搜档网
当前位置:搜档网 › 蛋白内参

蛋白内参

蛋白内参
蛋白内参

GAPDH(glyceraldehyde-3-phosphate dehydrogenase)

和细胞骨架蛋白beta-actin或beta-tubulin。

GAPDH分子量为146KD,

beta-actin分子量为42KD,

beta-tubulin分子量可能为100KD

actin即肌动蛋白,是细胞的一种重要骨架蛋白。actin大致可分为六种,其中四种是不同肌肉组织特异性的,包括alpha-skeletal muscle actin、alpha-cardiac muscle actin、alpha-smooth muscle actin和gamma-smooth muscle actin,其余两种广泛分布于各种组织中,包括beta-actin(β-non-muscle)和gamma-non-muscle actin。这些不同的亚型组织分布是不一样的,在肌肉组织中的beta-actin分布就很少,心肌主要是alpha-cardiac muscle actin。因此不同的组

织本来就应该选择不同的内参,不能一概而论的。beta-actin作为内参是得到了公认的,这

是针对大多数组织和细胞来说的,它广泛分布于细胞浆内,表达量非常丰富。尽管最近有

一些文章已经开始质疑beta-actin作为内参的有效性(好像是对于上样量>20ug的蛋白区分能力下降,记不清楚了),但是发文章应该还是没有问题的。至于其他的内参也是可以考

虑用的,GAPDH(甘油醛-3-磷酸脱氢酶)是参与糖酵解的一种关键酶,而tubulin和actin

类似,是细胞骨架的组成部分,但是不是肌肉的主要成分,应该是一个代替品。

细胞总蛋白的Western Blot 的内参蛋白一般用ACTIN, TUBLIN等细胞内较稳定表达的蛋白。但是核蛋白的Western Blot 内参有LAMIN A, LAMIN B等;膜蛋白的Western Blot

一般用α-tubulin或GAPDH为内参。

三种同时发生变化的情况很少,需要具体分析。一旦出现上述三种内参同时发生变化,如

果是总蛋白可以用胞核的内参如PCNA,TATA-box bingding protein(TBP)甚至线粒体的

内参来代替,当然一般这种可能性出现的几率微乎其微。

Western Blot除了能证明某样品中含有某种蛋白之外,其最为重要的作用是比较不同条件下或者不同组织中,目的蛋白表达量的相对多少。即为蛋白表达水平最直接的证据。

要衡量蛋白的表达水平,前提条件就是等量的上样量。内参的意义就是保证上样量的一致。内参即是内部参照(Internal Control),对于哺乳动物细胞来说一般是指由管家基因编码表达的蛋白(Housekeeping Proteins),它们在各组织和细胞中的表达相对恒定,在检测蛋白的

表达水平变化时常用它来做参照物。如果内参的条带亮度基本一致,那么就可以认为上样

量也基本一致。

在Western Blotting实验过程中使用内参的方法有:

一、超级简便的标记内参使用法:只要在二抗孵育时加入HRP标记内参抗体,按照正常

操作即可。

二、普通内参:当目的蛋白的分子量大小与选用的内参蛋白分子量相差不大时,可以先进

行目的蛋白的抗体温育显色和检测。然后使用Strip缓冲液洗掉膜上的抗体,重新进行内参

蛋白的抗体温育、显色检测。

三、当目的蛋白的分子量大小与选用的内参蛋白分子量大小相差比较明显情况下,可以在

转膜后预染,根据蛋白质Marker的大小将膜剪为大分子量和小分子量两部分,使内参蛋白

与目的蛋白分开。然后两块膜分别与内参蛋白抗体以及目的蛋白抗体进行温育,二抗温育

以及显色。

GAPDH(甘油醛-3-磷酸脱氢酶)是参与糖酵解的一种关键酶,由4个30-40kDa的亚基组成,分子量146kDa,检测条带大约在36kDa。 GAPDH基因几乎在所有组织中都高水平表达,广泛用作Western blot蛋白质标准化的内参。因为GAPDH 作为看家基因在同种细胞或

者组织中的蛋白质表达量一般是恒定的,因此在使用GAPDH内参抗体时,将每个样品测

得的目的蛋白含量与本样品的GAPDH含量相除,得到每个样品目的蛋白的相对含量,然

后才进行样品与样品之间的比较。

目的蛋白是在细胞浆的,可以选 a-tubbulin,b-actin 等,如果是细胞核和细胞浆都存在的,可以选y-tubbulin。

bp是碱基对 basepair~

Da是蛋白质分子量范围~

实时定量PCR,用于核酸水平的定量检测。免疫组化用于对目标蛋白进行组织中的位

置测定,WB用于检测目标蛋白的量的检测,基本算半定量。

免疫组化

是融合了免疫学原理(抗原抗体特异性结合)和组织学技术(组织的取材、固定、包埋、切片、脱蜡、水化等),通过化学反应使标记抗体的显色剂 (荧光素、酶、金属离子、同位素)显色,来对组织(细胞)内抗原进行定位、定性及

定量的研究(主要是定位)。样本是细胞或组织,要在显微镜下观察结果,可能

出现膜阳性、质阳性和核阳性。

elisa(酶联免疫吸附试验)

用到了免疫学原理和化学反应显色,待测的样品多是血清、血浆、尿液、细胞

或组织培养上清液,因而没有用到组织包埋、切片等技术,这是与免疫组化的

主要区别,操作上开始需要将抗原或抗体结合到固相载体表面,从而使后来形

成的抗原-抗体-酶-底物复合物粘附在载体上,这就是“吸附”的含义。

免疫组化和elisa所用到的原理大致相同,只是因为所检测的样品不同,从而

在操作方法上有所不同。Elisa多用于定量分析,其灵敏度非常高。

western bolt

先要进行SDS-PAGE,然后将分离开的蛋白质样品用电转仪转移到固相载体上,而后利用抗原-抗体-标记物显色来检测样品,可以用于定性和半定量。

免疫学三大工具,免疫组化、Western、ELISA,分别用于定位,定性和定量。

以下western和Elisa的区别不是原创,是找的资料。

western blotting 可以看到特异性的条带,但是定量比较烦

elisa可以直接读出浓度,但是如果抗体有非特异性结合,那得到的数值就不可信。

WB只能半定量,但是可以检测细胞膜蛋白,这点ELISA做不到

ELISA可用定量方法检测蛋白,也就是说可以观察不同浓度刺激物对目的蛋白的

影响

WB所检测的一般是抗原,而Elisa抗原抗体都可以检测。

WB所检测的抗原可以知道其分子量的大小,或是否是多聚体、降解产物等,

一句话,WB可以确定所用抗体是与那种蛋白起作用的;而Elisa无能为力,一锅端了。

WB所适用的一抗一般是线性位点的,ELISA线性或构象型抗体都可以使用。

从另一个意义上讲,WB可以做抗体是线性位点还是构象型位点的补充判定,

而Elisa不行。

WB一次处理量就是一块胶版,10-20个样品最多了。Elisa一块96孔板一次可以处理96个样本,可以设置多个复孔、对照、梯度样等来提高检测的可信度。WB操作常见的非特异性条带,膜本底差,显色不好等等缺点在Elisa上表现得要好得多。

Neican

(一):用内参照是为了评价你的各个上样孔内蛋白的总量是否基本一致,通常使用一些

看家蛋白,比如β-actin、GAPDH等等。这些蛋白在所有细胞中的表达量基本一致,所以

用他们来作为你加样量的对照。这样western结果中你的目的蛋白经过处理后发生变化,

而内参的条带基本均匀一致。这样才有说服力,表明的确是处理因素造成目的蛋白的变化

而不是加样误差或是人为造成目的条带浓度的变化。严格意义上说,内参事必须做的。

2:常用的内参有:b-actin,GAPDH,近2-3 年,更详细的研究发现,β-Tubulin (球管蛋白),被广泛应用于Western Blotting,β-Tubolin分子量为55KD左右。

3:一般我们选择内参与要检测的目的蛋白的分子量最好相差5KD以上。因此你要知道你

检测的蛋白的分子量来选择合适的内参!

(二)要检测一个基因的表达产物是否正确,或者比较表达产物量的相对变化,首选方法

是Western Blot。

因为Western Blot操作相对简单方便,既可以定性分析表达产物,同时还可以指示目的蛋白量的相对变化。虽然,顺利的时候Western Blot做起来很简单,可不顺的时候也很令人心烦――做不出结果啦、假阳性啦、结果出现多条带啦、到底是一抗有问题还是二抗有问

题啦……毕竟,作为一种有活性的生物大分子,抗体和抗原的反应毕竟不象1+1那么明确,

而用这种不确定的试剂来测定同样知之甚少的表达产物,确实是有一定的不确定性的。所以,严谨的Western Blot实验设计中要求有良好的参照体系,对实验结果分析是非常有用。特别是当实验出现问题时,借助参照体系很容易就可以查出问题所在,而不必抓耳挠腮怨

天尤人。良好的参照体系通常包括分子量Marker(用来确定蛋白条带对应的分子量大小),空白载体对照(如果是诱导表达体系还应该有诱导前的对照),已知量标准产物的正对照;另外还有内参。可是由于经费限制或者偷懒的原因,国内的不少人做Western Blot往往

省略参照,导致结果出现问题时无法分析结果――即便有结果也可能影响结果的分析。

内参是最容易被忽略的一项。我们知道,要用Western Blot比较不同条件下或者

不同组织中,目的蛋白表达量的相对多少,前提条件是等量的细胞上样,才有比较的基础。特别表达量不高时,上样量的差别就很可能影响结果的分析。所以你需要内参。

内参即是内部参照(Internal Control),对于哺乳动物细胞表达来说一般是指由

管家基因编码表达的蛋白(Housekeeping Proteins),它们在各组织和细胞中的表达相对恒定,在检测蛋白的表达水平变化时常用它来做参照物。在Western Blotting 实验中,除了需要进行蛋白抽提、蛋白定量、等量蛋白上样电泳、转膜、靶蛋白抗体孵育、显色等步骤

以外,还需要进行内参的检测,以校正蛋白质定量、上样过程中存在的实验误差,保证实

验结果的准确性。

在国外发表的文章中,Western Blotting 实验结果须进行内参校正已成为一种惯例。然而各种蛋白质浓度定量方法,都存在局限性,不能完全准确的确定各种样品的准确蛋白

浓度。如UV法直接定量,适合测试较纯净、成分相对单一的蛋白质,相对于比色法来说,操作简单,但是容易受到平行物质的干扰,如DNA的干扰;且敏感度低,要求蛋白的浓度较高。比色法测定蛋白浓度一般有BCA,Bradford,Lowry 等几种方法。BCA法与Lowry

法都容易受到蛋白质之间以及去污剂的干扰。Bradford 法敏感度最高,且与一系列干扰Lowry,BCA 反应的还原剂(如DTT,巯基乙醇)相容。但是对于去污剂依然是敏感的,

其最主要的缺点是不同的标准品会导致同一样品的结果差异较大,无可比性。另外,蛋白

质定量以后进行电泳时需要等量上样,此步骤也存在操作误差。在Western blotting实验时使用内参,即可简便地对定量和上样步骤产生的误差进行校正。

在Western Blotting中使用内参其实就是在WB过程中的另外用内参对应的抗体检测内参,这样在检测目的产物的同时可以检测内参的表达,由于内参在各组织和细胞

中的表达相对恒定,借助检测每个样品内参的量就可以用于校正上样误差,这样半定量的

结果才更为可信。此外使用内参可以作为空白对照,检测蛋白转膜情况是否完全、整个Western Blot显色或者发光体系是否正常。

(三)在Western Blotting实验过程中使用内参的方法有:

一、超级简便的标记内参使用法:只要在二抗孵育时加入HRP标记内参抗体,按照正常

操作即可。

二、普通内参:当目的蛋白的分子量大小与选用的内参蛋白分子量相差不大时,可以先进

行目的蛋白的抗体温育显色和检测。然后使用Strip缓冲液洗掉膜上的抗体,重新进行内参

蛋白的抗体温育、显色检测。

三、当目的蛋白的分子量大小与选用的内参蛋白分子量大小相差比较明显情况下,可以在

转膜后预染,根据蛋白质Marker的大小将膜剪为大分子量和小分子量两部分,使内参蛋白与目的蛋白分开。然后两块膜分别与内参蛋白抗体以及目的蛋白抗体进行温育,二抗温育

以及显色。

常用的蛋白质内参有GAPDH(glyceraldehyde-3-phosphate dehydrogenase)和细胞骨架

蛋白beta-actin或beta-tubulin。我们实验室使用最多的是***工程有限公司与国外实验室合作开发的GAPDH,100μl一支,浓度为100μg/100μl,价格为988元人民币。虽然公司

网上称稀释比达1:10000以上,至少可做100次Western mini-blots,但我们一般按照1:5000~6000稀释,不过效果确实非常好,荧光条带非常亮,而且抗体使用3~4次也没太大改变。

我们也使用过博奥森的beta-actin,200ul 480元,稀释比1:200~500。因为稀释比不高,所以价格并不便宜。更可气的是,我PC 12细胞居然有两条条带,小鼠也是两条。

(四)1.所选内参有一下:GAPDH,beta-actin,beta-tubulin等是一些细胞的基本结构蛋白或

是管家蛋白,细胞表达稳定,且表达水平高,在同一种类的细胞上表达基本一致.

2.做内参可以:一,检验你的整套western装置是否正常run effectively.包括你的配液,你的

胶以及电泳和转移,一抗的效价以及显色等.二检测你的样品蛋白含量是否相等.

3.选择内参要根据你的目的蛋白的性质即你的目的蛋白是胞内还是核内,你蛋白的分子量

是大是小,当然还有价钱以及你的目的.

4.一般内参是比较容易作出来的,同时它也是帮助你摸索条件的,你把其做漂亮,你后面就很

顺利了,只是转移的条件有点变化.其余照样或根据说明书操作.

(五)那么,我想请教一下用过β-actin做内参的朋友,有没有遇到过β-actin抗体检测不

到小鼠心肌和肌肉组织β-actin的情况?当然前提是:1,我的确提取到了心肌和肌肉组织

的总蛋白,且检测到了我的目的条带。2,用此抗体可以检测到其他组织中β-actin条带。

也发现,在碧云天网站上,曾提及“本抗体不能用于成年动物心肌或骨骼肌的免疫染色”。https://www.sodocs.net/doc/902510703.html,/aa128.htm 具体什么原因造成这种情况,我也不想太麻烦去搜了,还请知道的战友指教。同时也算是给朋友们提个醒吧。

另,我曾用GAPDH抗体死活也检测不到小鼠肺组织的条带,由于这个做的时间比较早了,不知道是抗体原因还是我WB的原因还是其他原因,不得而知。仅供朋友们一个参考吧。

回答:我觉得:1 抗原表位有线性(氨基酸序列的不同)和构象型(空间结构的不同)

两种,如果你的抗体识别的是构象型的表位,你做western时蛋白要变性,其构想结构破坏,导致抗体抗原不能识别结合,因而也会做不出结果;如果是线性表位则天然的和蛋白

变性后这种表位都存在,抗体抗原可以继续结合。你要查询有关资料,排除一下是否是此

原因所致。

查了一下actin(肌动蛋白):“脊椎动物肌动蛋白分为α、β和γ三种类型,α型分布于心肌和横纹肌细胞中,α及γ型分布于平滑肌细胞中,β及γ型分布于非肌细胞中。”

回复:不同异构体表达对蛋白的检测是有很大的影响的

所以买抗体前要好好熟悉自己的目的蛋白。

很多抗体杂不出条带其实未必是抗体质量的问题。

就比如我上次买了个抗体,说明书上写着检测的smooth muscle isoform的,因为我的细

胞激活后具备的就是平滑肌表型,所以就买了。

买来后一直不出条带,我纳闷了,于是提取大鼠主动脉组织作为对照,也不出条带。火了,就用了另外个细胞株做对照,条带就出来了,而且很亮,压片时能见到荧光,但是我的细

胞和大鼠主动脉组织就是没有条带。

后来又做了几次,大鼠主动脉组织也出过两次条带,但是非常细非常淡,若有若无那种,

提高上样量也是这样,以致于根本不能扫描,

此公司做抗体是用的是一段合成肽,我比较了两种异构体,只有6,7个AA的差异,

我自己的解释是,这个抗体应该针对的是非平滑肌isoform,但非常小的程度上也能检测到smooth muscle isoform。

目前正在与此公司交涉。

关于是否可以用β-actin 和 GAPDH 做膜蛋白的内参大家也是各持其见

1.不支持的:认为β-actin 和GAPDH是在胞浆中表达的,膜中应该不含有该成分,故不能用

来做内部参照,可以用来检测所提的膜蛋白是否纯

2.支持的:他们通过实践行动证实,用β-actin或GAPDH孵育膜可以得到条带

本人倾向于第一种观点,查了些资料,都是说β-actin 和GAPDH是在胞浆中表达的,所

以说就算是用上述两种内参孵育出条带也只是说明所提的膜蛋白成分不纯,含有胞浆成分,本人用β-actin孵育过膜,曝光后有相应条带出现,但很淡,但也证实用β-actin做膜蛋白

的内参是确实是可以出条带的,但我的理解是膜蛋白成分不纯,含有胞浆成分

我看过两篇外文文献,用的是膜蛋白做WB,一篇是用actin做内参,04年发表在Am J Physiol Cell Physiol 上的。另一篇是用GAPDH,08年发表在 brain research上的,严格

来说他不是用来做内参,只是检测膜蛋白成分是否纯

我们提取膜蛋白,无论是物理方法(密度剃度离心,双水相)还是化学方法(各种公司

的KIT),提取的膜蛋白都不可能是完全纯的,能够达到60-70%都是相当不错的了,更

不要说我们所希望得到的细胞质膜可能还包括了细胞中的亚细胞器的膜,所以孵育得到条

带是完全可能的。

至于质膜的标识蛋白,也就是NA/K ATP酶(一种整合膜蛋白),这个也是没有疑问的(各种integrin也算)至于是否能做内参就看你是不是在变化过程中让这些蛋白与你的体

系一同变化了,如果有,那就是内参,如果体系不同,互相不影响,那就只能算外参了。

以上内容来自

https://www.sodocs.net/doc/902510703.html,/bbs/post/view?bid=65&id=14632303&tpg=1&ppg=1&sty=1&age=0&tic ket=ST-5364-wmi9fTqjfYHbCgmOyffWgp6BOfsGTMMzEKM-20

描述有问题。抗体检测的是抗原,所以你检测的是β-Actin

做western很重要的一点就是要有一个参照,比如你要检测淋巴细胞某个蛋白

的表达,甚至它的变化(比如对某个细胞因子的反应),这时β-Actin起到几个作用:

1、如果目的蛋白检测不到而且β-Actin也检测不到,那么你的体系有问题,因

为β-Actin是看家基因编码的,理论上是100%检测到的;

2、如果目的蛋白检测不到但β-Actin检测到,说明目的蛋白没有表达或者量很低;

3、作为看家基因,β-Actin被认为表达水平不受其它因素影响,是比较稳定的。当细胞接受细胞因子刺激后,目的蛋白的量在参考β-Actin的量后可能发生变化,这时β-Actin还起到一个半定量的作用。

所谓内参就是内部参照的意思。

--

Western的抗体通常分为一抗和二抗,一抗结合目的蛋白,这是Western变化

最多的地方;二抗则比较通用,商品很成熟,二抗带有荧光或者酶标记,它是

结合一抗的,但却是得到结果的重要试剂。这种方法属于间接标记。Western

很少有直接标记的方法。

常用的内参有:b-actin,GAPDH,近2-3 年,更详细的研究发现,β-Tubulin (球管蛋白),被广泛应用于Western Blotting,β-Tubolin分子量为55KD左右。

细胞膜蛋白质

膜结构中含有蛋白质早已证实,但有兴趣的问题是膜中蛋白质究以何种形式存在。70年代以前,多数人主张蛋白质是平铺在脂质双分子层的内外两侧,后来证明,蛋白质分子是以а-螺旋或球形结构分散镶嵌在膜的脂质双分子层中。膜蛋白质主要以两种形式同膜脂质相结合:有些蛋白质以其肽链中带电的氨基酸或基团,与两侧的脂质极性基团相互吸引,使蛋白质分子像是附着在膜的表面。这称为表面蛋白质;有些蛋白质分子的肽链则可以一次或反复多次贯穿整个脂质双分子层,两端露出在膜的两侧,这称为结合蛋白质。在用分子生物学技术确定了一个蛋白质分子或其中亚单位的一级结构、即肽链中不同氨基酸的排列顺序后,发现所有结合蛋白质的肽链中都有一个或数个主要由20-30个疏水性氨基酸组成的片段。这些氨基酸又由于所含基团之间的吸引而形成а-螺旋,即这段肽链沿一条轴线盘旋,形成每一圈约含3.6个氨基酸残基的螺旋,螺旋的长度大致相当于膜的厚度,因而推测这些疏水的а螺旋可能就是肽链贯穿膜的部分,它的疏水性正好同膜内疏水性烃基相吸引。这样,肽链中有几个疏水性а-螺旋,就可能几次贯穿膜结构;相邻的а-螺旋则以位于膜外侧和内侧的不同长度的直肽链连接。膜结构中的蛋白质,具有不同的分子结构和功能。生物膜所具有的各种功能,在很大程度上决定于膜所含的蛋白质;细胞和周围环境之间的物质、能量和信息交换,大都与细胞膜上的蛋白质分子有关。由于脂质分子层是液态的,镶嵌在脂质层中的蛋白质是可移动的,即蛋白质分子可以在膜脂分子间横向漂浮移位;不同细胞膜中的不同蛋白质分子的移动和所在位置,存在着精细的调控机制。例如,骨骼肌细胞膜中与神经肌肉间信息传递有关的通道蛋白质分子,通常都集中在肌细胞膜与神经未梢分布相对应的那些部分;而在肾小管和消化管上皮细胞,与管腔相对的膜和其余部分的膜中所含的蛋白质种类大不相同,说明各种功能蛋白质分子并不都能在所在的细胞膜中自由移动和随机分布,而实际存在着的有区域特性的分布,显然同蛋白质完成其特殊功能有关。膜内侧的细胞骨架可能对某种蛋白质分子局限在膜的某一特殊部分起着重要作用。

蛋白质入核转运机制

蛋白质的入核转运机制 哺乳动物细胞中的蛋白质,绝大部分是在细胞质的核糖体上合成的(线粒体合成极少),由于各个部位所需蛋白质分子在结构和功能方面各不相同,在进化过程中每种蛋白质都形成一个独特的地址签,蛋白质合成后,细胞通过对蛋白质地址签的识别将其运输到相应的部位,完成蛋白质的分选。 具有分选信号的蛋白质虽然可以被准确地分选出来,但如何到达细胞内的特定部位呢,这就是蛋白质的运输。运输方式目前认为有三种:1.门孔运输:定位在细胞核内的蛋白质通过核膜上的核孔复合体进入细胞核2.跨膜运输:定位在线粒体、过氧化物酶体、内质网的蛋白质通过这些细胞器膜上的蛋白质传导通道进入细胞器3.囊泡运输:定位在高尔基复合体、溶酶体、膜蛋白和分泌蛋白是通过这种方式进行转运的。 进入细胞核的蛋白质还必须带有核定位信号(NLS),NLS 是富含碱性氨基酸的短肽可定位在蛋白质的任何部位。NLS的氨基酸残基片段可以是一段连续的序列(T抗原),也可以分成两段,两段之间间隔约10个氨基酸残基(核质蛋白)NLS序列可存在于亲核蛋白的不同部位,在指导完成核输入后并不被切除。 哪些蛋白质需要进入细胞核呢?需要转运入核的蛋白质主要是参与基因的复制、转录的蛋白因子和各种酶,如RNA、DNA 聚合酶、组蛋白、拓朴异构酶及大量转录、复制调控因子都必须

从细胞质进入细胞核才能正常发挥功能。还有一些需要转运入核才能发挥作用的外源性大分子像基因治疗外源重组DNA、病毒基因等。 有NLS的蛋白质通过核膜上的核孔复合体进入细胞核。核通过一个有双层膜的外被与胞质分隔。内膜与核纤层接触,为核提供了一个表面的膜。外膜与胞质中的内质网连接。这双层膜在被称为核孔复合物的开口处接触。核孔复合物有四部分组成,朝向胞质面与外核膜相连的胞质环,其上对称分布8条纤维;朝向核基质与内核膜相连的核质环,其上亦对称分布8条纤维,末端交汇成篮网样结构;把胞质环、核质环、中央栓连接到一起的辐条;核孔中央跨膜糖蛋白组成的中央栓。 核孔复合体具有双功能性运输通道,被动运输和主动运输,需要进入细胞核的带有NLS的蛋白质主动运输进入细胞核,过程如下 ①具有NLS的转运蛋白与输入蛋白α/β异二聚体结合,形成NLS-输入蛋白α/β三聚体; ②形成的NLS-输入蛋白α/β三聚体与核孔复合体的胞质丝结合; ③通过胞质丝的弯曲把三聚体依次呈递至核孔复合体中央栓蛋白,再与核质丝结合、解离、平衡,三聚体转运至细胞核; ④该复合体通过核孔复合体中央栓时,与Ran-GTP相互作用,同时激活输入蛋白β,至使输入蛋白β与NLS分别从复合体上

原核生物蛋白质的合成

核糖体在进行的蛋白质生物合成分为起始,延伸和终止3个阶段.除了核糖体组成、各种因子、起始tRNA不同外,其余环节在真核生物和原核生物基本类似. 1.首先进行氨酰-tRNA的活化,这能使每个AA和tRNA分子共价连接,以确保加入正确的AA (即接头)作用;并能使aa与延伸中的多肽链末端反应形成新的肽链. 活化步骤:1)aa+ATP=aa-AMP+PPi 2)aa-AMP+tRNA→aa-tRNA+AMP+PPi 2.合成的起始: 1)起始tRNA识别AUG(起始密码子)编码甲硫氨基酸,以确定翻译的正确阅读框架. 2)30S核糖体小亚基中的16SrRNA与富含嘌呤并位于AUG起始密码子的5’端的Shine-Dalgarno序列结合,然后,核糖体沿着mRNA向3‘端移动,直到遇到AUG起始密码子.因而Shine-Dalgarno序列将核糖体亚基传送至正确的AUG用于起始翻译. 3)然后起始因子开始催化蛋白质的合成.原核生物中用三种起始因子IF1、IF2、IF3是必需的. a.三元复合物(IF3-30S亚基-mRNA三元复合物形成. b.30S前起始复合物(IF2-30S亚基-mRNA-fMet-tRNAMef复合物)形成,此步亦需要fGTP和Mg2+参与. c.70S起始复合物(70S initiation complex)形成.50S亚基与上述的30S前起始复合物结合,同时IF2脱落,形成70S起始复合物,即30S亚基-mRNA-50S亚基-fMer-tRNA Met复合物.此时fMet-tRNA Met占据着50S亚基的肽酰位(peptidyl site,简称为P位或给位),而50S的氨基酰(aminoacyl site,简称为A位或受位)暂为空位. 3.肽链合成的延长 这一过程包括进位、肽键形成、脱落和移位等步骤.肽链合成的延长需两种延长因子(Elongationfactor,简写为EF),分别称为EF-T和EF-G.此外尚需GTP供能加速翻译过程. ①进位 结合在mRNA上的fMet-tRNAiMet(或肽酰-tRNA)占着P位,新的氨酰-tRNA和EF-Tu及GTP形成的AA-tRNA·EF-Tu·GTP利用GTP水解的能量进入A位,并与mRNA上相应的密码子结合. EF-Tu·GDP由EF-Ts协助再生成EF-Tu·GTP. ②肽键形成 50S亚基上肽酰转移酶催化P位的肽(氨)酰-tRNA把肽(或氨酰基)转给A位的AA-tRNA,并以肽键相连.P位的氨基酸(或肽的C端氨基酸)的α-COOH基,与A位氨基酸的α-NH2形成肽链.催化肽键形成的是23SrRNA的肽酰转移酶活性. ③脱落 在A位上的tRNA负载着二肽酰基(或肽酰基),P位上成为无负载的tRNA脱落. ④移位 在EF-G协助下,由EF-G·GTP提供能量,核糖体构象改变,沿mRNA的5’→3’相对移动一个密码子距离,使下一个密码子定位于A位,原来处于A位上的肽酰tRNA转移到P位上,空出A位点. 再依次进位、形成肽键、脱落和移位循环返复,直到mRNA上的终止密码子进入A位,翻译终止. 肽链的延伸是从N端开始.延长过程每重复一次,肽链延伸一个氨基酸残基,多次重复使肽链增长到必要的长度. 4.肽链合成的终止(termination) 肽链合成的终止,需释放因子(releasing factor,RF)参与.原核生物的RF1识别UAA、UAG;RF2识别UAA、UGA,使肽链释放,核糖体解聚.

第十三章蛋白质的生物合成

第十三章蛋白质的生物合成 一、教学基本要求 解释翻译的概念。 写出蛋白质生物合成体系的组成,论述mRNA,tRNA和核蛋白的作用原理。 复述蛋白质生物合成过程。 简要写出真核与原核生物蛋白质合成异同及肽链合成后的加工过程。 解释分子病,并举例说明。 简要叙述蛋白质合成阻断剂作用原理。 二、教材内容精要 (一)蛋白质的生物合成: 1.蛋白质的生物合成的概念 在生物体细胞内,以mRNA为模板合成蛋白质多肽链的过程即蛋白质的生物合成。在蛋白质的生物合成过程中,多肽链的氨基酸顺序是模板mRNA中的核苷酸排列顺序决定的,因此这一过程又称翻译(translation)。 2.蛋白质的生物合成体系 除合成原料氨基酸外,蛋白质的生物合成体系还包括mRNA、tRNA核(糖核)蛋白体、有关的酶、蛋白质因子、ATP、GTP等功能物质及必要的无机离子。 (1)mRNA:它是蛋白质多肽链合成的模板。mRNA5′至3′方向,若有AUG开始,可以称为一个开放读码框架(open reading),读码框架内每3个核苷酸组成一个密码子,如AAA 或AAG代表赖氨酸;5′端第一个AUG表示起动信号(initiator codon),并代表甲酰蛋氨酸(细菌)或蛋氨酸(高等动物);UAA,UAG或UGA表示终止信号(terminator codon)。为氨基酸编码的密码子具有如下特点:①简并性(degenerate),即一个以上密码子体现一个氨基酸遗传信息的现象。②连续性(commaless),密码的三联体不间断,须3个一组连续读下去。③通用性(universal)从病毒、植物到人类,所有生物在蛋白质生物合成中都使用一套遗传密码。模板上的密码子可与tRNA的反密码子(anticodon)互补结合。 (2)tRNA及核(糖核)蛋白体:tRNA是氨基酸的运载体。一种tRNA可携带一种氨基酸;而一种氨基酸可由数种tRNA携带。tRNA反密码子与mRNA密码子第三个核苷酸配对时,除A-U,G-C外,还可有U-G,I-C,I-A等不稳定配对(wobble base pair)。核(糖核)蛋白体是多肽链的“装配机”。由大、小亚基组成,亚基又分别由不同的rRNA分子与多种蛋白质分子构成。原核小亚基为30S,真核为40S;原核大亚基为50S,真核为60S。整个原核核(糖核)蛋白体大小为70S,真核为80S。在细胞内,一类核(糖核)蛋白体附着于内质网,参与分泌蛋白质的合成;另一类游离于胞质中。 (3)蛋白质因子:现以原核生物中蛋白质生物合成为例,介绍参与这一过程的蛋白质因子。A1:启动因子(initiation factor)参与起动。 ①IF1:促使携带氨基酰的起动tRNA与小亚基结合。 ②IF2:功能同上,并有GTP酶活性。 ③IF3:促进小亚基与mRNA特异结合;在终止阶段后促使脱落的核蛋白体解离为大、小亚基。 B1:延长因子(elongation factor)。 ④EFTu和EFTs延长因子(elongation factor)作用于肽链延长阶段。促进氨基酰-tRNA 进人核蛋白体的“受位”(acceptorsate),具有GTP酶活性。 ⑤EFG作用于肽链延长阶段。具有GTP酶活性,使转肽后失去肽链或蛋氨酰-tRNA从“给位”(donor site)上脱落,并促进移动。

(高三生物核心素养教案) 蛋白质和核酸

第3讲蛋白质和核酸 一、考纲要求: 蛋白质的结构和功能(Ⅱ)。 核酸的结构和功能(Ⅱ)。 实验:观察DNA、RNA在细胞中的分布。 二、教学目标: 1.说明氨基酸的结构特点,以及氨基酸形成蛋白质的过程。 2.概述蛋白质的结构和功能。 3.掌握和蛋白质相关的计算方法。 4.简述核酸的种类、结构和功能。 5.学会观察DNA、RNA在细胞中的分布。 三、教学重、难点: 1.教学重点: 氨基酸的结构特点,以及氨基酸形成蛋白质的过程。 蛋白质的结构和功能。 核酸的结构和功能。 糖类、脂质的种类和作用。 2.教学难点 氨基酸形成蛋白质的过程。 蛋白质的结构多样性的原因。 蛋白质的相关计算题。 核酸的结构和功能 观察DNA、RNA在细胞中的分布 四、课时安排:3课时 五、教学过程: 考点一蛋白质的结构、功能及相关计算(一)知识梳理: 1.组成蛋白质的氨基酸及其种类 巧记“8种”必需氨基酸

甲(甲硫氨酸)来(赖氨酸)写(缬氨酸)一(异亮氨酸)本(苯丙氨酸)亮(亮氨酸)色(色氨酸)书(苏氨酸)。 2.蛋白质的合成及其结构、功能多样性 (1)二肽的形成过程 ①过程a :脱水缩合,物质b :二肽,结构c :肽键。 ②H 2O 中H 来源于氨基和羧基;O 来源于羧基。 (2)蛋白质的结构层次 氨基酸――→脱水缩合多肽――→盘曲、折叠 蛋白质 小贴士 蛋白质的盐析、变性和水解 (1)盐析:是由溶解度的变化引起的,蛋白质的空间结构没有发生变化。 (2)变性:是由于高温、过酸、过碱、重金属盐等因素导致的蛋白质的空间结构发生了不可逆的变化,肽链变得松散,丧失了生物活性,但是肽键一般不断裂。 (3)水解:在蛋白酶作用下,肽键断裂,蛋白质分解为短肽和氨基酸。水解和脱水缩合的过程相反。 3.蛋白质分子多样性的原因 (1)氨基酸???? ? ①种类不同②数目成百上千③排列顺序千变万化 (2)肽链的盘曲、折叠方式及其形成的空间结构千差万别。 4.蛋白质的功能(连线) 拓展: 下图表示蛋白质的结构层次示意图,据图分析: (1)组成蛋白质的化学元素中通常含有S ,S 元素在b 中存在于哪部分?

蛋白酶体

蛋白酶体 蛋白酶体(Proteasome)是一种巨型蛋白质复合物,主要作用是通过打断肽键来实现降解 细胞不需要的或受到损伤的蛋白质。 简介

蛋白酶体在真核生物和古菌中普遍存在,在一些原核生物中也存在。在真核生物中,它位于细胞核和细胞质中。[1] 能够发挥这一作用的酶被称为蛋白酶。蛋白酶体是细胞用来调控特定蛋白质的浓度和除去错误折叠蛋白质的主要机制。经过蛋白酶体的降解,蛋白质被切割为约7-8个氨基酸长的肽段;这些肽段可以被进一步降解为单个氨基酸分子,然后被用于合成新的蛋白质。[2] 反应过程 需要被降解的蛋白质会先被一个称为泛素的小型蛋白质所标记(即连接上)。这一标记反应是被泛素连接酶所催化。一旦一个蛋白质被标记上一个泛素分子,就会引发其它连接酶加上更多的泛素分子;这就形成了可以与蛋白酶体结合的“多泛素链”,从而将蛋白酶体带到这一标记的蛋白质上,开始其降解过程。[2] 分子结构 从蛋白质结构上看,蛋白酶体是一个桶状的复合物,[3] 包括一个由四个堆积在一起的环所组成的“核心”(右图中蓝色部分),核心中空,形成一个空腔。其中,每一个环由七个蛋白质分子组成。中间的两个环各由七个β亚基组成,并含有六个蛋白酶的活性位点。这些位点位于环的内表面,所以蛋白质必须进入到蛋白酶体的“空腔”中才能够被降解。外部的两个环各含有七个α亚基,可以发挥“门”的作用,是蛋白质进入“空腔”中的必由之路。这些α亚基,或者说“门”,是由结合在它们上的“帽”状结构(即调节颗粒,右图中红色部分)进行控制;调节颗粒可以识别连接在蛋白质上的多泛素链标签,并启动降解过程。包括泛素化和蛋白酶体降解的整个系统被称为“泛素-蛋白酶体系统”。 作用 蛋白酶体降解途径对于许多细胞进程,包括细胞周期、基因表达的调控、氧化应激反应等,都是必不可少的。2004年诺贝尔化学奖的获奖主题就是蛋白质酶解在细胞中的重要性和泛素在酶解途径的作用,而三位获奖者为阿龙·切哈诺沃、阿夫拉姆·赫什科和欧文·罗斯。 [4] 发现 在发现泛素-蛋白酶体系统之前,细胞中的蛋白质降解被认为主要依赖于溶酶体,一种膜包裹的囊状细胞器,内部为酸性环境且充满了蛋白酶,可以降解并回收外源蛋白质以及衰老或损伤的细胞器。[2] 然而,在对网织红血球的研究中发现,在缺少溶酶体的情况下,ATP依赖的蛋白质降解依然能够发生;这一结果提示,细胞中存在另一种蛋白质降解机制。1978年,一些研究者发现这一新的降解机制有多种不同的蛋白质参与,在当时被认为是新的蛋白酶。[5] 随后在对组蛋白修饰的研究工作中发现,组蛋白发生了意外的共价修饰:组蛋白上的一个赖氨酸残基与泛素蛋白C-端的甘氨酸残基之间形成了共价连接,但其对应的功能未知。[6] 而后又发现先前鉴定的一个参与新的降解机制的蛋白质,ATP依赖的蛋白质水解因子1(ATP-dependent proteolysis factor 1,APF-1),实际上就是泛素。[7]

蛋白-细胞核蛋白提取方法

提取细胞核蛋白的步骤: 1.向培养细胞的平皿中加入少量(保证在1.5ml TUBE内能放下)冷PBS(或1*D-Hanks) 2.,用细胞刮刀尽可能多的刮下细胞,收集到1.5ml的离心管中。 在预冷的离心机中,4度,1000rcf,1-3分钟,沉降细胞。 为尽可能多的获得细胞,可将一次离心后的上清再重复刮细胞一次; 2. 将细胞重悬于cell lysis buffer中(加入体积106细胞/200uL,体积估计方法还是没确 定,should be sufficient; 一般就是一个10cm平皿加1ml cell lysis buffer),添加蛋白酶抑 制剂;先破细胞膜,得到细胞核(没有用B DOUNCE); 冰上放置(不震荡,可偶尔用枪轻吹)30分钟至1小时(此时核膜没有破,有核染色为证),充分裂解; cell lysis buffer: 5mM PIPES pH 8.0 85mM KCL, 0.5% NP40, 1% protein inhibitor; 3. 4度,1000rcf,20分钟,上清为胞质蛋白(蛋白浓度比较低,如需要检测,建议先 浓缩一下),沉淀为细胞核; 此时可以将沉淀冻存于-70℃; 4. 将沉淀重悬于100-200 ul nucleai lysis buffer(体积视目的蛋白表达丰度而定,一般 50-100ul)中,添加蛋白酶抑制剂,冰上放置30分钟至1小时(每5分钟震荡一次),充分裂解;可以观察到沉淀慢慢消失,溶液变澄清; nucleai lysis buffer:成分同SDS lysis buffer; 50mM Tris-Cl pH 8.1, 10mM EDTA, 1% SDS, 1% protein inhibitor; 5. 四度,最大转速离心,10分钟以上(尽可能沉淀完全),上清即为细胞核蛋白; (此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容, 供参考,感谢您的配合和支持) 编辑版word

(完整版)蛋白质的性质和分类

蛋白质凭借游离的氨基和羧基而具有两性特征,在等电点易生成沉淀。不同的蛋白质等电点不同,该特性常用作蛋白质的分离提纯。生成的沉淀按其有机结构和化学性质,通过pH的细微变化可复溶。蛋白质的两性特征使其成为很好的缓冲剂,并且由于其分子量大和离解度低,在维持蛋白质溶液形成的渗透压中也起着重要作用。这种缓冲和渗透作用对于维持内环境的稳定和平衡具有非常重要的意义。 在紫外线照射、加热煮沸以及用强酸、强碱、重金属盐或有机溶剂处理蛋白质时,可使其若干理化和生物学性质发生改变,这种现象称为蛋白质的变性。酶的灭活,食物蛋白经烹调加工有助于消化等,就是利用了这一特性。 (二)蛋白质的分类 简单的化学方法难于区分数量庞杂、特性各异的这类大分子化合物。通常按照其结构、形态和物理特性进行分类。不同分类间往往也有交错重迭的情况。一般可分为纤维蛋白、球状蛋白和结合蛋白三大类。 1.纤维蛋白包括胶原蛋白、弹性蛋白和角蛋白。 (1) 胶原蛋白胶原蛋白是软骨和结缔组织的主要蛋白质,一般占哺乳动物体蛋白总量的30%左右。胶原蛋白不溶于水,对动物消化酶有抗性,但在水或稀酸、稀碱中煮沸,易变成可溶的、易消化的白明胶。胶原蛋白含有大量的羟脯氨酸和少量羟赖氨酸,缺乏半胱氨酸、胱氨酸和色氨酸。 (2) 弹性蛋白弹性蛋白是弹性组织,如腱和动脉的蛋白质。弹性蛋白不能转变成白明胶。 (3) 角蛋白角蛋白是羽毛、毛发、爪、喙、蹄、角以及脑灰质、脊髓和视网膜神经的蛋白质。它们不易溶解和消化,含较多的胱氨酸(14-15%)。粉碎的羽毛和猪毛,在15-20磅蒸气压力下加热处理一小时,其消化率可提高到70-80%,胱氨酸含量则减少5-6%。 2.球状蛋白 (1) 清蛋白主要有卵清蛋白、血清清蛋白、豆清蛋白、乳清蛋白等,溶于水,加热凝固。 (2) 球蛋白球蛋白可用5-10%的NaCl溶液从动、植物组织中提取;其不溶或微溶于水,可溶于中性盐的稀溶液中,加热凝固。血清球蛋白、血浆纤维蛋白原、肌浆蛋白、豌豆的豆球蛋白等都属于此类蛋白。 (3) 谷蛋白麦谷蛋白、玉米谷蛋白、大米的米精蛋白属此类蛋白。不溶于水或中性溶液,而溶于稀酸或稀碱。 (4) 醇溶蛋白玉米醇溶蛋白、小麦和黑麦的麦醇溶蛋白、大麦的大麦醇溶蛋白属此类蛋白。不溶于水、无水乙醇或中性溶液,而溶于70-80%的乙醇。 (5) 组蛋白属碱性蛋白,溶于水。组蛋白含碱性氨基酸特别多。大多数组蛋白在活细胞中与核酸结合,如血红蛋白的珠蛋白和鲭鱼精子中的鲭组蛋白。 (6) 鱼精蛋白鱼精蛋白是低分子蛋白,含碱性氨基酸多,溶于水。例如鲑鱼精子中的鲑精蛋白、鲟鱼的鲟精蛋白、鲱鱼的鲱精蛋白等。鱼精蛋白在鱼的精子细胞中与核酸结合。 球蛋白比纤维蛋白易于消化,从营养学的角度看,氨基酸含量和比例也较纤维蛋白更理想。 3. 结合蛋白 结合蛋白是蛋白部分再结合一个非氨基酸的基团(辅基)。如核蛋白(脱氧核糖核蛋白、核糖体),磷蛋白(酪蛋白、胃蛋白酶),金属蛋白(细胞色素氧化酶、铜蓝蛋白、黄嘌呤氧化酶),脂蛋白(卵黄球蛋白、血中β1-脂蛋白),色蛋白(血红蛋白、细胞色素C、黄素蛋白、视网膜中与视紫质结合的水溶性蛋白)及糖蛋白(γ球蛋白、半乳糖蛋白、甘露糖蛋白、氨基糖蛋白)。

蛋白质生物合成习题

蛋白质生物合成 选择题 A型题 1.蛋白质合成体系中不含下列哪一种物质 A.mRNA B.DNA C.核蛋白体 D.氨基酸 E.tRNA 2.各种蛋白质分子中氨基酸的排列顺序是由下列哪种因素决定的? A.mRNA分子中的单核苷酸排列顺序氨基酸的种类 C.tRNA D.氨基酰-tRNA合成酶 E.rRNA 3.氨基酸活化需要哪种酶参加? A. -氨基酸激酶 B.氨基酰-tRNA合成酶 C.磷酸酶 D.ATP酶 E.ATP合成酶 4.蛋白质合成的部位主要是在细胞的 A.线粒体 B.内质网 C,细胞核

D.核仁 E.细胞质 5.终止密码子一共有3个,它们是 A.AAA、CCC、GGG B.AUG、UGA、GAU C.UAA、CAA、GAA D.UUU、UCC、UGG E.UAA、UAG、UGA 6.能出现在蛋白质分子中的下列氨基酸,哪种没有遗传密码? A.色氨酸 B.蛋氨酸 C.谷氨酸 D.脯氨酸 E.羟脯氨酸 7.不出现于蛋白质中的氨基酸是 A.半胱氨酸 B.胱氨酸 C.瓜氨酸 D.精氨酸 E.赖氨酸 8.mRNA模板没有胱氨酸的密码子,多肽链的二硫键是由 A.蛋氨酸转变来 B.S-腺苷甲硫氨酸转变 C.两个半胱氨酸的基氧化而成

D.丝氨酸的羟基被二硫键取代 E.甘氨酸巯基化 9.下列哪一种酶是蛋白质生物合成过程中必需的A.DNA聚合酶 B.RNA聚合酶 C.引物酶 D.氨基酰-tRNA合成酶 E.连接酶 10.有关蛋白质合成的错误叙述是 A.氨基酸需要活化 B.需三种RNA参与 C.需以DNA作为模板 D.需有Mg2+、K+参与 E.氨基酸活化需要消耗ATP 11.有关真核生物蛋白质合成的叙述哪一项是正确的 A.核蛋白体上合成的多肽链均具有生物学活性 B.所需能量均由ATP供给 C.合成的多肽链需加工修饰后才有活性 D.在细胞核内合成 E.以上均不是 12.下列有关遗传密码的叙述中哪项是错误的 A.密码有简并性 B.密码无标点符号 C.有终止密码和起始密码

P0033 细胞膜蛋白与细胞浆蛋白提取试剂盒

细胞膜蛋白与细胞浆蛋白抽提试剂盒 产品简介: 碧云天的细胞膜蛋白与细胞浆蛋白抽提试剂盒(Membrane and Cytosol Protein Extraction Kit)提供了一种比较简单、方便地从培养细胞或组织中抽提细胞膜蛋白和细胞浆蛋白的方法。抽提的膜蛋白不仅包括质膜上的膜蛋白,也包括线粒体膜、内质网膜和高尔基体膜等上的膜蛋白。 本试剂盒通过匀浆适度破碎细胞,经低速离心去除细胞核和少数未破碎的细胞产生的沉淀,随后取上清高速离心获得细胞膜沉淀和含有细胞浆蛋白的上清,然后通过优化的膜蛋白抽提试剂从沉淀中抽提获取膜蛋白。 约90分钟即可完成培养细胞或组织的细胞膜蛋白与细胞浆蛋白的分离和抽提。抽提得到的蛋白可以用于SDS-PAGE,Western、酶活性测定等后续实验。 膜蛋白抽提试剂中含有蛋白酶抑制剂、磷酸酯酶抑制剂和EDTA等,后续不适合用于蛋白酶、磷酸酯酶等受这些抑制剂影响的酶的活性测定,但抽提获得的膜蛋白或细胞浆蛋白适合用于检测蛋白的磷酸化水平。 本试剂盒按照本说明书的操作步骤可以抽提100个细胞或组织样品。 保存条件: -20℃保存,一年有效。 注意事项: 需自备PMSF。PMSF一定要在抽提试剂加入到样品中前2-3分钟内加入,以免PMSF在水溶液中很快失效。 PMSF(ST506)可以向碧云天订购。 使用本试剂盒抽提到的细胞膜蛋白与细胞浆蛋白均可直接用碧云天生产的BCA法蛋白浓度测定试剂盒(P0009/P0010/P0010S/P0011/P0012/P0012S)测定蛋白浓度。抽提获得的细胞膜蛋白不适合用Bradford法测定蛋白浓度。 为了您的安全和健康,请穿实验服并戴一次性手套操作。 使用说明: 1.准备试剂:室温融解并混匀膜蛋白抽提试剂A和B,融解后立即置于冰浴上。取适量的膜蛋白抽提试剂A和B备用,在 使用前数分钟内加入PMSF,使PMSF的最终浓度为1mM。 2.准备细胞或组织样品: a. 对于细胞 (1) 收集细胞 对于贴壁细胞:培养约2000-5000万细胞,用PBS洗一遍,用细胞刮子刮下细胞或用含有EDTA但不含胰酶的细胞消化液处理细胞使细胞不再贴壁很紧,并用移液器吹打下细胞。离心收集细胞,吸除上清,留下细胞沉淀备用。尽量避免用胰酶消化细胞,以免胰酶降解需抽提的目的膜蛋白。 对于悬浮细胞:培养约2000-5000万细胞,直接离心收集细胞,吸除上清,留下细胞沉淀备用。 (2) 洗涤细胞:用适量冰浴预冷的PBS轻轻重悬细胞沉淀,取少量细胞用于计数,剩余细胞4℃,600g离心5分钟沉淀 细胞。弃上清,随后4℃,600g离心1分钟,以沉淀离心管管壁上的残留液体并进一步沉淀细胞,尽最大努力吸尽残留液体。 (3) 细胞预处理:把1毫升临用前添加了PMSF的膜蛋白抽提试剂A加入至2000-5000万细胞中,轻轻并充分悬浮细胞, 冰浴放置10-15分钟。 b. 对于组织: 取约100毫克组织,用剪刀尽量小心剪切成细小的组织碎片。加入1毫升临用前添加了PMSF的膜蛋白抽提试剂A,轻轻悬浮组织碎片,冰浴放置10-15分钟。注:如果组织样品比较少,也可以使用更少的组织量,例如30-50mg,后续试剂的用量及操作步骤不变;组织用量较少时,最后获得的膜蛋白也较少。

核心考点一:蛋白质

核心考点复习一: 蛋白质 一、感悟真题,把握考向 【例1】(2013·全国课标卷Ⅰ·第1题)关于蛋白质生物合成的叙述,正确的是()A.一种tRNA可以携带多种氨基酸 B.DNA聚合酶是在细胞核中合成的 C.反密码子是位于mRNA上相邻的三个碱基 D.线粒体中的DNA能控制某些蛋白质的合成 【例2】(2012·全国课标卷Ⅰ·第1题)同一物种的两类细胞各产生一种分泌蛋白,组成这两种蛋白质的各种氨基酸含量相同,但排列顺序不同,其原因是参与这两种蛋白质合成的() A.tRNA种类不同B.mRNA碱基序列不同 C.核糖体成分不同D.同一密码子所决定的氨基酸不同 【例3】(2013·江苏生物·第20题)下面关于蛋白质分子结构与功能的叙述,错误 ..的是A.不同蛋白质含有的氨基酸数量不尽相同 B.有些结构不同的蛋白质具有相似的功能 C.组成蛋白质的氨基酸可按不同的排列顺序脱水缩合 D.组成蛋白质的氨基酸之间可按不同的方式脱水缩合 【例4】(2013·浙江卷·第3题)某生物基因表达过程如图所示。下列叙述与该图相符的 是() A.在RNA聚合酶作用下DNA双螺旋解开 B.DNA-RNA杂交区域中A应与T配对 C.mRNA翻译只能得到一条肽链 D.该过程发生在真核细胞中 二、明确规律,有的放矢 全国新课标卷,2011年没有考查;2012年考查了基因指导分泌蛋白合成过程的相关知识,与2013年有相似性。关注蛋白质的元素组成、氨基酸脱水缩合过程、蛋白质结构和功能的多样性、分泌蛋白合成运输过程、转录等未考内容。 三、再现考点,回归课本 请您回想蛋白质的相关考点,完成下面概念图。若有记不全的请阅读《必修1》20面《蛋白质》、48面《分泌蛋白的合成和运输》、《必修2》62面《基因指导蛋白质的合成》

原核生物蛋白质合成的过程

蛋白质合成的过程 蛋白质生物合成的具体步骤包括:①氨基酸的活化;②活化氨基酸的转运;③活化氨基酸在核蛋白体上的缩合。 (一)氨基酸的活化转运 氨基酸的活化过程及其活化后与相应tRNA的结合过程,都是由氨基酰tRNA合成酶来催化的,反应方程为:tRNA+氨基酸+ATP〖FY(KN〗氨基酰tRNA合成酶〖FY)〗氨基酰-tRNA+AMP+焦磷酸。以氨基酰tRNA形式存在的活化氨基酸,即可投入氨基酸缩合成肽的过程。氨基酰tRNA合成酶存在于胞液中,具有高度特异性。它们既能识别特异的氨基酸,又能辨认携带该种氨基酸的特异tRNA分子。在体内,每种氨基酰tRNA合成酶都能从多种氨基酸中选出与其对应的一种,并选出与此氨基酸相应的特异tRNA。这是保证遗传信息准确翻译的要点之一。 (二)核蛋白体循环 tRNA所携带的氨基酸,是通过“核蛋白体循环”在核蛋白体上缩合成肽,完成翻译过程的。以原核生物中蛋白质合成为例,将核蛋白体循环人为地分为启动、肽链延长和终止三个阶段进行介绍。 1.启动阶段 在蛋白质生物合成的启动阶段,核蛋白体的大、小亚基,mRNA与一种具有启动作用的氨基酸tRNA共同构成启动复合体。这一过程需要一些称为启动因子的蛋白质以及GTP 与镁离子的参与。 原核生物中的启动因子有3种,IF 1辅助另外两种启动因子IF 2、IF 3起作用。 启动阶段的具体步骤如下: (1)30S亚基在IF 3与IF 1的促进下与mRNA的启动部位结合,在IF 2的促进与IF 1辅助下与甲酰蛋氨酰tRNA以及GTP结合,形成30S启动复合体。 30S启动复合体由30S亚基、mRNA、fMet-tRNA fMet IF 1、IF 2、IF 3与GTP共同构成。 (2)30S启动复合体一经形成,IF 3即行脱落,50S亚基随之与其结合,形成了大、小亚基,mRNA,fMet-tRNA fMet IF 1、IF 2与GTP共同构成的70S启动前复合体。 (3)70S启动前复合体的GTP水解释出GDP与无机磷酸的同时,IF 2和IF 1随之脱落,形成了启动复合体。至此,已为肽链延长作好了准备。 启动复合体由大、小亚基,mRNA与fMet-tRNA fMet 已知核蛋白体上有两个位置,分别称为“给位”与“受位”,启动复合体中mRNA的启动信号相对应的fMet-tRNA fMet亦即处于核蛋白体的给位。 2.肽链延长阶段 这一阶段,根据mRNA上密码子的要求,新的氨基酸不断相应的被特异的tRNA运至核蛋白体受位,形成肽键。同时,核蛋白体从mRNA的5′端向3′端不断移位推进翻译过程。肽链延长阶段需要数种称为延长因子的蛋白质、GTP与某些无机离子的参与。 (1)进位 受位上mRNA密码子相对应的氨基酸tRNA进入受位,生成复合体V。此步骤需要GTP、Mg 2+和称为肽链延长因子EFTu与EFTs的蛋白质因子。 (2)转肽 50S亚基的给位有转肽酶的存在,可催化肽键形成。此时在转肽酶的催化下,将给位上tRNA所携的甲酰蛋氨酰(或肽酰)转移给受位上已特异性进入的氨基酸tRNA,与其所带的氨基酸的氨基结合形成肽键。此酶需要Mg 2+与K 2+存在。 (3)脱落

细胞膜的结构和功能

一、细胞膜的结构和功能 (一)基础扫描 1、生物体结构和功能的基本单位是,阐明细胞是一切动植物生命活动的基本单位的理论观点是。判断:细胞是生物体结构和功能的基本单位() 细胞是一切生物体结构和功能的基本单位()细胞是一切动植物结构和功能的基本单位()2、细胞的原核细胞:没有,如、细菌、蓝藻、放线菌 类型真核细胞:有,如绝大多数生物(酵母菌、衣藻、草履虫、变形虫)判断:①成熟的哺乳动物的红细胞,因为没有细胞核,所以是原核细胞() ②生物界可能存在这样的生物:体内既有原核细胞,又有真核细胞() 3、细胞膜的成分:含有、和,其中,和是主要成分 4、细胞膜的分子结构:层磷脂分子形成磷脂双分子层,是细胞膜的基本支架(磷脂分子的头部是的,因此在表面;尾部是的,因此在中间);蛋白质以不同深度结合在磷脂双分子层上。 5、细胞膜的膜外结构:糖被(由组成),消化道和呼吸道上皮细胞表面的糖被有 和作用;糖被还与有关。(请课后试绘:细胞膜结构模式图)结构特点是:构成细胞膜的磷脂和蛋白质分子不是静止的,而是流动的6、细胞膜生理特性是:即水分子能自由通过(自由扩散)、细胞要选择吸收的离 的特点子(主动运输)、小分子(O2、CO2、甘油、乙醇、苯是自由扩散,葡萄糖除 进入红细胞以外是主动运输,氨基酸是主动运输)也可以通过,而其他的 离子、小分子、大分子则不能通过(指细胞膜总量不变的情况下) 7、细胞壁:在植物细胞外表面有一层细胞壁,主要成分是和,起支持和保护作用,是全透性结构;一般的原核细胞的表面也有一层细胞壁,主要成分是。 判断:在由细胞构成的生物中,只有人和动物的细胞外面才没有细胞壁() 8、细菌细胞的基本结构有:、、、 细菌细胞的特殊结构有:、、

第二章细胞膜 蛋白质 知识点

3月10日复习题 1、细胞膜的三大主要成分?(脂质、蛋白质、糖类) 2、三大物质谁占的比重最多?(蛋白质) 解析:在细胞膜内蛋白质占比55%,磷脂战脂质的70%。 3、蛋白质功能?(传递物质、传递信息、能量转化) 4、细胞膜外表面糖链可作为 A、离子通道 B、抗原决定簇 C、膜受体可识别部分 D、糖跨膜转运载体 5、氧气肺泡进入血液的方式? A、易化扩散 B、主动转运 C、两者都是 D、两者都不是 6、氧气和氨气在体内跨细胞膜转运的方式? A、单纯扩散 B、易化扩散 C、胞吞或胞吐 D、原发性主动转运 E、继发性主动转运 7、肾小管上皮细胞分泌氨需要? A、钠泵 B、载体 C、两者皆是 D、两者皆不是 8、什么分子可以单纯扩散?(水、乙醇、尿素、气体、脂溶性物质等) 9、什么物质通过通道扩散?(带电离子) 10、钠离子的转运方式?(易化扩散和主动转运) 11、葡萄糖从血液进入脑细胞是那种方式?(易化扩散) 12、葡萄糖跨肠上皮刷状缘进入细胞的模式? A、单纯扩散 B、易化扩散 C、原发性主动运输 D、继发性主动运输 解析:一般的葡萄糖从血液、或者细胞外液进入细胞都是顺浓度,故是易化扩散,从肠腔进入上皮细胞则是逆浓度,故是继发性主动运输。上皮细胞常常是逆浓度的。 14、饱和现象会出现在具有载体也就是蛋白质存在的转运中,但通道的易化扩散不会有饱和现象出现。 15、钠钾泵是3个钠离子出,2个钾离子进。意义是? 1)、细胞内高钾,维持生理 2)、细胞外高钠,维持体积 3)、形成电势差

16、细胞膜内外钠离子和钾离子浓度差的形成和维持是由于? A、膜在安静时钾离子通透性大 B、膜在兴奋时钠离子通透性增加 C、钠离子和钾离子易化扩散的结果 D、膜上钠钾泵的作用 E、膜上ATP的作用

真核细胞内蛋白质的降解途径

真核细胞内蛋白质的降解途径 作者:valley 日期:2009-3-9 11:13:00 1 推荐 真核细胞内蛋白质的降解途径主要有三种,溶酶体途径、泛素化途径和胱天蛋白酶(caspase)途径。 1、溶酶体途径:蛋白质在同酶体的酸性环境中被相应的酶降解,然后通过溶酶体膜的载体蛋白运送至细胞液,补充胞液代谢库。胞内蛋白:胞液中有些蛋白质的N端含有KFERQ信号,可以被HSC70识别结合,HSC70帮助这些蛋白质进入溶酶体,被蛋白水解酶降解。胞外蛋白:通过胞吞作用或胞饮作用进入细胞,在溶酶体中降解。 2、泛素-蛋白水解酶途径:一种特异性降解蛋白的重要途径,参与机体多种代谢活动,主要降解细胞周期蛋白Cyclin、纺锤体相关蛋白、细胞表面受体如表皮生长因子受体、转录因子如NF-KB、肿瘤抑制因子如P5 3、癌基因产物等;应激条件下胞内变性蛋白及异常蛋白也是通过该途径降解。该通路依赖ATP,有两步构成,即靶蛋白的多聚泛素化?多聚泛素化的蛋白质被26S蛋白水解酶复合体水解。 (1)、物质基础: 泛素(ubiquitin):一种76个氨基酸组成的蛋白质,广泛存在于真核生物中,又称遍在蛋白。在一系列酶的作用下被转移到靶蛋白上,介导靶蛋白的降解。 蛋白水解酶(proteasome):识别、降解泛素化的蛋白质的复合物,由30多种蛋白质及酶组成,其沉降系数为26S,又称26S蛋白酶体,由20S的圆柱状催化颗粒和19S的盖状调节颗粒组成,是一个具有胰凝乳蛋白酶、胰蛋白酶、胱天蛋白酶等活性的多功能酶。所有蛋白酶体的活性中心都含有Thr残基。经泛素化的底物蛋白可以被26S蛋白酶体的盖状调节颗粒识别,并被运送到20S的圆柱状核心内,在多种酶的作用下水解为寡肽,最后从蛋白酶体中释放出来。泛素则在去泛素化酶的作用下与底物解离后回到胞质重新利用。 (2)、具体过程: ①靶蛋白的多聚泛素化:泛素激活酶E1利用ATP在泛素分子C端Gly残基与其自身的半胱氨酸的SH间形成高能硫脂键,活化的泛素再被转移到泛素结合酶E2上,在泛素连接酶E3的作用下,泛素分子从E2转移到靶蛋白,与靶蛋白的Lys的ε-NH2形成异肽键,接着下一个泛素分子的C-末端连接到前一个泛素的lys48上,完成多聚泛素化(一般多于4个) ②多聚泛素化的蛋白质被26S蛋白水解酶复合体水解:经泛素化的底物蛋白可以被26S蛋白酶体的盖状调节颗粒识别,并被运送到20S的圆柱状核心内,在多种酶的作用下水解为寡肽,最后从蛋白酶体中释放出来。泛素则在去泛素化酶的作用下与底物解离后回到胞质重新利用。 3、胱天蛋白酶(caspase)途径:细胞凋亡的蛋白质降解途径。 Caspase的含义指该类蛋白酶的活性部位为极为保守的半胱氨酸(cysteine)及特异性切割底物的天冬氨酸(aspase),简称caspase。根据其具体功能分为调控caspase(caspase1,2,4,5,8,9,10)和效应caspase(caspase3,6,7,11)。 Caspase以酶原形式存在于正常细胞中,细胞凋亡启动后被激活。一条途径是由死亡信号分子和受体结合后的

简单实用的核蛋白提取方法

Subject: Nuclear(核) Protein Extraction Materials: Tissue(liver, spleen, testis, etc), CHB, CRB, PBS, 10% NP40 Centrifuge, Eppendorf tube, Micropipette, tip Methods ①Sacrifice the mice by cervical dislocation. ②Pick the organ and put it into the vials(CryoTube) . ③Add 700 ?of PBS and Homogenization. ④Centrifuge (4000rpm, 5 min, RT) ⑤Aspirate supernatant, resuspend the tissue pellet in (5×volume of pellet) CHB. ⑥Incubate it on ice for 10min. ⑦Centrifuge (4000rpm, 10 min, RT) ⑧Aspirate supernatant. ⑨Resuspend tissue pellet in (3×volume of pellet) CHB-NP40.(10%NP40 : 1?/100?) ⑩Vortexing and pumping(30 times) ?Centrifuge (4000rpm, 10 min, 4℃) ?Remove the supernatant into a EP-tube and then put it into a -20℃freezer. (Cytoplasm ) ?Resuspend the pellet : Add 200?of CRB + 12?of 5M NaCl by gently pipetting. ?Incubate it on ice for 30 min. ?Centrifuge (12000rpm, 10 min, 4℃)

核蛋白和胞浆蛋白提取试剂盒

凯基核蛋白和胞浆蛋白提取试剂盒 Cat Number:For Research Use Only Store at -20℃ for one year Expire date: 一、 试剂盒说明 本试剂盒用于从哺乳动物组织和培养细胞中提取核蛋白和/或胞浆蛋白,提取制备过程简便。制备的核蛋白和胞浆蛋白能保持天然活性,并且纯度较高。提取的蛋白可用于进一步的转录因子活性分析、凝胶阻滞实验(gel shift assay)、免疫共沉淀、Western Blotting、酶活性测定等后续蛋白质研究。 二、 试剂盒组份 组份 KGP150 (50 test) KGP1100 (100 test) 储存温度 Buffer A 25 mL 25 mL ×2 4℃ Buffer B 1.5 mL 3.0 mL 4℃ Buffer C 12.5 mL 25 mL 4℃ DTT 50μL 100μL -20℃ 蛋白酶抑制剂 250μL 500μL -20℃ PMSF(100mM)400μL 800μL -20℃ 三、操作步骤 Ⅰ 实体组织蛋白的提取 1、组织样本,将组织剪切成小块,加入适量的冰冷PBS均浆后,静置5 min ,弃沉淀,小心吸取上清转移至另一 离心管中; 2、上清4℃离心500×g,3 min,弃上清,估计细胞压积PCV(离心后的紧实细胞体积); 3、每20μL细胞压积中,加入200μL预冷的Buffer A【使用前每mL Buffer A加入1μL DTT,5μL 100mM PMSF, 5μL蛋白酶抑制剂】,最大转速涡旋剧烈振荡15s,放置冰上10~15min; 4、加入11μL冷Buffer B,最大转速涡旋剧烈振荡5s,放置冰上1min; 5、再次最大转速涡旋剧烈振荡5s后, 4℃离心,16000×g,5min; 6、尽快将上清转入另一预冷的洁净微量离心管,置于冰上,即得胞浆蛋白; 7、在离心沉淀物(细胞核)中加入100μL预冷的Buffer C (使用前每mL Buffer C加入1μL DTT,5μL 100mM PMSF, 5μL蛋白酶抑制剂),最大转速涡旋剧烈振荡15s,放置冰上40min,每间隔10 min涡旋剧烈振荡15 seconds; 8、4℃离心,16000×g,,10min,尽快将上清转入一预冷的洁净微量离心管,即得核蛋白; 9、上述提取的胞浆蛋白和核蛋白进行蛋白定量(Braford法或BCA法),分装并保存于-80℃,避免反复冻融。 Ⅱ 培养细胞蛋白提取 1、取培养细胞5×106~1×107个/mL,4℃离心,500×g,3 min收集细胞,弃去培养液,用预冷的PBS洗涤两遍; 2、用移液枪尽可能取去上清,勿留残液,估计细胞压积PCV(离心后的紧实细胞体积); 3、每20μL细胞压积中,加入200μL预冷的Buffer A【使用前每mL Buffer A加入1μL DTT,5μL 100mM PMSF, 5μL蛋白酶抑制剂】,最大转速涡旋剧烈振荡15s,放置冰上10~15min; 4、加入11μL冷Buffer B,最大转速涡旋剧烈振荡5s,放置冰上1min; 5、再次最大转速涡旋剧烈振荡5s后, 4℃离心,16000×g,5min; 6、尽快将上清转入另一预冷的洁净微量离心管,置于冰上,即得胞浆蛋白; 7、在离心沉淀物(细胞核)中加入100μL预冷的Buffer C (使用前每mL Buffer C加入1μL DTT,5μL 100mM PMSF,

相关主题