搜档网
当前位置:搜档网 › 物理必修二 动能定理及其应用

物理必修二 动能定理及其应用

物理必修二 动能定理及其应用
物理必修二 动能定理及其应用

第2节 动能定理及其应用

【考纲知识梳理】

一、动能

1. 定义:物体由于运动而具有的能叫动能

2. 表达式为:2

2

1mv E k =

, 3. 动能和动量的关系:动能是用以描述机械运动的状态量。动量是从机械运动出发量化机

械运动的状态,动量确定的物体决定着它克服一定的阻力还能运动多久;动能则是从机械运动与其它运动的关系出发量化机械运动的状态,动能确定的物体决定着它克服一定的阻力还能运动多远。 二、动能定理

1.定义:合外力所做的总功等于物体动能的变化量. —— 这个结论叫做动能定理.

2.表达式:K E mv mv W ?=-=

2

122合2

121, 式中W 合是各个外力对物体做功的总和,ΔE K 是做功过程中始末两个状态动能的增量. 3.推导:动能定理实际上是在牛顿第二定律的基础上对空间累积而得: 在牛顿第二定律 F=ma 两端同乘以合外力方向上的位移s ,即可得

2

1222

121mv mv mas Fs W -=

==合 【要点名师透析】

一、对动能定理的理解 1.总功的计算

物体受到多个外力作用时,计算合外力的功,要考虑各个外力共同做功产生的效果,一般有如下两种方法:

(1)先由力的合成或根据牛顿第二定律求出合力F 合,然后由W=F 合lcos α计算. (2)由W=Flcos α计算各个力对物体做的功W 1、W 2、…、W n ,然后将各个外力所做的功求代数和,即

W 合=W 1+W 2+…+W n .

2.动能定理公式中等号的意义

(1)数量关系:即合外力所做的功与物体动能的变化具有等量代换关系.可以通过计算物体动能的变化,求合力的功,进而求得某一力的功.

(2)单位相同:国际单位都是焦耳.

(3)因果关系:合外力的功是物体动能变化的原因.

3.动能定理叙述中所说的“外力”,既可以是重力、弹力、摩擦力,也可以是电场力、磁场力或其他力.

4.动能定理应用广泛,直线运动、曲线运动、恒力做功、变力做功、同时做功、分段做功等各种情况均适用.

注意:(1)动能定理说明了外力对物体所做的总功和动能变化间的一种因果关系和数量关系,不可理解为功转变成了物体的动能.

(2)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.

【例证1】如图所示,一块长木板B放在光滑的水平面上,在B上放一物体A,现以恒定的外力拉B,由于A、B间摩擦力的作用,A将在B上滑动,以地面为参照物,A、B都向前移动一段距离,在此过程中( )

A.外力F做的功等于A和B动能的增量

B.B对A的摩擦力所做的功等于A的动能的增量

C.A对B的摩擦力所做的功等于B对A的摩擦力所做的功

D.外力F对B做的功等于B的动能的增量与B克服摩擦力所做的功之和

【答案】选B、D.

【详解】物体A所受的合外力等于B对A的摩擦力,所以B对A的摩擦力所做的功等于A的动能的增量,所以B对.A对B的摩擦力与B对A的摩擦力是一对作用力与反作用力,大小相等,方向相反,但由于A在B上滑动,A、B对地的位移不等,所以二者做功不等,故C错.对B 应用动能定理,W F-W f=ΔE kB,即W F=ΔE kB+W f,即外力F对B做的功等于B的动能增量与B 克服摩擦力所做功之和,所以D对,A错,故选B、D.

二、动能定理的应用

1.基本步骤

(1)选取研究对象,明确它的运动过程;

(2)分析研究对象的受力情况和各力的做功情况:

(3)明确研究对象在过程的始末状态的动能E k1和E k2;

(4)列出动能定理的方程W合=E k2-E k1及其他必要的解题方程,进行求解.

2.注意事项

(1)动能定理的研究对象可以是单一物体,或者是可以看做单一物体的物体系统.

(2)动能定理是求解物体的位移或速率的简捷公式.当题目中涉及到位移和速度而不涉及时间时可优先考虑动能定理;处理曲线运动中的速率问题时也要优先考虑动能定理.

(3)若过程包含了几个运动性质不同的分过程,既可分段考虑,也可整个过程考虑.但求功时,有些力不是全过程都做功,必须根据不同的情况分别对待求出总功.

(4)应用动能定理时,必须明确各力做功的正、负.当一个力做负功时,可设物体克服该力做功为W,将该力做功表达为

-W,也可以直接用字母W表示该力做功,使其字母本身含有负号.

【例2】(2011·济南模拟)(14分)如图甲所示,一质量为m=1 kg的物块静止在粗糙水平面上的A点,从t=0时刻开始,物块受到按如图乙所示规律变化的水平力F作用并向右运动,第3 s末物块运动到B点时速度刚好为0,第5 s末物块刚好回到A点,已知物块与粗糙水平面之间的动摩擦因数μ=0.2,(g取10 m/s2)求:

(1)A与B间的距离;

(2)水平力F在5 s内对物块所做的功.

【答案】(1)4 m (2)24 J

【详解】(1)在3 s~5 s内物块在水平恒力F作用下由B点匀加速运动到A点,设加速度为a,A与B间的距离为x,则

F-μmg=ma (2分)

得a=2 m/s2 (1分)

x==4 m (2分)

(2)设物块回到A点时的速度为v A,

由v A2=2ax得v A=4 m/s (3分)

设整个过程中F做的功为W F,

由动能定理得:W F-2μmgx= (4分)

解得:W F=24 J (2分)

【感悟高考真题】

1.(2011·新课标全国卷·T15)一质点开始时做匀速直线运动,从某时刻起受到一恒力作用。此后,该质点的动能可能

A. 一直增大

B. 先逐渐减小至零,再逐渐增大

C. 先逐渐增大至某一最大值,再逐渐减小

D. 先逐渐减小至某一非零的最小值,再逐渐增大

【答案】选A、B、 D。

【详解】当恒力方向与速度方向相同时,物体加速,动能一直增大,故A正确。当恒力方向与速度方向相反时,物体开始减速至零,再反向加速,动能先减小再增大,故B正确。当恒力与速度成小于90°夹角时,把速度沿恒力方向和垂直方向分解,物体做曲线运动,速度一直增大,故C错。当恒力与速度成大于90°的夹角时,把速度沿恒力方向和垂直方向分解,开始在原运动方向物体做减速运动直至速度为0,而在垂直原运动方向上物体速度逐渐增加,某一时刻物体速度最小,此后,物体在恒力作用下速度增加,其动能经历一个先减小到某一数值,再逐渐增大的过程,故D正确。

2.(2011·山东高考·T18).如图所示,将小球a从地面以初速度v0竖直上抛的同时,

将另一相同质量的小球b 从距地面h 处由静止释放,两球恰在2h

处相遇(不计空气阻力)。

A.两球同时落地

B.相遇时两球速度大小相等

C.从开始运动到相遇,球a 动能的减少量等于球b 动能的增加量

D.相遇后的任意时刻,重力对球a 做功功率和对球b 做功功率相等 【答案】选C 。

【详解】相遇时b 球的位移g h t gt h ==运动时间,2122

,相遇时a 球2

021

2gt t v h -=位移,

可得gh gt v gt t v gt ==-=0202,21

21,相遇时a 球的速度=-=gt v v a 00,由题意可得

此时b 球已经具有向下的速度而a 球速度为零,故b 球以较大速度先落地,以后任意时刻重力的瞬时功率mgv P =,b 球的瞬时功率总是大于a 球瞬时功率。选项A 、B 、D 错误。从开始运动到相遇,a 球克服重力所做的功等于重力对b 球所做的功,由动能定理可得C 项正

确。

3.(2011·江苏物理·T4)如图所示,演员正在进行杂技表演。由图可估算出他将一只鸡蛋抛出的过程中对鸡蛋所做的功最接近于( ) A .0.3J

B .3J

C .30J

D .300J

【答案】选A.

【详解】估计一只鸡蛋的重力为60克,鸡蛋上升的高度为50厘米,选择人抛鸡蛋以及鸡蛋上升到最到点全程应用动能定理有:

F

mgh W

-=,带入数值可知

0.30F

J

W

=,A 对。

4.(2011·四川理综·T19)如图是“神舟”系列航天飞船返回舱返回地面的示意图,假定

其过程可简化为:打开降落伞一段时间后,整个装置匀速下降,为确保安全着陆,需点燃返回舱的缓冲火箭,在火箭喷气过程中返回舱做减速直线运动,则 A.火箭开始喷气瞬间伞绳对返回舱的拉力变小 B.返回舱在喷气过程中减速的主要原因是空气阻力 C 返回舱在喷气过程中所受合外力可能做正功

D.返回舱在喷气过程中处于失重状态 【答案】选A.

【详解】由整体法、隔离法结合牛顿第二定律,可知A 正确B 错;由动能

定理可知C 错;因为物体具有竖直向上的加速度,因此处于超重状态,D 错.

5.(2011·上海高考物理·T15)如图,一长为L 的轻杆一端固定在光滑铰链上,另一端固定一质量为m 的小球。一水平向右的拉力作用于杆的中点,使杆以角速度ω匀速转动,当杆与水平方向成60°时,拉力的功率为

(A) mgL ω

(B) ω (C) 1

2mgL ω

(D) mgL ω

【答案】选C.

【详解】匀速转动,动能不变,拉力的功率在数值上应等于重力的功率。为此,将线速度分解,分解为水平速度和竖直速度,重力的功率

L mg L mg P ωω2130sin 0-=-=,所以拉力的功率L

mg P P ω21

=-='

6.(2011·上海高考物理·T33)如图(a),磁铁A 、B 的同名磁极相对放置,置于水平气垫导轨

上。A 固定于导轨左端,B 的质量m=0.5kg ,可在导轨上无摩擦滑动。将B 在A 附近某一位置由静止释放,由于能量守恒,可通过测量B 在不同位置处的速度,得到B 的势能随位置x 的变化规律,见图(c)中曲线I 。若将导轨右端抬高,使其与水平面成一定角度(如图(b)所示),则B 的总势能曲线如图(c)中II 所示,将B 在20.0x cm =处由静止释放,求:(解答时

必须写出必要的推断说明。取2

9.8/g m s =)

(1)B 在运动过程中动能最大的位置;

(2)运动过程中B 的最大速度和最大位移。

(3)图(c)中直线III 为曲线II 的渐近线,求导轨的倾角。

(4)若A 、B 异名磁极相对放置,导轨的倾角不变,在图(c)上画出B 的总势能随x 的变化曲线.

【答案】⑴

6.1()x cm =(在5.9 ~ 6.3cm 间均视为正确) ⑵ 1.31m/s (

m

v 在1.29~1.33 m /s 间均视为正确),18.0cm (x ?在17.9~18.1cm 间均视为正确)

⑶59.7°(θ在59~61??间均视为正确)

⑷见解析

【详解】 (1)势能最小处动能最大 由图线II 得

6.1()x cm =

(在5.9 ~ 6.3cm 间均视为正确) (2)由图读得释放处势能

0.90p E J

=,此即B 的总能量。出于运动中总能量守恒,因此在

势能最小处动能最大,由图像得最小势能为0.47J ,则最大动能为

0.90.470.43()

km E J =-=

(

km

E 在0.42 ~ 0.44J 间均视为正确)

最大速度为

1.31(/)m v m s =

==

(

m

v 在1.29~1.33 m /s 间均视为正确)

x=20.0 cm 处的总能量为0.90J ,最大位移由E=0.90J 的水平直线与曲线II 的左侧交点确定,

由图中读出交点位置为x=2.0cm ,因此,最大位移

20.0 2.018.0()x cm ?=-=

(x ?在17.9~18.1cm 间均视为正确)

(3)渐近线III 表示B 的重力势能随位置变化关系,即

sin Pg E mgx kx

θ==

sin k mg θ=

由图读出直线斜率

20.850.30

4.2310(/)

20.07.0k J cm --=

=?-

21

110 4.23

sin ()sin 59.70.59.8k mg θ--?===?

?

(θ在59~61??间均视为正确)

(4)若异名磁极相对放置,A ,B 间相互作用势能为负值,总势能如图。

.c

https://www.sodocs.net/doc/8b18515619.html,

7.(2011·浙江理综·T24)节能混合动力车是一种可以利用汽油及所储存电能作为动力来源的汽车。有一质量m=1000kg 的混合动力轿车,在平直公路上以v1=90km/h 匀速行驶,发动机的输出功率为P=50kw 。当驾驶员看到前方有80km/h

的限速标志时,保持发动机功率

不变,立即启动利用电磁阻尼带动的发电机工作给电池充电,使轿车做减速运动,运动

L =72m 后,速度变为v2=72km/h 。此过程中发动机功率的15用于轿车的牵引,4

5用于供给

发电机工作,发动机输送给发电机的能量最后有50%转化为电池的电能。假设轿车在上述运动过程中所受阻力保持不变。求

(1)轿车以90km/h 在平直公路上匀速行驶时,所受阻力F 阻的大小; (2)轿车从90km/h 减速到72km/h 过程中,获得的电能E 电;

(3)轿车仅用其在上述减速过程中获得的电能E 电维持72km/h 匀速运动的距离L '。 【答案】(1)N 1023

?(2)J 103.64

?(3)m 5.31 【详解】(1)汽车牵引力与输出功率关系

v

F P 牵=

将P=50kW, v1=90 km/h=25 m/s 代入得

N 10231

?==

v P

F 牵

当轿车匀速行驶时,牵引力与阻力大小相等,有

N

1023?=阻F

(2)在减速过程中,发动机只有P 51用于汽车的牵引.根据动能定理

2

1222121F -Pt 51mv mv L -=阻

代入数据得

J 10575.1Pt 5

?=

电源获得的电能为

J

103.6Pt 54

0.5E 4?=?=电

(3)根据题设,轿车在平直公路上匀速行驶时受到的阻力仍为N

1023?=阻F .在此过程中,

由能量转化及守恒定律可知,仅有电能用于克服阻力做功

L F '

=阻电E

代入数据的

m 5.31='L

8.(2011·广东理综·T36)如图所示,以A 、B 和C 、D 为端点的两半圆形光滑轨道固定

于竖直平面内,一滑板静止在光滑水平面上,左端紧靠B 点,上表面所在平面与两半圆分别相切于B 、C 。一物块被轻放在水平匀速运动的传送带上E 点,运动到A 时刚好与传送带速度相同,然后经A 沿半圆轨道滑下,再经B 滑上滑板.滑板运动到C 时被牢固粘连。物块

可视为质点,质量为m ,滑板质量M=2m ,两半圆半径均为R ,板长 6.5l R =,板右端到C 的距离L 在5R L R <<范围内取值,E 距A 为5S R =,物块与传送带、物块与滑板间的动摩擦因数均为0.5μ=,重力加速度取g. 求物块滑到B 点的速度大小;

试讨论物块从滑上滑板到离开滑板右端的过程中,克服摩擦力做的功f

W 与L 的关系,并判

断物块能否滑到CD 轨道的中点。

【详解】(1)物块从E 点运动到B 点的过程中,只有皮带对物块的摩擦力和重力两个力做

功,对该过程应用动能定理得:

gR

v mv R mg mgs 3:2

1

22==+解得μ

(2)物块m 和木板M 在相互作用的过程中动量守恒,设两者可以达到共同速度,设为1v ,该过程中木板运动的位移为1x ,两者的相对位移为x,由动量守恒定律得:()12v m m mv += 所以

gR v =1

由能量守恒定律得:

()R R x v m m mv mgx 5.66:221

2

1212<=+-

=解得μ

对木板应用动能定理得:

211112:22

mgx mv x R

μ=?= 解得

当R L R 2≤<时,到达C 点的整个过程中始终存在滑动摩擦力,所以克服摩擦力做功为:

()

f W m

g l L μ=+

当R L R 52<<时,物块和木板可以达到相同的速度,此后直到木板碰到C 点这一过程中,

物块和木板之间是没有摩擦力的,该阶段摩擦力不做功。故这种情况下克服摩擦力做功为:

()

2f W mg l R μ=+,与L 无关。

综合两种情况可知,当L=R 时,物块克服摩擦力做功最小,这个过程中物块到达C 点的速

度最大,对这个过程有:-

()gR v mv mv R l mg 5.1:212122

22=-=

+-解得μ

滑上CD 轨道后,设上升的最大高度为h,由机械能守恒定律得:

R R h mv mgh <==

75.0:212

2解得

可见物块滑不到CD 轨道的中点。 答案(1)

gR v 3=

(2) 当R L R 2≤<时

()

f W m

g l L μ=+;当R L R 52<<时

()

2f W mg l R μ=+,与L 无关;

物块滑不到CD 轨道的中点.

9(2010·江苏卷)8.如图所示,平直木板AB 倾斜放置,板上的P 点距A 端较近,小物块与木板间的动摩擦因数由A 到B 逐渐减小,先让物块从A 由静止开始滑到B 。然后,将A 着地,抬高B ,使木板的倾角与前一过程相同,再让物块从B 由静止开始滑到A 。上述两过程相比较,下列说法中一定正确的有

A .物块经过P 点的动能,前一过程较小

B .物块从顶端滑到P 点的过程中因摩擦产生的热量,前一过程较少

C .物块滑到底端的速度,前一过程较大

D .物块从顶端滑到底端的时间,前一过程较长 答案:AD

解析:加速度sin cos a g g θμθ=-,开始,1μ>2μ,所以1a <2a

,(下标为1表示前一

过程,下标为2表示后一过程),前一过程,μ逐渐减小,a 逐渐增大;后以过程,μ逐渐增大,a 逐渐减小。

A.22

1

2,2K v as E mv ==,因s 较小,所以1μ>2μ,1a <2a ,得物块经过P 点的动能,前

一过程较小,A 正确;

B.根据cos Q mg s μθ=?,因为

1μ>2μ,所以,物块从顶端滑到P 点的过程中因摩擦力

产生的热量,前一过程较多,B 错误;

C. 根据2

1cos 2mv mgh mg S μθ=-?,因S 为全部木板长,物块滑到底端的速度,应该一

样大,C 错误;

D.因为前一过程,加速度先小后大,后一过程,加速度先大后小,物块从顶端滑到底端的时间,前一过程较长,D 正确。

本题考查力的分析,功,动能定理等,分析和综合能力。 难度:难。

10.(2010·浙江卷)22. (16分)在一次国际城市运动会中,要求运动员从高为H 的平台上A 点由静止出发,沿着动摩擦因数为滑μ的道向下运动到B 点后水平滑出,最后落在水池中。设滑道的水平距离为L ,B 点的高度h 可由运动员自由调节(取;g=10m/s2)。求: (1)运动员到达B 点的速度与高度h 的关系; (2)运动员要达到最大水平运动距离,B 点的高度h 应调为多大?对应的最大水平距离SBH 为多少?

(3若图中H =4m ,L =5m ,动摩擦因数μ=0.2,则水平运动距离要达到7m ,h 值应为多少? 解析:

(1)设斜面长度为L1,斜面倾角为α,根据动能定理得

2101()cos 2mg H h mgL mv μα--=

即 2

01

()2mg H h mgL mv μ-=+ ②

0v ③

(2)根据平抛运动公式

X=vot ④

h=12

gt2 ⑤

由③-⑤式得

x h = ⑥

(3)在⑥式中令x=2m ,H=4m,L=5m, μ=0.2

则可得到:—h2+3h-1=0

求出

13 2.62()2h m +=

= 230.38()2h m ==

11、 (2010·四川卷)25.(20分)如图所示,空间有场强0.5/E N C =的竖直向下的匀

强电场,长l =的不可伸长的轻绳一端固定于O 点,另一端系一质量0.01m kg =的不带电小球A ,拉起小球至绳水平后,无初速释放。另一电荷量0.1q C =+、质量与A 相

同的小球P

,以速度

0/s υ=水平抛出,经时间0.2t s =与小球C 与D 点下方一足够

大的平板相遇。不计空气阻力,小球均可视为质点,取2

10/g m s =。

(1)求碰撞前瞬间小球P 的速度。

(2)若小球C 经过路0.09s m =到达平板,此时速度恰好为0,求所加的恒力。

(3)若施加恒力后,保持平板垂直于纸面且与水平面的夹角不变,在D 点下方面任意改变平板位置,小球C 均能与平板正碰,求出所有满足条件的恒力。 【解析】(1)P 做抛物线运动,竖直方向的加速度为

2

15/mg Eq

a m s m +=

=

在D 点的竖直速度为

3/y v at m s

==

P 碰前的速度为

6/P v m s

==

(2)设在D 点轻绳与竖直方向的夹角为θ,由于P 与A 迎面正碰,则P 与A 速度方向相反,所以P 的速度与水平方向的夹角为θ有

tan y v v θ=

=

,θ=30°

对A 到达D 点的过程中根据动能定理

21

cos 2A mv mgl θ=

化简并解得

3/A v m s ==

P 与A 迎面正碰结合为C ,根据动量守恒得

C

A P mv mv mv 2=-

解得

5

.1=C v m/s

小球C 经过s 速度变为0,一定做匀减速运动,根据位移推论式

5

.1222==s v a C m/s2

设恒力F 与竖直方向的夹角为α,如图,根据牛顿第二定律

ma qE mg F 2sin )2()90COS(=+---?θθα 0cos )2()90sin(=+---?θθαqE mg F 给以上二式带入数据得

375.0)90COS(=--?θαF 3125.0)90sin(=--?θαF

解得

F =

α=30°

(3)平板足够大,如果将平板放置到无限远根据题意也能相碰,此时小球C 必须匀速或加速不能减速,所以满足条件的恒力在竖直线与C 的速度线之间,设恒力与竖直方向的夹角为β,则 0≤β<120°

在垂直速度的方向上,恒力的分力与重力和电场力的分力等大反向,有

cos()(2)cos F mg Eq βθθ-=+

则满足条件的恒力为

F =

(其中0≤β<120°)

12.(09·天津·4)如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R ,质量不

能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,棒在竖直向上的恒力F 作用下加速上升

的一段时间内,力F 做的功与安培力做的功的代数和等于 ( A )

A.棒的机械能增加量

B.棒的动能增加量

C.棒的重力势能增加量

D.电阻R 上放出的热量

解析:棒受重力G 、拉力F 和安培力FA 的作用。由动能定理:

K G F E W -W W ?=+安 得

mgh

E W W K

F +=+?安即力F 做的功与安培力做功的代数和等于机械能的增加量。选A 。

13.(09·福建·21)如图甲,在水平地面上固定一倾角为θ的光滑绝缘斜面,斜面处于电场强度大小为E 、方向沿斜面向下的匀强电场中。一劲度系数为k 的绝缘轻质弹簧的一端固定在斜面底端,整根弹簧处于自然状态。一质量为m 、带电量为q (q>0)的滑块从距离弹簧上端为s0处静止释放,滑块在运动过程中电量保持不变,设滑块与弹簧接触过程没有机械能损失,弹簧始终处在弹性限度内,重力加速度大小为g 。

(1)求滑块从静止释放到与弹簧上端接触瞬间所经历的时间t1 (2)若滑块在沿斜面向下运动的整个过程中最大速度大小为vm ,求滑块从静止释放到速度大小为vm 过程中弹簧的弹力所做的功W ;

(3)从滑块静止释放瞬间开始计时,请在乙图中画出滑块在沿斜面向下运动的整个过程中速度与时间关系v-t 图象。图中横坐标轴上的t1、t2及t3分别表示滑块第一次与弹簧上端接触、第一次速度达到最大值及第一次速度减为零的时刻,纵坐标轴上的v1为滑块在t1时刻的速度大小,vm 是题中所指的物理量。(本小题不要求写出计算过程)

答案:(1)

θsin 20

1mg qE ms t +=

; (2))sin ()sin (2102

k qE mg s qE mg mv W m ++?+-=θθ;

(3)

解析:本题考查的是电场中斜面上的弹簧类问题。涉及到匀变速直线运动、运用动能定理处理变力功问题、最大速度问题和运动过程分析。

(1)滑块从静止释放到与弹簧刚接触的过程中作初速度为零的匀加速直线运动,设加速度大小为a ,则有

qE+mgsin θ=ma ①

21021at s =

联立①②可得

θs i n 20

1mg qE ms t +=

(2)滑块速度最大时受力平衡,设此时弹簧压缩量为0

x ,则有

s i n kx qE mg =+θ ④

从静止释放到速度达到最大的过程中,由动能定理得

021)()s i n (2

0-=

++?+m m mv W x x qE mg θ ⑤

联立④⑤可得

)s i n ()s i n (2102

k qE mg s qE mg mv W m ++?+-=

θθs

(3)如图

14.(09·上海物理·20)质量为5?103 kg 的汽车在t =0时刻速度v0=10m/s ,随后以P =

6?104 W 的额定功率沿平直公路继续前进,经72s 达到最大速度,设汽车受恒定阻力,其大小为2.5?103N 。求:(1)汽车的最大速度vm ;(2)汽车在72s 内经过的路程s 。 解析:(1)当达到最大速度时,P ==Fv=fvm ,vm =P f =6?1042.5?103 m/s =24m/s

(2)从开始到72s 时刻依据动能定理得:

Pt -fs =12 mvm2-1

2 mv02,解得:s =2Pt -mvm2+mv022f

=1252m 。

【考点模拟演练】

1.关于动能的理解,下列说法正确的是( )

A.动能是机械能的一种表现形式,凡是运动的物体都具有动能

B.动能有可能为负值

C.一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化

D.动能不变的物体,一定处于平衡状态

【答案】选A、C.

【详解】机械能包括动能和势能,而动能是物体由于运动具有的能,且Ek= ≥0,

故A正确,B错误;一定质量的物体的动能变化时,速度的大小一定变化,但速度变化时,动能不一定变化,如匀速圆周运动,动能不变,但速度变化,故C正确,D错误.

2.一个质量为0.3 kg的弹性小球,在光滑水平面上以6 m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同,则碰撞前后小球速度变化量的大小Δv和碰撞过程中墙对小球做功的大小W为( )

A.Δv=0

B.Δv=12 m/s

C.W=1.8 J

D.W=10.8 J

【答案】选B.

【详解】取末速度的方向为正方向,则v2=6 m/s,v1=-6 m/s,速度变化量Δv=v2-v1=12 m/s,A错误,B正确;小球与墙碰撞过程中,只有墙对小球的作用力做功,由动能定理得:W=

=0,故C、D均错误.

3.某物体同时受到两个在同一直线上的力F1、F2的作用,由静止开始做直线运动,力F1、F2与位移x的关系图象如图所示,在物体开始运动后的前

4.0 m内,物体具有最大动能时对应的位移是( )

A.2.0 m

B.1.0 m

C.3.0 m

D.4.0 m

【答案】选A.

【详解】由题图知x=2.0 m时,F合=0,此前F合做正功,而此后F合做负功,故x=2.0 m 时物体的动能最大,故A正确.

4.(2011·杭州模拟)人用手托着质量为m的物体,从静止开始沿水平方向运动,前进距离l 后,速度为v(物体与手始终相对静止),物体与手掌之间的动摩擦因数为μ,则人对物体做的功为( )

A.mgl

B.0

C.μmgl

D. 【答案】选D.

【详解】物体与手掌之间的摩擦力是静摩擦力,静摩擦力在零与最大值μmg 之间取值,不一定等于μmg ,在题述过程中,只有静摩擦力对物体做功,根据动能定理,摩擦力对物体做的功W= ,D 正确. 5.(2011·南通检测)质量为1 kg 的物体以某一初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的图线如图所示,g 取10 m/s2,则以下说法中正确的是( )

A .物体与水平面间的动摩擦因数为0.5

B .物体与水平面间的动摩擦因数为0.25

C .物体滑行的总时间为4 s

D .物体滑行的总时间为2.5 s 【答案】BC

【详解】根据动能定理Ek2-Ek1=-Ffx 可得Ff =

Ek1-Ek2x =50-020 N =2.5 N ,所以μ=Ff

mg

=0.25,A 选项错误,B 选项正确;根据牛顿第二定律可得a =Ff

m =2.5 m/s2,由运动学公式

得物体滑行的总时间t =

2x a

= 2×20

2.5

s =4 s ,C 选项正确,D 选项错误. 6.(2010·淄博一模)如图所示,质量为m 的小车在水平恒力F 推动下,从山坡(粗糙)底部A 处由静止起运动至高为h 的坡顶B ,获得速度为v ,AB 之间的水平距离为x ,重力加速度为g.下列说法正确的是( )

A .小车克服重力所做的功是mgh

B .合外力对小车做的功是1

2mv2

C .推力对小车做的功是1

2mv2+mgh

D .阻力对小车做的功是1

2

mv2+mgh -Fx

【答案】ABD

【详解】小车克服重力做功W =Gh =mgh ,A 选项正确;由动能定理小车受到的合力做的功等于小车动能的增加,W 合=ΔEk =1

2

mv2,B 选项正确;由动能定理W 合=W 推+W 重

+W 阻=12mv2,所以推力做的功W 推=12mv2-W 阻-W 重=1

2mv2+mgh -W 阻,C 选项

错误;阻力对小车做的功W 阻=12mv2-W 推-W 重=1

2mv2+mgh -Fx ,D 选项正确.

7.(2011·湖北黄冈)在新疆旅游时,最刺激的莫过于滑沙运动.某人坐在滑沙板上从沙坡斜

面的顶端由静止沿直线下滑到斜面底端时,速度为2v0,设人下滑时所受阻力恒定不变,沙坡长度为L ,斜面倾角为α,人的质量为m ,滑沙板质量不计,重力加速度为g.则( ) A .若人在斜面顶端被其他人推了一把,沿斜面以v0的初速度下滑,则人到达斜面底端时的速度大小为3v0

B .若人在斜面顶端被其他人推了一把,沿斜面以v0的初速度下滑,则人到达斜面底端时的速度大小为5v0

C .人沿沙坡下滑时所受阻力Ff =mgsin α+2mv20/L

D .人在下滑过程中重力功率的最大值为2mgv0 【答案】 B 【详解】

对人进行受力分析如图所示,根据匀变速直线运动的规律有:(2v0)2-0=2aL ,v21-v20=2aL ,可解得v1=5v0,所以A 错误,B 正确;根据动能定理有:mgLsin θ-FfL =1

2m(2v0)2,可

解得Ff =mgsin α-2mv20/L ,C 错误;重力功率的最大值为Pm =2mgv0sin α,D 错误. 8. (2011年如皋模拟)如图所示,斜面AB 和水平面BC 是从同一板材上截下的两段,在B 处用小圆弧连接.将小铁块(可视为质点)从A 处由静止释放后,它沿斜面向下滑行,进入平面,最终静止于P 处.若从该板材上再截下一段,搁置在A 、P 之间,构成一个新的斜面,再将铁块放回A 处,并轻推一下使之沿新斜面向下滑动.关于此情况下铁块运动情况的描述,正确的是( )

A .铁块一定能够到达P 点

B .铁块的初速度必须足够大才能到达P 点

C .铁块能否到达P 点与铁块质量有关

D .以上说法均不对 【答案】选A. 【详解】设AB =x1,BP =x2,AP =x3,动摩擦因数为μ,由动能定理得:mgx1sinα-μmgcosαx1-μmgx2=0,可得:

mgx1sinα=μmg(x1cosα+x2),设沿AP 滑到P 的速度为vP ,由动能定理得:mgx1sinα-μmgcosβ·x3=1

2m v2P ,因x1cosα+x2=x3cosβ,故得:vP =0,即铁块恰好沿AP 滑到P 点,

故A 正确.

9.(2011年湖北黄冈检测)在新疆旅游时,最刺激的莫过于滑沙运动.某人坐在滑沙板上从沙坡斜面的顶端由静止沿直线下滑到斜面底端时,速度为2v0,设人下滑时所受阻力恒定不变,沙坡长度为L ,斜面倾角为α,人的质量为m ,滑沙板质量不计,重力加速度为g.则( ) A .若人在斜面顶端被其他人推了一把,沿斜面以v0的初速度下滑,则人到达斜面底端时

的速度大小为3v0

B.若人在斜面顶端被其他人推了一把,沿斜面以v0的初速度下滑,则人到达斜面底端时的速度大小为5v0

C.人沿沙坡下滑时所受阻力Ff=mgsinα-2mv20/L

D.人在下滑过程中重力功率的最大值为2mgv0

【答案】选BC.

【详解】对人进行受力分析如图所示,

根据匀变速直线运动的规律有:(2v0)2-0=2aL,v21-v20=2aL,可解得:v1=5v0,所以

A错误,B正确;根据动能定理有:mgLsinα-FfL=1

2m(2v0)2,可解得Ff=mgsinα-2mv20/L,

C正确;重力功率的最大值为Pm=2mgv0sinα,D错误.

10.如图甲所示,质量不计的弹簧竖直固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复.通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F随时间t变化的图象如图乙所示,则()

A.t1时刻小球动能最大

B.t2时刻小球动能最大

C.t2~t3这段时间内,小球的动能先增加后减少

D.t2~t3这段时间内,小球增加的动能等于弹簧减少的弹性势能

【答案】C

【详解】0~t1时间内,小球做自由落体运动,故弹簧弹力为零.t1~t2时间内,小球压缩弹簧,当弹力等于重力时,小球速度最大,在此时刻之前,小球做加速度减小的加速运动,之后做加速度增加的减速运动,t2时刻减速到零.t2~t3时间内,小球向上先加速运动后减速运动.故A、B、C三选项中,只有C项正确.t2~t3时间内弹簧减少的弹性势能转化为小球增加的动能和重力势能之和,故D项错误.

11.(2011年昆明模拟)如图甲所示,在倾角为30°的足够长光滑斜面AB前,有一粗糙水平面OA,OA长为4 m.有一质量为m的滑块,从O处由静止开始受一水平向右的力F作用.F 按图乙所示的规律变化.滑块与OA间的动摩擦因数μ=0.25,g取10 m/s2,试求:

物理必修动能和动能定理专题复习资料

物理必修动能和动能定理专题复习资料 Revised as of 23 November 2020

高一物理重点突破(1) 动能和动能定理 辅导教师:林裕光 知识链接 一、动能 1.定义式: 2.动能是描述物体运动状态的一种形式的能,它是标量. 二、动能定理 1.表达式: 2.意义:表示合力功与动能改变的对应关系. 3.应用动能定理解题的基本步骤 (1)确定研究对象,研究对象可以是一个单体也可以是一个系统. (2)分析研究对象的受力情况和运动情况,是否是求解“力、位移与速率关系”问题. (3)若是,根据W合=E k2-E k1列式求解. 与牛顿定律观点比较,动能定理只需考查一个物体运动过程的始末两个状态有关物理量的关系,对过程的细节不予细究,这正是它的方便之处;动能定理还可求解变力做功的问题. 重点、难点、疑点突破 1 一架喷气式飞机,质量m=5×103kg,起飞过程中从静止开始滑跑的路程为s =×102m时,达到起飞的速度v =60m/s,在此过程中飞机受到的平均阻力是飞机重量的倍(k=),求飞机受到的牵引力。 2 将质量m=2kg的一块石头从离地面H=2m高处由静止开始释放,落入泥潭并陷入泥中h=5cm深处,不计空气阻力,求泥对石头的平均阻力。(g取10m/s2)

3 一质量为㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( ) A .Δv=0 B. Δv =12m/s C. W=0 D. W= 4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220 + D. gh v 220- 5 一质量为m 的小球,用长为l 的轻绳悬挂于O 点。小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( ) A. mgl cos θ B. mgl (1-cos θ) C. Fl cos θ D. Flsin θ 6 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传送至h =2m 的高处。已知工件与传送带间的动摩擦因数2 3 = μ,g 取10m/s 2。 (1)试通过计算分析工件在传送带上做怎样的运动 2-7-3

高一物理动能、动能定理练习题

高一物理动能、动能定 理练习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

动能、动能定理练习 1、下列关于动能的说法中,正确的是( )A 、动能的大小由物体的质量和速率决定,与物体的运动方向无关 B 、物体以相同的速率分别做匀速直线运动和匀速圆周运动时,其动能不同.因为它在这两种情况下所受的合力不同、运动性质也不同 C 、物体做平抛运动时,其动能在水平方向的分量不变,在竖直方向的分量增大 D 、物体所受的合外力越大,其动能就越大 2、一质量为2kg 的滑块,以4m/s 的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s.在这段时间里水平力做的功为( ) A 、0 B 、8J C 、16J D 、32J 3、质量不等但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则( ) A 、质量大的物体滑行距离小 B 、它们滑行的距离一样大 C 、质量大的物体滑行时间短 D 、它们克服摩擦力所做的功一样多 4、一辆汽车从静止开始做加速直线运动,运动过程中汽车牵引力的功率保持恒定,所受的阻力不变,行驶2min 速度达到10m/s.那么该列车在这段时间内行的距离( ) A 、一定大于600m B 、一定小于600m C 、一定等于600m D 、可能等于1200m 5、质量为1.0kg 的物体,以某初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的情况如下图所示,则下列判断正确的是(g=10m/s 2 )( ) A 、物体与水平面间的动摩擦因数为0.30 B 、物体与水平面间的动摩擦因数为0.25 C 、物体滑行的总时间是2.0s D 、物体滑行的总时间是4.0s 6、一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E ,它返回斜面底端的速度大小为υ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E ,则有( ) A 、返回斜面底端的动能为E B 、返回斜面底端时的动能为3E/2 C 、返回斜面底端的速度大小为2υ D 、返回斜面底端的速度大小为 2υ 7、以初速度v 0急速竖直上抛一个质量为m 的小球,小球运动过程中所受阻力f 大小不变,上升最大高度为h ,则抛出过程中,人手对小球做的功( ) A. 12 02mv B. mgh C. 12 02 mv mgh + D. mgh fh + 8、如图所示,AB 为1/4圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R ,一质量为m 的物 体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A 从静止开始下落,恰好运动到C 处停止,那么物体在AB 段克服摩擦力所做的功为 A. 1 2 μmgR B. 1 2 mgR C. mgR D. ()1-μmgR 9、 质量为m 的物体静止在粗糙的水平地面上,若物体受水平力F 的作用从静止起通过位移s 时的动能为E 1,当物体受水平力2F 作用,从静止开始通过相同位移s ,它的动能为E 2,则: A 、E 2=E 1 B 、E 2=2E 1 C 、E 2>2E 1 D 、 E 1<E 2<2E 1 10.质量为m ,速度为V 的子弹射入木块,能进入S 米。若要射进3S 深,子弹的初速度应为原来的 (设子弹在木块中的阻力不变) ( ) A .3倍 B . 3 倍 C .9倍 D .2 3 倍 11.质量为m 的物体A 由静止开始下滑至B 而停止,A 、B 离水平地面的高度分别为h 及2 h ,如图所 示。若用平行于接触面的力把它沿原路径从B 拉回到A 处,则拉力的功至少应为 ( ) h / 2 h 图 5 - 17 h B V 0

人教版高中物理必修二动能定理专题练习

(精心整理,诚意制作) 动能定理专题练习 1. 如图所示,水平传送带A 、B 间距离为10m ,以恒定的速度1m/s 匀速传动。现将一质量为0.2 kg 的小物体无初速放在A 端,物体与传送带间滑动摩擦系数为0.5,g 取10m/s 2 ,则物体由A 运动到B 的过程中传送带对物体做的功为( ) (A)零 (B)10J (C)0.1J (D)除上面三个数值以外的某一值 2.a 、b 、c 三个物体质量分别为m 、2m 、3m ,它们在水平路面上某时刻运动的动能相等。当每个物体受到大小相同的制动力时,它们制动距离之比是( ) A .1∶2∶3 B .12∶22∶32 C .1∶1∶1 D .3∶2∶1 3.一个物体自由下落,落下一半时间的动能与落地时动能之比为( ) A .1∶1 B .1∶2 C .1∶3 D .1∶4 4.质量为m ,速度为υ的子弹,能射入固定的木板L 深。设阻力不变,要使子弹射入木板3L 深,子弹的速度应变为原来的( ) A .3倍 B .6倍 C .23 倍 D .3倍 5.物体从静止开始自由下落,下落ls 和下落4s 时,物体的动能之比是_____;下落1m 和4m 时,物体的动能之比是________。 6.质量为m 的物体在水平力F 的作用下,由静止开始光滑地面运动,前进一段距离之后速度大小为v 。再前进一段距离使物体的速度增大为2v ,则( ) A 、第二过程的动能增量是第一过程的动能增量的4倍 B 、第二过程的动能增量是第一过程的动能增量的3倍 C 、第二过程的动能增量是第一过程的动能增量的2倍 D 、第二过程的动能增量等于第一过程的动能增量 7.质量为m 的物体以初速度v 0开始沿水平地面滑行,最后停下来。在这个过程中,物体的动能增量是 8.一个小孩把6.0kg 的物体沿高0.50m ,长2.0m 的光滑斜面,由底部匀速推到顶端,小孩做功为 ,若有5.0N 阻力的存在,小孩匀速把物体推上去应做 功,物体克服阻力做的功为 ,重力做的功为 。(g m s 取102 /) 9.把质量为3.0kg 的石块,从高30m 的某处,以s m /0.5的速度向斜上方抛出,g m s 取102 /,不计空气阻力,石块落地时的速率是 ;若石块在运动过程中克服空气阻力做了73.5J 的功,石块落地时的速率又为 。 10.竖直上抛一个质量为m 的物体,物体上升的最大高度 h ,若不计空气阻力,则抛出时的初动能为 。 11.一个人站在高出地面点h 处,抛出一个质量为m 的物体,物体落地时速率为v ,人对物体做的功等于_______(不计空气阻力) 12.木块在粗糙水平面上以大小为υ的初速度开始运动,滑行s 后静止,则要使木块在此平面上滑行3s 后静止,其开始运动的初速度应为 。

人教版高中物理必修二动能与动能定理

高中物理学习材料 (马鸣风萧萧**整理制作) 动能与动能定理 三、动能定理: 1.内容: 2.表达式: 3.对动能定理的理解:合外力做功的正负与物体动能变化的关系为: 4、应用动能定理解题的一般步骤: (1)确定研究对象,明确运动过程; (2)明确始末状态,确定其动能; (3)对研究对象进行受力分析,找出各力所做的功或合力做的功; (4)根据动能定理列方程; (5)求解并验算。 【例1】关于动能,下列说法正确的是 ( ) A 、动能是机械能的一种表现形式,凡是运动的物体都具有动能 B 、动能总是正值 C 、一定质量的物体,动能变化时,速度一定变化;但速度变化时,动能不一定变化 D 、动能不变的物体,一定处于平衡状态 【例2】.一个物体的速度从0增加到v ,再从v 增加到2v ,前后两种情况下,物体动能的增加量k E 之比为? 【例3】.关于功和物体动能变化的关系,不正确的说法是( ) A 、有力对物体做功,物体的动能就会变化 B 、合力不做功,物体的动能就不变 C 、合力做正功,物体的动能就增加 D 、所有外力做功代数和为负值,物体的动能就减少 【例4】.一物体做变速运动时,下列说法正确的是 ( ) A .合外力一定对物体做功,使物体动能改变

B .物体所受合外力一定不为零 C .合外力一定对物体做功,但物体动能可能不变 D .物体加速度一定不为零 一.常规题(匀变速直线运动) 1.如图,物体在光滑的水平面上以4m/s 的速度向右滑行.现对物体施加一水平向左的力F,经过一段时间后,速度以4m/s 的速度向左运动,求:在此过程中F所做功. 2.用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,拉力F 跟木箱前进的方向的夹角为α,木箱与冰道间的摩擦因数为μ,求木箱获得的速度? 3.质量是2g 的子弹,以300m /s 的速度水平射入厚度是5cm 的木板,射 穿后的速度是100m /s .子弹在射穿木板的过程中所受的平均阻力是多大。 【选做4】.如图所示,半径1R m =的14 圆弧导轨与水平面相接,从圆弧导轨的顶端A ,由静止释放一个质量为20m g =的小木块,测得其滑至底端B 时速度3/B v m s =,以后在水平导轨滑行3BC m =而静止。求: (1)小木块刚到达底端B 时,对B 点的压力N ; (2)在圆弧轨道上克服摩擦力做的功? (3)BC 段轨道的动摩擦因数为多少? 4.已知斜面高 h ,斜面长 l ,质量为 m 的人从斜面顶部沿着斜面滑下,不计斜面的阻 A

高中物理动能定理典型练习题含答案.doc

动能定理典型练习题 典型例题讲解 1.下列说法正确的是( ) A 做直线运动的物体动能不变,做曲线运动的物体动能变化 B 物体的速度变化越大,物体的动能变化也越大 C 物体的速度变化越快,物体的动能变化也越快 D 物体的速率变化越大,物体的动能变化也越大 【解析】 对于给定的物体来说,只有在速度的大小(速率)发生变化时它的动能才改变,速度的变化是矢量,它完全可以只是由于速度方向的变化而引起.例如匀速圆周运动.速度变化的快慢是指加速度,加速度大小与速度大小之间无必然的联系. 【答案】D 2.物体由高出地面H 高处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑h 停止(如图5-3-4所示).求物体在沙坑中受到的平均阻力是其重力 的多少倍? 【解析】 选物体为研究对象, 先研究自由落体过程,只有重力做功,设物体质量为m ,落到沙坑表面时速 度为v ,根据动能定理有 02 12 -= mv mgH ① 再研究物体在沙坑中的运动过程,重力做正功,阻做负功,根据动能定理有 22 1 0mv Fh mgh -=- ② 由①②两式解得 h h H mg F += 另解:研究物体运动的全过程,根据动能定理有 000)(=-=-+Fh h H mg 解得h h H mg F += 3.如图5-3-5所示,物体沿一曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑高度为5m ,若物体的质量为lkg ,到B 点时的速度为6m/s ,则在下滑过程中,物体克服阻力所做的功为多少?(g 取10m/s 2) 【解析】设物体克服摩擦力 图5-3-5 H h 图5-3-4

图5-3-6 图5-3-7 所做的功为W ,对物体由A 运动到B 用动能定理得 22 1mv W mgh = - J mv mgh W 32612 1 51012122=??-??=-= 即物体克服阻力所做的功为32J. 课后创新演练 1.一质量为1.0kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起一向右水平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为4m/s ,则在这段时间内水平力所做的功为( A ) A .0 B .8J C .16J D .32J 2.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( C ) A .1:3 B .3:1 C .1:9 D .9:1 3.一个物体由静止沿长为L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( A ) A .4L B .L )12(- C .2L D .2 L 4.如图5-3-6所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s .若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是( ACD ) A .fL =21Mv 2 B .f s =2 1mv 2 C .f s =21mv 02-21(M +m )v 2 D .f (L +s )=21mv 02-2 1mv 2 5.如图5-3-7所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的 边缘开始向右行 至绳和水平方向 成30°角处,在此 过程中人所做的功 为( D ) A .mv 02/2 B .mv 02

高中物理动能与动能定理题20套(带答案)

高中物理动能与动能定理题20套(带答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,圆弧轨道AB是在竖直平面内的1 4 圆周,B点离地面的高度h=0.8m,该处切 线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求: (1)圆弧轨道的半径 (2)小球滑到B点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m. (2)小球滑到B点时对轨道的压力为6N,方向竖直向下. 【解析】 (1)小球由B到D做平抛运动,有:h=1 2 gt2 x=v B t 解得: 10 410/ 220.8 B g v x m s h ==?= ? A到B过程,由动能定理得:mgR=1 2 mv B2-0 解得轨道半径R=5m (2)在B点,由向心力公式得: 2 B v N mg m R -= 解得:N=6N 根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下 点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动. 2.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在A点用一弹射装置可将静止的小滑块以v0水平速度弹射出去,沿水平直线轨道运动到B点后,进入半径R=0.3m 的光滑竖直圆形轨道,运行一周后自 B点向C点运动,C点右侧有一陷阱,C、D两点的竖直高度差h=0.2m,水平距离s=0.6m,水平轨道AB长为L1=1m,BC长为 L2 =2.6m,

高一物理动能定理经典题型汇总(全)

高一物理动能定理经典题型汇总(全)

————————————————————————————————作者:————————————————————————————————日期:

1、动能定理应用的基本步骤 应用动能定理涉及一个过程,两个状态.所谓一个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能. 动能定理应用的基本步骤是: ①选取研究对象,明确并分析运动过程. ②分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和. ③明确过程始末状态的动能E k1及E K2 ④列方程 W=E K2一E k1,必要时注意分析题目的潜在条件,补充方程进行求解. 2、应用动能定理的优越性 (1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这一过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制. (2)一般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷.可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是一种高层次的思维和方法,应该增强用动能定理解题的主动意识. (3)用动能定理可求变力所做的功.在某些问题中,由于力F 的大小、方向的变化,不能直接用W=Fscos α求出变力做功的值,但可由动能定理求解. 一、整过程运用动能定理 (一)水平面问题 1、一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s ,在这段时间内,水平力做功为( ) A. 0 B. 8J C. 16J D. 32J 2、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2 /10s m ) 3、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵 S L V V

人教版高中物理必修二《动能和动能定理》

动能和动能定理 一、选择题 1.关于对动能的理解,下列说法正确的是( ) A.动能是机械能的一种表现形式,凡是运动的物体都具有动能 B.动能总为正值 C.一定质量的物体,动能变化时,速度一定变化;但速度变化时,动能不一定变化 D.动能不变的物体,一定处于平衡状态 2.关于运动物体所受的合力、合力的功、运动物体动能的变化,下列说法正确的是( ) A.运动物体所受的合力不为零,合力必做功,则物体的动能一定要变化 B.运动物体所受的合力为零,物体的动能一定不变 C.运动物体的动能保持不变,则该物体所受合力一定为零 D.运动物体所受合力不为零,则该物体一定做变速运动 3.质量不同而具有相同动能的两个物体,在动摩擦因数相同的水平面上滑行到停止,则( ) A.质量大的滑行的距离大 B.质量大的滑行的时间短 C.它们滑行的时间一样大 D.它们克服阻力做的功一样大 4.在下列几种情况中,甲乙两物体的动能相等的是 ( ) A.甲的速度是乙的2倍,甲的质量是乙的12 B.甲的质量是乙的2倍,甲的速度是乙的12 C.甲的质量是乙的4倍,甲的速度是乙的12 D.质量相同,速度大小也相同,但甲向东运动,乙向西运动 5.一个小球从高处自由落下,则球在下落过程中的动能( ) A.与它下落的距离成正比 B.与它下落距离的平方成正比 C.与它运动的时间成正比 D.与它运动的时间平方成正比 二、填空题 6.一颗质量为10g 的子弹,射入土墙后停留在0.5m 深处,若子弹在土墙中受到的平均阻力是6400N.子弹射入土墙前的动能是______J ,它的速度是______m /s. 7.甲、乙两物体的质量之比为2:1m :m 乙甲,它们分别在相同力的作用下沿光滑水平面从静止开始作匀加速直线运动,当两个物体通过的路程相等时,则甲、乙两物体动能之比为______. 三、计算题 8.一颗质量m =10g 的子弹,以速度v =600m /s 从枪口飞出,子弹飞出枪口时的动能为多大?若测得枪膛长s =0.6m ,则火药引爆后产生的高温高压气体在枪膛内对子弹的平均推力多大?

人教版高中物理必修二高一物理动能定理机械能守恒检测(计算题)

高中物理学习材料 金戈铁骑整理制作 高一物理动能定理机械能守恒检测(计算题) 1.“绿色奥运”是2008年北京奥运会的三大理念之一,奥委组决定在各比赛场馆适用新型节能环保电动车,届时奥运会500名志愿者将担任司机,负责接送比赛选手和运输器材。在检测某款电动车性能的某次试验中,质量为8×102kg 的电动车由静止开始沿平直公路行驶,达到的最大速度为15m/s,利用传感器测得此过程中不同的时刻电动车的牵引力F 与对应的速度v ,并描绘出F —1/v 图像(图中AB 、BO 均为直线)。假设电动车在行驶中所受的阻力恒定,求: (1)根据图线ABC ,判断该环保电动车做什么 运动并计算环保电动车的额定功率 (2)此过程中环保电动车做匀加速直线运动的 加速度大小 (3)环保电动车由静止开始运动,经过多长时间 速度达到2m/s? 2.如图所示,粗糙的斜面通过一段极小的圆弧与光滑的半圆 轨道在B 点相连,整个轨道在竖直平面内,且C 点的切线水平。 现有一个质量为m 且可视为质点的小滑块,从斜面上的A 点由 静止开始下滑,并从半圆轨道的最高点C 飞出。已知半圆轨道的 半径R=1m, A 点到水平底面的高度h=5m, 斜面的倾角θ=450,滑块 与斜面间的动摩擦因数μ=0.5, 空气阻力不计,求小滑块在斜面上的 落点离水平面的高度。(g=10m/s 2) 3.在光滑的水平面有一个静止的物体。现以水平恒力甲推这一物体,作用一段时间后,换成相反方向的水平恒力乙推这一物体,当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32J 。则在整个过程中,恒力甲、乙对物体做的功分别是多少? 4.从倾角为θ的斜面上,水平抛出一个小球,小球的初动能为E K0, F / N C B A 151 2000 400 V 1/s.m -1 O C O · y R A B H θ x C θ

高一物理动能、动能定理练习题

动能、动能定理练习 1、下列关于动能的说法中,正确的是( )A、动能的大小由物体的质量和速率决定,与物体的运动方向无关 B、物体以相同的速率分别做匀速直线运动和匀速圆周运动时,其动能不同.因为它在这两种情况下所受的合力不同、运动性质也不同 C、物体做平抛运动时,其动能在水平方向的分量不变,在竖直方向的分量增大 D、物体所受的合外力越大,其动能就越大 2、一质量为2kg的滑块,以4m/s的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s.在这段时间里水平力做的功为( ) A、0 B、8J C、16J D、32J 3、质量不等但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则( ) A、质量大的物体滑行距离小 B、它们滑行的距离一样大 C、质量大的物体滑行时间短 D、它们克服摩擦力所做的功一样多 4、一辆汽车从静止开始做加速直线运动,运动过程中汽车牵引力的功率保持恒定,所受的阻力不变,行驶2min速度达到10m/s.那么该列车在这段时间内行的距离( ) A、一定大于600m B、一定小于600m C、一定等于600m D、可能等于1200m 5、质量为1.0kg的物体,以某初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的情况如下图所示,则下列判断正确的是(g=10m/s2)( ) A、物体与水平面间的动摩擦因数为0.30 B、物体与水平面间的动摩擦因数为0.25 C、物体滑行的总时间是2.0s D、物体滑行的总时间是4.0s 6、一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E,它返回斜面底端的速度大小为υ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E,则有( ) A、返回斜面底端的动能为E B、返回斜面底端时的动能为3E/2 C、返回斜面底端的速度大小为2υ D、返回斜面底端的速度大小为2υ 7、以初速度v0急速竖直上抛一个质量为m的小球,小球运动过程中所受阻力f大小不变,上升最大高度为h,则抛出过程中,人手对小球做的功() A. 1 20 2 mv B. mgh C. 1 20 2 mv mgh + D. mgh fh + 8、如图所示,AB为1/4圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC的长度也是R,一质量为m的物 体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A从静止开始下落,恰好运动到C处停止,那么物体在AB段克服摩擦力所做的功为 A. 1 2 μmgR B. 1 2 mgR C. mgR D. () 1-μmgR 9、质量为m的物体静止在粗糙的水平地面上,若物体受水平力F的作用从静止起通过位移s时的动能为 E1,当物体受水平力2F作用,从静止开始通过相同位移s,它的动能为E2,则: A、E2=E1 B、E2=2E1 C、E2>2E1 D、E1<E2<2E1 10.质量为m,速度为V的子弹射入木块,能进入S米。若要射进3S深,子弹的初速度应为原来的(设子弹在木块中的阻力不变)( ) h/2 h 图5-17

高一物理 动能定理练习题

动能定理练习 巩固基础 一、不定项选择题(每小题至少有一个选项) 1.下列关于运动物体所受合外力做功和动能变化的关系,下列说法中正确的是( ) A .如果物体所受合外力为零,则合外力对物体所的功一定为零; B .如果合外力对物体所做的功为零,则合外力一定为零; C .物体在合外力作用下做变速运动,动能一定发生变化; D .物体的动能不变,所受合力一定为零。 2.下列说法正确的是( ) A .某过程中外力的总功等于各力做功的代数之和; B .外力对物体做的总功等于物体动能的变化; C .在物体动能不变的过程中,动能定理不适用; D .动能定理只适用于物体受恒力作用而做加速运动的过程。 3.在光滑的地板上,用水平拉力分别使两个物体由静止获得相同的动能,那么可以肯定( ) A .水平拉力相等 B .两物块质量相等 C .两物块速度变化相等 D .水平拉力对两物块做功相等 4.质点在恒力作用下从静止开始做直线运动,则此质点任一时刻的动能( ) A .与它通过的位移s 成正比 B .与它通过的位移s 的平方成正比 C .与它运动的时间t 成正比 D .与它运动的时间的平方成正比 5.一子弹以水平速度v 射入一树干中,射入深度为s ,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v /2的速度射入此树干中,射入深度为( ) A .s B .s/2 C .2/s D .s/4 6.两个物体A 、B 的质量之比m A ∶m B =2∶1,二者动能相同,它们和水平桌面的动摩擦因数相同,则二者在桌面上滑行到停止所经过的距离之比为( ) A .s A ∶s B =2∶1 B .s A ∶s B =1∶2 C .s A ∶s B =4∶1 D .s A ∶s B =1∶4 7.质量为m 的金属块,当初速度为v 0时,在水平桌面上滑行的最大距离为L ,如果将金属块的质量增加到2m ,初速度增大到2v 0,在同一水平面上该金属块最多能滑行的距离为( ) A .L B .2L C .4L D .0.5L 8.一个人站在阳台上,从阳台边缘以相同的速率v 0,分别把三个质量相同的球竖直上抛、竖直下抛、水平抛出,不计空气阻力,则比较三球落地时的动能( ) A .上抛球最大 B .下抛球最大 C .平抛球最大 D .三球一样大 9.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则此过程中物块克服空气阻力所做的功等于( ) A .2022121mv mv mgh -- B .mgh mv mv --2022 121 C .2202121mv mv mgh -+ D .2022121mv mv mgh -- 10.水平抛出一物体,物体落地时速度的方向与水平面的夹角为θ,取地面为参考平面,则物体刚被抛出时,其重力势能与动能之比为( ) A .sin 2θ B .cos 2θ C .tan 2θ D .cot 2θ 11.将质量为1kg 的物体以20m /s 的速度竖直向上抛出。当物体落回原处的速率为16m/s 。在此过程中物体克服阻力所做的功大小为( ) A .200J B .128J C .72J D .0J

高中物理动能与动能定理题20套(带答案)及解析

高中物理动能与动能定理题20套(带答案)及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,斜面ABC 下端与光滑的圆弧轨道CDE 相切于C ,整个装置竖直固定,D 是最低点,圆心角∠DOC =37°,E 、B 与圆心O 等高,圆弧轨道半径R =0.30m ,斜面长L =1.90m ,AB 部分光滑,BC 部分粗糙.现有一个质量m =0.10kg 的小物块P 从斜面上端A 点无初速下滑,物块P 与斜面BC 部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求: (1)物块第一次通过C 点时的速度大小v C . (2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置. 【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】 由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】 (1)BC 长度tan 530.4m l R ==o ,由动能定理可得 21 ()sin 372 B mg L l mv -=o 代入数据的 32m/s B v = 物块在BC 部分所受的摩擦力大小为 cos370.60N f mg μ==o 所受合力为 sin 370F mg f =-=o 故 32m/s C B v v == (2)设物块第一次通过D 点的速度为D v ,由动能定理得 2211 (1cos37)22 D C mgR mv mv -= -o

高中物理专题汇编物理动能与动能定理(一)

高中物理专题汇编物理动能与动能定理(一) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37?角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。 (1)求小物块经过B 点时对轨道的压力大小; (2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。 【答案】(1)62N (2)60N (3)10m 【解析】 【详解】 (1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==? 解得:04 m /5m /cos370.8 A v v s s = ==? 小物块经过A 点运动到B 点,根据机械能守恒定律有: ()2211cos3722 A B mv mg R R mv +-?= 小物块经过B 点时,有:2 B NB v F mg m R -= 解得:()232cos3762N B NB v F mg m R =-?+= 根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有: 22011222 C B mgL mg r mv mv μ--?= - 在C 点,由牛顿第二定律得:2 C NC v F mg m r += 代入数据解得:60N NC F = 根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N

高中物理动能定理的运用归纳及总结

一、整过程运用动能定理 (一)水平面问题 1、一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s ,在这段时间内,水平力做功为( ) A. 0 B. 8J C. 16J D. 32J 2、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运 动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2 /10s m ) 【解析】对物块整个过程用动能定理得: ()0 00=+-s s umg Fs 解得:s=10m 3、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力,如图所示。设运动的阻力与质量成正比,机车的牵引力是恒定的。当列车的两部分都停止时,它们的距离是多少? 【解析】对车头,脱钩后的全过程用动能定理得: 201)(2 1 )(V m M gS m M k FL --=-- 对车尾,脱钩后用动能定理得: 2022 1 mV kmgS -=- 而21S S S -=?,由于原来列车是匀速前进的, 所以F=kMg 由以上方程解得m M ML S -=?。 (二)竖直面问题(重力、摩擦力和阻力) 1、人从地面上,以一定的初速度 v 将一个质量为m 的物体竖直向上抛出,上升的最大高度 为h ,空中受的空气阻力大小恒力为f ,则人在此过程中对球所做的功为( ) A. 2021mv B. fh mgh - C. fh mgh mv -+2021 D. fh mgh + S 2 S 1 L V 0 V 0

人教版高中物理必修二动能和动能定理优质教案

动能和动能定理 一、要求与目标: 1、 理解动能的的概念,会用动能的定义进行计算。 2、 理解动能定理,知道动能定理的适用条件,会用动能定理进行计算。 3、 理解动能定理的推导过程。 4、 会用动能定理解决力学问题,知道用动能定理解题的步骤。 二、重点与难点: 1、动能的概念;动能定理及其应用。 2、对动能定理的理解。 三教学过程: (一)①请同学们欣赏几个课件,这些课件有什么共同特点呢? 学生的回答是:这些物体均在运动, ②哪这些物体具有能吗? 归纳:我们把这些运动物体具有的能叫物体的“动能” ③哪么物体的动能与哪些因素有关呢? 例题1、如图有一质量为m 的物体放在粗糙的水平面上,物体在运动过程中受到的摩擦力为f ,当物体受到恒力F (F >f )作用从速度V 0增加到V 时,物体运动合力做功为多大? 解:物体运动中的加速度为: m f F a -= 由运动学公式得到as V V 22 02+= 代入得到:m s f F V V )(22 02-=- 整理得到:s f F mV mV )(21212 02-=- 我们将:2 2 1mV =E k ,叫物体的动能。s f F )(-=W 合,叫合外力做功。 (二)、认识动能:E K =2 2 1mV 动能不仅与物体的质量有关,还与物体的速度平方有关; 它是一个标量,仅有大小而没有方向。如一个物体以4m/s 速度从A 点运动过后又以4m/s 的速度返回A 点,两次过A 点时物体的动能大小相等。 动能的单位是:“J ” 有:1kg.m 2/s 2=1J 例题1、改变汽车的质量和速度,都能使汽车的动能发生改变,在下列情况下,汽车的动能各是原来的几倍。 A 、质量不变,速度增大为原来的2倍; B 、速度不变,质量增大为原来的2倍; C 、质量减半,速度增大到原来的4倍; D 、速度减半,质量增大到原来的4倍。 (三)动能定理: 1、 在物理上我们将 s f F mV mV )(2 1 21202-=- 叫动能定理,它反映的是物体合外力做

高中物理动能与动能定理练习题及答案

高中物理动能与动能定理练习题及答案一、高中物理精讲专题测试动能与动能定理 1.如图所示,圆弧轨道AB是在竖直平面内的1 4 圆周,B点离地面的高度h=0.8m,该处切 线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求: (1)圆弧轨道的半径 (2)小球滑到B点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m. (2)小球滑到B点时对轨道的压力为6N,方向竖直向下. 【解析】 (1)小球由B到D做平抛运动,有:h=1 2 gt2 x=v B t 解得: 10 410/ 220.8 B g v x m s h ==?= ? A到B过程,由动能定理得:mgR=1 2 mv B2-0 解得轨道半径R=5m (2)在B点,由向心力公式得: 2 B v N mg m R -= 解得:N=6N 根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下 点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动. 2.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道

后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得: ?2mgR=m v12-m v02 且需要满足m≥mg,解得R≤0.72m, 综合以上考虑,R需要满足的条件为:0.3m≤R≤0.42m或0≤R≤0.12m。 【点睛】 解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

人教版高一物理动能定理专题练习题

动能定理练习 例1.下列关于运动物体所受合外力做功和动能变化的关系,下列说法中正确的是( ) A .如果物体所受合外力为零,则合外力对物体所的功一定为零; B .如果合外力对物体所做的功为零,则合外力一定为零; C .物体在合外力作用下做变速运动,动能一定发生变化; D .物体的动能不变,所受合力一定为零。 例3.在光滑的地板上,用水平拉力分别使两个物体由静止获得相同的动能,那么可以肯定( ) A .水平拉力相等 B .两物块质量相等 : C .两物块速度变化相等 D .水平拉力对两物块做功相等 例5.一子弹以水平速度v 射入一树干中,射入深度为s ,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v /2的速度射入此树干中,射入深度为( ) A .s B .s/2 C .2/s D .s/4 例6.两个物体A 、B 的质量之比m A ∶m B =2∶1,二者动能相同,它们和水平桌面的动摩擦因数相同,则二者在桌面上滑行到停止所经过的距离之比为( ) A .s A ∶s B =2∶1 B .s A ∶s B =1∶2 C .s A ∶s B =4∶1 D .s A ∶s B =1∶4 例7.质量为m 的金属块,当初速度为v 0时,在水平桌面上滑行的最大距离为L ,如果将金属块的质量增加到2m ,初速度增大到2v 0,在同一水平面上该金属块最多能滑行的距离为( ) A .L B .2L C .4L D . 例8.一个人站在阳台上,从阳台边缘以相同的速率v 0,分别把三个质量相同的球竖直上抛、竖直下抛、水平抛出,不计空气阻力,则比较三球落地时的动能( ) ~ A .上抛球最大 B .下抛球最大 C .平抛球最大 D .三球一样大 例9.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则此过程中物块克服空气阻力所做的功等于( ) A .2022121mv mv mgh -- B .mgh mv mv --2022 121 C .2202121mv mv mgh -+ D .2022121mv mv mgh -- 例10.水平抛出一物体,物体落地时速度的方向与水平面的夹角为θ,取地面为参考平面,则物体刚被抛出时,其重力势能与动能之比为( ) A .sin 2θ B .cos 2θ C .tan 2θ D .cot 2θ 例11.将质量为1kg 的物体以20m/s 的速度竖直向上抛出。当物体落回原处的速率为16m/s 。在此过程中物体克服阻力所做的功大小为( ) A .200J B .128J C .72J D .0J \ 例12.(多选)一质量为1kg 的物体被人用手由静止向上提升1m ,这时物体的速度为2m/s ,则下列说法中正确的是( ) A .手对物体做功12J B .合外力对物体做功12J C .合外力对物体做功2J D .物体克服重力做功10J 例13.物体A 和B 叠放在光滑水平面上m A =1kg ,m B =2kg ,B 上作用一个3N 的水平拉力后,A 和B 一起前进了4m ,如图1所示。在这个过程中B 对A 做 的功等于( ) A .4J B .12J C .0 D .-4J — 图1

相关主题