搜档网
当前位置:搜档网 › 浅析地铁等地下结构的抗震分析和设计中的问题

浅析地铁等地下结构的抗震分析和设计中的问题

浅析地铁等地下结构的抗震分析和设计中的问题
浅析地铁等地下结构的抗震分析和设计中的问题

浅析地铁等地下结构的抗震分析和设计中的问题摘要:目前我国还没有系统完善的地铁等地下结构抗震分析方法和专业的地铁等地下工程结构抗震设计规范,本文首先总结了我国地铁等地下工程结构抗震分析和设计的现状,围绕地铁设计当中的几个关键问题展开讨论,问题包括:合理的地铁工程结构的动力分析模型;有效的结构和土动力相互作用分析方法;地铁等地下工程结构破坏模式和地铁抗震性能的评估;地铁工程结构的抗震构造措施和地铁穿过地震断层时的设计和施工方法。这些问题的分析和讨论有助于我国地铁工程结构设计的发展进步。

关键词:地铁抗震设计地下结构

伴随着我国经济的发展,城市建设日新月异,城市交通的压力也越来越大,地铁以其高效、快速和清洁的优点成为各大城市的选择。到目前为止,我国已进入了地铁建设的黄金期。与此同时,必须认识到地铁工程也是城市生命线工程,地铁工程的抗震问题是城市防灾减灾和抗震的关键环节。然而,国内还没有独立的地铁等地下工程结构抗震设计规范,现行《地铁设计规范》在地铁的抗震问题上只是做了简单的规定,没有对地下结构的抗震设计方法进行系统的总结和归纳。出现这些问题的原因是由于人们对地下结构的地震危害认识不够,对地下结构的抗震设计不够重视,客观地说,地铁等地下结构的地震危害小于地上结构,但是国外的地震灾害(如1995年日本阪神大地震)证明在地下底层发生较大位移或变形时,地铁等地下工程结构同样会发生很

地铁车站结构设计

地铁车站结构设计 车站是旅客上、下车的集散地, 也是列车始发和折返的场所, 是地下铁道路网中的重要建筑。 在使用方面, 车站供旅客乘降, 是旅客集中处所, 故应保证使用方便、安全、迅速进出车站。为此, 要求车站有良好的通风、照明、卫生设备, 以提供旅客正常的清洁卫生环境。 地下铁道车站又是一种宏伟的建筑物, 它是城市建筑艺术整体的一个有机部分, 一条线路中各站在结构或建筑艺术上都应有独特的特点。 车站设计时, 首先要确定车站在现有城市路网中的确切位置, 这涉及到城市规范和现有地面建筑状况, 地下铁道车站不比地面建筑, 一但修建要改移位置则比较困难, 因此确定车站的位置时,必须详细调查研究, 作经济技术比较。车站位置确定后, 进行选型, 然后根据客流及其特点确定车站规模, 平面位置,断面结构形式等。然后进行车站构造设计, 内力计算, 配筋计算等等。 一、工程概况: 长沙市五一广场站设计为两层三跨岛式车站,车站全长134.6m,宽度为21.8m,上层为站厅层,下层为站台层。车站底板埋深16m,采用明挖法施工,用地下连续墙围护。 二、设计依据: 地铁设计规范(GB50157-2003); 地铁施工技术规范。 三、地铁车站结构设计 3.1 设计选用矩形框架结构。 设计为岛式车站,采用两层三跨结构。地铁车站采用明挖法。车站其矩形框架由底板、侧墙、顶板和楼板、梁、柱组合而成。顶板和楼板采用单向板,底板

按受力和功能要求,采用以纵梁和侧墙为支承的梁式板结构。采用地下连续墙和钻孔桩护壁,采用钢管和钢板桩作基坑的临时支护。临时立柱采用钢管混凝土,柱下基础采用桩基,桩基采用灌注桩。 3.2 车站开挖围护结构 地铁车站围护结构采用0.8m厚、30m深地下连续墙,入土深度比为 =0.875,其中基坑开挖深度H 为16m,入土深度D为14m 。 四、侧压力计算: 土分层及土的钻孔柱状图如图4.1: 图4.1土分层及土的钻孔柱状图(单位,m)

地铁车站结构设计方法探讨

地铁车站结构设计方法探讨 摘要:伴随着我国社会经济的快速发展,地面上的交通压力也逐渐得到社会各 界的广泛重视,为了减轻地面交通状况,各大城市开始修建地铁,在地铁车站建 造中,结构设计是一个主要的环节,对地铁的安全运转有着至关重要的影响。这 篇文章论述了城市轨道交通中地铁车站的规划原则、规划思路,对地铁车站的规 划提出了合理化的主张,对中国将来地铁工作的建造与开展,具有一定的参考价值。 关键词:地铁车站;结构设计;设计方法 引言 在城市交通日渐拥堵的局势下,加速地铁建造的呼声越来越高涨。现在,地 铁车站变成城市轨道交通的一个主要纽带,能够每天承载很多的乘客,一定程度 上减轻了城市交通压力。本文主要谈谈地铁车站结构设计办法,以供同行参考。 1 地铁车站的设计原则 车站是城市轨道交通路网中非常重要的建筑物,它是供旅客乘降、换乘和候 车的场所,给旅客提供舒适清洁的环境以保证旅客安全、迅速地进出车站。车站 应容纳主要的技术设备和运营管理系统,从而保证城市轨道交通的安全运行。地 铁车站由站台层、站厅层、设备层以及出入口组成。地铁站台按照线路分布情况,又可分为岛式站台、侧式站台以及混合式站台。地铁车站里的辅助设备包括自动 扶梯、直升电梯、卷帘门、防洪门、旅客引导、照明、售检票系统、车站设备自 控系统等。关于地铁车站的设计应当从线路、车站建筑、车站结构、动力照明系统、车站通风与空调系统、给排水及消防系统以及区间的角度考虑其设计原则。 2 地铁车站结构设计方法 2.1功能设计关注人的行为及需求 密集型流动是地铁车站、地铁站的基本特征,人们的行为也可分为两种,即 通过或保留。主要行为是“通过”,“保留行为是短的”。所以,通过这个过程,人 们期望通过路径应该是一个非阻塞的快速路径,尽可能避免“通过”和“保留”之间 的相互影响。例如在站外的人需要从入口进去然后去售票进入的通道,这些环节 过程并不困难,对于这部分的保留和聚集是最明显的,聚集的人群通过会有影响,所以设计的面积应尽可能满足宽敞的购票。若自动售票机设置在站在通道上,人 群通过影响更大。因此,在车站设计时,应考虑足够的综合性,如香港地铁在墙 上嵌入售票机可以很好的解决这个问题。可见深入了解人们的行为需要可以更好 地组织和规划出站的流量、创新地铁站建设的设计。 2.2雨水系统设计要点 将局部排水泵与集水井设置在车站风亭、出入口等敞开位置,主要用于收集 废水、雨水及结构渗漏水。为保证集水井正常工作,设置两台排污泵,一台备用,当出现暴雨或结构大量渗漏水时,可以同时开启两台排污泵,将雨水提升至地面 消能后,直接排入城市雨水管网,根据该市50年一遇特大暴雨强度计算露天出 入口雨水排水量;(2)废水系统设计要点。将废水泵房设计在沿线路坡度的最 低点,同样设有2台排污泵,平时一台备用,消防时同时开启,其中废水集水池 容积≤最大一台排水泵20min的出水量。废水提升到地面后排入市政排水系统中,地下结构渗水量各地情况不同,根据实际情况设计。本地铁站渗水量按照0.5L/ (m2?d)标准进行计算;(3)污水系统设计要点。前文已经提到,站厅层设有 一处工作人员卫生间,站台层设有一处污水泵房、一处公共卫生间,卫生间污水

地下结构抗震技术

地下结构的抗震分析

本报告做出了针对当前地下结构抗震分析的总结,对当前工程师使用的对地下结构进行地震效应的量化分析的方法进行了描述。将确定性及概率性这两种抗震风险分析进行了总结。对恰当的地基运动参数的发展变化进行了简要的叙述,包括峰值速度和加速度,目标反应谱及地基运动时间维度上的过往。一般来说,地下结构的抗震荷载设计是以周围的土地对地下结构产生的形变和拉应力为特点,或者是两者之间的相互作用进行研究的。 在拟静态分析法中,土地的形变是由于静荷载或者土壤和结构之间的相互作用力造成的,并不包含动态荷载或者地震波传播的影响;而在动态分析法中,则是通过数值分析工具,如有限元或者有限差分析法来针对土壤和结构之间的动态作用进行分析。本报告还讨论了一些特殊的设计中的问题,包括隧道的分段隧道的连结设计及隧道进口建筑与隧道的连结设计。 一、地下结构的抗震设计分析方法 1. 确定性抗震风险分析 确定性抗震风险分析包括一个特定的总结现场土地运动的抗震方案。这个方案要求假定一次特定规模的发生在特定地点的地震。Reiter 在1990年将该方法分为四步,如图1所示

图1 确定性抗震风险分析步骤流程 (1)识别并描述所有在该地点能产生显著地基运动的地震来源,包括其各自的几何特点以及地震潜力。最明显的特性描述地震区通常是断层的存在。Reiter 在1990年生成一个详尽的列表功能来表明可能在给定地区的断层。然而,断层的存在并不一定意味着该地区要去积极的应对这一个潜在的地震风险。其中的标准有相当大的分歧,尤其是在论述一个不活动的断层的标准时。基于美国核监管委员会的1978年联邦法规,规定能动断层这个词来表明一个断层在过去的活动35 000-500 000年有过运动。对于非民用基础设施,更短时间尺度将被使用。 (2)选择“源到特定地点”距离参数的每个源,通常是最短的震中震源定位距离,或距离最近的破裂部分的断层的距离。最近的破裂断层距离比震中距更有意义,特别是对大地震的地方,断层破裂扩展的距离超过了50岁公里。

(完整word版)2014年土木工程专业(地铁车站)毕业设计任务书

土木工程专业 城市地下空间工程方向毕业设计任务书 中南林业科技大学土木工程与力学学院 二0一四年三月

××地铁车站初步设计 一、毕业设计目的 毕业设计是按教学计划完成理论教学和相关实践教学之后的综合性教学,是对专业方向教学的继续深化和拓宽,是培养学生工程实践能力的重要教学阶段,其目的在于全面培养、训练学生运用已学的专业基本理论、基本知识、基本技能,进行本专业工程设计或科学研究的综合素质。 二、毕业设计基本要求 1、按设计课题的要求,独立完成设计任务,做出不同的设计方案,交出各自的成果。 2、认真设计、准确计算、细致绘图、文字表达确切流畅。 3、树立科学态度,注重钻研精神、独立工作能力的培养。 4、严格按照有关文件要求进行毕业设计管理,努力提高毕业设计质量。 5、图纸绘制要求:全部采用A3图纸(可加长);计算机出图必须有3张;图纸布局要协调,要紧凑而不拥挤;线条粗细要正确,位置要准确; 6、注重资料的收集、分析和整理工作,设计完成后,设计成果应按如下要求装订成册:(1)《毕业设计计算书》A4一份;(2)《毕业设计图纸》A4一份。 7、图纸装订顺序:封面,目录,设计总说明,设计图纸、表格。 8、设计计算书装订顺序:封面、目录、中英文摘要、设计总说明、设计计算的全部内容、致谢(300字左右)。 三、设计任务与要求 (一)、设计资料 1、车站地质勘察报告 2、预测客流(见附表) 3、车辆外形尺寸:A型车或B型车。 4、车辆编组:设计时采用远期列车6辆编组。 5、防水等级:一级;二次衬砌混凝土抗渗等级不小于S6。 6、主要技术标准:执行《地铁设计规范》(GB50157-2003)的有关技术标

地铁车站结构抗震分析

地铁车站结构抗震分析 发表时间:2018-09-05T16:48:02.707Z 来源:《防护工程》2018年第9期作者:吴磊 [导读] 目前地铁抗震设计主要参考《城市轨道交通结构抗震设计规范》(GB 50909-2014)进行抗震计算。本文将以浙江金华地铁工程的某个地下车站为例,采用“I反应位移法”分析地震作用的工况,并提出一些抗震方面的意见和建议。 吴磊 中交铁道(武汉)建设科技有限公司湖北武汉 430056 摘要:随着城市化的进程,各个城市的规模日益扩大,进几年来各个城市对城市轨道交通建设的投入也不断加大。过去人们普遍认为,地下建筑结构具有良好的抗震性能。然而近年来世界各地已发生的地震灾害中,发现很多地下结构也遭受了不同程度的破坏,甚至部分出现了很严重的破坏。目前地铁抗震设计主要参考《城市轨道交通结构抗震设计规范》(GB 50909-2014)进行抗震计算。本文将以浙江金华地铁工程的某个地下车站为例,采用“I反应位移法”分析地震作用的工况,并提出一些抗震方面的意见和建议。 关键词:城市轨道交通;抗震性能;反应位移法;地震作用工况 1 车站抗震设计概况 1.1工程概况 地铁车站为金华-义乌-东阳市域轨道交通工程一个站。车站为地下一层侧式车站,主体结构为地下一层单柱双跨钢筋混凝土框架结构,标准段宽度为17.6m,顶板覆土厚度2.8-3.2m,底板埋深12.1m,车站总长291.1m。车站结构采用明挖法施工。 图一:车站标准横断面 1.2抗震设防目标 依据住房和城乡建设部下发的《市政公用设施抗震设防专项论证技术要点(地下工程篇)》及《城市轨道交通结构抗震设计规范》(GB50909-2014),并考虑到轨道交通地下车站的重要性和震后修复难度,抗震设防目标如下: (1)结构在遭受相当于本工程抗震设防烈度的地震影响时,即475年一遇地震动作用下,不破坏或轻微破坏,应能够保持其正常使用功能,结构处于弹性工作阶段,不应因结构的变形导致轨道的过大变形而影响行车安全; (2)结构在遭受高于本工程抗震设防烈度的罕遇地震(高于设防烈度1度)影响时,即2450年一遇地震动作用下可能破坏,经修补,短期内应能恢复其正常功能,结构局部进入弹塑性工作阶段。 475年一遇地震作用,对应50年超越概率10%地震作用,即《城市轨道交通结构抗震设计规范》(GB50909-2014)中E2地震作用。 2450年一遇地震作用,对应50年超越概率2%地震作用,即《城市轨道交通结构抗震设计规范》(GB50909-2014)中E3地震作用。 1.3抗震设计条件 根据《建筑抗震设计规范》(GB50011-2010,2016年修订版)和《城市轨道交通结构抗震设计规范》(GB50909-2014)规定,场地所在区域设计地震分组为第一组,基本抗震设防地震动峰值加速度为0.05g,抗震设防烈度为6度,反应谱特征周期为0.35s。根据区域地质资料结合周边工程经验,场地范围内覆盖层厚度范围介于3~50m,建筑场地类别主要划分为Ⅱ类,局部Ⅰ1类。场地地貌以一级阶地区为主,局部为河漫滩及高阶地,地貌类型较简单,场地土类型以中硬土为主,部分地段为中软土,基底基岩岩性为中风化粉砂岩,性质较好,按《城市轨道交通结构抗震设计规范》(GB 500909-2014)确定本场地属建筑抗震一般地段。 抗震设计中地震效应的计算方法静力法、反应加速度法、弹性时程方法、非线性时程方法等。依据2014年底最新颁布的《城市轨道交通结构抗震设计规范》(GB50909-2014),表3.2.4规定:对于重点设防类的地下结构,E2地震作用下抗震性能要求不低于I,E3地震作用下抗震性能要求不低于II;表3.3.1规定:对于区间隧道及地下车站结构,性能要求I时可采用反应位移法计算,性能要求II时可采用非线性时程分析方法计算。本报告研究对象E2地震作用下采用反应位移法计算。 1.4反应位移法 反应位移法认为地下结构在地震作用下的反应主要取决于周边图层的变形差,计算时通过将地震时产生的变形通过地基弹簧来采用静荷载来模拟。反应位移法进行地震计算时,需考虑土层相对位移、结构惯性力和结构周边剪力这三种地震作用,计算模型如下:

地铁车站主体结构设计

地铁车站主体结构设计 (地下矩形框架结构) 西南交通大学地下工程系 目录 第一章课程设计任务概述 (3) 1.1 课程设计目的 (3)

1.2 设计规范及参考书 (3) 1.3 课程设计方案 (3) 1.4 课程设计的基本流程 (5) 第二章平面结构计算简图及荷载计算 (6) 2.1平面结构计算简图 (6) 2.2.荷载计算 (6) 2.3荷载组合 (7) 第三章结构内力计算 (11) 3.1建模与计算 (11) 本课程设计采用ANSYS进行建模与计算,结构模型如下图: (11) 3.2基本组合 (12) 3.2 标准组合 (16) 第四章结构(墙、板、柱)配筋计算 (21) 4.1 车站顶板上缘的配筋计算 (21) 4.2 负一层中柱配筋计算 (27) 4.3 顶纵梁上缘的配筋计算 (29) 4.4 顶纵梁上缘裂缝宽度验算 (31)

第一章 课程设计任务概述 1.1 课程设计目的 初步掌握地铁车站主体结构设计的基本流程;通过课程设计学习,熟悉地下工程“荷载—结构”法的有限元计算过程;掌握平面简化模型的计算简图、荷载分类及荷载的组合方式、弹性反力及其如何在计算中体现;通过实际操作,掌握有限元建模、划分单元、施加约束、施加荷载的方法;掌握地下矩形框架结构的内力分布特点,并根据结构内力完成配筋工作。为毕业设计及今后的实际工作做理论和实践上的准备。 1.2 设计规范及参考书 1、《地铁设计规范》 2、《建筑结构荷载规范》 3、《混凝土结构设计规范》 4、《地下铁道》(高波主编,西南交通大学出版社) 5、《混凝土结构设计原理》教材 6、计算软件基本使用教程相关的参考书(推荐用ANSYS ) 1.3 课程设计方案 1.3.1方案概述 某地铁车站采用明挖法施工,结构为矩形框架结构,结构尺寸参数详见表1-1。车站埋深3m ,地下水位距地面3m ,中柱截面的横向(即垂直于车站纵向)尺寸固定为0.8m (如图1-1标注),纵向柱间距8m 。为简化计算,围岩为均一土体,土体参数详见表1-2,采用水土分算。路面荷载为2/20m kN ,钢筋混凝土重度3/25m kN co =γ,中板人群与设备荷载分别取2/4m kN 、2/8m kN 。荷载组合按表1-3取用,基本组合用于承载能力极限状态设计,标准组合用于正常使用极

地铁车站主体结构设计.docx

地铁车站主体结构设计(地下矩形框架结构)

目录 第一章课程设计任务概述 (3) 1.1 课程设计目的 (3) 1.2 设计规范及参考书 (3) 1.3 课程设计方案 (4) 1.4 课程设计的基本流程 (5) 第二章平面结构计算简图及荷载计算 (6) 2.1平面结构计算简图 (6) 2.2.荷载计算 (7) 2.3荷载组合 (8) 第三章结构内力计算 (11) 3.1建模与计算 (11) 本课程设计采用ANSYS进行建模与计算,结构模型如下图: (11) 3.2基本组合 (12) 3.2 标准组合 (15) 第四章结构(墙、板、柱)配筋计算 (20) 4.1 车站顶板上缘的配筋计算 (20)

4.2 负一层中柱配筋计算 (26) 4.3 顶纵梁上缘的配筋计算 (28) 4.4 顶纵梁上缘裂缝宽度验算 (30) 第一章课程设计任务概述 1.1课程设计目的 初步掌握地铁车站主体结构设计的基本流程;通过课程设计学习,熟悉地下工程“荷载—结构”法的有限元计算过程;掌握平面简化模型的计算简图、荷载分类及荷载的组合方式、弹性反力及其如何在计算中体现;通过实际操作,掌握有限元建模、划分单元、施加约束、施加荷载的方法;掌握地下矩形框架结构的内力分布特点,并根据结构内力完成配筋工作。为毕业设计及今后的实际工作做理论和实践上的准备。 1.2设计规范及参考书 1、《地铁设计规范》 2、《建筑结构荷载规范》 3、《混凝土结构设计规范》 4、《地下铁道》(高波主编,西南交通大学出版社) 5、《混凝土结构设计原理》教材 6、计算软件基本使用教程相关的参考书(推荐用ANSYS)

明挖地铁车站结构设计

关于明挖地铁车站结构设计中若干问题的探讨摘要:随着中国经济持续快速发展和城市化水平的提高,我国城市地铁的建设正大规模地开展。本文以明挖法地铁车站框架结构为研究对象,简述地铁车站结构设计及构造中存在的一些值得商榷的地方,以供同行参考,进行设计优化。 引言 为解决城市交通拥堵问题,修建具有超强运力的地铁与轻轨已逐渐成为大城市的首选手段。目前国内绝大多数直辖市及省会城市已经部分建成或正在修建地铁。地铁在城市中的经济效益与社会效益也是有目共睹的。但是对于以地下工程为主的地铁结构,在结构设计中由于岩土性质的复杂性、设计理论的局限性,使地铁结构设计及构造中存在的一些值得商榷的地方,需要我们在实践中不断的探索、求解,不断优化地铁设计。 一、地震作用对地铁整体现浇框架结构的影响 1.侧墙大开洞对抗震设计的影响 标准的两层地下车站结构型式一般为单柱双跨或双轴三跨两层整体现浇砼框架结构,结构刚度分布均匀、对称。但在车站主体结构与出入口、风亭以及大外挂物业用房相接处,侧墙必须大开洞。大开洞严重削弱了结构侧向刚度,且造成结构两侧刚度不对称,对结构抗震产生不利影响,结构设计时此影响应予以考虑。 2.结构中柱设计对抗震设计的影响 车站结构中的中柱在抗震设计中基本是一种脆性破坏,是框架结

构中受力最薄弱的部位,和首先遭到破坏的构件。因此,提高地下框架抗震性能的最有效的方法是改善中柱的受力性能和受力特征。目前,中柱基本采用的是普通钢筋砼柱,砼强度较高,轴压比偏大,对抗震不利。故中柱应尽量采用塑性性能良好的钢管砼柱。 二、侧向水土压力的不确定性对结构设计的影响问题 1.对中板配筋设计的影响 各层板在侧向水土压力和竖向荷载的共同作用下,实际上处于偏压受力的状态。但是,由于侧向水土压力计算理论上的缺陷以及水压力的多变性,目前各层板的配筋大多按纯弯构件计算,按偏压进行验算,所得结果是偏于安全的。笔者参与的多条地铁线路设计总体技术要求,均有此规定。一般情况下,按上述方法设计时,偏压验算都能满足,因此,设计人员往往不进行偏压验算。但是,在板的轴向压力很大的时候,属小偏压构件,如仍按纯弯构件进行配筋计算,受力上偏于不安全。在这种情况下,应按偏压构件设计,按纯弯构件验算,以保证结构安全。 2.对车站侧墙设计的影响 水位的变化对侧墙剪力的大小影响很大,当水位取至抗浮设计水位时,由于底板所受水浮力很大,向上凸起,侧墙向外侧鼓出,导致侧墙外侧土体产生被动土压力,侧墙剪力最大。以一般两层站为例,侧墙在与底板的节点处,剪力可以达到800kN以上,大于不配箍墙(板)构件抗剪承载力。可见,侧向水土压力的取值,对侧墙的剪力设计值影响很大。

ansys课程设计-地铁车站主体结构设计

目录 课程设计任务书 ................................................................................................................ - 1 - GUI方式 ............................................................................................................................... - 3 - 一、打开ANSYS........................................................................................................... - 3 - 二、建立模型.............................................................................................................. - 3 - 1、定义单元类型.................................................................................................. - 3 - 2、定义单元实常数.............................................................................................. - 3 - 3、定义材料特性.................................................................................................. - 3 - 4、定义截面.......................................................................................................... - 3 - 5、建立几何模型.................................................................................................. - 3 - 6、划分网格.......................................................................................................... - 4 - 7、建立弹簧单元.................................................................................................. - 4 - 三、加载求解.............................................................................................................. - 5 - 1、施加位移约束.................................................................................................. - 5 - 2、施加荷载.......................................................................................................... - 6 - (1)计算结构所受荷载................................................................................ - 6 - (2)施加结构所受荷载................................................................................ - 6 - (3)施加重力场............................................................................................ - 7 - 3、求解.................................................................................................................. - 8 - 四、查看计算结果...................................................................................................... - 8 - 1、添加单元表...................................................................................................... - 8 - 2、查看变形图...................................................................................................... - 8 - 3、查看各内力图.................................................................................................. - 9 - 4、查看内力列表.................................................................................................. - 9 - 单元内力表........................................................................................................................ - 11 - APDL方式......................................................................................................................... - 17 -

地铁车站主体结构施工

第一章主体结构施工 第1节主体施工准备 1、车站主体结构施工前准备工作 (1)首先编制结构施工专项方案,报有关部门审批后实施。方案中包括设备、机具、劳动力组织、混凝土供应方式、现场质量检查方法、混凝土浇筑流程、路线、工艺、混凝土的养护及防止混凝土开裂等的各项措施。 (2)基坑开挖至设计标高后,仔细进行测量、放样及验收,严禁超挖。 (3)结构施工前,对围护结构表面进行有效的防水处理,确保围护结构表面不渗漏。 (4)在每一结构段施工前首先进行接地网施工,接地网施工结束后,再施做垫层。 (5)对侧墙、立柱、中楼板、顶板模板支撑系统进行设计、检算,并经安全专项论证、报审批准后,根据施工进度提前安排进料。 (6)对结构施工顺序、施工进度安排、施工方法及技术要求向工班及全体管理人员进行认真交底。 2、施工节段划分 车站主体结构施工遵循“纵向分段,竖向分层,从下至上”的原则,满足车站质量要求及工期里程碑节点安排,结构施工由车站两端向中间方向施作,竖向从车站底板开始自下而上施作。主体结构共划分为17个节段,每段20m左右,施工队伍分别分段同时展开流水作业,施工节段的划分主要考虑以下因素: (1)墙体纵向施工缝不应留在剪力与弯矩最大处或底板与侧墙的交接处,应留在高出底板表面不小于30cm的墙体上。 (2)明挖结构施工缝的间距宜为15~20m。

(3)环向施工缝应避开附属结构及一些设备房间的距离要求设置。 3、主体结构施工流程 车站主体结构施工工艺流程见图4-4-1-1。

图4-4-1-1 主体结构施工工艺流程图

每施工段的施工流程见表4-4-1-1所示。 主体结构每施工段施工流程表4-4-1-1

浅析地下室结构设计

浅析地下室结构设计 关键词:地下室结构设计;结构平面设计;抗震设计 论文摘要:随着高层建筑的飞速发展,其建筑设备用房、地下消防水池和汽车停车位多功能都应用在地下室,因此在高层建筑设计中,地下室结构设计难点繁多、意义重大。文章分析了地下室结构设计中的难点问题,并针对性提出了优化设计的方案。 一、地下室结构设计难点概述 地下室工程涉及的专业极为复杂,在建筑的地下室结构设计时,需综合考虑防火、使用功能、人防要求、设备用房及管道、坑道、排水、通风、采光等各专业的配合。对于具有大底盘地下室的高层建筑群体而言,塔楼部分一般在使用阶段不会存在抗浮问题,但裙房及纯地下室部分经常会有抗浮不满足要求的问题。而且由于实际地下室抗浮设计中往往只考虑正常使用极限状态,对施工过程和洪水期重视不足,因而也会造成施工过程中由于抗浮不够而出现局部破坏,加上地下室防水工程是一项系统性工程,涉及设计、施工、材料选择等诸多方面因素,因此造成了地下室结构设计难点繁多,一般来讲概括起来为:(1)结构平面设计;(2)抗震设计;(3)地下室抗浮、抗渗设计;(4)外墙结构设计。 二、建筑工程地下室结构优化设计 (一)结构平面设计 在高层建筑的地下室结构设计时,需综合考虑防火、使用功能、人防要求、设备用房及管道、坑道、排水、通风、采光等各专业的配合。例如地下室的长度超过设计规定长度时,需要与结构专业配合,确定是否设置变形缝,通常应尽可能少设或不设变形缝,因为设置变形缝会使得变形缝处的防水处理变得复杂。设计人员可以通过设置后浇带和合理使用混凝外加剂或地上设缝、地下不设缝等方式,达到不设缝的目的。 (二)抗震设计 一般来讲地下室抗震设计中较为常见的问题为:多层建筑中半地下室埋深不够,房屋层数包括半地下室层已达8层,层数和总高度超过要求,违反GB50011-2001第7.1.2条。地下室顶板为上部结构嵌固端,地下室一层抗震等级定为三级,而上部结构为二级,按 GB50011-2001第6.1.3条地下室也应为二级。 若地下室设计不当,对其整体的抗震性能会产生较大的影响。根据施工图审查要点,一般来讲,对于半地下室的埋深要求应大于地下室外地面以上的高度,才能不计算其层数,总高度才能从室外地面算起。地下室的墙柱与上部结构的墙柱应协调统一。对地下室顶板室内外板面标高变化处,当标高变化超过梁高范围时则形成错层,应采取一定的措施进行处理,否则不应作为上部结构的部位。相关规范明确规定,作为上部结构部位的地下室楼层的顶楼,盖应采用梁板结构,地下室顶板为无梁楼盖时不应作为上部结构的部位。结构计算应向下计算至满足要求的地下室楼层或底板,但剪力墙底部加强区层数应从地面往上计算,并应包括地下层。 (三)地下室抗浮、抗渗设计

地铁车站结构设计原则

7.1 地下车站结构设计 1. 地下车站结构设计,应满足施工、运营、城市规划、防水、防迷流以及人防的有关要求。车站结构设计应符合强度、刚度、稳定性、耐久性、抗浮和裂缝开展宽度验算的要求。 2. 地下车站结构设计,必须以地质勘察资料为依据,并考虑不同施工方法对地质勘探的特殊要求,通过施工过程中对地质的直接观察或监控量测反馈进行验证,必要时应根据实际情况修改设计。 3. 地下车站结构设计的净空尺寸,应满足地铁建筑限界或其它使用及施工工艺的要求,并考虑施工误差、结构变形及后期沉降的影响。 4. 地下车站结构设计,应根据沿线不同地段的工程地质和水文地质条件及城市规划要求,结合周边既有建(购)筑物、地下管线以及道路交通状况等通过对其技术经济、环境影响和使用功能等方面的综合比较,合理的选择施工方法和结构型式。 5. 地下车站结构设计,应减少施工和建成后对环境造成不利的影响。 6. 地下车站结构设计,宜与车站周围规划中的相关建筑协调统一、同步规划,应考虑设计、施工方案的相互影响。 7. 地下车站结构设计,应根据该地区的地震设防烈度、场地条件、结构类型和隧道埋深等因素考虑地震的影响,进行抗震验算,并在结构设计时采取相应的构造措施,以提高结构的整体抗震能力。 8. 地下车站结构防水设计,应满足《地下工程防水技术规范》(GB50108-2001)的规定,遵循“防、排、堵、截相结合,刚柔相济,因地制宜,综合治理”的原则。 9. 地下车站结构设计,应采取防止杂散电流腐蚀的措施。钢结构及钢连接件,应按有关规范要求进行防锈蚀处理。 10. 地下车站结构的所有受力构件,应根据《建筑设计防火规范》(GBJ 16-87)修订本,1997年版,第2.0.1条和附录二“建筑构件的燃烧性能和耐火极限”的规定要求进行设计。 11. 地下车站结构设计,应根据地区城市规划的人防要求,严格按《人民防空工程设计规范》(GB 5 0225-95)的规定进行设计。 12. 地下车站结构设计,应结合支护结构特点、地质条件、周边既有建(购)筑物、地下管线以及道路状况,根据《建筑基坑支护技术规程》(JGJ 120-89)及该地区基坑支护规范(规程)的规定,确定基坑安全等级,提出监测要求,有效控制地表沉降。必要时应采取预加固措施,以确保邻近建筑和重要地下管线的正常使用。 13. 地下车站结构设计,可视其使用条件和荷载特性等情况,选用与其特点相近的现行相关结构设计规范进行设计。

轨道交通地铁车站建筑设计技术要求规范--(车站结构)..

车站结构 一般规定 1.哈尔滨市轨道交通1号线四期工程沿线车站均为地下站,车站结构设计应从各自的建设条件出发,根据城市规划、线路埋深、建筑布置、施工环境、工程水文地质,以及冬季气候等自然条件,按照工程筹划的要求,考虑相邻区间隧道施工工艺和站址地面交通组织的处理方式,本着既遵循技术先进,又安全、可靠、适用、经济的原则选择结构型式和施工方法。 2.车站结构应根据选择的结构型式、施工方法、荷载特性、耐火等级等条件进行设计,满足强度、刚度、稳定性要求,并根据确定的环境类别、环境作用等级、设计使用年限等标准进行耐久性设计,满足抗裂、防水、防腐蚀、防灾等要求。 3.车站结构要满足车站建筑、设备安装、行车运营、施工工艺、环境保护等要求,确保车站的正常使用,达到总体规划设计的要求,同时,考虑城市规划引起周围环境的改变对结构的作用。 4.车站结构的净空尺寸应满足地铁建筑限界以及建筑设计、相邻区间施工工艺和其他使用功能的要求。尚应考虑施工误差、测量误差、结构变形和后期沉降等因素的影响,其值根据地质条件、埋设深度、荷载、结构类型、施工工序等条件并参照类似工程的实测值加以确定。 5.车站结构应具有足够的纵向刚度,并满足地铁长期运营条件下对结构纵向抗裂及抗差异沉降的要求。换乘车站结构设计应充分考虑上述要求,以减少换乘车站续建工程对已建车站结构的影响。 6.结构设计应以现行国家的相关勘察规范确定的内容和范围,考虑不同施工方法对地质勘探的特殊要求,通过施工中对地层的观测反馈进行验证。其中暗挖结构的围岩分级按现行《铁路隧道设计规范》(TB10003)确定。 7.对于基坑法、浅埋暗挖法等不同型式的车站结构计算模型应符合实际工况条件,并根据具体情况选用与其相符或相近的现行国家有效

地铁车站施工工艺流程标准化要求

附件: 地铁车站施工工艺流程标准化要求 二〇一四年七月

目录 一、施工准备............................................................. 错误!未定义书签。 二、临建工程施工 (4) 三、车站围护结构施工(钻孔围护桩) (6) 四、车站围护结构施工(地下连续墙) (9) 五、车站围护结构施工(SMW工法桩) .............. 错误!未定义书签。 六、车站围护结构施工(咬合桩(旋挖法))....... 错误!未定义书签。 七、车站围护结构施工(旋喷桩) (22) 八、车站基底加固施工(搅拌桩) (26) 九、车站基底加固施工(旋喷桩)......................... 错误!未定义书签。 十、抗拔桩、立柱桩施工 (31) 十一、车站施工(降水井施工) (35) 十二、车站施工(冠梁及钢筋混凝土支撑施工).错误!未定义书签。十三、车站放坡开挖施工 (44) 十四、车站钻孔围护桩基坑开挖施工 (47) 十五、车站地下连续墙围护基坑开挖施工 (50) 十六、车站SMW工法桩围护基坑开挖施工 (51) 十七、车站咬合桩围护基坑开挖施工 (52) 十八、车站综合接地施工 (53) 十九、车站底板结构施工(下翻梁底板结构施工) (56) 二十、车站底板结构施工(上翻梁底板结构施工) (59)

二十一、车站下部结构柱施工 (63) 二十二、车站中板以下结构施工(有换撑下部边墙结构施工) (65) 二十三、车站中板以下结构施工(有换撑中板结构施工) (68) 二十四、车站中板以下结构施工(无换撑中板以下结构施工) (71) 二十五、车站中板以上结构施工 (74) 二十六、车站顶部回填施工 (79) 二十七、车站监控量测 (81)

地下结构抗震设计的分析方法及其现状

地下结构抗震设计的分析方法及其现状 【摘要】地下结构抗震设计不同于地表结构的抗震设计,因此,分析其设计的分析方法很有必要。本文将从以下几个方面来具体分析地下结构抗震设计的分析方法和现状。 【关键词】地下结构;抗震设计;分析方法 一、前言 随着地下建筑物的增多,地下结构抗震设计成为了重点工程之一。地下结构抗震尤其特定的原理,必须要从特定的原理出发展开设计才能够保证设计的有效性和科学性,满足抗震的需要。 二、结构和土相互作用的分析模型 在地震作用时,地铁等地下工程结构和土会出现弹塑性和非线性的特点,相互之间的接触有可能出现局部的滑移和脱离。因此,在建立结构和土相互作用结构模型时要考虑结构材料的非线性、结构和地基接触的非线性、近场地基和远场地基的非线性等因素。目前对这几种非线性的单个研究已经很成熟,但是在实际工程中如何综合利用这些非线性的研究成果来建立合理的地铁等地下工程结构的分析模型还要进一步的讨论。 地铁车站等地下结构受到场地周围地基地震反应的影响十分显著,在地震作用时,地铁周围的土特别是上层覆土的重力作用对地铁结构的影响不容忽视,因此,如何在分析模型中体现地铁地基的静力作用和地基的半无限性也是一个很重要的问题。解决这一问题主要靠合理的设定静力人工边界和动力人工边界,但是目前的边界模型一般来说不适合应用与地下结构,很有必要发展一种对静力分析及动力分析都可以适用的静力—动力人工边界,直接在边界上输入地震波,计算结构的地震反应。 三、地下结构地震动反应的特点及其基本分析方法 从以往的震害报道中可以看出,地下结构与地面结构的振动特性有很大的不同: 1、地下结构的振动变形受周围地基土壤的约束作用显著,结构的动力反应一般不明显表观出自振特性的影响; 2、地下结构的存在对周围地基震动的影响一般很小(指地下结构的尺寸相对于地震波长的比例较小的情况);

基于时程分析法的地铁地下车站抗震设计与分析

基于时程分析法的地铁地下车站抗震设计与分析 发表时间:2019-07-23T15:10:01.137Z 来源:《基层建设》2019年第13期作者:欧士嘉 [导读] 摘要:现阶段,随着社会的发展,我国的现代化建设的发展也突飞猛进。 广西建设职业技术学院广西南宁 530007 摘要:现阶段,随着社会的发展,我国的现代化建设的发展也突飞猛进。地震工程传统观念认为地下结构的抗震性能显著优于地上结构,忽视了地下结构的抗震设计与研究,但随着国内外发生的地震对地下结构强烈破坏的案例,尤其是1995年日本阪神地震造成的地铁地下结构严重破坏,地下结构抗震设计的重要性被重新认识。关于地震对地下结构的破坏机理,一般认为水平地震是造成地下结构破坏的主要原因:地震在水平加速度作用下,由于各土层物理性质不均匀性等原因导致不同深度处结构振幅的不同,导致了结构层间的相对位移与较大的结构内力,最终造成了结构的整体破坏。在实际工程设计中,也只考虑水平地震的作用而忽视竖向地震的影响。然而,近年来地震观测结果表明,某些地震震中附近区域竖向地震加速度振幅与水平加速度振幅大小相当,甚至高于水平振幅。有研究成果表明,处于震中附近区域地铁的地下结构,竖向地震可显著增加结构内力,改变结构内力最大位置,且易导致地下结构中柱轴向荷载的剧烈变化,造成中柱的拉压破坏与剪切破坏。因此,在探讨地铁地下结构的抗震性能时,不宜排除竖向地震作用效果显著的情况,宜考虑水平与竖向地震耦合作用对地铁车站的影响,以提高地铁地下结构抗震设计的合理性与安全性。 关键词:时程分析法;地铁地下车站;抗震设计;分析 引言 本文阐述了时程分析法的基本原理,以大连市某地下三层地铁车站为背景,考虑水平与竖向地震耦合作用的影响,通过有限元方法计算车站结构对地震的响应分析。根据分析结果,车站结构满足抗震性能要求,并总结地铁车站结构抗震设计的要点,为地铁车站结构设计提供一定的参考。 1抗震性能分析方法概述 实际工程中,主要通过数值模拟对地下结构的抗震性能进行理论分析。常用的数值模拟方法可分为以反应位移法、反应加速度法为代表的拟静力法,和以反应谱方法、时程分析法为代表的动力分析法两类。反应位移法根据一维土层地震反应分析得到土层相对位移,由土层变形计算得到内力,并以地基弹簧的形式施加静荷载于结构上,从而获得结构的响应。反应加速法通过一维土层地震反应分析获得的动力响应,计算得到不同深度处水平有效惯性加速度,并将其按体积力的方式作用与结构上,最终得到结构的响应。拟静力法缺陷在于静力计算所得内力一般较实际动力值偏大,且对地震波的等效处理往往难以符合其不规则动态传播的实际情况。反应谱方法相对于拟静力法增加反映了地震的频谱特性,但仍然无法考虑地震力持续作用的影响,其本质上属于一种修正的拟静力分析方法。动力时程分析法可以全面地表达地震动强度、频谱特性和持续时间三大要素,分析具有过程性,更加符合实际情况,其缺陷在于计算时有较多的物理参数难以准确设定,且计算成本较大。本文拟采用动力时程分析法进行抗震数值模拟分析,并阐述动力时程分析法的基本原理和实现过程。 2实例分析 2.1工程概况 本车站为大连市某地下三层双柱三跨岛式车站,车站全长219.5m,标准段宽23.3m,顶板覆土约3.95m,采用明挖顺作法施工。车站顶板厚800mm,地下一层及地下二层中楼板厚400mm,底板厚1000mm,侧墙厚900mm,中柱尺寸8001300mm,中柱纵向间距9.75m,车站地下一层层高4.9m,地下二层层高7.3m,地下三层层高6.4m。顶、底板及侧墙采用C45钢筋混凝土,中柱采用C50钢筋混凝土。本场地所处原地貌为海滩,后经人工回填至现状,场地地势平坦。车站场地范围内土层主要为素填土、粉土、粉质黏土、全风化板岩、强风化板岩,车站底板位于强风化板岩。大连市地区的抗震设防烈度为7度,设计基本地震加速度值为0.15g。 2.2有限元模型建立 本文基于有限元分析软件Midas/GTS-NX建立有限元模型并进行分析。为尽可能实现与无限自由场地相同的模拟效果,有限元模型水平与竖向土层边界至结构的距离均大于3倍车站结构尺寸,模型两侧与底部引入粘弹性人工边界,以达到吸收入射波的效果。由于本车站结构沿纵向形式连续规则,周围土层沿纵向分布均匀,为节约计算成本,模型简化为平面应变模型,整体有限元模型尺寸为100×220m。模型输入地震波采用当地地震实测数据,该数据记录了地震时地面运动加速度变化值。根据《城市轨道交通结构抗震设计规范》(GB50909-2014),分别验算重现期475年设防地震(以下简称E2地震)作用及重现期2450年罕遇地震(以下简称E3地震)作用下地铁车站地震响应。 2.3分析结果 将车站主体结构顶板、底板及侧墙主要危险截面处本车站顶板支座处配筋由地震工况控制,且地震工况下支座结构内侧受拉,该截面处拉压方向与静力工况相反。其余截面均为静力工况(准永久组合)控制,即当配筋满足静力工况下裂缝宽度要求时均满足地震工况下的承载力要求,本车站实际配筋情况同时满足静力工况及地震工况要求。根据E2地震作用下车站中柱的计算结果,本车站中柱轴力值为12197kN,轴压比为0.51,剪力值99kN,均满足《建筑抗震设计规范》(GB50011-2010)及《混凝土结构设计规范》(GB50010-2010)对中柱轴压比及抗震受剪承载力的相求。 3地下结构的抗震研究 考虑到地层的约束,相比地上结构而言,地下结构被认为具有良好的抗震性能。但是,通过对近些年来国内外地下结构地震灾害现象的调查研究,在地震作用下,地下结构的破坏现象也相当普遍,对地下结构抗震性能的研究也在实际的设计工作中不断推进。采用MIDAS/GTS软件对地下结构进行时程法计算分析,动力有限元数值仿真分析中,所关心振波的高频(短波)成分决定网格单元长度,低频(长波)成分决定模型边界范围的大小。通常,当计算模型的水平范围取为8~10倍隧道直径时,即可获得较高的计算精度[1]。为了解决有限截取模型边界上波的反射问题,边界条件采用由Decks等[2~4]人提出的粘-弹性吸收边界。粘-弹性边界不仅可以较好地模拟地基的辐射阻尼,而且也能模拟远场地球介质的弹性恢复性能,具有良好的低频稳定性。 结语 地震对于地下结构的破坏作用不可忽视,且位于震中附近的区域,不应忽视竖向地震对地下结构产生的破坏效果。动力时程分析法是目前抗震分析的有效方法之一,本文基于动力时程分析法并考虑水平与竖直地震耦合作用的影响,分析了大连某地铁地下车站在地震作用下的响应,验证了该车站结构设计满足抗震性能要求。可以看出,本车站顶板右侧支座截面处地震对内力作用效果明显,为控制工况,其

相关主题