作用,所以它们在沿v 0方向和垂直于v 0的方向上动量均守恒;又小球相互碰撞时无机械能损失,故三小球相互作用的整个过程中,系统机械能守恒。当小球A 、C 第一次相碰时,在垂直于v 0方向的分速度为零,在沿v 0方向上三小球速度相等,设三小球沿小球B 初速度方向的速度为B v ,由动量守恒定律不难得出

03B mv mv = 01

3

B v v =

·

当三个小球再次处在同一直线上时,A 、C 两小球的运动方向和小球B 的运动方向在同一直线上,对整个过程运用动量守恒定律和机械能守恒定律,得

02B A mv mv mv =+ 22201112222

B A mv mv mv =+? 解得013B v v =- 02

3

A v v =(三球再次处于同一直线)

0B v v =,0A v =(初始状态,舍去)

图7-4

所以,三个小球再次处在同一直线上时,小球B 的速度为01

3

B v v =-(负号表明与

初速度反向)

此时,以小球B 为参考系(小球B 的加速度为0,为惯性参考系),小球A (C )相

对于小球B 的速度均为0A B v v v v =-=所以,此时绳中拉力大小为22

0v v F m m L L

==

当小球A 的动能最大时,C 的动能也最大且和A 的动能相等,小球B 的动能最小,不难分析其速度此时为零。设此时小球A 、C 的速度大小为u ,两根绳间的夹角为θ(如

图7-5),运用动量守恒定律和机械能守恒定律易得:

02sin

2

mv mu θ

= #

22011

222mv mu =?

小球A 的最大动能为201

4

KA E mv =,此时两根绳间夹角为90θ=?

点评:本题解题的关键在于研究对象的选取及过程的分析。三个小球组成的系统水平方向不受外力,满足动量守恒;又碰撞过程中无机械能损失,整个过程中三小球的总机械能守恒。第一次相碰时,三球在v 0方向速度相同。三个小球再次处在同一直线上时,垂直于V 0方向上的动量为零。运动过程中小球A 的动能最大时,由对称性可知此时C 的动能也最大,故B 球动能最小,即为零。当三个小球处在同一直线上求绳中的拉力F 时,还应考虑到运动的相对性,即A 、C 相对于B 作圆周运动。

1.A 、B 两球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是5kg .m/s ,B 球的动量是7kg .m/s ,当A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量的可能值是( )

A .-4 kg ·m/s 、14 kg ·m/s

B .3kg ·m/s 、9 kg ·m/s [

C .-5 kg ·m/s 、17kg ·m/

D .6 kg ·m/s 、6 kg ·m/s

2.长度为l 的均匀链条放在光滑水平桌面上,且使其长度的4

l

垂在桌边,如图7′

-1所示。松手后链条从静止开始沿桌边下滑,则链条滑至刚刚离开桌边时的速度大小为( )

A .gl 1521

B .gl 1541

C . gl 1543

D .gl 15

3.(2005上海·9)如图所示,A 、B 分别为单摆做简谐振动时摆球的不同位置。其

巩固提高训练

θ

u

u

C

A

B 图7-5

图7′-1

中,位置A为摆球摆动的最高位置,虚线为过悬点的竖直线。以摆球最低位置为重力势能零点,则摆球在摆动过程中()

A.位于B处时动能最大

B.位于A处时势能最大

C.在位置A的势能大于在位置B的动能

D.在位置B的机械能大于在位置A的机械能

4.(2005广东·6)如图7′-3所示,两根足够长的固定平行金属光滑导轨位于同一水平面,导轨上横放着两根相同的导体棒ab、cd与导轨构成

矩形回路。导体棒的两端连接着处于压缩状态的两根轻质弹簧,

两棒的中间用细线绑住,它们的电阻均为R,回路上其余部分

的电阻不计。在导轨平面内两导轨间有一竖直向下的匀强磁场。

开始时,导体棒处于静止状态。剪断细线后,导体棒在运动过

程中( )

A.回路中有感应电动势

B.两根导体棒所受安培力的方向相同

C.两根导体棒和弹簧构成的系统动量守恒,机械能守恒

D.两根导体棒和弹簧构成的系统动量守恒,机械能不守恒

5.如图7′-4所示,质量分别为m和2m的A、B两个木块间用轻弹簧相连,放在光滑水平面上,A靠紧竖直墙.用水平力F将B向左压,使弹簧被压缩一定长度,静止后弹簧储存的弹性势能为E.这时突然撤去F,关于A、B和弹簧组成的系统,下列说法中正确的是()

A.撤去F后,系统动量守恒,机械能守恒

B.撤去F后,A离开竖直墙前,系统动量不守恒,机械

能守恒

C.撤去F后,A离开竖直墙后,弹簧的弹性势能最大值

为E

D.撤去F后,A离开竖直墙后,弹簧的弹性势能最大值为E/3

6.如图7′-5所示,质量均为m的两球AB间有压缩的轻、短弹簧处于锁定状态,放置在水平面上竖直光滑的发射管内(两球的大小尺寸和弹簧尺寸都可忽略,他们整体视为质点),解除锁定时,A球能上升的最大高度为H,现在让两球包括锁定的弹簧从水平面出发,沿光滑的半径为R的半圆槽从右侧由静止开始下滑,至最低点时,瞬间锁定解除,求A球离开圆槽后能上升的最大高度。

\ ,

B

B

A

R

图7′-5

a~

b d

图7′-3

>

F

A B

图7′-4

动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型) 例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为 4kg,地面光滑,则车后来的速度为多少? 例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少? 例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地 点的距离。(g取10m/s2) 例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。设 小车足够长,求: (1)木块和小车相对静止时小车的速度。 (2)从木块滑上小车到它们处于相对静止所经历的时间。 (3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。 例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞? 答案:1.

h b 分析:以物体和车做为研究对象,受力情况如图所示。 在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。因此地面给车的支持力远大于车与重物的重力之和。 系统所受合外力不为零,系统总动量不守恒。但在水平方向系统不受外力作用,所以系统水平方向动量守恒。以车的运动方向为正方向,由动量守恒定律可得: 车 重物初:v 0=5m/s 0末:v v ?Mv 0=(M+m)v ?s m v m N M v /454 14 0=?+=+= 即为所求。 2、分析:以滑块和小车为研究对象,系统所受合外力为零,系统总动量守恒。 以滑块的运动方向为正方向,由动量守恒定律可得 滑块 小车初:v 0=4m/s 0末:v v ?mv 0=(M+m)v ?s m v m M M v /143 11 0=?+=+= 再以滑块为研究对象,其受力情况如图所示,由动量定理可得 ΣF=-ft=mv-mv 0 ?s g v v t 5.110 2.0) 41(0=?--=-=μf=μmg 即为所求。 3、分析:手榴弹在高空飞行炸裂成两块,以其为研究对象,系统合外力不为零,总动量不守恒。但手榴弹在爆炸时对两小块的作用力远大于自身的重力,且水平方向不受外力,系统水平方向动量守恒,以初速度方向为正。 由已知条件:m 1:m 2=3:2 m 1 m 2 初:v 0=10m/s v 0=10m/s

动量守恒定律典型例题解析

动量守恒定律·典型例题解析 【例1】 如图52-1所示,在光滑的水平面上,质量为m 1的小球以速度v 1追逐质量为m 2,速度为v 2的小球,追及并发生相碰后速度分别为v 1′和v 2′,将两个小球作为系统,试根据牛顿运动定律推导出动量守恒定律. 解析:在两球相互作用过程中,根据牛顿第二定律,对小球1有:F ==,对有′==.由牛顿第三定律得=m a m m F m a m F 1112222????v t v t 12 -F ′,所以F ·Δt =-F ′·Δt ,m 1Δv 1=-m 2Δv 2,即m 1( v 1′-v 1)=-m 2(v 2′-v 2),整理后得:m 1v 1+m 2v 2=m 1v 1′+ m 2v 2′,这表明以两小球为系统,系统所受的合外力为零时,系统的总动量守恒. 点拨:动量守恒定律和牛顿运动定律是一致的,当系统内受力情况不明,或相互作用力为变力时,用牛顿运动定律求解很繁杂,而动量定理只管发生相互作用前、后的状态,不必过问相互作用的细节,因而避免了直接运用牛顿运动定律解题的困难,使问题简化. 【例2】 把一支枪水平地固定在光滑水平面上的小车上,当枪发射出一颗子弹时,下列说法正确的是 [ ] A .枪和子弹组成的系统动量守恒 B .枪和车组成的系统动量守恒 C .子弹、枪、小车这三者组成的系统动量守恒 D .子弹的动量变化与枪和车的动量变化相同 解析:正确答案为C 点拨:在发射子弹时,子弹与枪之间,枪与车之间都存在相互作用力,所以将枪和子弹作为系统,或枪和车作为系统,系统所受的合外力均不为零,系统的动量不守恒,当将三者作为系统时,系统所受的合外力为零,系统的动量守恒,这时子弹的动量变化与枪和车的动量变化大小相等,方向相反.可见,系统的动量是否守恒,与系统的选取直接相关. 【例3】 如图52-2所示,设车厢的长度为l ,质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来

经典验证动量守恒定律实验练习题(附答案)

验证动量守恒定律 由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单 位,那么小球的水平射程的数值就等于它们的水平速度。 在右图中分别用OP、OM和O/N表示。因此只需验证: m1?OP=m1?OM+m2?(O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为:m1?OP=m1?OM+m2?ON,两个小球的直径也不需测量 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得小l车A的质量m1=0.40kg,小车B的质量m2=0.20kg,由以上测量结果可得:碰前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G由静止开始滚下,记录纸上的垂直投影点。B球落点痕迹如图2所示,其中米尺水平放置。且平行于G.R.Or所在的平面,米尺的零点与O 点对齐。 (1)碰撞后B球的水平射程应取为______cm. (2)在以下选项中,哪些是本次实验必须进行的测量?答:

动量和冲量概念详解+典型例题

第二讲动量与能量 命题趋向 “动量和能量”问题是高考的主考题型,出现的频率也是比较高的,是高考的一个热点,专家命题十分重视对主干知识的考查,在命题时不避讳常规试题,也考查我们认为的超纲问题(弹性碰撞)。注重对试题的题境的创新、设问的创新、条件的变化,注重考查学生对概念的理解、规律的应用及学生学习中可能存在的思维障碍。动量、能量考点在历年的高考物理计算题中一定应用,且分值都不低于20分,09年也不例外。 力与运动、动量、能量是解动力学问题的三种观点,一般来说,用动量观点和能量观点比用力的观点解题简便,因此在解题时优先选用这两种观点;但在涉及加速度问题时就必须用力的观点. 有些问题,用到的观点不只一个,特别像高考中的一些综合题,常用动量观点和能量观点联合求解,或用动量观点与力的观点联合求解,有时甚至三种观点都采用才能求解,因此,三种观点不要绝对化. 考点透视 1、动量 动量观点包括动量定理和动量守恒定律。 (1)动量定理 凡涉及到速度和时间的物理问题都可利用动量定理加以解决,特别对于处理位移变化不明显的打击、碰撞类问题,更具有其他方法无可替代的作用。 (2)动量守恒定律 动量守恒定律是自然界中普通适用的规律,大到宇宙天体间的相互作用,小到微观粒子的相互作用,无不遵守动量守恒定律,它是解决爆炸、碰撞、反冲及较复杂的相互作用的物体系统类问题的基本规律。 动量守恒条件为: ①系统不受外力或所受合外力为零 ②在某一方向上,系统不受外力或所受合外力为零,该方向上动量守恒。 ③系统内力远大于外力,动量近似守恒。 ④在某一方向上,系统内力远大于外力,该方向上动量近似守恒。 应用动量守恒定律解题的一般步骤: 确定研究对象,选取研究过程;分析内力和外力的情况,判断是否符合守恒条件;选定正方向,确定初、末状态的动量,最后根据动量守恒定律列方程求解。 应用时,无需分析过程的细节,这是它的优点所在,定律的表述式是一个矢量式,应用时要特别注意方向。 2、能量

经典验证动量守恒定律实验练习题(附答案)

· 验证动量守恒定律由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在右图中分别用OP、OM和O/N表示。因此只需验证: m 1OP=m 1 OM+m 2 (O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈 在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、复写纸、白纸、重锤、两个直径相同质量不同的小球、圆规。 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为: m 1OP=m 1 OM+m 2 ON,两个小球的直径也不需测量 《 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得 小l车A的质量m 1=0.40kg,小车B的质量m 2 =0.20kg,由以上测量结果可得:碰 前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G

高中物理动量典型例题

高中物理动量典型例题(基础必练题) 冲量相等时物体的运动情况 例1如果物体在任何相等的时间内受到的冲量都相同,那么这个物体的运动(). A、可能是匀变速运动 B、可能是匀速圆周运动 C、可能是匀变速曲线运动 D、可能是匀变速直线运动 分析与解:冲量是力与时间的乘积,在任何相等的时间内冲量都相同,也就是物体受到的力恒定不变,所以物体做匀变速运动,其轨迹可以是直线的也可以是曲线的.答案为A、C、D. 下落物体的重力冲量 例2 一个质量为5kg的物体从离地面80m的高处自由下落,不计空气阻力,在下落这段时间内,物体受到的重力冲量的大小是(). A.200N·s B.150N·s C.100N·s D.250N·s 分析与解:根据冲量的定义在这个过程中重力的大小是一个定值,只需求出这个过程所用的时间即可. 答案:C. 冲量公式的简单应用 例3 一匹马通过不计质量的绳子拉着货车从甲地到乙地,在这段时间内,下列说法中正确的是:(). A、马拉车的冲量大于车拉马的冲量 B、车拉马的冲量大于马拉车的冲量 C、两者互施的冲量大小相等 D、无法比较冲量大小 分析与解:在这个过程中,马对车的拉力,与车对马的拉力是一对作用力与反作用力,大小总是相等的,根据冲量的定义,时间也相同,所以冲量的大小是相等的.答案:C. 关于动量的矢量计算 例4 质量为5kg的小球以5m/s的速度竖直落到地板上,随后以3m/s的速度反向弹回,若取竖直向下的方向为正方向,则小球动量的变化为()

A.10kg·m/s B.-10kg·m/s C.40kg·m/s D.-40kg·m/s 分析与解:动量的变化是末动量减去初动量,规定了竖直向下为正. 初动量kg·m/s 末动量kg·m/s 动量的变化kg·m/s 答案:D. 关于抛体运动物体的重力冲量 例5 质量为5kg的小球,从距地面高为20m处水平抛出,初速度为10m/s,从抛出到落地过程中,重力的冲量是(). A.60N·s B.80N·s C.100N·s D.120N·s 分析与解:在这个过程中,小球所受重力恒定不变,只需求出这个过程的时间即可 答案:C. 动量大小与速度的关系 例6 质量为60kg以1m/s速度步行的人和以800m/s速度飞行的质量为的子弹,哪个动量大? 解:人 子弹 即:人的动量大. 课本例题分析与设疑 例7 一个质量是的钢球,以6 m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动(如图).碰撞前后钢球的动量有没有变化?变化了多少?

《动量守恒定律》测试题(含答案)(2)

《动量守恒定律》测试题(含答案)(2) 一、动量守恒定律选择题 1.在光滑的水平桌面上有等大的质量分别为M=0.6kg,m=0.2kg的两个小球,中间夹着一个被压缩的具有E p=10.8J弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态。现突然释放弹簧,球m脱离弹簧后滑向与水平面相切、半径为R=0.425m的竖直放置的光滑半圆形轨道,如图所示。g取10m/s2。则下列说法正确的是() A.球m从轨道底端A运动到顶端B的过程中所受合外力冲量大小为3.4N·s B.弹簧弹开过程,弹力对m的冲量大小为1.8N·s C.若半圆轨道半径可调,则球m从B点飞出后落在水平桌面上的水平距离随轨道半径的增大而减小 D.M离开轻弹簧时获得的速度为9m/s 2.如图所示,将一光滑的、质量为4m、半径为R的半圆槽置于光滑水平面上,在槽的左侧紧挨着一个质量为m的物块.今让一质量也为m的小球自左侧槽口A的正上方高为R处从静止开始落下,沿半圆槽切线方向自A点进入槽内,则以下结论中正确的是() A.小球在半圆槽内第一次由A到最低点B的运动过程中,槽的支持力对小球做负功B.小球第一次运动到半圆槽的最低点B时,小球与槽的速度大小之比为41︰ C.小球第一次在半圆槽的最低点B时对槽的压力为13 3 mg D.物块最终的动能为 15 mgR 3.如图甲所示,质量M=2kg的木板静止于光滑水平面上,质量m=1kg的物块(可视为质点)以水平初速度v0从左端冲上木板,物块与木板的v-t图象如图乙所示,重力加速度大小为10m/s2,下列说法正确的是() A.物块与木板相对静止时的速率为1m/s B.物块与木板间的动摩擦因数为0.3

冲量和动量典型例题解析

冲量和动量·典型例题解析 【例1】 两个质量相等的物体分别沿高度相同,但倾角不同的光滑斜面从顶端自由下滑到底端,在此过程中两物体具有相同的物理量是 [ ] A .重力的冲量 B .合力的冲量 C .动量的变化 D .速率的变化 解析:正确答案为D 点拨:虽然它们所受的重力相同,但它们在斜面上运动的时间不同,所受的合外力的大小和方向均不同,到达斜面底端时速度的方向不同, 物体到达斜面底端时的速度大小可由==得=,v 2as 2(gsin )h sin v 2θθ 2gh 与斜面倾角无关. 【例2】 质量为0.4kg 的小球沿光滑水平面以5m/s 的速度冲向墙壁,被墙以4m/s 的速度弹回,如图49-1所示,求 (1)小球撞击墙前后的动量分别是多少? (2)这一过程中小球的动量改变了多少?方向怎样? 解析:取向右为正方向,则 (1)小球撞击墙前的动量p 1=mv 1=0.4×5=2(kg ·m/s),动量为正,表示动量的方向跟规定的正方向相同,即方向向右. 小球撞击墙后的动量p 2=mv 2=0.4×(-4)=-1.6(kg ·m/s).动量为负,表示动量方向跟规定的正方向相反,即方向向左. (2)此过程中小球动量的变化Δp =p 2-p 1=-1.6-2=-3.6(kg ·m/s),动量的变化为负,表示方向向左. 点拨:动量、动量的变化都是矢量,解题时要选取正方向,把矢量运算简化为代数运算. 【例3】 如图49-2所示在倾角θ=37°的斜面上,有一质量m =5kg 的物体沿斜面下滑,物体与斜面间的动摩擦因数μ=0.2,求物体下滑2s 的时间内,物体所受各力的冲量.

动量与能量经典例题详解

动量与能量经典题型详解 动量与功能问题可以与高中物理所有的知识点综合,是高考的重点,试题难度大,需要多训练、多总结归纳. 1.如图所示,一轻绳的一端系在固定粗糙斜面上的O 点,另一端系一小球,给小球一足够大的初速度,使小球在斜面上做圆周运动,在此过程中( ) A .小球的机械能守恒 B .重力对小球不做功 C .绳的张力对小球不做功 D .在任何一段时间内,小球克服摩擦力所做的功是等于小球动能的减少 【解析】小球与斜面之间的摩擦力对小球做功使小球的机械能减小,选项A 错误;在小球运动的过程中,重力、摩擦力对小球做功,绳的张力对小球不做功.小球动能的变化等于重力、摩擦力做功之和,故选项B 、D 错误,C 正确. [答案] C 2.质量为M 的物块以速度v 运动,与质量为m 的静止物块发生正碰,碰撞后两者的 动量正好相等.两者质量之比M m 可能为( ) A .2 B .3 C .4 D .5 【解析】由题意知,碰后两球动量相等,即p 1=p 2=12 M v 故v 1=v 2,v 2=M v 2m 由两物块的位置关系知:M v 2m ≥v 2 ,得M ≥m 又由能量的转化和守恒定律有: 12M v 2≥12M (v 2)2+12m (M v 2m )2 解得:M ≤3m ,故选项A 、B 正确. [答案] AB 【点评】碰撞问题是高考对动量守恒定律考查的主流题型,这类问题一般都要考虑动量守恒、动能不增加、位置不超越这三方面. 3.图示为某探究活动小组设计的节能运输系统.斜面轨道的倾角为30°,质量为M 的 木箱与轨道间的动摩擦因数为36 .木箱在轨道顶端时,自动装货装置将质量为m 的货物装入木箱,然后木箱载着货物沿轨道无初速度滑下,当轻弹簧被压缩至最短时,自动卸货装置立刻将货物卸下,然后木箱恰好被弹回到轨道顶端,再重复上述过程.下列选项正确的是 ( ) A .m =M B .m =2M C .木箱不与弹簧接触时,上滑的加速度大于下滑的加速度 D .在木箱与货物从顶端滑到最低点的过程中,减少的重力势能全部转化为弹簧的弹性势能

动量及动量守恒定律全章典型习题精讲

动量及动量守恒定律全章典型习题精讲

————————————————————————————————作者: ————————————————————————————————日期:

动量及动量守恒定律全章典型习题精讲 一.学法指导: 动量这部分内容,本身并不复杂,主要有冲量和动量这两个概念,还有动量定理和动量守恒定律这两个重要规律.动量定理是对一个物体说的,它受到合外力的冲量等于该物体动量的增量.动量守恒定律是对相互作用的系统而言的,在系统不受外力作用的情况下,系统的总动量守 本章的难点主要在于冲量和动量都是矢量,矢量的运算比起标量的运算来要困难得多.我们中学阶段目前只要求计算同一直线上的动量问题,对于同一直线上的动量,可以用正负号表示方向,从而把矢量运算转化为代数运算. 这部分内容的另一个难点是涉及到相互作用的系统内物体的动量和机械能的综合问题,为此,我们在学习时要把动量这部分内容与机械能部分联系起来.下面三个方面的问题是我们学习中要重点理解和掌握的. 1、4个重要的物理概念,即冲量、动量、功和动能,下面把它们归纳、整理、比较如下: (1)冲量和功,都是“力”的,要注意是哪个力的冲量,哪个力做的功. 动量和动能,都是“物体”的,要注意是哪个物体的动量、哪个物体的动能. (2)冲量和功,都是“过程量”,与某一段过程相对应.要注意是哪个过程的冲量,是哪个过程中做的功. 动量和动能,都是“状态量”,与某一时刻相对应.要注意是哪个时刻的动量或动能,过程量是不能与状态量划等号的,即决不能说某力的冲量等于某时刻的动量,或说某个功等于某时刻的动能.动量定理和动能定理都是“过程关系”,它们说的是在某段过程中,物体受到的合外力的冲量或做的功,等于物体动量或动能的增量,这里“增量”又叫“变化量”,是相应过程的“始”、“末”两个状态量的差值,表示的还是某一段过程的状态的变化 此外,还有一点要注意,那就是这些物理量与参考系的关系.由于位移和速度都是与参考系有关的物理量,因此动量、功、动能都是与参考系有关的物理量,只有冲量与参考系无关.凡没有提到参考系的问题,都是以地面为参考系的. 2、两个守恒定律是物理学中的重要物理规律,下面把有关两个守恒定律的问题整理列表如下:

高考物理最新力学知识点之动量经典测试题附答案解析(5)

高考物理最新力学知识点之动量经典测试题附答案解析(5) 一、选择题 1.质量为5kg 的物体,原来以v=5m/s 的速度做匀速直线运动,现受到跟运动方向相同的冲量15Ns 的作用,历时4s ,物体的动量大小变为( ) A .80 kg· m/s B .160 kg· m/s C .40 kg· m/s D .10 kg· m/s 2.自然界中某个量D 的变化量D ?,与发生这个变化所用时间t ?的比值D t ??,叫做这个量D 的变化率.下列说法正确的是 A .若D 表示某质点做平抛运动的速度,则 D t ??是恒定不变的 B .若D 表示某质点做匀速圆周运动的动量,则 D t ??是恒定不变的 C .若D 表示某质点做竖直上抛运动离抛出点的高度,则D t ??一定变大. D .若D 表示某质点的动能,则D t ??越大,质点所受外力做的总功就越多 3.下列说法正确的是( ) A .速度大的物体,它的动量一定也大 B .动量大的物体,它的速度一定也大 C .只要物体的运动速度大小不变,物体的动量就保持不变 D .物体的动量变化越大则该物体的速度变化一定越大 4.如图所示,一个质量为M 的滑块放置在光滑水平面上,滑块的一侧是一个四分之一圆弧EF ,圆弧半径为R =1m .E 点切线水平.另有一个质量为m 的小球以初速度v 0从E 点冲上滑块,若小球刚好没跃出圆弧的上端,已知M =4m ,g 取10m/s 2,不计摩擦.则小球的初速度v 0的大小为( ) A .v 0=4m/s B .v 0=6m/s C .v 0=5m/s D .v 0=7m/s 5.将充足气后质量为0.5kg 的篮球从1.6m 高处自由落下,篮球接触地面的时间为0.5s ,竖直弹起的最大高度为0.9m 。不计空气阻力,重力加速度大小为g=9.8m/s 2。则触地过程中篮球地面的平均作用力大小为 A .4.9N B .8.9N C .9.8N D .14.7N 6.篮球运动深受同学们喜爱。打篮球时,某同学伸出双手接传来的篮球,双手随篮球迅速

高中物理复习能量和动量经典习题例题含问题详解

专题研究二 能量和动量 清大师德教育研究院物理教研中心丽

1.功和能的关系及动能定理是历年高考的热点,近几年来注重考查对功的概念的理解及用功能关系研究物理过程的方法,由于所涉及的物理过程常常较为复杂,对学生的能力要求较高,因此这类问题难度较大。例如2005年物理卷的第10题,要求学生能深刻理解功的概念,灵活地将变力分解。 2.动量、冲量及动量定理近年来单独出题不多,选择题中常考查对动量和冲量的概念及动量变化矢量性的理解。计算题常设置某个瞬时过程,计算该过程物体受到的平均作用力或物体状态的变化。要求学生能正确地对物体进行受力分析,弄清物体状态变化的过程。 3.动量守恒定律的应用,近几年单独命题以选择题为主,常用来研究碰撞和类碰撞问题,主要判定碰撞后各个物体运动状态量的可能值,这类问题也应该综合考虑能量及是否符合实际情况等多种因素。机械能守恒定律的应用常涉及多个物体组成的系统,要求学生能正确在选取研究对象,准确确定符合题意的研究过程。这类问题有时还设置一些临界态问题或涉及运用特殊数学方法求解,对学生的能力有一定的要求。如2004年物理卷的10题,涉及到两个小球组成的系统,并且要能正确地运用数学极值法求解小球的最大速度。 4.动量和能量的综合运用一直是高考考查的重点,一般过程复杂、难度大、能力要求高,经常是高考的压轴题。要求学生学会将复杂的物理过程分解成若干个子过程,分析每一个过程的始末运动状态量及物理过程中力、加速度、速度、能量和动量的变化。对于生活、生产中的实际问题要建立相关物理模型,灵活运用牛顿定律、动能定理、动量定理及能量转化与守恒的方法解决实际问题。分析解答问题的过程中常需运用归纳、推理的思维方法。如:2003年全国卷第20题、2004年理综全国卷第25题的柴油机打桩问题、2004年物理卷第18题、2004年物理卷第17题、2005年物理卷第18题、2005年物理卷第18题等。值得注意的是2005年物理卷的第18题把碰撞中常见的一维问题升级为二维问题,对学生的物理过程的分析及动量矢量性的理解要求更高了一个层次。

动量典型例题

1 如图所示,已知A,B之间的质量关系是m B=1.5m A,拍摄共进行了4次,第一次是在两滑块相撞之前,以后的三次是在碰撞之后,A原来处于静止状态,设A、B滑块在拍摄闪光照片的这段时间内是在10 cm至105 cm这段范围内运动(以滑块上的箭头位置为准),试根据闪光照片(闪光时间间隔为0.4s),求出: (1)A、B两滑块碰撞前后的速度各为多少? (2)根据闪光照片分析说明:两滑块碰撞前后,两个物体各自的质量与自己的速度的乘积之和是不是不变量? 2 气垫导轨(如图)工作时,空气从导轨表面的小孔喷出,在导轨表面和滑块内表面之间形成一层薄薄的空气层,使滑块不与导轨表面直接接触,大大减小了滑块运动时的阻力.为了探究碰撞中的守恒量,在水平气垫导轨上放置两个质量均为a的滑块,每个滑块的一端分别与穿过打点计时器的纸带相连,两个打点计时器所用电源的频率均为b.气垫导轨正常工作后,接通两个打点计时器的电源,并让两滑块以不同的速度相向运动,两滑块相碰后粘在一起继续运动.右下图为某次实验打出的、点迹清晰的纸带的一部分, 在纸带上以同间距的6个连续点为一段划分纸带,用刻度尺分别量出其长度s1、s2和s3.若题中各物理量的单位均为国际单位,那么,碰撞前两滑块的质量和速度大小的乘积分别为 _______ 、_______ ,碰撞前两滑块的质量和速度乘积的矢量和为;碰撞后两滑块的总质量和速度大小的乘积为________.重复上述实验,多做几次寻找碰撞中的守恒量. 3 碰撞的恢复系数的定义为,其中v10和v20分别是碰撞前两物体的速度,v1和 v2分别是碰撞后两物体的速度。弹性碰撞的恢复系数e=1,非弹性碰撞的e<1。某同学借用验证动量守恒定律的实验装置(如图所示)验证弹性碰撞的恢复系数是否为1,实验中使用半径相等的钢质小球1和2,(它们之间的碰撞可近似视为弹性碰撞),且小球1的质量大于小球2的质量。 实验步骤如下:安装好实验装置,做好测量前的准备,并记下重垂线所指的位置O。 第一步:不放小球2,让小球1从斜槽上A点由静止滚下,并落在地面上。重复多次,用尽可

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

高中物理动量测试题经典.doc

高中物理动量测试题 1.以下说法中正确的是: A.动量相等的物体,动能也相等; B.物体的动能不变,则动量也不变; C.某力F对物体不做功,则这个力的冲量就为零; D.物体所受到的合冲量为零时,其动量方向不可能变化. 2.一个笔帽竖立在桌面上平放的纸条上,要求把纸条从笔帽下抽出,如果缓慢拉动纸条笔帽必倒;若快速拉纸条,笔帽可能不倒。这是因为 A.缓慢拉动纸条时,笔帽受到冲量小; B.缓慢拉动纸条时,纸条对笔帽的水平作用力小; C.快速拉动纸条时,笔帽受到冲量小; D.快速拉动纸条时,纸条对笔帽的水平作用力小。 3.两辆质量相同的小车置于光滑的水平面上,有一个人静立在a车上。当此人从a车跳到b 车上,接着又跳回a车,则a车的速率: A.为0 ; B.等于b车速率; C.大于b车速率; D.小于b车速率。 4.恒力F作用在质量为m的物体上,如图18所示,由于地面对物体的 摩擦力较大,没有被拉动,则经时间t,下列说法正确的是 A.拉力F对物体的冲量大小为零 B.拉力F对物体的冲量大小为Ft 图18 C.拉力F对物体的冲量大小是Ft cosθ D.合力对物体的冲量大小为零 5.为了模拟宇宙大爆炸初的情境,科学家们使两个带正电的重离子被加速后,沿同一条直线相向运动而发生猛烈碰撞,若要碰撞前的动能尽可能多地转化为内能,应该设法使两个重离子在碰撞前的瞬间具有 A.相同的速率; B.相同大小的动量; C.相同的动能; D.相同的质量。 6.在光滑水平面上,动能为E0、动量的大小为P0的小钢球1与静止小钢球2发生碰撞,碰撞 前后球1的运动方向相反。将碰撞后球1的动能和动量的大小分别记为E1、P1,球2的动能和动量的大小分别记为E2、P2,则不可能有: 精选

人教版高中物理《动量》精选典型习题集(含答案)

人教版高中物理《动量》精选练习题 1. 一个运动的物体,受到恒定摩擦力而减速至静止,若其位移为s,速度为v,加速度为a,动量为p,则在下列图象中能正确描述这一运动过程的图象是( ) 2.从同一高度由静止落下的玻璃杯,掉在水泥地上易碎,掉在棉花上不易碎,这是因为玻璃杯掉在棉花上时( ) A.受到冲量小 B.受到作用力小 C.动量改变量小 D.动量变化率小 3. 关于动量、冲量,下列说法正确的是( ) A.物体动量越大,表明它受到的冲量越大 B.物体受到合外力的冲量等于它的动量的变化量 C.物体的速度大小没有变化,则它受到的冲量大小等于零 D.物体动量的方向就是它受到的冲量的方向 4.物体在恒力F作用下做直线运动,在时间△t 1内速度由0增至v,在时间△t 2 内速度由2v 增至3v,设F在时间△t 1内冲量为I 1 ,在时间△t 2 内冲量为I 2 ,则有( ) A.I 1=I 2 B.I 1

动量守恒定律典型例题报告.doc

班级: 学号: 姓名: 动量守恒定律习题课 一、动量守恒定律知识点 1.动量守恒定律的条件⑴系统不受外力或者所受外力之和为零; ⑵系统受外力,但外力远小于内力,可以忽略不计; ⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 ⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 2.动量守恒定律的表达形式 (1) ,即p 1 +p 2=p 1+p 2, (2)Δp 1 +Δp 2=0,Δp 1= -Δp 2 。 3.应用动量守恒定律解决问题的基本思路和一般方法 (1)分析题意,明确研究对象。 (2)对各阶段所选系统内的物体进行受力分析,判定能否应用动量守恒。 (3)确定过程的始、末状态,写出初动量和末动量表达式。 注重:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。 (4)建立动量守恒方程求解。 二、碰撞 1.弹性碰撞 特点:系统动量守恒,机械能守恒。 设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则 由动量守恒定律可得:221101v m v m v m +=① 碰撞前后能量守恒、动能不变:2 22 212111210 121 v m v m v m +=② 联立①②得:01 2 12 1v v m m m m +-= 0222 11v v m m m += (注:在同一水平面上发生弹性正碰,机械能守恒即为动能守恒) [讨论] ①当m l =m 2时,v 1=0,v 2=v 0(速度互换) ②当m l <m 2时,v 1>0,v 2>0(同向运动) ④当m l 0(反向运动) ⑤当m l >>m 2时,v 1≈v,v 2≈2v 0 (同向运动) 2.非弹性碰撞:部分机械能转化成物体的内能,系统损失了机械能,两物体仍能分离。 特点:动量守恒,能量不守恒。 用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′ 机械能/动能的损失:2 2 22 1111 12112211222222()()k k k E E E m v m v m v m v ''?=-=+-+ 3.完全非弹性碰撞:碰撞后两物体粘在一起运动,此时动能损失最大。 特点:动量守恒,能量不守恒。 用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v 动能损失:22 2 2 111 1112212222()()k k k E E E m v m v m m v ?=-=+-+ 解决碰撞问题须同时遵守的三个原则: ①系统动量守恒原则 ②能量不增加的原则 ③物理情景可行性原则:(例如:追赶碰撞: 碰撞前: 碰撞后:在前面运动的物体的速度一定不小于在后面运动的物体的速度) 【例题】甲、乙两球在光滑水平轨道上同向运动,已知它们的动量分别是p 甲=5 kg ·m/s,p 乙= 7 kg ·m/s ,甲追乙并发生碰撞,碰后乙球的动量变为p 乙′=10 kg ·m/s ,则两球质量m 甲与m 乙的关系可能是( ) A .m 甲=m 乙 B.m 乙=2m 甲 C.m 乙=4m 甲 D.m 乙=6m 甲 解析:由碰撞中动量守恒可求得pA ′=2 kg ·m/s 要使A 追上 B , 则必有:vA >vB , 即 mB >1.4mA ① 碰后pA ′、pB ′均大于零,表示同向运动,则应有:vB ′≥vA ′ 被追追赶V ?V

高二物理 动量守恒定律的应用 典型例题解析

动量守恒定律的应用 典型例题解析 【例1】 如图53-1所示,质量相同的两木块从同一高度同时开始自由下落,至某一位置时A 被水平飞来的子弹击中(未穿出),则A 、B 两木块的落地时间t A 、t B 的比较,正确的是 [ ] A .t A =t B B .t A >t B C .t A <t B D .无法判断 解析:正确答案为B 点拨:子弹与木块A 作用过程中,在水平方向的总动量守恒,在竖直方向上由于满足子弹与木块作用力的冲量远大于重力的冲量,所以在竖直方向上总动量也守恒,取向下为正有:m A v A =(m A +m)v ′A y ,显 然′=<,即由于子弹的射入,使木块在极短的时间v y v v A A A A m m m A A 内竖直方向的速度由v A 减小到v ′A y ,因而使得它比木块 B 迟到达地面. 【例2】 A 、B 两辆车在光滑的水平面上相向滑行,A 车的总质量m A

=1000kg,B车的总质量m B=500kg,当各自从对方的侧旁相遇而过时,各自把m=50kg的重物转移到对方的车上,结果A车停止运动,B车以v B′=8.5m/s的速度继续按原方向前进,求A、B两车原来的速度大小. 解析:设A、B两车原来的速度大小为v A和v B,以B车的运动方向为正.对A、B两车这一系统,总动量守恒,m B v B-m A v A=m A·0+m B v B′,500v B -1000v A=500×8.5. 对B车(除要移动的50kg)和从A车上移入的重物为系统,总动量守恒(m B-m)v B-mv A=m B v B′,(500-50)v B-50v A=500×8.5.解得v A=0.5m/s,v B=9.5m/s. 点拨:应用动量守恒定律时,灵活地选取研究对象作为系统是解题必须具备的能力,本例若选取A车(不包括要移动的50kg)和从B车上移入的重物为系统,则有mv B-(m A-m)v A=0,50v B-(1000-50)v A=0,在这三次选取的系统中,只要选取三次中的任意两次便可得到问题的解.【例3】将质量为m的铅球以大小为v0,沿仰角为θ的方向抛入一个装着砂子的总质量为M的静止砂车中,如图53-2所示,设车与地面间的摩擦可忽略,则球落入砂车后,车的速度多大? 点拨:对铅球和砂车所组成的系统,在相互作用过程中,总动量不守恒,因为铅球进入砂车后竖直方向的动量减为零,但系统在水平方向不受外力作用,在水平方向总动量守恒.

动量练习题及答案详解

高一《动量》测试卷 A 卷(夯实基础) 一、选择题 1.如图为马车模型,马车质量为m ,马的拉力为F 与水平方向成θ在拉力F 的作用下匀速前进了时间t ,在时间t 内拉力、重力、阻力对物体的冲量的大小分别为 ( ) A.Ft 、0、Ftsin θ B.Ftcos θ、0、Ftsin θ C.Ft 、mgt 、Ftsin θ D.Ft 、mgt 、Ftcos θ 2.关于动量和冲量的下列说法中正确的是 ( ) A.物体的末动量方向一定和它所受的总冲量方向相同 B.物体所受合外力的冲量的方向一定和合外力的方向相同 C.如果物体的初动量和末动量同向,那么这段时间内合外力的冲量一定和初动量同向 D.如果物体的初动量和末动量反向,那么这段时间内合外力的冲量一定和末动量同向 3.两只相同的鸡蛋,从同样的高度自由下落,第一次落在水泥地板上,鸡蛋被摔破了;第二次落在海绵垫子上,鸡蛋完好无损。关于这一现象的原因,下列说法中正确的是( ) A.鸡蛋和水泥地板的接触过程中动量变化较大,和海绵垫子接触过程中动量变化较小 B.水泥地板对鸡蛋的冲量较大,海绵垫子对鸡蛋的冲量较小 C.两次减速过程中鸡蛋的动量变化相同,但第一次鸡蛋动量变化率较大 D.两次减速过程中鸡蛋的动量变化相同,但第二次鸡蛋动量变化率较大 4.某人站在完全光滑的水平冰冻河面上,欲达到岸边,可以采取的方法是( ) A.步行 B.滑行 C.挥动双臂; D.将衣服抛向岸的反方向 5.一辆小车正在沿光滑水平面匀速运动,突然下起了大雨,雨水竖直下落,使小车内积下了一定深度的水。雨停后,由于小车底部出现一个小孔,雨水渐渐从小孔中漏出。关于小车的运动速度,下列说法中正确的是( ) A.积水过程中小车的速度逐渐减小,漏水过程中小车的速度逐渐增大 B.积水过程中小车的速度逐渐减小,漏水过程中小车的速度保持不变 C.积水过程中小车的速度保持不变,漏水过程中小车的速度逐渐增大 D.积水过程中和漏水过程中小车的速度都逐渐减小 6. 如图所示是质量分别为m 1和m 2两物体碰撞前后的位移时间图象, 由图可知( ) A. 碰前两物体的速度的大小相等 B. 质量m 1大于质量m 2 C. 碰后两物体一起作匀速直线运动 D. 碰前两物体动量大小相等, 方向相反 7. 如图所示, 质量为m 的人, 站在质量为M 的车的一端, 相对于地 面静止. 当车与地面间的摩擦可以不计时, 人由一端走到另一端的 过程中( ) A. 人在车上行走的平均速度越大而车在地上移动的距离越小 B. 不管人以怎样的速度走到另一端, 车在地上移动的距离都一样 C. 人在车上走时, 若人相对车突然停止, 则车沿与人行速度相反的方向作匀速直线运动 D. 人在车上行走突然加速前进时, 则车也会突然加速运动 8.一小型宇宙飞船在高空绕地球作匀速圆周运动, 如果飞船沿其速度相反的方向弹射出一个质量较大的物体, 则下列说法正确的是( ) 3s 2 s

相关主题