搜档网
当前位置:搜档网 › 最新的高中数学竞赛典型题目(一)

最新的高中数学竞赛典型题目(一)

最新的高中数学竞赛典型题目(一)
最新的高中数学竞赛典型题目(一)

数学竞赛典型题目(一)

1.(2004美国数学竞赛)设n a a a ,,,21 是整数列,并且他们的最大公因子是1.

令S 是一个整数集,具有性质:

(1)),,2,1(n i S a i =∈

(2) }),,2,1{,(n j i S a a j i ∈∈-,其中j i ,可以相同

(3)对于S y x ∈,,若S y x ∈+,则S y x ∈-

证明:S 为全体整数的集合。

2.(2004美国数学竞赛)c b a ,,是正实数,证明:

3252525)()3)(3)(3(c b a c c b b a a ++≥+-+-+-

3.(2004加拿大数学竞赛)T 为1002004的所有正约数的集合,求集合T 的子集

S 中的最大可能的元素个数。其中S 中没有两个元素,一个是另一个的倍数。

4.(2004英国数学竞赛)证明:存在一个整数n 满足下列条件:

(1)n 的二进制表达式中恰好有2004个1和2004个0;

(2)2004能整除n .

5.(2004英国数学竞赛)在0和1之间,用十进制表示为 21.0a a 的实数x 满足:在表达式中至多有2004个不同的区块形式,)20041(20031≤≤++k a a a k k k ,证明:x 是有理数。

6.(2004亚太地区数学竞赛)求所有由正整数组成的有限非空数集S ,满足:如果S n m ∈,,则S n m n m ∈+)

,( 7.(2004亚太地区数学竞赛)平面上有2004个点,并且无三点共线,S 为通过任何两点的直线的集合。证明:点可以被染成两种颜色使得两点同色当且仅当S 中有奇数条直线分离这两点。

8.(2004亚太地区数学竞赛)证明:)()!1(*2N n n n n ∈??

????+-是 偶数。 9.(2004亚太地区数学竞赛)z y x ,,是正实数,证明:

)(9)2)(2)(2(222zx yz xy z y x ++≥+++

10.(2003越南数学竞赛)函数f 满足)0(2sin 2cos )(cot π<<+=x x x x f ,令 )11)(1()()(≤≤--=x x f x f x g ,求)(x g 在区间]1,1[-的上最值。

11.(2003越南数学竞赛)定义17612)(,91524)(2323+-+=+--=x x x x q x x x x p ,证明:

(1)每个多项式都有三个不同的实根;

(2)令A 为)(x p 的最大实根,B 为)(x q 的最大实根,证明:4322=+B A

12.(2003越南数学竞赛)令F 为所有满足++→R R f :且x x f f x f +≥)]2([)3(对任意+∈R x 成立的函数f 的集合。求最大实数A 使得Ax x f ≥)(对所有+∈∈R x F f ,都成立。

13.(2003美国数学竞赛)证明:对于每个n ,我们可以找到一个n 位数,他的所有数字都是奇数,并且可以被n 5整除。

14.(2003美国数学竞赛)一个凸多边形的所有边和所有对角线都是有理数,连接所有的对角线将多边形分成若干的小凸边形,证明:所有小多边形的边长都是有理数。

15.(2003巴尔干数学竞赛)一个矩形ABCD 的边,,n AD m AB ==其中n m ,是互质的奇数。矩形被分成了mn 个单位正方形,对角线AC 交单位正方形于点

C A A A A A N ==,,,,321 ,证明:1223341(1)N N N AC A A A A A A A A mn

--+-+-= 16.(2002美国数学竞赛)S 为含有2002个元素的集合,并且P 是S所有子集的集合,证明:对于任意)0(P n n ≤≤ ,我们可以将P的n 个元素染成白色,其余染成黑色,使得P的任何两个具有相同元素的并集仍有相同的颜色。

17.(2002美国数学竞赛)求所有定义在实数集上的实值函数满足:)()()(22y yf x xf y x f -=-对于任意实数y x ,成立。

18.(2001美国数学竞赛)非负实数z y x ,,满足4222=+++xyz z y x ,证明:

2+≤++≤xyz zx yz xy xyz

19.(2002巴尔干数学竞赛)数列

:}{n a 11213,30,20-+-===n n n a a a a a ,求所有n 使151++n n a a 是完全平方数。

20.(2002巴尔干数学竞赛)N为正整数的集合,求所有N N f →:使得

2002

220012)())((++=+n n n f n f f 或 21.(2009年协作体)求证:存在无穷多个棱长都是整数的长方体,使其满足每个面的面积都是两个数的平方和,并且其体积等于对角线的平方。

22.(2001巴尔干数学竞赛)一个凸五边形的边长是有理数,并且5个角相等,证明:它是正五边形。

23.(2001巴尔干数学竞赛)正实数c b a ,,满足c b a abc ++≤,证明:abc c b a 3222≥++

24.(2001加拿大数学竞赛)210,,A A A 位于半径为1的圆上,并且21A A 不是直径,点列}{n A 定义如下:n A 是321---?n n n A A A 的外心,证明: 13951,,,A A A A 共线,并求所有的21,A A 使得2001

100110011A A A A 是一个整数的50次幂。 25.(2002年越南数学竞赛)n 为正整数,证明:方程2

1111211122=-++-+-x n x x 有唯一的解1>n x ,且∞→n 时,4→n x 26.(2001年越南)对于实数b a ,定义如下数列:.,,,210 x x x 由a x =0,n n n x b x x sin 1+=+确定

(1)若.1=b 证明:对于任何a ,数列有极限;

(2)若.2>b 证明:对于某些a ,数列没有极限.

27.(2000年越南)定义一个正实数序列:.,,,210 x x x b x =0,.1n n x c c x +-=+求所有实数c ,使得对所有),0(c b ∈,数列存在极限.

28.(2002波兰数学竞赛)k 是正整数,数列k ka a a k a a n n n n +-=+=+211,1:}{,

证明:数列中的任两项互质。

29.(2001波兰数学竞赛)数列n n n n x x x b x a x x +===++1221,,:}{,一个数c 如果在数列中出现的次数超过1次,就称它是“重复的”,证明:我们可以选择b a ,使数列中有超过2000个重复值,但没有无穷多个重复值。

30.(2001波兰数学竞赛)b a ,都是整数,使得b a n +2对所有非负整数n 都是完全平方数,证明:0=a

31.(2001波兰数学竞赛)数列}{n a 定义如下:1a 和2a 为素数,n a 为200021++--n n a a 的最大素因子。证明:数列}{n a 有界.

32.(2001波兰数学竞赛))(x p 是一个多项式,次数为奇次,满足1)()1(22-=-x p x p 对所有x 成立。证明:x x p =)(

33.(1978年国际数学竞赛)将集合}1978

,,3,2,1{ =S 分成六个不同的集合)6,5,4,3,2,1(=i A i ,即621A A A S ???= 且Φ=?j i A A ,求证:在某个i A 中存在一个元素是其他两个元素的和或者一个元素是另一个元素的2倍。

34.(1999年国际数学竞赛)设n 是一个固定的正偶数.考虑一块n n ?的正方板,它被分成2n 个单位正方格.板上两个不同的正方格,如果有一条公共边,就称它们为相邻的.将板上N 个单位正方格作上标记,使得板上的任意正方格(作上标记的或者没有作上标记的)都与至少一个作上标记的正方格相邻.确定N 的最小值.

35.一个99?方格能否被15个22?方格和6个L型方格(由3个小方格组成)和3个单位方格覆盖?

36.已知边长为n 的正方形及其内部的2)1(+n 个点,其中无3点共线,证明:必存在3个点,以其为顶点的三角形的面积不大于2

1。 37.已知x 是循环节为p 的纯循环小数,y 是无限小数,其小数点后的第n 位与数x 小数点后的第n n 位的数字相同,问:y 是否是有理数?

38.求所有的正整数b a ,使得1,122++++a a b b b a

39.11106,3,1:}{-+-===n n n n x x x x x x ,证明:除第一项外,}{n x 中无完全平方数。

40.c bx ax x f ++=2)(是实系数多项式,且对于任何整数)(,00x f x 是完全平方数,证明:2)()(d ex x f +=,其中d e ,是整数。

41.能否找到含有1990个正整数的集合S,使

(1)S 中任意两个数互质;

(2)S 中任意)2(≥k k 个数的和是合数。

42.(1998年越南数学竞赛)是否存在)10(<<αα,使得有一个无穷的正数列}{n a 满足:,11n n n a n a a α

+≤++),2,1( =n .

43.一个整数有限序列n a a a ,,,10 称为一个二次序列,如果对于每个21},,,2,1{i a a n i i i =-∈- ;

(1)证明:对于任何两个整数c b ,,都存在一个正整数n 和一个二次序列使c a b a n ==,0;

(2)求满足下列条件的最小正整数n ,使1996,00==n a a

44.z y x ,,是正实数,求证:

49))

(1)(1)(1)((222≥+++++++x z z y y x zx yz xy 45.用16个31?矩形和一个11?正方形拼成一个77?正方形,求证:11?正方形要么在大正方形中心,要么在大正方形边界上。

46.环形公路上有n 个加油站,每个加油站有汽油若干桶,n 个站的总存油量够一辆汽车行驶一周,证明:必存在一站,从该站起,汽车逆时针行驶(每到一站装上所有汽油)可回到原站。

47.正实数c b a ,,满足1=abc ,求证:

2

3)(1)(1)(1333≥+++++b a c a c b c b a +])()()([412

22a b a b c a c a c b b c b c a +-++-++- 48.),,2,1(n i R x i =∈+,证明:

11222221121111n n

x x x x x x x x +++≤++++++ 49.数列1,21:}{2211+-==+n n n n n a a a a a a ,证明:11

<∑=n k k a 50.求方程y x y x =+!!的正整数解

51.求所有三次多项式)(x p 使得对任意的非负实数y x ,有)()()(y p x p y x p +≥+

52.},|2{22Z y x y x S ∈+=,对于整数a ,若S a ∈3,证明:S a ∈ 53.[]

53,1:}{10n n n n x x x x x +==+,已知712,136,26,54321====x x x x ,求2007x

54.(波兰)数列}{n a 由)1(01

2,10110≥=++++

-=-n n a n a a a a n n 确定,证明: )0(0>>n a n

55.非负实数z y x ,,满足1222=++z y x ,证明:21111≤+++++≤xy z zx y yz x 56.圆周上有7个点,将他们两两连线,求这些直线在圆内部交点个数的最小值。

57.是否存在一个能被103整除的正整数n ,满足)(mod 221n n ≡+

58.正实数z y x ,,满足z y x zx yz xy ++=++,证明:

11

11111222≤++++++++x z z y y x 59.(2009塞尔维亚数学竞赛)求能被整除且数字和是的最小的正

整数。

60.对20072007?方格染色,使得任意22?方格中最多有2个方格被染色,问:最多可以将多少个方格染色?

61.空间中有9个点,其中任意4点不共面。在这9个点间连接若干条线段,但图中不存在四面体,问:图中三角形最多多少个?

62.(2009加拿大数学竞赛)由一个纸板裁剪出两个半径不同的圆,每个圆再分成个相等的扇形,且每个圆的个扇形涂成白色的,另个扇形涂成黑色的。将小圆叠放在大圆的上面,使得它们的圆心重合。 求证:总可以旋转小圆,使得这两个圆的扇形上下对齐,且小圆至少有个

扇形位于大圆的同色扇形上。

63.(2009年印度尼西亚数学竞赛)n 是大于1的奇数,证明:n n C n 24|48+

64.(2009年英国数学竞赛)求定义在实数集上的函数使))()()()(()()(2233y f xy f x f y x y f x f +-+=+

65.(2009年英国数学竞赛)将不大于2500的正整数写成二进制,其中以1开头的数字串所表示的整数的不同个数记为)(n b ,求证:2500≤n 时,39)(≤n b ,并确定取等条件。

66.一个圆桌周围有n 个位置,第一个人任意坐下,第二个人从第一个人逆时针开始数2个位置坐下,即第二个人坐在第一个人旁边,第1+k 人从第k 个人逆时针开始数1+k 个位置坐下。如果按照这种坐法,n 个人恰好坐满n 个位置,求n 得所有可能值。

67.(2009加拿大数学竞赛)已知为完全平方数,求所有的有序整数对。

68.求所有的质数q p ,使)55(|q p pq +

69.求所有的质数q p ,使)25)(25(|q q p p pq --

70.数列n n n n a a a k a k a a 23,25,:}{1221-=-==++,其中k 是常数。

(1)求所有k 使数列收敛;

(2)若1=k ,求证:?????

?++-=++++11212187n n n n n n a a a a a a 71.数列k y y k y y y y n n n n 24)54(,1:}{1221-+--===++,求所有的正整数k ,使得数列中的每一项都是完全平方数。

72.求证:数列[]2n a n =中有无穷多个完全平方数。

73.[]

22)1(n n a n +-= (1)证明:存在无穷多个m 使得11>-+m m a a ;

(2)证明:存在无穷多个m 使得11=-+m m a a 。

74.(2006全国高中数学联赛)设,)(2a x x f +=记 3,2)),(()(),()(11===-n x f f x f x f x f n n ,}N n ,2)0(|{*∈?≤∈=n f R a M 证明:]4

1[-2,M = 75.实数列)2,1,0}({ =n a n 满足)2,1,0(5

121 =+≥+n a a n n ,证明:255-+≥n n a a 76.P为边长为1的正四面体内一点,证明:P到各个顶点的距离和至多为3。 77.1≥≥y x ,证明:11

111

1+++++≥+++++y x x

y x y

x y y

y x x

78.),,2,1(n i R x i =∈+是否一定有

n n n n x x x x x x x x x x x x x x x +++≥+++- 212

111432321 79.证明:),(1*5N n a a a n n ∈++是合数。

80.)2(,12121>+===--n f f f f f n n n ,若正整数b a ,满足

<<+-b a f f f f n n n n },min{11},max{11n

n n n f f f f +-,证明:1+≥n f b 81.把一个实数用与它相岭的两个整数之一代替称为“整化”,证明:对于给

定的n 个实数,存在一种整化方式,使得这些数中任意若干个数的和与这些数整化后对应的和之差不大于4

1+n 。 82.(1997美国数学竞赛)求证:存在无穷多个正整数n ,使得9919n n +可以用两种不同的方式表示为两个平方数的和。

83.(1996年保加利亚)数列}{n a :11=a ,n

n n a n n a a +=

+1,),2,1( =n 证明:4≥n 时,.][2n a n = 84.在正三角形三个顶点上各放置一个整数使得:三个数的和是整数,若某个顶点上的数0

85.(2003年德国数学竞赛)数列}{n a :11=a ,

)7(1,2,121332+===+++n n n

n a a a a a a ,证明:n a 是正整数. 86.(2004年克罗地亚数学竞赛)求使数列: ααααn 2cos ,,2cos ,2cos ,cos 2每一项均为负数的所有实数.α

87.(2003瑞典数学竞赛)求所有实数x 满足方程[]

[][]2222x x x x =+- 88.(2004俄罗斯数学竞赛)求所有的正整数n 使得不等式0s i n s i n s i n <++nC nB nA 对于任何锐角三角形的三个内角C B A ,,都成立。

89.(2004台湾数学竞赛)正实数c b a ,,满足92≥

a b c ,证明:313

11

11

11

a b c c b a +≥+++++

90.(2003克罗地亚数学竞赛)对于大于2的整数n ,证明:??

????+=??????-+4124)1(n n n n 91.数列)2,1,0}({ =n a n 满足)2,1,0,)((2

122 =+=+-+n m a a a a n m n m n m ,若

11=a ,求2003a

92.数列}{n a 定义如下:21=a ,.1221-=+n n a a 证明:对所有n 有.1),(=n a n

93.求整数c ,使.20072007≤≤-c 且存在N x ∈,使c x +2是20072整数倍.

94.(2003年德国竞赛)证明:存在无穷多个正整数b a ,使

(1)5|2-b a ,(2)5|2-a b ,(3)1),(=b a .

95.已知射线).0()154(≥+=x x y 现将该射线绕O 点逆时针转动α角,形成一个区域D ,试证:无论α多么小,区域D 中总存在无穷多个格点),(n m 满足:

(1)mn 61+与mn 101+均为完全平方数;

(2)1|2-m n ,1|2-n m .

96.(2003保加利亚数学竞赛)求实数a ,使得等式[][][]an a n an +=4对于任意的正整数n 成立。

97.(2002芬兰数学竞赛)设n 是大于2的整数,n a 是最大的n 位数,满足其既不是两个数的平方和也不是两个数的平方差。

(1)求n a ;

(2)求n 的最小值,使n a 的各位数字的平方和是一个完全平方数。

98.设c b a ,,是一个三角形的三边长,且1=++c b a ,若2≥n ,证明:2

21n n n n n n n n n n a c c b b a +<+++++ 99.(2002年芬兰数学竞赛)n n n n x x x x x +==+211,3

1:}{,令

1

11111200221++++++=x x x S ,求[]S 100.设正数z y x c b a ,,,,,满足c ay bx b cx az a bz cy =+=+=+,,,求 求函数

z

z y y x x z y x f +++++=111),,(2

22的最小值. 101.正实数),,3,2,1(n i a i =满足:1321=n a a a a ,证明:

111111121≤+-+++-++-n

a n a n a n 102.c

b a ,,是正实数,证明:c

b a

c c b a b c b a c a 382423++-++++++的最小值. 103.S 是至少有4个元素的实数集,对任意),(,y x S y x ≠∈有

S y

x y x ∈-+,求证:对于所有这样的集合S,存在S x ∈使20022001<

104.在ABC ?中,求C B A f sin 5sin sin ++=的最大值 105.已知正整数y x b a ,,,满足by ax +是22b a +的倍数,若22y x p +=是质数,证明:22b a p +

106.正实数c b a ,,满足1=++c b a ,证明:)(32222

22c b a a

c c b b a ++≥++ 107.在一个n m ?的方格表中填上互不相等的mn 个数,并且把每列数值交大的前)(m a ≤个数作上标记,在把每行数值交大的前)(n b ≤个数作上标记,证明:至少有ab 个数作了两次标记.

108.在一个由十进制数字组成的数码中,如果它含有偶数个数字,则称它“好数码”(如,等),则长度不超过(为正整数)的所有“好数码”有多少个?

109.(2008罗马尼亚数学竞赛)存在无穷个使,存在无穷多个使

不能整除.

110.设4≥n 是一个给定的正整数,},,,{21n P P P S =是平面上的n 个点,无三点共线,无四点共圆,设t a 是使k j i P P P ?的外接圆包含t P 的k j i P P P ?的个数,记n a a a s m +++= 21)(,证明:存在一个仅依赖于n 的函数)(n f ,使得S 中的点为一个凸多边形的顶点当且仅当)()(n f s m =

111.定义}|{)(mod Z k mk a m a ∈+=,设1021,,,m m m 是大于1的10个正整数,且他们两两的最大公约数都不相同但都大于1,求证:存在整数1021,,,a a a 使)(mod i i m a 互不相同.

112.(1) ,,21n n 是每项都大于等于2的正整数列,数列}{n q 满足:}2,1{∈i q ,证明:数列1221n n n k k k q q q a +++= 收敛,并且它的极限在]2,1(

(2) 证明:对]2,1(∈x 存在满足条件(1)的数列,其极限是x .

113.(1998年印度)设正整数p n ,满足2

3n p ≤≤,一个正n 边形有p 个顶点涂红色,其余涂蓝色,证明:存在两个至少有12+??

????p 个顶点的全等多边形满足:一个多边形全是红顶点,另一个多边形全是蓝顶点。

114.考虑n ,,2,1 每个数正偶数因子的个数,并且相加得到一个数,类似考察每个数的正奇数因子得到另一个数,证明:这两个数的差至少是n 。 115.(1998年波兰数学竞赛)数列),3,2(,1:}{211 =+==??

????-n a a a a a n n n n ,证明:数列中有无限项是7的倍数。

116.(1995年保加利亚数学竞赛)已知2≥n 且),,2,1(10n i x i =≤≤,证明:

??????≤-∑∑=+=2111n x x x n

i i i n i i (11x x n =+) 117.(2002年俄罗斯数学竞赛)正整数m n >,证明:对一切)2

,0(π∈x ,都有

x x x x m m n n cos sin 3cos sin 2-≤-

118.正整数u z y x ,,,满足???=+=+zu

xy u z y x 2,求最大的常数m 使得y x m ≤,这里),,,(u z y x 是满足上面方程组得解且y x ≥

119.(2005亚太数学竞赛)正实数c b a ,,满足8=a b c

,证明:)1)(1(332

b a a +++)1)(1(332

c b b +++3

4)1)(1(332

≥++a c c 120.(2006罗马尼亚)证明:数列[][]32:}{n n a a n n +=中有无穷多个偶数,也有无穷多个奇数。

高中数学竞赛模拟试题一汇总

高中数学竞赛模拟试题一 一 试 (考试时间:80分钟 满分100分) 一、填空题(共8小题,5678=?分) 1、已知,点(,)x y 在直线23x y += 上移动,当24x y +取最小值时,点(,)x y 与原点的距离是 。 2、设()f n 为正整数n (十进制)的各数位上的数字的平方之和,比如 ()22212312314 f =++=。记 1()() f n f n =, 1()(()) k k f n f f n +=, 1,2,3... k =,则 =)2010(2010f 。 3、如图,正方体1 111D C B A ABCD -中,二面角 1 1A BD A --的度数 是 。 4、在2010,,2,1 中随机选取三个数,能构成递增等差数列的概率是 。 5、若正数c b a ,,满足 b a c c a b c b a +- +=+,则c a b +的最大值是 。 6、在平面直角坐标系xoy 中,给定两点(1,2)M -和(1,4)N ,点P 在X 轴上移动,当MPN ∠取最大值时,点P 的横坐标是 。 7、已知数列...,,...,,,210n a a a a 满足关系式18)6)(3(1=+-+n n a a 且30=a ,则∑=n i i a 01 的值是 。 8、函数sin cos tan cot sin cos tan cot ()sin tan cos tan cos cot sin cot x x x x x x x x f x x x x x x x x x ++++=+++++++在(,)2 x o π∈时的最 小值为 。

二、解答题(共3题,分44151514=++) 9、设数列}{n a 满足条件:2,121==a a ,且 ,3,2,1(12=+=++n a a a n n n ) 求证:对于任何正整数n ,都有:n n n n a a 111+≥+ 10、已知曲线m y x M =-22:,0>x ,m 为正常数.直线l 与曲线M 的实轴不垂直,且依次交直线x y =、曲线M 、直线x y -=于A 、B 、C 、D 4个点,O 为坐标原点。 (1)若||||||CD BC AB ==,求证:AOD ?的面积为定值; (2)若BOC ?的面积等于AOD ?面积的3 1,求证:||||||CD BC AB == 11、已知α、β是方程24410()x tx t R --=∈的两个不等实根,函数=)(x f 1 22 +-x t x 的定义域为[,]αβ. (Ⅰ)求);(min )(max )(x f x f t g -= (Ⅱ)证明:对于) 2 ,0(π∈i u )3,2,1(=i ,若1sin sin sin 321=++u u u ,则 64 3 )(tan 1)(tan 1)(tan 1321<++u g u g u g . 二 试 (考试时间:150分钟 总分:200分) 一、(本题50分)如图, 1O 和2 O 与 ABC ?的三边所在的三条直线都相 切,,,,E F G H 为切点,并且EG 、FH 的 延长线交于P 点。 求证:直线PA 与BC 垂直。 二、(本题50分)正实数z y x ,,,满 足 1≥xyz 。证明: E F A B C G H P O 1。 。 O 2

2019年全国高中数学联赛试题及解答

全国高中数学联合竞赛试题(A 卷) 一试 一、填空题(本大题共8小题,每小题8分,共64分) 1. 若正数,a b 满足()2362log 3log log a b a b +=+=+,则11 a b +的值为________. 答案:设连等式值为k ,则2 3 2 ,3 ,6k k k a b a b --==+=,可得答案108 分析:对数式恒等变形问题,集训队讲义专门训练并重点强调过 2. 设集合3|12b a b a ?? +≤≤≤????中的最大元素与最小你别为,M m ,则M m -的值为______. 答案:33251b a +≤+= ,33 b a a a +≥+≥ ,均能取到,故答案为5-分析:简单最值问题,与均值、对勾函数、放缩有关,集训队讲义上有类似题 3. 若函数()21f x x a x =+-在[0,)+∞上单调递增,则实数a 的取值范围是______. 答案:零点分类讨论去绝对值,答案[]2,0- 分析:含绝对值的函数单调性问题,集训队讲义专门训练并重点强调过 4. 数列{}n a 满足12a =,()()*1221n n n a a n N n ++=∈+,则 2014 122013a a a a =+++______. 答案:()1221 n n n a a n ++=+,迭乘得()121n n a n -=+,()212232421n n S n -=+?+?+++, 乘以公比错位相减,得2n n S n =,故答案为2015 2013 . 分析:迭乘法求通项,等差等比乘积求前n 项和,集训队讲义专门训练并重点强调过 5. 正四棱锥P ABCD -中,侧面是边长为1的正三角形,,M N 分别是边,AB BC 的中点,则异面直线MN 与PC 之间的距离是 ________. 答案:OB 为公垂线方向向量,故距离为12OB =分析:异面直线距离,也可以用向量法做,集训队讲义专门练并重点强调过 6. 设椭圆Γ的两个焦点是12,F F ,过点1F 的直线与Γ交于点,P Q .若212PF F F =,且1134PF QF =,则 椭圆Γ的短轴与长轴的比值为________. 答案:不妨设焦点在x 轴(画图方便),设114,3PF QF ==,焦距为2c ,224a c =+, 可得△2PQF 三边长为7,21,2c c + ,过2F 作高,利用勾股可得5c =. 分析:椭圆中常规计算,与勾股定理、解三角形、斯特瓦尔特等有关,集训队讲义训练过相关 7. 设等边三角形ABC 的内切圆半径为2,圆心为I .若点P 满足1PI =,则△APB 与△APC 的面积之 比的最大值为________. 答案:sin sin APB APC S PAB S PAC ∠=∠,又两角和为60 最大,即AP 与 (),1I 切于对称轴右侧 2 分析:平面几何最值、面积、三角函数、轨迹

2018全国高中数学联赛试题

2018年全国高中数学联合竞赛一试试题(A 卷) 一、填空题:本大题共 8小题,每小题 8分,共64分. 1.设集合{1,2,3,,99}A = ,{2}B x x A =∈,{2}B x x A =∈,则B C 的元素个数 . 解析:因为{1,2,3,,99}A = ,所以{2,4,6,,198}B = ,{1,2,3,,49}C = ,于是 {2,4,6,,48}B C = ,共24个元素. 2.设点P 到平面α Q 在平面α上,使得直线PQ 与α所成角不小于30 且不大于60 ,则这样的点Q 所构成的区域的面积为 . 解析:过点P 作平面α的垂线,这垂足为O ,则点Q 的轨迹是以O 为圆心,分别以1ON =和3OM =为半径的扇环,于是点Q 所构成的区域的面积为21S S S =-= 9 8πππ-=. 3. 将1,2,3,4,5,6随机排成一行,记为,,,,,a b c d e f ,则abc def +是偶数的概率为 . 解析:(直接法)将1,2,3,4,5,6随机排成一行,共有6 6720A =种不同的排法,要使 abc def +为偶数,abc 为与def 同为偶数或abc 与且def 同为奇数. (1)若,,a b c 中一个偶数两个奇数且,,d e f 中一个奇数两个偶数. 共324种情形; (2)若,,a b c 中一个奇数两个偶数且,,d e f 中一个偶数两个奇数. 共324种情形; 共有648种情形.综上所述,abc def +是偶数的概率为 6489 72010 =. (间接法)“abc def +是偶数”的对立事件为“abc def +是偶数”, abc def +是偶数分成两种情况:“abc 是偶数且def 是奇数”或“abc 是奇数且def 是偶数”,每 P O M N α

2020年全国高中数学联合竞赛一试B卷

2020年全国高中数学联合竞赛一试B 卷 试题参考答案及评分标准〔B 卷〕 讲明: 1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次. 2.假如考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划 分档次评分,解答题中5分为一个档次,不要增加其他中间档次. 一、选择题〔此题总分值36分,每题6分〕 1.函数2 54()2x x f x x -+=-在(,2)-∞上的最小值是 〔 B 〕 A .3 B .2 C .1 D .0 [解] 当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x +-+==+---2≥2=,当且仅当1 22x x =--时上式取等号. 而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2. 2.设[2,4)A =-,2{40}B x x ax =--≤,假设B A ?,那么实数a 的取值范畴为 〔 A 〕 A .[0,3) B .[0,3] C .[1,2)- D .[1,2]- [解] 因240x ax --=有两个实根 12a x =22a x = 故B A ?等价于12x ≥-且24x <,即 22a ≥-且42a , 解之得03a ≤<. 3.甲乙两人进行乒乓球竞赛,约定每局胜者得1分,负者得0分,竞赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为 23,乙在每局中获胜的概率为1 3 ,且各局胜负相互独立,那么竞赛停止时已打局数ξ的期望E ξ为 〔 C 〕 A. 670243 B. 27481 C. 266 81 D. 24181 [解法一] 依题意知,ξ的所有可能值为2,4,6.

高中数学竞赛介绍,尖子生请收好

高中数学竞赛介绍,尖子生请收好! 首先,强调一点:不是所有学生都可以学数学竞赛,要想学习数学竞赛必须同时具备以下条件: ?高考数学可以轻松应对; ?对数学竞赛有兴趣,自发选择学习数学竞赛; ?具备自主学习能力; ?高考涉及的其他学科不存在太大问题,或个人的竞赛前景远优于高考前景。 数学竞赛需要的时间和精力都是很大的,并且如果因为学习竞赛受挫而导致对数学产生负情绪是得不偿失的,因此,我从不提倡“全民竞赛”。当然,如果你恰好符合以上的四个条件,那么你一定要学习竞赛。为什么?因为学习数学竞赛的好处很多。 与其他学科竞赛一样,学习数学竞赛除了能在升入高校方面获得保送或降分的优惠外,还能培养学生的自主学习能力,这对学生的整个大学学习乃至今后的学术研究或是社会工作是尤为重要的。

因此,若你有足够的实力,精力和时间,那么竞赛将是你们的不二之选。 此外,数学竞赛学到一定深度后就会发现,数学竞赛不再是由知识结构和解题方法组成,而是对思维能力的培养和运用,而思维能力的价值是远超过数学本身的,这将会对学生以后对问题的思考与对事物的判断等产生不可估量的影响。当然,这是后话。 说归说,高中数学竞赛指的究竟是什么?我想说的是,绝不仅仅是高联(全国高中数学联赛)这么简单。下面,我就带着大家理一理高中阶段可能会遇到的竞赛。

1. 全国高中数学联赛 全国高中数学联赛旨在选拔在数学方面有突出特长的同学,让他们进入全国知名高等学府,而且选拔成绩比较优异的同学进入更高级别的竞赛,直至国际数学奥林匹克(IMO)。并且通过竞赛的方式,培养中学生对于数学的

兴趣,让学生们爱好数学,学习数学,激发学生们的钻研精神,独立思考精神以及合作精神。 2.中国数学奥林匹克(CMO) CMO考试完全模拟IMO进行,每天3道题,限四个半小时完成。每题21分(为IMO试题的3倍,为符合中国人的认知习惯),6个题满分为126分。颁奖与IMO类似,设立一、二、三等奖,分数最高的约前60名选手将组成参加当年国际数学奥林匹克(International Mathematical Olympiad,简称IMO)的中国国家集训队。 3.国际数学奥林匹克(IMO) 国际数学奥林匹克(International Mathematical Olympiad,简称IMO)是世界上规模和影响最大的中学生数学学科竞赛活动。 正如专家们指出:IMO的重大意义之一是促进创造性的思维训练,对于科学技术迅速发展的今天,这种训练尤为重要。数学不仅要教会学生运算技巧,更重要的是培养学生有严密的思维逻辑,有灵活的分析和解决问题的方法。 根据我的感觉,如果高考的数学难度有两星,那么高联的一试难度大概有三颗星,二试难度大概有四颗星;而CMO和IMO的难度大概在五颗星左右。因此,参加高中竞赛的确

全国高中数学联赛试题及答案教程文件

2009年全国高中数学联赛试题及答案

全国高中数学联赛 全国高中数学联赛一试命题范围不超出教育部《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。主要考查学生对基础知识和基本技能的掌握情况,以及综合和灵活运用的能力。 全国高中数学联赛加试命题范围与国际数学奥林匹克接轨,在知识方面有所扩展,适当增加一些竞赛教学大纲的内容。全卷包括4道大题,其中一道平面几何题. 一 试 一、填空(每小题7分,共56分) 1. 若函数( )f x = ()()()n n f x f f f f x ??=??????,则() ()991f = . 2. 已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ?中,45BAC ∠=?,AB 过圆心M ,则点A 横 坐标范围为 . 3. 在坐标平面上有两个区域M 和N ,M 为02y y x y x ?? ??-? ≥≤≤,N 是随t 变化的区 域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t = . 4. 使不等式 1111 200712 213 a n n n +++ <-+++对一切正整数n 都成立的最小正整数a 的值为 . 5. 椭圆22 221x y a b +=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积 OP OQ ?的最小值为 . 6. 若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 . 7. 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩 上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是 (可以用指数表示) 8. 某车站每天800~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时

历年全国高中数学联赛二试几何题汇总汇总

历年全国高中数学联赛二试几何题汇总 2007 联赛二试 类似九点圆 如图,在锐角?ABC 中,AB

历年全国高中数学联赛试题及答案

1988年全国高中数学联赛试题 第一试(10月16日上午8∶00——9∶30) 一.选择题(本大题共5小题,每小题有一个正确答案,选对得7分,选错、不选或多选均得0分): 1.设有三个函数,第一个是y=φ(x ),它的反函数是第二个函数,而第三个函数的图象及第二个函数的图象关于x +y=0对称,那么,第三个函数是( ) A .y=-φ(x ) B .y=-φ(-x ) C .y=-φ-1(x ) D .y=-φ- 1(-x ) 2.已知原点在椭圆k 2x 2+y 2-4kx +2ky +k 2-1=0的内部,那么参数k 的取值范围是( ) A .|k |>1 B .|k |≠1 C .-1π 3 ; 命题乙:a 、b 、c 相交于一点. 则 A .甲是乙的充分条件但不必要 B .甲是乙的必要条件但不充分 C .甲是乙的充分必要条件 D .A 、B 、C 都不对 5.在坐标平面上,纵横坐标都是整数的点叫做整点,我们用I 表示所有直线的集合,M 表示恰好通过1个整点的集合,N 表示不通过任何整点的直线的集合,P 表示通过无穷多个整点的直线的集合.那么表达式 ⑴ M ∪N ∪P=I ; ⑵ N ≠?. ⑶ M ≠?. ⑷ P ≠?中,正确的表达式的个数是 A .1 B .2 C .3 D .4 二.填空题(本大题共4小题,每小题10分): 1.设x ≠y ,且两数列x ,a 1,a 2,a 3,y 和b 1,x ,b 2,b 3,y ,b 4均为等差数列,那么b 4-b 3 a 2-a 1= . 2.(x +2)2n +1的展开式中,x 的整数次幂的各项系数之和为 . 3.在△ABC 中,已知∠A=α,CD 、BE 分别是AB 、AC 上的高,则DE BC = . 4.甲乙两队各出7名队员,按事先排好顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再及负方2号队员比赛,……直至一方队员全部淘汰为止,另一方获得胜利,形成一种比赛过程.那么所有可能出现的比赛过程的种数为 . 三.(15分)长为2,宽为1的矩形,以它的一条对角线所在的直线为轴旋转一周,求得到的旋转体的体积. 四.(15分) 复平面上动点Z 1的轨迹方程为|Z 1-Z 0|=|Z 1|,Z 0为定点,Z 0≠0,另一个动点Z 满足Z 1Z=-1,求点Z 的轨迹,指出它在复平面上的形状和位置. 五.(15分)已知a 、b 为正实数,且1a +1 b =1,试证:对每一个n ∈N *, (a +b )n -a n -b n ≥22n -2n +1.

高中数学竞赛训练题—填空题

高中数学竞赛训练题—填空题 1. 若不等式1-log a )10(x a -<0有解,则实数a 的范围是 . 2.设()f x 是定义在R上的奇函数,且满足(2)()f x f x +=-;又当01x ≤≤时, 1()2 f x x = ,则方程21 )(-=x f 的解集为 。 3.设200221,,,a a a Λ均为正实数,且 2 1 212121200221=++++++a a a Λ,则200221a a a ???Λ的最小值为____________________. 4. ,x R ∈ 函数()2sin 3cos 23 x x f x =+的最小正周期为 . 5. 设P 是圆2 2 36x y +=上一动点,A 点坐标为()20,0。当P 在圆上运动时,线段PA 的中点M 的轨迹方程为 . 6.. 设z 是虚数,1 w z z =+ ,且12w -<<,则z 的实部取值范围为 . 7. 设4 4 2 )1()1()(x x x x k x f --+-=。如果对任何]1,0[∈x ,都有0)(≥x f ,则k 的最小值为 . 8.= 。 9.设lg lg lg 111()121418x x x f x = +++++,则 1 ()()_________f x f x +=。 10.设集合{}1215S =L ,,,,{}123A a a a =,,是S 的子集,且()123a a a ,,满足: 123115a a a ≤≤<<,326a a -≤,那么满足条件的集合A 的个数为 . 11.已知数列}{n a 满足,01=a ),2,1(1211Λ=+++=+n a a a n n n ,则n a =___ . 12.已知坐标平面上三点()()) 0,3,,A B C ,P 是坐标平面上的点,且 PA PB PC =+,则P 点的轨迹方程为 . 13.已知0 2sin 2sin 5=α,则) 1tan() 1tan(00-+αα的值是______________. 14.乒乓球比赛采用7局4胜制,若甲、乙两人实力相当,获胜的概率各占一半,则打完5局后仍不能结束比赛的概率等于_____________. 15.不等式 92) 211(42 2 +<+-x x x 的解集为_______________________.

2015年全国高中数学联赛试题

2015年全国高中数学联合竞赛一试试题(A 卷) 一、填空题:本大题共8小题,每小题8分,满分64分 1.设,a b 为不相等的实数,若二次函数2()f x x ax b =++满足()()f a f b =,则(2)f 的值为 2.若实数α满足cos tan αα=,则41cos sin αα +的值为 3.已知复数数列{}n z 满足111,1(1,2,3,)n n z z z ni n +==++=,其中i 为虚数单位,n z 表示n z 的共轭复数,则2015z 的值为 4.在矩形ABCD 中,2,1AB AD ==,边DC (包含点,D C )上的动点P 与CB 延长线上(包含点B )的动点Q 满足DP BQ =,则向量PA 与向量PQ 的数量积PA PQ ?的最小值为 5.在正方体中随机取3条棱,它们两两异面的概率为 6.在平面直角坐标系xOy 中,点集{}(,)(36)(36)0K x y x y x y =+-+-≤所对应的平面区域的面积为 7.设ω为正实数,若存在,(2)a b a b ππ≤<≤,使得sin sin 2a b ωω+=,则ω的取值范围是 8.对四位数(19,0,,9)abcd a b c d ≤≤≤≤,若,,a b b c c d ><>,则称abcd 为P 类数,若 ,,a b b c c d <><,则称abcd 为Q 类数,用(),()N P N Q 分别表示P 类数与Q 类数的个数,则 ()()N P N Q -的值为 二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤 9.(本题满分16分)若实数,,a b c 满足242,424a b c a b c +=+=,求c 的最小值. 10.(本题满分20分)设1234,,,a a a a 是4个有理数,使得 {}311424,2,,,1,328i j a a i j ??≤<≤=----???? ,求1234a a a a +++的值. 11.(本题满分20分)在平面直角坐标系xOy 中,12,F F 分别是椭圆2 212 x y +=的左、右焦点,设不经过焦点1F 的直线l 与椭圆交于两个不同的点,A B ,焦点2F 到直线l 的距离为d ,如果直线11,,AF l BF 的斜率依次成等差数列,求d 的取值范围.

2020年全国高中数学联赛试题及详细解析

2020年全国高中数学联赛试题及详细解析 说明: 1. 评阅试卷时,请依据本评分标准。选择题只设6分和0分两档,填空题只设9分和0分两档;其 他各题的评阅,请严格按照本评分标准规定的评分档次给分,不要再增加其它中间档次。 2. 如果考生的解题方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当 划分档次评分,5分为一个档次,不要再增加其他中间档次。 一、选择题(本题满分36分,每小题6分) 本题共有6小题,每小题均给出A ,B ,C ,D 四个结论,其中有且仅有一个是正确的。请将正确答案的代表字母填在题后的括号内。每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在括号内),一律得0分。 1.使关于x 的不等式36x x k -+-≥有解的实数k 的最大值是( ) A .63- B .3 C .63+ D .6 2.空间四点A 、B 、C 、D 满足,9||,11||,7||,3||====DA CD BC AB 则BD AC ?的取值( ) A .只有一个 B .有二个 C .有四个 D .有无穷多个 6.记集合},4,3,2,1,|7777{ },6,5,4,3,2,1,0{4 4 33221=∈+++==i T a a a a a M T i 将M 中的元素按从大到小的

顺序排列,则第2020个数是( ) A . 43273767575+++ B .43272767575+++ C .43274707171+++ D .4327 3707171+++ 二、填空题(本题满分54分,每小题9分) 本题共有6小题,要求直接将答案写在横线上。 7.将关于x 的多项式2019 3 2 1)(x x x x x x f +-+-+-=Λ表为关于y 的多项式=)(y g ,202019192210y a y a y a y a a +++++Λ其中.4-=x y 则=+++2010a a a Λ . 8.已知)(x f 是定义在),0(+∞上的减函数,若)143()12(2 2 +-<++a a f a a f 成立,则a 的取值范围是 。 12.如果自然数a 的各位数字之和等于7,那么称a 为“吉祥数”.将所有“吉祥数”从小到大排成一列 ,,,,321Λa a a 若,2005=n a 则=n a 5 . 三、解答题(本题满分60分,每小题20分) 13.数列}{n a 满足:.,2 36 457,12 10N n a a a a n n n ∈-+= =+ 证明:(1)对任意n a N n ,∈为正整数;(2)对任意1,1-∈+n n a a N n 为完全平方数。 14.将编号为1,2,…,9的九个小球随机放置在圆周的九个等分点上,每个等分点上各有一个小球. 设圆周上所有相邻两球号码之差的绝对值之和为要S.求使S 达到最小值的放法的概率.(注:如果某种放法,经旋转或镜面反射后可与另一种放法重合,则认为是相同的放法) 15.过抛物线2 x y =上的一点A (1,1)作抛物线的切线,分别交x 轴于D ,交y 轴于B.点C 在抛物线

高中数学竞赛集训训练题

高中数学竞赛集训训练题 1.b a ,是两个不相等的正数,且满足2 2 3 3 b a b a -=-,求所有可能的整数 c ,使得ab c 9=. 2.已知不等式 24 131...312111a n n n n > ++++++++对一切正整数a 均成立,求正整数a 的最大值,并证明你的结论。 3.设{}n a 为14a =的单调递增数列,且满足22 111168()2n n n n n n a a a a a a +++++=++,求{n a } 的通项公式。 4.(1)设,0,0>>y x 求证: ;4 32y x y x x -≥+ (2)设,0,0,0>>>z y x 求证: .2 333zx yz xy x z z z y y y x x ++≥+++++ 5. 设数列ΛΛΛ,1 ,,12, 1,,13,22,31,12,21,11k k k -, 问:(1)这个数列第2010项的值是多少; (2)在这个数列中,第2010个值为1的项的序号是多少. 6. 设有红、黑、白三种颜色的球各10个。现将它们全部放入甲、乙两个袋子中,要求每

个袋子里三种颜色球都有,且甲乙两个袋子中三种颜色球数之积相等。问共有多少种放法。 7.已知数列{}n a 满足1a a =(0,1a a ≠≠且),前n 项和为n S ,且(1)1n n a S a a = --, 记lg ||n n n b a a =(n *∈N ),当a =时,问是否存在正整数m ,使得对于任意正整数n ,都有m n b b ≥?如果存在,求出m 的值;如果不存在,说明理由. 8. 在ABC ?中,已9,sin cos sin AB AC B A C ==u u u r u u u r g ,又ABC ?的面积等于6. (Ⅰ)求ABC ?的三边之长; (Ⅱ)设P 是ABC ?(含边界)内一点,P 到三边AB 、BC 、AB 的距离为1d 、2d 和3d ,求 123d d d ++的取值范围. 9.在数列{}n a 中,1a ,2a 是给定的非零整数,21n n n a a a ++=-. (1)若152a =,161a =-,求2008a ; (2)证明:从{}n a 中一定可以选取无穷多项组成两个不同的常数数列. 10. 已知椭圆)1(12 22>=+a y a x ,Rt ABC ?以A (0,1)为直角顶点,边AB 、BC 与椭圆 交于两点B 、C 。若△ABC 面积的最大值为27 8 ,求a 的值。

全国高中数学联合竞赛竞赛二试B卷试题和参考答案

2017年全国高中数学联合竞赛加试(B 卷) 一、(本题满分40分) 设实数,,a b c 满足0a b c ++=,令max{,,}d a b c =,证明: 2(1)(1)(1)1a b c d +++≥- 二、(本题满分40分) 给定正整数m ,证明:存在正整数k ,使得可将正整数集N +分拆为k 个互不相交的子集12,,,k A A A L ,每个子集i A 中均不存在4个数,,,a b c d (可以相同),满足ab cd m -=. 三、(本题满分50分) 如图,点D 是锐角ABC ?的外接圆ω上弧BC 的中点,直线DA 与圆ω过点,B C 的切线分别相交于点,P Q ,BQ 与AC 的交点为X ,CP 与AB 的交点为Y ,BQ 与CP 的交点为T ,求证:AT 平分线段XY . 四、(本题满分50分) 设1220,,,{1,2,,5}a a a ∈L L ,1220,,,{1,2,,10}b b b ∈L L ,集合 {(,)120,()()0}i j i j X i j i j a a b b =≤<≤--<,求X 的元素个数的最大值. 2017年全国高中数学联合竞赛加试(B 卷) 一、(本题满分40分) 设实数,,a b c 满足0a b c ++=,令max{,,}d a b c =,证明: 2(1)(1)(1)1a b c d +++≥- 证明:当1d ≥时,不等式显然成立 以下设01d ≤<,不妨设,a b 不异号,即0ab ≥,那么有

因此222 (1)(1)(1)(1)(1)111a b c c c c c d +++≥-+=-=-≥- 二、(本题满分40分) 给定正整数m ,证明:存在正整数k ,使得可将正整数集N +分拆为k 个互不相交的子集12,,,k A A A L ,每个子集i A 中均不存在4个数,,,a b c d (可以相同),满足ab cd m -=. 证明:取1k m =+,令{(mod 1),}i A x x i m x N +=≡+∈,1,2,,1i m =+L 设,,,i a b c d A ∈,则0(mod 1)ab cd i i i i m -≡?-?=+, 故1m ab cd +-,而1m m +,所以在i A 中不存在4个数,,,a b c d ,满足ab cd m -= 三、(本题满分50分) 如图,点D 是锐角ABC ?的外接圆ω上弧BC 的中点,直线DA 与圆ω过点,B C 的切线分别相交于点,P Q ,BQ 与AC 的交点为X ,CP 与AB 的交点为Y ,BQ 与CP 的交点为T ,求证:AT 平分线段XY . 证明:首先证明//YX BC ,即证AX AY XC YB = 连接,BD CD ,因为ACQ ACQ ABC ABC ABP ABP S S S S S S ???????=, 所以111sin sin sin 222111sin sin sin 222 AC CQ ACQ AC BC ACB AC AQ CAQ AB BC ABC AB BP ABP AB AP BAP ?∠?∠?∠?=?∠?∠?∠, ① 由题设,,BP CQ 是圆ω的切线,所以ACQ ABC ∠=∠,ACB ABP ∠=∠,又 CAQ DBC DCB BAP ∠=∠=∠=∠(注意D 是弧BC 的中点),于是由①知AB AQ CQ AC AP BP ?=? ② 因为CAQ BAP ∠=∠,所以BAQ CAP ∠=∠,

高中数学竞赛训练题 (3)

高中数学竞赛训练题 一、选择题(仅有一个选择支正确) 1.已知全集}{}{N n n x x B N n n x x A N U ∈==∈===,4,,2,,则( ) (A ) B A U = (B) )(B A C U U = (C) B C A U U = (D) B C A C U U U = 2.已知b a ,是正实数,则不等式组???>+>+ab xy b a y x 是不等式组? ??>>b y a x 成立的( ) (A )充分不必要条件 (B) 必要不充分条件 (C) 充分且必要条件 (D)既不充分又不必要条件 3.等差数列{}n a 中,,336),9(30,1849=>==-n n S n a S 则n 的值是( ) (A )8 (B) 9 (C) 16 (D) 21 4.已知复数2 121 -+ =z z w 为纯虚数,则z 的值为( ) (A ) 1 (B) 21 (C) 31 (D) 不能确定 5.边长为5的菱形,若它的一条对角线的长不大于6,则这个菱形对角线长度之和的最大值是( ) (A ) 16 (B) 210 (C) 14 (D) 65 6.平面上的整点(横、纵坐标都是整数)到直线5 435+=x y 的距离中的最小值是( )(A ) 17034 (B) 8534 (C) 170343 (D) 30 1 7.若232,2,2++x y x x 成等比数列,则点),(y x 在平面直角坐标系内的轨迹是( ) (A ) 一段圆弧 (B) 一段椭圆弧 (C) 双曲线的一部分 (D) 抛物线的一部分 8.若ABC ?的三边c b a ,,满足:,0322,0222 =+-+=---c b a c b a a 则它的最大内角的度数是( ) (A ) 0150 (B) 0120 (C) 090 (D) 060

高中数学联赛二试训练

二试训练题(1) 1. (本题满分40分)实数a 使得对于任意实数12345,,,,x x x x x ,不等式 22222 1234512233445()x x x x x a x x x x x x x x ++++≥+++ 都成立,求a 的最大值. 2. (本题满分40分)在直角三角形ABC 中,90B ∠=?,它的内切圆分别与边BC ,CA ,AB 相切与点D ,E ,F ,连接AD ,与内切圆相交于另一点P ,连接PC ,PE ,PF .已知PC PF ⊥,求证:PE ∥BC . F C B A

3.(本题满分50分)对正整数n ,记()f n 为数2 31n n ++的十进制表示的数码和. (1) 求()f n 的最小值; (2) 是否存在一个正整数n ,使得()f n =100? 4.(本题满分50分)求满足如下条件的最小正整数n ,在圆O 的圆周上任取n 个点 12,,,n A A A L ,则在2n C 个角(1)i j A OA i j n ∠≤<≤中,至少有2011个不超过120?.

二试训练题(2) 1、(本题40分)在△ABC 中,AB >BC ,K 、M 分别是边AB 和AC 的中点,O 是△ABC 的内心。设P 点是直线KM 和CO 的交点,而Q 点使得QP⊥KM 且QM∥BO,证明:QO⊥AC。 2、(本题40分)已知无穷数列{}n a 满足,,10y a x a ==()Λ,2,11 1 11=++= --+n a a a a a n n n n n . (1)对于怎样的实数x ,y ,总存在正整数0n ,使当0n n ≥时,n a 恒为常数? (2)求数列{}n a 的通项公式.

高中数学竞赛试题及答案(word版本)

最新高中数学奥数竞赛竞赛试题 总分200分 一、选择题(50分) 1、已知i 是虚数单位,则复数 122 i i +-=( ) A i B i - C 4355i -- D 4355 i -+ 2、下列函数中,既是奇函数,又是在区间(,)-∞+∞上单调递增的函数是( ) A 2y x x =+ B 2sin y x x =+ C 3y x x =+ D tan y x = 3、已知,a b r r 均为单位向量,其夹角为θ,则命题:1p a b ->r r 是命题5:[,)26 q ππ θ∈的 ( ) A 充分非必要条件 B 必要非充分条件 C 充要条件 D 非充分非必要条件 4、已知集合{}{}|12,|21P x x M x a x a = ≤≤=-≤≤+,若P M P =I ,则实 数a 的取值范围是( ) A (,1]-∞ B [1,)+∞ C [1,1]- D [1,)-+∞ 5、函数3sin()cos()226 y x x ππ = ++-的最大值是( ) A 134 B 134 C 132 D 13 6、如图,四棱锥S ABCD -的底面是正方形,SD ⊥底面ABCD ,则下列结论中不正确的是( ) A A B SA ⊥ B B C P 平面SAD C BC 与SA 所成的角等于A D 与SC 所成的角 D SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 7、程序框图如图所示,若 22(),()log f x x g x x ==,输入x 的 值为0.25,则输出的结果是( ) A 0.24 B 2- C 2 D 0.25- 8、设,i j r r 分别表示平面直角坐标系,x y 轴上的单位向量,且

高中数学竞赛训练题一 (1)

最新高中数学奥数竞赛训练题一 一.选择题(每小题6分,共36分) 1.如果100,0,log log 3 x y x y y x >>+=, 144xy =,那么x y +的值是( ) .203A .263B .243C .103D 2. 设函数)10()(||≠>=-a a a x f x 且,f (-2)=9,则 ( ) A. f (-2)>f (-1) B. f (-1)>f (-2) C. f (1)>f (2) D. f (-2)>f (2) 3.已知二次函数()f x 满足(1)(1),f x f x -=+4(1)1,f -≤≤-1(2)5,f -≤≤则(3)f 的取值范围是( ) A. 7(3)26f ≤≤ B. 4(3)15f -≤≤ C. 1(3)32f -≤≤ D. 2825(3)33f - ≤≤ 4.如图1,设P 为△ABC 内一点,且2155 AP AB AC =+u u u r u u u r u u u r , 则△ABP 的面积与△ABC 的面积之比为 ( ) A. 15 B. 25 C. 14 D.13 5. 设在xoy 平面上,20y x <≤,01x ≤≤所围成图形的面积为13,则集合{}{}2(,)|||||1,(,)|||1M x y y x N x y y x =-≤=≥+的交集M N ?所表示图形的面积是( ) A. 31 B. 23 C. 1 D. 43 62007x y =的正整数解(,)x y 的组数是( ) A .1组 B. 2 组 C. 4组 D. 8组

二.填空题(每小题9分,共54分) 7.函数213 ()log (56)f x x x =-+的单调递增区间为 . 8.已知0 2sin 2sin 5=α,则)1tan()1tan(00-+αα的值是_____________________. 9.设{}n a 是一个等差数列,12119,3,a a ==记16n n n n A a a a ++=+++L L ,则n A 的最小值为 10.函数()f x 满足(1)1003f =,且对任意正整数n 都有 2(1)(2)()()f f f n n f n +++=L L ,则(2006)f 的值为 11..已知?? ???≤+≥-≥03030y x y x y ,则x 2+y 2的最大值是 12.对于实数x ,当且仅当n ≤x <n +1(n ∈N +)时,规定[x ]=n ,则不等式 045][36][42<+-x x 的解集为 三.解答题(每小题20分,共60分) 13.设集合A =12log (3)2x x ????-≥-?????? ,B =21a x x a ??>??-??,若A ∩B ≠?,求实数a 的取值范围.

全国高中数学联赛试题及解答

2000年全国高中数学联合竞赛试卷 (10月15日上午8:00?9:40) 一、选择题(本题满分36分,每小题6分) 1.设全集是实数,若A={x|≤0},B={x|10=10x},则A∩?R B是() (A){2}(B){?1}(C){x|x≤2}(D)? 2.设sin?>0,cos?<0,且sin>cos,则的取值范围是() (A)(2k?+,2k?+),k?Z(B)(+,+),k?Z (C)(2k?+,2k?+?),k?Z(D)(2k?+,2k?+)∪(2k?+,2k?+?),k?Z 3.已知点A为双曲线x2?y2=1的左顶点,点B和点C在双曲线的右分支上,△ABC是等边三角形,则△ABC的面积是() (A)(B)(C)3(D)6 4.给定正数p,q,a,b,c,其中p?q,若p,a,q是等比数列,p,b,c,q是等差数列,则一元二次方程bx2?2ax+c=0() (A)无实根(B)有两个相等实根(C)有两个同号相异实根(D)有两个异号实根 5.平面上整点(纵、横坐标都是整数的点)到直线y=x+的距离中的最小值是() (A)(B)(C)(D) 6.设ω=cos+i sin,则以?,?3,?7,?9为根的方程是() (A)x4+x3+x2+x+1=0(B)x4?x3+x2?x+1=0 (C)x4?x3?x2+x+1=0(D)x4+x3+x2?x?1=0 二.填空题(本题满分54分,每小题9分) 1.arcsin(sin2000?)=__________. 2.设a n是(3?)n的展开式中x项的系数(n=2,3,4,…),则(++…+))=________. 3.等比数列a+log23,a+log43,a+log83的公比是____________. 4.在椭圆+=1(a>b>0)中,记左焦点为F,右顶点为A,短轴上方的端点为B.若该椭圆的离心率是,则∠ABF=_________. 5.一个球与正四面体的六条棱都相切,若正四面体的棱长为a,则这个球的体积是________. 6.如果:(1)a,b,c,d都属于{1,2,3,4}; (2)a?b,b?c,c?d,d?a; (3)a是a,b,c,d中的最小值, 那么,可以组成的不同的四位数的个数是_________ 三、解答题(本题满分60分,每小题20分) 1.设S n=1+2+3+…+n,n?N*,求f(n)=的最大值.

相关主题