搜档网
当前位置:搜档网 › 基于小波包变换的人工地震波合成

基于小波包变换的人工地震波合成

基于小波包变换的人工地震波合成
基于小波包变换的人工地震波合成

基于卷积型小波包变换的谱线自动提取方法

第26卷,第2期 光谱学与光谱分析Vol 126,No 12,pp3722376 2006年2月 Spectroscopy and Spectral Analysis February ,2006  基于卷积型小波包变换的谱线自动提取方法 刘中田1,吴福朝1,罗阿里2,赵永恒2 1.中国科学院自动化研究所模式识别国家重点实验室,北京 100080 2.中国科学院国家天文台,北京 100012 摘 要 天体光谱中的谱线包含重要的天体物理信息。文章提出一种基于卷积型小波包变换的谱线自动提 取方法。该方法由以下主要步骤组成:(1)将观测光谱进行4层卷积型小波包变换;(2)对第四层小波包系数,采用区域相关算法以及阈值处理方法进行噪声处理;(3)选择中高频小波包系数进行谱线特征重构;(4)根据重构后的谱线特征,利用谱线搜索方法,在观测光谱中提取谱线。作者在实验中用恒星、正常星系和活动星系光谱进行谱线提取测试,结果表明该方法具有对噪声鲁棒和谱线提取准确等特点。用该方法提取sloan digital sky survey (SDSS )光谱中的谱线后,计算了红移并与SDSS 给出的红移进行了对比,实验结果间接验证了该方法提取谱线的有效性。 主题词 卷积型小波包;区域相关算法;天体光谱;谱线提取中图分类号:TN91117 文献标识码:A 文章编号:100020593(2006)022*******  收稿日期:2004212228,修订日期:2005205228  基金项目:国家“863”计划(2003AA133060)和国家自然科学基金(60402041)资助项目 作者简介:刘中田,1979年生,中国科学院自动化研究所博士研究生 引 言 谱线提取在光谱分析中起着非常重要的作用[1],作为一种预处理手段,对基于谱线的光谱分类有着直接的影响。以往的谱线提取方法多是以人工参与的半交互方式进行的,常用的天文软件如MIDS ,FIGARO 和IRA F 都是如此。这些处理方法需要借助专家知识来标定谱线的位置,既费时也费力。目前我国正在建造的大天区面积多目标光纤光谱望远镜(简称L AMOST ),建成后每个观测夜可以得到2万~4万条天体光谱,面对如此巨大的海量数据,采用自动的光谱分析方法已成为必然的选择[1]。本文旨在为L AMOST 光谱分析和分类系统研究可靠的光谱谱线提取方法。 由于各种天体光谱的形态不同,再加上连续谱和噪声的影响,自动提取谱线是一项相当困难的工作。自动提取谱线一般的思路是先拟合连续谱,再对光谱归一化,然后进行去噪处理。由于连续谱的物理成因比较复杂,再加上观测设备(望远镜,仪器等)内部参数的影响,使得人们很难得到连续谱的准确模型。以往的连续谱拟合方法如中值滤波方法、多项式插值法以及小波变换方法都是通过对光谱作了一定程度的平滑而实现的,因此拟合出来的连续谱在强谱线附近不够准确,降低了谱线提取的精度[1,2]。赵瑞珍采用小波变换零交叉点方法[2],可以提取出比较准确的发射线或吸收线,但对于既含吸收线又含发射线的光谱,不能同时提取出两种谱 线。另外由于该方法直接对光谱的一阶小波变换的高频系数进行零交叉点搜索,这一搜索算法比较容易受噪声干扰,因此不适合低信噪比光谱的谱线提取。 本文研究了一种基于卷积型小波包变换的谱线自动提取方法。本文的主要特点有:在小波包域内结合了区域相关算法和阈值处理方法进行噪声处理;选择相应的小波包系数进行谱线特征重构;根据重构后的谱线特征,利用谱线搜索方法,在观测光谱中提取谱线。与小波变换零交叉点方法相比,本文方法利用小波包频带细化的特点,在小波包域内进行信噪分离,有效地减小了噪声对谱线提取的影响。另外本文方法可以同时提取出天体光谱中的吸收线和发射线。 1 卷积型小波包变换 多分辨分析可以对信号进行有效的时频分解,但由于其 尺度是按二进制变化的,所以在高频频段其频率分辨率较差。小波包分析能够为信号提供一种更加精细的分析方法[3] ,它将频带进行多层次划分,对多分辨分析没有细分的高频部分进一步分解,从而可以详细分析信号与噪声在中、高频方面的特征。一般的小波包变换算法,当分解层数较大时,各序列的数据长度就会变得很短,这对后续的数据处理很不利。文献[4]提出的卷积型小波包变换算法较好地解决

小波变换的基本原理

10.2小波变换的基本原理 地质雷达的电磁波信号和地震波信号都是非平稳随机时变信号,长期以来,因非平稳信号处理的理论不健全,只好将其作为平稳信号来处理,其处理结果当然不满意。近年来,随着科学技术的发展和进步,国内外学术界已将注意力转向非平稳随机信号分析与处理的研究上,其中非平稳随机信号的时频表示法是研究热点之一。在这一研究中,戈勃展开、小波变换、维格纳分布与广义双线性时频分布等理论发展起来,这些方法既可以处理平稳信号过程,也可以处理非平稳随机时变信号。 小波变换是上世纪80年代中后期逐渐发展起来的一种数学分析方法。1984年法国科学家J.M OLET在分析地震波的局部特性时首先使用了小波这一术语,并用小波变换对地震信号进行处理。小波术语的含义是指一组衰减震动的波形,其振幅正负相间变化,平均值为零,是具有一定的带宽和中心频率波组。小波变换是用伸缩和平移小波形成的小波基来分解(变换)或重构(反变换)时变信号的过程。不同的小波具有不同带宽和中心频率,同一小波集中的带宽与中心频率的比是不变的,小波变换是一系列的带通滤波响应。它的数学过程与傅立叶分析是相似的,只是在傅立叶分析中的基函数是单频的调和函数,而小波分析中的基函数是小波,是一可变带宽内调和函数的组合。 小波变换在时域和频域都具有很好的局部化性质,较好地解决了时域和频域分辨率的矛盾,对于信号的低频成分采用宽时窗,对高频成分采用窄时窗。因而,小波分析特别适合处理非平稳时变信号,在语音分析和图象处理中有广泛的应用,在地震、雷达资料处理中将有良好的应用前景。 下边就小波分析的基本原理、主要作用及在雷达资料处理中的应用三方面作以介绍。 10.2.1小波分析的基本原理 小波函数的数学表达

MATLAB小波变换指令及其功能介绍(超级有用)解读

MATLAB小波变换指令及其功能介绍 1 一维小波变换的 Matlab 实现 (1) dwt函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname') [cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT 说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname' 对信号X 进行分解,cA、cD 分别为近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信 号进行分解。 (2) idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname') X=idwt(cA,cD,Lo_R,Hi_R) X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L) 说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经 小波反变换重构原始信号 X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。 X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。 2 二维小波变换的 Matlab 实现 二维小波变换的函数别可以实现一维、二维和 N 维 DFT 函数名函数功能

--------------------------------------------------- dwt2 二维离散小波变换 wavedec2 二维信号的多层小波分解 idwt2 二维离散小波反变换 waverec2 二维信号的多层小波重构 wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量 upwlev2 二维小波分解的单层重构 dwtpet2 二维周期小波变换 idwtper2 二维周期小波反变换 ----------------------------------------------------------- (1) wcodemat 函数 功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分 格式:Y=wcodemat(X,NB,OPT,ABSOL) Y=wcodemat(X,NB,OPT) Y=wcodemat(X,NB) Y=wcodemat(X) 说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16; OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现 一维、二维和 N 维 DFT OPT='row' ,按行编码 OPT='col' ,按列编码

第9章小波变换基础

第9章 小波变换基础 9.1 小波变换的定义 给定一个基本函数)(t ψ,令 )(1)(,a b t a t b a -= ψψ (9.1.1) 式中b a ,均为常数,且0>a 。显然,)(,t b a ψ是基本函数)(t ψ先作移位再作伸缩以后得到的。若b a ,不断地变化,我们可得到一族函数)(,t b a ψ。给定平方可积的信号)(t x ,即 )()(2R L t x ∈,则)(t x 的小波变换(Wavelet Transform ,WT )定义为 dt a b t t x a b a WT x )()(1),(-= ? *ψ ??==? * )(),()()(,,t t x dt t t x b a b a ψψ (9.1.2) 式中b a ,和t 均是连续变量,因此该式又称为连续小波变换(CWT )。如无特别说明,式中及以后各式中的积分都是从∞-到∞+。信号)(t x 的小波变换),(b a WT x 是a 和b 的函数, b 是时移,a 是尺度因子。)(t ψ又称为基本小波,或母小波。)(,t b a ψ是母小波经移位和 伸缩所产生的一族函数,我们称之为小波基函数,或简称小波基。这样,(9.1.2)式的WT 又可解释为信号)(t x 和一族小波基的内积。 母小波可以是实函数,也可以是复函数。若)(t x 是实信号,)(t ψ也是实的,则 ),(b a WT x 也是实的,反之,),(b a WT x 为复函数。 在(9.1.1)式中,b 的作用是确定对)(t x 分析的时间位置,也即时间中心。尺度因子 a 的作用是把基本小波)(t ψ作伸缩。我们在1.1节中已指出,由)(t ψ变成)(a t ψ,当1 >a 时,若a 越大,则)(a t ψ的时域支撑范围(即时域宽度)较之)(t ψ变得越大,反之,当1

一个小波变换实例及matlab实现

1、 选择()t ?或?()? ω,使{}()k Z t k ?∈-为一组正交归一基; 2、 求n h 。 1,(),()n n h t t ??-= 或??()(2)/()H ω?ω?ω= 3、 由n h 求n g 。 1(1)n n n g h -=- 或()()i G e H t ωωωπ-= 4、 由n g ,()t ?构成正交小波基函数() t φ 1,()()n n t g t φ?-=∑ 或??()(/2)(/2)G φωω?ω= Haar 小波的构造 1)、选择尺度函数。 101 ()0t t ? ≤≤?=? ?其他 易知(n)t ?-关于n 为一正交归一基。 2)、求n h 1,(),()n n h t t ??- =()2t-n)t dt ??( 其中 1 1(2)220n n t t n ?+? ≤≤?-=?? ?其他 当n=0时, 1 1(2)20t t ?? 0≤≤?=?? ?其他 当n=1时,

1 11(21)20t t ?? ≤≤?-=?? ?其他 故,当n=0,n=1时 1()(2)0n n t t n ?? =0,=1 ??-=? ?其他 当n=0时, ()(2)t t n ???-1 120t ? 0≤≤?=?? ?其他 当n=1时, ()(2)t t n ???-1 1120t ? ≤≤?=?? ?其他 故 n h ()2t-n)t dt ?? (1/0n n ?=0,=1 ?=? ??其他 3)、求n g 。 11/0 (1)1/10n n n n g h n -?=??=-=-=?? ??其他 4)、求()t φ。 1,()()n n t g t φ?-=∑ =0-1,011,1()()g t g t ??-+ (2)(21)t t - =1 102 111 20t t ? ≤≤???- ≤≤?? ??? 其他

第二代小波变换及在不规则测点重磁资料处理中的应用

第二代小波变换及在不规则测点重磁 资料处理中的应用1 刘天佑,史辉,吴小羊 中国地质大学,湖北武汉(430074) E-mail:liuty4508@https://www.sodocs.net/doc/98814524.html, 摘要:1994年swelden提出了基于提升算法的第二代小波,它继承了第一代小波的多分辨特性;不依赖傅立叶变换,小波变换后的系数是整数,运算速度快;并且可以实现不规则测网数据的小波分析。本文实现了基于提升算法的第二代小波变换,并把它应用于不规则测点的重力数据的处理,该方法比预先将不规则测点的重力数据经过二次插值网格化,再进行第一代小波分析的方法不仅精度高,而且失真小。它可用于1:5万~1:20万石油高精度重磁勘探中对不规则测网数据的处理。最后利用第二代小波变换处理了江南古陆CHAMP卫星磁测数据。 关键词:第二代小波提升算法高精度重磁勘探不规则测网江南古陆 CHAMP卫星磁测中图分类号:P3 1.引言 重磁勘探是方法理论成熟,覆盖面积广,应用领域十分广泛的两种地球物理方法。在1:20万或更小的比例尺重磁勘探的数据采集中,通常采用不规则测网。近年,随着人们绿色与环保理念的增强,为了在施工中不砍伐树木、破坏生态环境,在1:10万,1:5万比例尺的重磁数据采集中也常常采用不规则测网。在石油重磁勘探中,由于被探测的目标埋深大(通常密度界面、磁性界面深度在3~10km),产生的重磁异常弱,为了探测深部构造,近年国内已开始采用“高精度三维重磁采集方法”,其做法是沿测点号观测一次,再沿测线号观测一次,通过多次观测来提高观测精度。例如在我国南方复杂地形的石油重磁勘探,1:5万重力设计精度为0.09×10-5m/s2,而实际可达到0.065×10-5m/s2,在野外采集这一环节,目前国内已经可以达到相当高的精度。重磁资料数据处理,如利用傅立叶变换的频率域位场转换,小波分析等,都要求观测数据是等间距的,即规则测网数据。对于实测不规则测点数据,通常要先做网格化处理变为网格数据,由于对不规则测点重磁数据做了网格化(如采用距离平方反比、克吕金法等等),原本野外采集的数据其高精度将由于网格化过程而丧失。因此,寻找一种能够保持原始重磁观测数据高精度的处理方法具有十分重要的意义,它是实现野外采集与室内资料处理同时高精度的重要途径。本文介绍的第二代小波变换是一种能够直接对不规则测点重磁资料进行小波分析的新方法,由此可以对不规则测点重磁资料进行去噪,位场分离等等处理与解释。1994年,W.Sweldens等人针对第一代小波的局限性,提出了一种不依赖傅立叶变换的新的小波构造算法-提升算法(Lifting scheme)[1][2],称之为第二代小波变换,其主要特点有:继承了第一代小波的多分辨特性;不依赖傅立叶变换;小波变换后的系数是整数[3],;基于多项式内插的思想,所有运算都在空间域进行,从而摆脱了对频域的依赖[4]。由于无需傅立叶分析,运算速度大大加快,且逆变换也容易实现,它还简化了小波函数的构造(将小波构造转化为选用合适的插值算法)。对于重磁数据处理,第二代小波变换还有一个重要应用就是可以实现不规则点数据的小波分析。 2.第二代小波变换的基本原理 1本课题得到高等学校博士学科点专项科研基金(项目编号:20050491504)的资助。

小波变换-完美通俗解读

小波变换和motion信号处理(一) 这是《小波变换和motion信号处理》系列的第一篇,基础普及。第二篇我准备写深入小波的东西,第三篇讲解应用。 记得我还在大四的时候,在申请出国和保研中犹豫了好一阵,骨子里的保守最后让我选择了先保研。当然后来也退学了,不过这是后话。当时保研就要找老板,实验室,自己运气还不错,进了一个在本校很牛逼的实验室干活路。我们实验室主要是搞图像的,实力在全国也是很强的,进去后和师兄师姐聊,大家都在搞什么小波变换,H264之类的。当时的我心思都不在这方面,尽搞什么操作系统移植,ARM+FPGA 这些东西了。对小波变换的认识也就停留在神秘的“图像视频压缩算法之王”上面。 后来我才发现,在别的很广泛的领域中,小波也逐渐开始流行。比如话说很早以前,我们接触的信号频域处理基本都是傅立叶和拉普拉斯的天下。但这些年,小波在信号分析中的逐渐兴盛和普及。这让人不得不感到好奇,是什么特性让它在图象压缩,信号处理这些关键应用中更得到信赖呢?说实话,我还在国的时候,就开始好奇这个问题了,于是放狗搜,放毒搜,找遍了中文讲小波变换的科普文章,发现没几个讲得清楚的,当时好奇心没那么重,也不是搞这个研究的,懒得找英文大部头论文了,于是作罢。后来来了这边,有些项目要用信号处理,不得已接触到一些小波变换的东西,才开始硬着头皮看。看了一

些材料,听了一些课,才发现,还是那个老生常谈的论调:国外的技术资料和国真TNND不是一个档次的。同样的事情,别人说得很清楚,连我这种并不聪明的人也看得懂; 国的材料则绕来绕去讲得一塌糊涂,除了少数天才没几个人能在短时间掌握的。 牢骚就不继续发挥了。在这个系列文章里,我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。 最后说明,我不是研究信号处理的专业人士,所以文中必有疏漏或者错误,如发现还请不吝赐教。 要讲小波变换,我们必须了解傅立叶变换。要了解傅立叶变换,我们先要弄清楚什么是”变换“。很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。变换的是什么东西呢?是基,也就是

小波变换基本原理

第五章 小波变换基本原理 问题 ①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史 ③小波变换与短时傅里叶变换比较 a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法 多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现 ⑤小波的历史地位仍不如FT ,并不是万能的 5.1 连续小波变换 一.CWT 与时频分析 1.概念:? +∞ ∞ --ψ= dt a b t t S a b a CWT )( *)(1),( 2.小波变换与STFT 用于时频分析的区别 小波 构造? 1910 Harr 小波 80年代初兴起 Meyer —小波解析形式 80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现 90年代初 Daubechies 正交小波变换 90年代中后期 Sweblews 第二代小波变换

3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题 1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原 2.母小波)(t ψ必须满足容许性条件 ∞<ψ=? ∞ +∞ -ψdw w w C 2 )( ①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式 ??+∞∞-+∞ ∞-ψ -ψ= dadb a b t b a CWT a C t S )(),(11 )(2 3.CWT 高度冗余(与CSTFT 相似) 4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1 )(2 ,22,,n t t a b t a t n b a m m n m b a m m -ψ=ψ?-ψ= ??==--ψ dt t t S n CWT d n m m m n m )(*)()2,2(,,?+∞ ∞ ---ψ=?= 5.小波变换具有时移不变性 ) ,()() ,()(00b b a C W T b t S b a C W T t S -?-? 6.用小波重构信号 ∑∑ ∑∑+∞-∞=+∞ -∞ =+∞-∞=+∞ -∞ =ψψ= m n m n n m n m n m n m t d t d t S )(?)(?)(,,,,正交小波 中心问题:如何构建对偶框架{} n m ,?ψ

连续小波变换的概念

连续小波变换的概念swt,cwt,dwt 1。连续小波的概念。就是把一个可以称作小波的函数(从负无穷到正无穷积分为零)在某个尺度下与待处理信号卷积。改变小波函数的尺度,也就改变了滤波器的带通范围,相应每一尺度下的小波系数也就反映了对应通带的信息。本质上,连续小波也就是一组可控制通带范围的多尺度滤波器。 2。连续小波是尺度可连续取值的小波,里面的a一般取整数,而不像二进小波a取2的整数幂。从连续小波到二进小波再到正交离散小波,其实就是a、b都连续,a不连续、b连续,a、b都不连续的过程。操作他们的快速算法也就是卷积(快速傅里叶),多孔(a trous),MALLAT。在MATLAB里,也就是CWT,SWT,DWT。SWT称平稳小波变换、二进小波变换、或者非抽取小波变换。3。从冗余性上:CWT>SWT>DWT,前面两个都冗余,后面的离散小波变换不冗余。 4。从应用上:CWT适合相似性检测、奇异性分析;SWT适合消噪,模极大值分析;DWT适合压缩。 5。操作。就是在某个尺度上得到小波的离散值和原信号卷积,再改变尺度重新得到小波的离散值和原信号卷积。每一个尺度得到一个行向量存储这个尺度下的小波系数,多个尺度就是一个矩阵,这个矩阵就是我们要显示的时间-尺度图。 6。显示。“不要认为工程很简单”。我的一个老师说过的话。小波系数的显示还是有技巧的。很多人画出的图形“一片乌黑”就是个例子。第一步,一般将所有尺度下的小波系数取模;第二步,将每个尺度下的小波系数范围作映射,映射到你指定MAP的范围,比如如果是GRAY,你就映射到0-255;第三步,用IMAGE命令画图;第四步,设置时间和尺度坐标。MATLAB是个很专业的软件,它把这些做的很好,但也就使我们懒惰和糊涂,我是个好奇心重的人就研究了下。里面有个巧妙的函数把我说的(1,2)两个步骤封装在了一起,就是WCODEMAT,有兴趣的同学可以看看。 希望大家深入研究小波。 这里,还有要说的是,小波目前理论的热点: 1。不可分的小波或者具有可分性质的方向性小波; 2。XLET: CONTOURLET, WEDGELET, SHEARLET, BANDELET, RIDGELET, CURVELET; PLATELET. 3。多分辨率分析+多尺度几何分析的结合,才真正是我们所需要的。比如小波域的WEDGELET等等。 最后,几点建议: 1。理论研究和实际应用不同,工程上很多问题小波并不是最好的,在做项目的时候大家要实际情况,实际对待。

小波变换的原理及matlab仿真程序讲解学习

小波变换的原理及m a t l a b仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参

数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]: 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式: (k)()()S f k e k ε=+* k=0.1…….n-1 其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。 假设e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,下面对 s(k)信号进行如图结构的小波分解,则噪声部分通常包含在Cd1、Cd2、Cd3中,只要对 Cd1,Cd2,Cd3作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的。

MATLAB小波变换指令及其功能介绍(超级有用).

MATLAB 小波变换指令及其功能介绍 1 一维小波变换的 Matlab 实现 (1 dwt函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname' [cA,cD]=dwt(X,Lo_D,Hi_D别可以实现一维、二维和 N 维 DFT 说明:[cA,cD]=dwt(X,'wname' 使用指定的小波基函数 'wname' 对信号X 进行分解,cA 、cD 分别为近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。 (2 idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname' X=idwt(cA,cD,Lo_R,Hi_R X=idwt(cA,cD,'wname',L函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L 说明:X=idwt(cA,cD,'wname' 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L 和 X=idwt(cA,cD,Lo_R,Hi_R,L 指定返回信号 X 中心附近的 L 个点。 2 二维小波变换的 Matlab 实现 二维小波变换的函数别可以实现一维、二维和 N 维 DFT 函数名函数功能 --------------------------------------------------- dwt2 二维离散小波变换 wavedec2 二维信号的多层小波分解 idwt2 二维离散小波反变换 waverec2 二维信号的多层小波重构 wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量 upwlev2 二维小波分解的单层重构 dwtpet2 二维周期小波变换 idwtper2 二维周期小波反变换 ----------------------------------------------------------- (1 wcodemat 函数 功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式: Y=wcodemat(X,NB,OPT,ABSOL Y=wcodemat(X,NB,OPT Y=wcodemat(X,NB

小波变换学习心得

小波变换学习心得 第一章什么是小波变换 1从傅里叶变换到小波变换 1.1 短时傅里叶变换 为了克服傅里叶变换中时域和频域不能兼容的缺点,短时傅里叶变换把一个时间信号变为时间和频率的二维函数,它能够提供信号在某个时间段和某个频率围的一定信息。这些信息的精度依赖于时间窗的大小。短时傅里叶变换的缺点是对所有的频率成分,所取的时间窗大小相同,然而,对很多信号为了获得更精确的时间或频率信息,需要可变的时间窗。 1.2 小波变换 小波变换提出了变换的时间窗,当需要精确的低频信息时,采用长的时间窗,当需要精确的高频信息时,采用短的时间窗,图1.3 给出了时间域信号、傅里叶变换、短时傅里叶变换和小波变换的对比示意图。 由图1.3看出,小波变换用的不是时间-频率域。而是时间-尺度域,尺度越大,采用越大的时间窗,尺度越小,采用越短的时间窗,即尺度与频率成反比。 1.2 连续小波变换 小波是一个衰减的波形,它在有限的区域里存在(不为零),且其均值为零。图1.4是一个Daubechies小波(db10)与正弦波的比较。 正弦波:随时间无限振动的光滑波形,小波变换:尖锐变化而且是无规则的波形。因此小波能更好的刻画信号的局部特性。 在数学上,傅里叶变换的公式为

()()j t F f t e dt ωω+∞ --∞ =? 连续小波变换(Continue Wavelet Transform )的数学表达式 ()(),,a b a b CWT f t t dt ψ+∞ -∞ =? ()12 ,a b t b t a a ψψ--?? = ??? 式中,()t ψ为小波;a 为尺度因子;b 为平移参数。图1.6是小波变换的示意图。由图看出,小波变换给出了在各个时刻信号是由哪些尺度的小波构成。 小波中的尺度因子的作用是将小波在保持完全相似条件下“拉伸”或者“压缩”,图1.7给吃了尺度因子的“拉伸”和“压缩”作用。 小波中的平移参数,是简单地将波形沿时间轴平移。

基于小波包的图像压缩及matlab实现

基于小波包的图像压缩及matlab实现 摘要:小波包分析理论作为新的时频分析工具,在信号分析和处理中得到了很好的应用,它在信号处理、模式识别、图像分析、数据压缩、语音识别与合成等等许多方面都取得了很有意义的研究成果。平面图像可以看成是二维信号,因此,小波包分析很自然地应用到了图像处理领域,如在图像的压缩编码、图像消噪、图像增强以及图像融合等方面都很好的应用。本文将对小波包分析在图像处理中的应用作以简单介绍。 关键词:小波包图像处理消噪 1.小波包基本理论 1.1 小波包用于图像消噪 图像在采集、传输等过程中,经常受到一些外部环境的影响,从而产生噪声使得图像发生降质,图像消噪的目的就是从所得到的降质图像中去除噪声还原原始图像。图像降噪是图像预处理中一项应用比较广泛的技术,其作用是为了提高图像的信噪比突出图像的期望特征。图像降噪方法有时域和频域两种方法。频率域方法主要是根据图像像素噪声频率范围,选取适当的频域带通过滤波器进行滤波处理,比如采用Fourier变换(快速算法FFT)分析或小波变换(快速算法Mallat 算法)分析。空间域方法主要采用各种平滑函数对图像进行卷积处理,以达到去除噪声的目的,如邻域平均、中值(Median)滤波等都属于这一类方法。还有建立在统计基础上的lee滤波、Kuan滤波等。但是归根到底都是利用噪声和信号在频域上分布不同进行的:信号主要分布在低频区域。而噪声主要分布在高频区域,但同时图像的细节也分布在高频区域。所以,图像降噪的一个两难问题就是如何在降低图像噪声和保留图像细节上保持平衡,传统的低通滤波方法将图像的高频部分滤除,虽然能够达到降低噪声的效果,但破坏了图像细节。如何构造一种既能够降低图像噪声,又能保持图像细节的降噪方法成为此项研究的主题。在小波变换这种有力工具出现之后,这一目标已经成为可能。 基于小波包变换消噪方法的主要思想就是利用小波分析的多尺度特性,首先对含有噪声的图像进行小波变换,然后对得到的小波系数进行阈值化处理,得到

小波变换理论及应用

2011-2012 学年第一学期 2011级硕士研究生考试试卷 课程名称:小波变换理论及应用任课教师:考试时间:分钟 考核类型:A()闭卷考试(80%)+平时成绩(20%); B()闭卷考试(50%)+ 课程论文(50%); C(√)课程论文或课程设计(70%)+平时成绩(30%)。 一、以图示的方式详细说明连续小波变换(CWT)的运算过程,分析小波变换的内涵;并阐述如何从多分辨率(MRA)的角度构造正交小波基。(20分) 二、综述小波变换理论与工程应用方面的研究进展,不少于3000字。(25分) 三、运用MATLAB中的小波函数和小波工具箱,分别对taobao.wav语音信号在加噪之后的taobao_noise.wav信号进行降噪处理,要求列出程序、降噪结果及降噪的理论依据。(25分) 四、平时成绩。(30分)

(一)连续小波变换(CWT )的运算过程及内涵 将平方可积空间中任意函数f (t )在小波基下展开,称这种展开为函数f (t )的连续小波变换(Continue Wavelet Transform ,简记CWT )其表达式为 t a b t t f a b a f W d )(*)(||1),(? ∞+∞--=ψψ ( 1.1) 其中,a ∈R 且a ≠0。式(1.19)定义了连续小波变换,a 为尺度因子,表示与频率相关的伸 缩,b 为时间平移因子。其中)(| |1)(,a b t a t b a -=ψψ为窗口函数也是小波母函数。 从式(1.1)可以得出,连续小波变换计算分以下5个步骤进行。 ① 选定一个小波,并与处在分析时段部分的信号相比较。 ② 计算该时刻的连续小波变换系数C 。如图1.5所示,C 表示了该小波与处在分析时段内的信号波形相似程度。C 愈大,表示两者的波形相似程度愈高。小波变换系数依赖于所选择的小波。因此,为了检测某些特定波形的信号,应该选择波形相近的小波进行分析。 图1.5 计算小波变换系数示意图 ③ 如图1.6所示,调整参数b ,调整信号的分析时间段,向右平移小波,重复①~②步骤,直到分析时段已经覆盖了信号的整个支撑区间。 ④ 调整参数a ,尺度伸缩,重复①~③步骤。 ⑤ 重复①~④步骤,计算完所有的尺度的连续小波变换系数,如图1.7所示。 C =0.2247

小波变换 完美通俗解读2

这是《小波变换和motion信号处理》系列的第二篇,深入小波。第一篇我进行了基础知识的铺垫,第三篇主要讲解应用。 在上一篇中讲到,每个小波变换都会有一个mother wavelet,我们称之为母小波,同时还有一个father wavelet,就是scaling function。而该小波的basis函数其实就是对这个母小波和父小波缩放和平移形成的。缩放倍数都是2的级数,平移的大小和当前其缩放的程度有关。 还讲到,小波系统有很多种,不同的母小波,衍生的小波基就完全不同。小波展开的近似形式是这样: 其中的就是小波级数,这些级数的组合就形成了小波变换中的基basis。和傅 立叶级数有一点不同的是,小波级数通常是orthonormal basis,也就是说,它们不仅两两正交,还归一化了。 我们还讲了一般小波变换的三个特点,就是小波级数是二维的,能定位时域和频域,计算很快。但我们并没有深入讲解,比如,如何理解这个二维?它是如何同时定位频域和时域的? 在这一篇文章里,我们就来讨论一下这些特性背后的原理。 首先,我们一直都在讲小波展开的近似形式。那什么是完整形式呢?之前讲到,小波basis的形成,是基于基本的小波函数,也就是母小波来做缩放和平移的。但是,母小波并非唯一的原始基。在构建小波基函数集合的时候,通常还要用到一个函数叫尺度函数,scaling function,人们通常都称其为父小波。它和母小波一样,也是归一化了,而且它还需要满足一个性质,就是它和对自己本身周期平移的函数两两正交: 另外,为了方便处理,父小波和母小波也需要是正交的。可以说,完整的小波展开就是由母小波和父小波共同定义的。

小波分析及应用(附常用小波变换滤波器系数)

第八章 小波分析及应用 8.1 引言 把函数分解成一系列简单基函数的表示,无论是在理论上,还是实际应用中都有重要意义。 1822年法国数学家傅里叶(J. Fourier 1768-1830)发表的研究热传导理论的“热的力学分析”,提出并证明了将周期函数展开为正弦级数的原理,奠定了傅里叶级数理论的基础[1]。傅里叶级数理论研究的是把函数在三角函数系下的展开,使得对信号和系统的研究归结为对简单的三角函数的研究。傅里叶级数与傅里叶变换共同组成了平常所说的傅里叶分析[2]。傅里叶级数用于分析周期性的函数或分布,理论分析时经常假定周期是π2,定义如式(8.1-1)、(8.1-2) ()()π2,02 L x f ∈?,()∑∞ -∞ == k ikx k e c x f (8.1-1) 其中 ()dx e x f c ikx k -?=π π20 21 (8.1-2) 然而,被分析函数的性质并不能完整地由傅里叶系数来刻划,这里有一个例子来说明[3]:从任一个平方可和的函数)(x f 出发,为了得到一个连续函数)(x g ,只需或者增大f(x)的傅里叶系数的模,或者保持它不变并适当地改变系数的位相。因此,不可能仅根据傅里叶系数大小的阶就预知函数的性质(如大小、正则性)。 傅里叶变换的定义如式(8.1-3)、(8.1-4) ()()dx e x f F x j ωω? ∞∞ -= (8.1-3) ()()ωωπ ωd e F x f x j -∞∞-?= 21 (8.1-4) 通过引入广义函数或分布的概念,可获得奇异函数(如冲击函数)的傅里叶变换的存在。对于时域的常量函数,在频域将表现为冲击函数,表明具有很好的频域局部化性质。由式(8.1-3)可知,为了得到()ωF ,必须有关于f(x)的过去和未来的所有知识,而且f(x)在时域局部值的变化会扩散到整个频域,也就是()ωF 的任意有限区域的信息都不足以确定任意小区域的f(x)。在时域,哈尔(Haar)基是一组具有最好的时域分辨能力的正交基,它在时域上是完全局部化的,但在频域的局部化却很不好,这是由于哈尔系的两个缺点:缺乏正则性与缺乏振动性。研究者们希望寻找关于空间变量(或时间变量)与频域变量都同时好的希尔伯特(Hilbert)基,R. Balian 认为:“在通讯理论中,人们对于在完全给定的时间内,把一个振动信号表示成由其中每一个都拥有足够确定的位置与有一个频率的小波的叠加这件事感兴趣。事实上,有用的信息常常同时被发射信号的频率与信号的时间结构(如音乐)所传递。当把一个信号表达成时间的函数时,其中的频谱表现并不好;相反地,信号的傅里分析却显示不了信号每一分量发射信号的瞬时与持续时

小波变换详解

基于小波变换的人脸识别 近年来,小波变换在科技界备受重视,不仅形成了一个新的数学分支,而且被广泛地应用于模式识别、信号处理、语音识别与合成、图像处理、计算机视觉等工程技术领域。小波变换具有良好的时频域局部化特性,且其可通过对高频成分采取逐步精细的时域取样步长,从而达到聚焦对象任意细节的目的,这一特性被称为小波变换的“变聚焦”特性,小波变换也因此被人们冠以“数学显微镜”的美誉。 具体到人脸识别方面,小波变换能够将人脸图像分解成具有不同分辨率、频率特征以及不同方向特性的一系列子带信号,从而更好地实现不同分辨率的人脸图像特征提取。 4.1 小波变换的研究背景 法国数学家傅立叶于1807年提出了著名的傅立叶变换,第一次引入“频率”的概念。傅立叶变换用信号的频谱特性来研究和表示信号的时频特性,通过将复杂的时间信号转换到频率域中,使很多在时域中模糊不清的问题,在频域中一目了然。在早期的信号处理领域,傅立叶变换具有重要的影响和地位。定义信号(t)f 为在(-∞,+∞)内绝对可积的一个连续函数,则(t)f 的傅立叶变换定义如下: ()()dt e t f F t j ωω-? ∞ -∞ += (4-1) 傅立叶变换的逆变换为: ()()ωωπ ωd e F t f t j ? +∞ ∞ -= 21 (4-2) 从上面两个式子可以看出,式(4-1)通过无限的时间量来实现对单个频率

的频谱计算,该式表明()F ω这一频域过程的任一频率的值都是由整个时间域上的量所决定的。可见,式(4-1)和(4-2)只是同一能量信号的两种不同表现形式。 尽管傅立叶变换可以关联信号的时频特征,从而分别从时域和频域对信号进行分析,但却无法将两者有效地结合起来,因此傅立叶变换在信号的局部化分析方面存在严重不足。但在许多实际应用中,如地震信号分析、核医学图像信号分析等,研究者们往往需要了解某个局部时段上出现了哪个频率,或是某个频率出现在哪个时段上,即信号的时频局部化特征,傅立叶变换对于此类分析无能为力。 因此需要一种如下的数学工具:可以将信号的时域和频域结合起来构成信号的时频谱,描述和分析其时频联合特征,这就是所谓的时频局部化分析方法,即时频分析法。1964年,Gabor 等人在傅立叶变换的基础上引入了一个时间局部化“窗函数”g(t),改进了傅立叶变换的不足,形成窗口化傅立叶变换,又称“Gabor 变换”。 定义“窗函数”(t)g 在有限的区间外恒等于零或很快地趋于零,用函数(t )g -τ乘以(t)f ,其效果等同于在t =τ附近打开一个窗口,即: ()()()dt e t g t f G t j f ωττω-+∞ ∞--=?, (4-3) 式(4-3)即为函数f(t)关于g(t)的Gabor 变换。由定义可知,信号(t)f 的Gabor 变换可以反映该信号在t =τ附近的频谱特性。其逆变换公式为: ()()()ττωτωπ ωd G t g e d t f f t j ,21 ? ?+∞ ∞ --- = (4-4) 可见()τω,f G 的确包含了信号(t)f 的全部信息,且Gabor 窗口位置可以随着 τ的变化而平移,符合信号时频局部化分析的要求。 虽然Gabor 变换一定程度上克服了傅立叶变换缺乏时频局部分析能力的不

相关主题