搜档网
当前位置:搜档网 › 高中数学函数定义域值域求法总结

高中数学函数定义域值域求法总结

高中数学函数定义域值域求法总结
高中数学函数定义域值域求法总结

函数定义域、值域求法总结

一.求函数的定义域需要从这几个方面入手:

(1)分母不为零

(2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1

(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠

二、值域是函数y=f(x)中y 的取值范围。

常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法

(5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。

定义域的求法

1、直接定义域问题

例1 求下列函数的定义域:

21)(-=

x x f ;② 23)(+=x x f ;③ x

x x f -++=211)( 解:①∵x-2=0,即x=2时,分式2

1

-x 无意义,

而2≠x 时,分式21

-x 有意义,∴这个函数的定义域是{}2|≠x x .

②∵3x+2<0,即x<-3

2

时,根式23+x 无意义,

而023≥+x ,即3

2

-≥x 时,根式23+x 才有意义,

∴这个函数的定义域是{x |3

2

-≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式

x

-21

同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x }

另解:要使函数有意义,必须: ?

??≠-≥+020

1x x ? ???≠-≥21x x

例2 求下列函数的定义域:

14)(2

--=x x f ②214

3)(2-+--=

x x x x f

=)(x f x

11111++

④x

x x x f -+=

0)1()(

⑤3

7

3132+++-=

x x y

解:①要使函数有意义,必须:142

≥-x 即: 33≤≤-x

∴函数

14)(2--=

x x f 的定义域为: [3,3-

]

②要使函数有意义,必须:??

?≠-≠-≤≥??

??≠-+≥--131********x x x x x x x 且或 ∴定义域为:{ x|4133≥-≤<--

③要使函数有意义,必须: 011110110≠++≠+≠?

??

?

?

?

?

??x

x x ? 2110-≠-≠≠?????x x x

∴函数的定义域为:}2

1

,1,0|{--≠∈x R x x 且

④要使函数有意义,必须: ?

??≠-≠+001x x x ???<-≠?01

x x

∴定义域为:{}

011|<<--

⑤要使函数有意义,必须: ???≠+≥+-073032x x ??

??

?-≠∈?37x R x 即 x<37-

或 x>37- ∴定义域为:}3

7

|{-≠x x 2 定义域的逆向问题

例3 若函数a

ax ax y

1

2+

-=的定义域是R ,求实数a 的取值范围(定义域的逆向问题) 解:∵定义域是R,∴

恒成立,01

2≥+

-a ax ax

∴?????≤2

001402a a a a a 等价于

练习:

3

22

log

+-=

mx x y 定义域是一切实数,则m 的取值范围;

3 复合函数定义域的求法

例4 若函数)(x f y =的定义域为[?1,1],求函数)41(+=x f y

)4

1

(-?x f 的定义域

解:要使函数有意义,必须:

∴函数)41(+=x f y )

41

(-?x f 的定义域为:???

???≤≤-4343|x x

例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

分析:法则f 要求自变量在[-1,1]内取值,则法则作用在2x -1上必也要求2x -1在 [-1,1]内取值,即-1≤2x -1≤1,解出x 的取值范围就是复合函数的定义域;或者从位置上思考f(2x -1)中2x -1与f(x)中的x 位置相同,范围也应一样,∴-1≤2x -1≤1,解出x 的取值范围就是复合函数的定义域。

(注意:f(x)中的x 与f(2x -1)中的x 不是同一个x ,即它们意义不同。) 解:∵f(x)的定义域为[-1,1], ∴-1≤2x -1≤1,解之0≤x ≤1, ∴f(2x -1)的定义域为[0,1]。 例6已知已知

f(x)的定义域为[-1,1],求f(x 2)的定义域。

答案:-1≤x2≤1? x2≤1?-1≤x ≤1

练习:设)(x f 的定义域是[?3,

2],求函数)2(-x f 的定义域

解:要使函数有意义,必须:223≤-≤-x 得: 221+≤≤-x

x ≥0 ∴ 220+≤≤x 2460+≤≤x

∴ 函数

)2(-x f 的定域义为:{}

2460|+≤≤x x

例7 已知f(2x -1)的定义域为[0,1],求f(x)的定义域

因为2x -1是R 上的单调递增函数,因此由2x -1, x ∈[0,1]求得的值域[-1,1]是f(x)的定义域。

练习:

1 已知f(3x -1)的定义域为[-1,2),求f(2x+1)的定义域。[2,2

5

-)

(提示:定义域是自变量x 的取值范围)

2 已知f(x 2)的定义域为[-1,1],求f(x)的定义域

3 若()y

f x =的定义域是[]0,2,则函数()()121f x f x ++-的定义域是 ( )

A.

[]1,1-

B???

??

?-

21,21 C.

??

?

???1,21 D.

10,2??

????

4 已知函数

()11x

f x x

+=

-的定义域为A,函数()y f f x =????的定义域为B,则( ) A.A B B =U B.B A ∈ C.A B B =I D. A B =

求值域问题

利用常见函数的值域来求(直接法)

一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数

)0(≠=

k x k

y 的定义域为{x|x ≠0},值域为{y|y ≠0};

二次函数)0()(2

≠++=a c bx ax x f 的定义域为R ,

当a>0时,值域为{a b ac y y 4)4(|2-≥};当a<0时,值域为{a b ac y y 4)4(|2-≤

}.

例1 求下列函数的值域

① y=3x+2(-1≤x ≤1) ②)

(3x 1x

32

)(≤≤-=x f ③ x

x y 1

+

=(记住图像) 解:①∵-1≤x ≤1,∴-3≤3x ≤3,

∴-1≤3x+2≤5,即-1≤y ≤5,∴值域是[-1,5] ②略

③ 当x>0,∴x x y 1

+==2)1(2+-

x

x 2≥, 当x<0时,)1

(x x y -+--==-2)1(2---

-x

x -≤ ∴值域是Y ]2,(--∞[2,+∞).(此法也称为配方法) 函数x

x y 1

+

=的图像为: 二次函数在区间上的值域(最值):

例2 求下列函数的最大值、最小值与值域:

①142+-=x x y ; ②;]4,3[,142

∈+-=x x x y

③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ;

解:∵3)2(1422--=+-=x x x y ,∴顶点为(2,-3),顶点横坐标为2.

①∵抛物线的开口向上,函数的定义域R ,

∴x=2时,ymin=-3 ,无最大值;函数的值域是{y|y ≥-3 }. ②∵顶点横坐标2?[3,4],

当x=3时,y= -2;x=4时,y=1;

∴在[3,4]上,min y =-2,m ax y =1;值域为[-2,1]. ③∵顶点横坐标2? [0,1],当x=0时,y=1;x=1时,y=-2, ∴在[0,1]上,min y =-2,m ax y =1;值域为[-2,1].

④∵顶点横坐标2∈ [0,5],当x=0时,y=1;x=2时,y=-3, x=5时,y=6,

∴在[0,1]上,min y =-3,m ax y =6;值域为[-3,6].

注:对于二次函数)0()(2≠++=a c bx ax x f , ⑴若定义域为R 时,

①当a>0时,则当a b x 2-=时,其最小值a

b a

c y 4)4(2

min -=; ②当a<0时,则当a b

x 2-

=时,其最大值a

b a

c y 4)4(2

max -=; ⑵若定义域为x ∈ [a,b],则应首先判定其顶点横坐标x0是否属于区间[a,b]. ①若0x ∈[a,b],则)(0x f 是函数的最小值(a>0)时或最大值(a<0)时, 再比较)(),(b f a f 的大小决定函数的最大(小)值. ②若0

x ?[a,b],则[a,b]是在)(x f 的单调区间内,只需比较)(),(b f a f 的大小即可决定函数的最大

(小)值.

注:①若给定区间不是闭区间,则可能得不到最大(小)值;

②当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论.

练习:1、求函数y =3+x 32-的值域

解:由算术平方根的性质,知x 32-≥0,故3+x 32-≥3。∴函数的值域为 [

)+∞,3 .

2、求函数[]

5,0,522

∈+-=x x x y 的值域

解: Θ对称轴 []

5,01∈=x

[]20,420,54,1max min 值域为时时∴====∴y x y x

1 单调性法

例3 求函数y=4x -x 31-(x ≤1/3)的值域。

设f(x)=4x,g(x)= -x 31-,(x ≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)=4x-x 31- 在定义域为x ≤1/3上也为增函数,而且y ≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y ≤4/3}。 小结:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,

求出其函数在区间端点的函数值,进而可确定函数的值域。

练习:求函数y=3+x -4的值域。(答案:{y|y ≥3})

2 换元法

例4 求函数x x y -+=12 的值域

解:设t x =-1,则)0(122

≥++-=t t t y

点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的

值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。 练习:求函数y=x x --1的值域。(答案:{y|y ≤-3/4} 求

x

x x

x cos sin cos sin 1++的值域;

例5 (三角换元法)求函数

21x x y -+=的值域

解: 11≤≤-x Θ

∴设[]πθθ,0cos ∈=x

小结:(1)若题目中含有

1≤a ,则可设)0,cos (2

2,sin πθθπ

θπθ≤≤=≤≤-

=a a 或设

(2)若题目中含有12

2

=+b a 则可设θθsin ,cos ==b a ,其中πθ

20<≤

(3)若题目中含有21x -,则可设θcos =x ,其中πθ≤≤0 (4)若题目中含有

21x +,则可设θtan =x ,其中2

2

π

θπ

<

<-

(5)若题目中含有)0,0,0(>>>=+r y x r y x ,则可设θθ22

sin ,cos r y r x ==其中???

?

?∈2,0πθ

3 平方法

例5 (选)求函数x x y -+-=

53 的值域

解:函数定义域为:[]

5,3∈x 4 分离常数法 例6 求函数2

1

+-=

x x y

的值域 由12

31232≠+-=+-+=x x x y ,可得值域{}1≠y y

小结:已知分式函数)0(≠++=

c d

cx b

ax y ,如果在其自然定义域(代数式自身对变量的要求)内,

值域为????

??≠c a y y ;如果是条件定义域(对自变量有附加条件),采用部分分式法将原函数化为)(bc ad d

cx c ad

b c a y ≠+-

+

=,用复合函数法来求值域。 练习 求函数6

41

2+-=

x x y 的值域 求函数1

33+=x x

y 的值域

求函数 y =1

212+-x

x 的值域;(y ∈(-1,1))

例7 求

13+--=x x y 的值域

解法一:(图象法)可化为 ??

?

??>-≤≤---<=3,431,221,4

x x x x y

观察得值域

{}44≤≤-y y

解法二:(不等式法)

4114)1(134

)1()3(13-+≥+--+=+--=+--≤+--x x x x x x x x x Θ练习:1y

x x =++的值域 )[∞+,1

例8 求函数[])1,0(2

39∈+-=x y x

x

的值域

解:(换元法)设t x

=3 ,则 31≤≤t 原函数可化为

例9求函数x

x y

2231+-??

? ??= 的值域

解:(换元法)令1)1(22

2

+--=+-=x x x t ,则)1(31≤??

?

??=t y t

由指数函数的单调性知,原函数的值域为??

????+∞,31 例10 求函数 )0(2

≤=x y x

的值域

解:(图象法)如图,值域为(]

1,0

(换元法)设t x

=+13 ,

则()11

11

31113113>-=+-=+-+=t t y x

x x 例13 函数1

1

22+-=x x y 的值域

解法一:(逆求法)110112

<≤-∴≥-+=

y y

y

x Θ

解法二:(换元法)设t x =+12

,则

解法三:(判别式法)原函数可化为 010)1(2

=++?+-y x x y

1) 1=y 时 不成立

2) 1≠y 时,110)1)(1(400≤≤-?≥+--?≥?y y y 综合1)、2)值域}11|{<≤-y y

解法四:(三角换元法)∴∈R

x Θ设??

?

??-∈=2,2tan ππθθx ,则

∴原函数的值域为}11|{<≤-y y 例14 求函数

3

425

2

+-=

x x y 的值域 解法一:(判别式法)化为0)53(422

=-+-y yx yx

1)0=y 时,不成立 2)0≠y 时,0≥?得

综合1)、2)值域}50|{≤

解法二:(复合函数法)令t x x

=+-3422

,则t

y 5=

2

50≤<∴y 所以,值域}50|{≤

例15 函数11

++

=x

x y

的值域 解法一:(判别式法)原式可化为

01)1(2=+-+x y x 解法二:(不等式法)1)当0>x 时,321

≥∴≥+

y x

x 2) 0

1

2)(1)(1-≤∴-≤??

????-+--=+

y x x x x

综合1)2)知,原函数值域为(][

)∞+-∞-,31,Y 例16 (选) 求函数)1(1

2

22->+++=

x x x x y 的值域 解法一:(判别式法)原式可化为 02)2(2

=-+-+y x y x

解法二:(不等式法)原函数可化为 当且仅当0=x

时取等号,故值域为[)∞+,2

例17 (选) 求函数)22(1

2

22≤≤-+++=

x x x x y 的值域

解:(换元法)令t x =+1 小结:已知分式函数)0(222

2≠+++++=d a f

ex dx c

bx ax y ,如果在其自然定义域内可采用判别式法求值域;如果是条件定义域,用判别式法求出的值域要注意取舍,或者可以化为

(选))(二次式

一次式

或一次式二次式==

y y 的形式,采用部分分式法,进而用基本不等式法求出函数的最

大最小值;如果不满足用基本不等式的条件,转化为利用函数

)0(≠+

=x x

a

x y 的单调性去解。 练习:

1 、)0(91

2

2

≠++

=x x x y ; 解:∵x ≠0,11)1(912

2

2

+-=++

=x x x x y ,∴y ≥11.

另外,此题利用基本不等式解更简捷:119291

22

=+≥++

=x

x y (或利用对勾函数图像法)

2 、

3

425

2

+-=

x x y 0

3 、求函数的值域 ①x x y -+

=2; ②242x x y --=

解:①令x u -=2≥0,则22u x -=,

原式可化为

49

)21(222+--=+-=u u u y ,

②解:令 t=4x ?2

x ≥0 得 0≤x ≤4

在此区间内 (4x ?2

x )m ax =4 ,(4x ?2

x )m in =0 ∴函数242x x y --=的值域是{ y| 0≤y ≤2} 4、求函数y=|x+1|+|x-2|的值域.

解法1:将函数化为分段函数形式:??

?

??≥-<≤--<+-=)2(12)21(3)

1(12x x x x x y ,画出它的图象(下图),由图象可知,

函数的值域是{y|y ≥3}.

解法2:∵函数y=|x+1|+|x-2|表示数轴上的动点x 到两定点-1,2的距离之和,∴易见y 的最小值是3,∴函数的值域是[3,+∞]. 如图

5、求函数x x y -+=142的值域 解:设 x t -=1 则 t ≥0 x=1?2

t

代入得 t t t f y 4)1(2)(2

+-?==4)1(22422

2+--=++-=t t t ∵t ≥0 ∴y ≤4

6、(选)求函数6

6

522-++-=x x x x y 的值域

方法一:去分母得 (y ?1)2

x +(y+5)x ?6y ?6=0 ① 当 y ?1时 ∵x ?R ∴△=(y+5)2+4(y ?1)×6(y+1)≥0

由此得 (5y+1)

2

≥0

检验 51-=y (有一个根时需验证)时 2)

5

6

(2551=-?+-

-=x (代入①求根)

∵2 ? 定义域 { x| x ?2且 x ?3} ∴5

1-≠y 再检验 y=1 代入①求得 x=2 ∴y ?1

综上所述,函数6

6

522-++-=x x x x y 的值域为 { y| y ?1且 y ?51-}

方法二:把已知函数化为函数3

6

133)3)(2()3)(2(--

=+-=+---=

x x x x x x x y (x ?2) 由此可得 y ?1,∵ x=2时51-=y 即 51-≠y ∴函数66522-++-=x x x x y 的值域为 { y| y ?1且 y ?5

1

-}

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

函数定义域值域求法十一种

高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式 或不等式组,解此不等式(或组)即得原函数的定义域。 解:要使函数有意义,则必须满足 x 2 2x 15 0 ① 11 或 x>5。 3且x 11} {x |x 5}。 1 例2求函数y ' 定义域。 *16 x 2 解:要使函数有意义,则必须满足 sinx 0 ① 16 x 2 0 ② 由①解得2k x 2k ,k Z ③ 由②解得 4x4 ④ 由③和④求公共部分,得 4 x 或 0 x 故函数的定义域为(4, ] (0,] 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函 数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知f(x)的定义域,求f [g(x)]的定义域。 (2)其解法是:已知f (x)的定义域是]a , b ]求f [g(x)]的定义域是解a g(x) b , 即为所求的定义域。 例3已知f(x)的定义域为[—2, 2],求f (x 2 3 x 3,故函数的定义域是{x | x (2)已知f [g(x)]的定义域,求f(x)的定义域。 其解法是:已知f [g(x)]的定义域是]a , b ],求f(x)定义域的方法是:由 a x b ,求 g(x)的值域,即所求f(x)的定义域。 例4已知f(2x 1)的定义域为]1,2],求f(x)的定义域。 解:因为 1 x 2,2 2x 4,3 2x 1 5。 即函数f(x)的定义域是{x 13 x 5}。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为 R ,求 参数的范围问题通常是转化为恒成立问题来解决。 例5已知函数y . mx 2 6mx m 8的定义域为R 求实数m 的取值范围。 分析:函数的定义域为 R ,表明mx 2 6mx 8 m 0 ,使一切x € R 都成立,由x 2项 例1求函数y ,x 2 2x 15 |x 3| 8 的定义域。 |x 3| 8 0 ② 由①解得 x 3或x 5。 由②解得 x 5或x 11 解:令 2 x 2 1 2 ,得 1 x 2 3,即 0 x 2 3,因此0 | x | 3,从而 1)的定义域。 3}。 ③和④求交集得x 3且x 故所求函数的定义域为 {x |x

求函数的定义域和值域的方法

解:求函数的定义域的常用方法 函数的定义域是高考的必考内容,高考对函数的定义域常常是通过函数性质或函数的应用来考查的,具有隐蔽性,所以在研究函数问题时必须树立“函数的定义域优先”的观念。因此掌握函数的定义域的基本求解方法是十分重要的。下面通过例题来谈谈函数的定义域的常见题型和常用方法。 一,已知函数解析式求函数的定义域 如果只给出函数解析式(不注明定义域),其定义域是指使函数解析式有意义的自变量的取值范围(称为自然定义域),这时常通过解不等式或不等式组求得函数的定义域。主要依据是:(1)分式的分母不为零,(2)偶次根式的被开方数为非负数,(3)零次幂的底数不为零,(4)对数的真数大于零,(5)指数函数和对数函数的底数大于零且不等于1,(6)三角函数中的正切函数y=tanx ,{x ︱x ∈R 且 x ≠2 k π π+ , k ∈z }和余切函数y=cotx ,{x ︱x ∈R 且 x ≠k π,k ∈z }等。 例题一 求下列函数的定义域: (1) y=2)0+㏒(x —2)x 2 (2) 解:(1)欲使函数有意义,须满足 2≠0 x —1≥0 x —2>0 解得:x >2 且 x ≠3 ,x ≠5 x —2≠1 ∴ 函数的定义域为(2,3)∪(3,5)∪(5,+∞) x ≠0 (2) 由已知须满足 tanx ﹥0 解得: k π ﹤x ﹤2 k π π+ (k ∈z ) x ≠2 k π π+ -4﹤x ﹤4 16—x 2 ﹥0 ∴ 函数的定义域为(-π,2 π - )∪(0, 2 π )∪(π,4) 二,复合函数求定义域 求复合函数定义域应按从外向内逐层求解的方法。最外层的函数的定义域为次外层函数的值域,依次求,直到最内层函数定义域为止。多个复合函数的求和问题,是将每个复合函数定义域求出后取其交集。 例题二(1)已知函数f (x )的定义域为〔-2,2〕,求函数y=f (x 2-1)的定义域。 (2)已知函数y=f (2x+4)的定义域为〔0,1〕,求函数f (x )的定义域。 (3)已知函数f (x )的定义域为〔-1,2〕,求函数y=f (x+1)—f (x 2-1)的定义域。 (4)已知函数y=f (tan2x )的定义域为〔0, 8 π 〕,求函数f (x )的定义域。 分析:(1)是已知f (x )的定义域,求f 〔g (x )〕的定义域。其解法是:已知f

函数定义域值域求法总结

、函数定义域、值域求法总结

————————————————————————————————作者:————————————————————————————————日期:

函数定义域、值域求法总结 1、函数的定义域是指自变量“x ”的取值集合。 2、在同一对应法则作用下,括号内整体的取值范围相同。 一般地,若已知 f(x)的定义域为[a,b],求函数f[g(x)]的定义域时,由于分别在两个函数中的x 和g(x)受同一个对应法则的作用,从而范围相同。因此f[g(x)]的定义域即为满足条件a ≤g(x)≤b 的x 的取值范围。 一般地,若已知 f[g(x)]的定义域为[a,b],求函数 f(x)的定义域时,由于x 和g(x) 受同一个对应法则的作用, 所以f(x)的定义域即为当a ≤x≤b 时,g(x)的取值范围。 定义域是X 的取值范围,g(x)和h(x)受同一个对应法则的影响,所以它们的范围相同。 ()的定义域 求的定义域已知练习)2(],9,3[log :313-x f x f 一、定义域是函数y=f(x)中的自变量x 的范围。 求函数的定义域需要从这几个方面入手: (1)分母不为零 ():f (x),f[g(x)]题型一已知的定义域求的定义域 ()():f g x ,f (x)????题型二已知的定义域求的定义域 ()[]():f g x ,f h(x)????题型三已知的定义域求的定义域()[]()[] )x (h f x f x g f →→

(2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 三、典例解析 1、定义域问题 例1 求下列函数的定义域: ① 21)(-= x x f ;② 23)(+=x x f ;③ x x x f -++=21 1)( 解:①∵x-2=0,即x=2时,分式2 1 -x 无意义, 而2≠x 时,分式21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }. ③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ???≠-≥+0201x x ? ???≠-≥2 1 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②214 3)(2-+--=x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-= x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3- ]

高中数学求函数值域的7类题型和16种方法

求函数值域的7类题型和16种方法 一、函数值域基本知识 1.定义:在函数()y f x =中,与自变量x 的值对应的因变量y 的值叫做函数值,函数值的集合叫做函数的值域(或函数值的集合)。 2.确定函数的值域的原则 ①当函数()y f x =用表格给出时,函数的值域是指表格中实数y 的集合; ②当函数()y f x =用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数()y f x =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数()y f x =由实际问题给出时,函数的值域由问题的实际意义确定。 二、常见函数的值域,这是求其他复杂函数值域的基础。 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域。 一般地,常见函数的值域: 1.一次函数()0y kx b k =+≠的值域为R. 2.二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ?? -+∞???? ,当0a <时的值域为 24,4ac b a ?? --∞ ??? ., 3.反比例函数()0k y k x =≠的值域为{}0y R y ∈≠. 4.指数函数()01x y a a a =>≠且的值域为{}0y y >. 5.对数函数()log 01a y x a a =>≠且的值域为R. 6.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 三、求解函数值域的7种题型 题型一:一次函数()0y ax b a =+≠的值域(最值) 1、一次函数:()0y ax b a =+≠ 当其定义域为R ,其值域为R ; 2、一次函数()0y ax b a =+≠在区间[],m n 上的最值,只需分别求出()(),f m f n ,并比较它们的大小即可。若区间的形式为(],n -∞或[),m +∞等时,需结合函数图像来确定函数的值域。 题型二:二次函数)0()(2≠++=a c bx ax x f 的值域(最值)

高中数学函数的定义定义域值域解析式求法

课题7:函数的概念(一) 一、复习准备: 1.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2.回顾初中函数的定义: 在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。 表示方法有:解析法、列表法、图象法. 二、讲授新课: (一)函数的定义: 设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作: (),y f x x A =∈其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。显然,值域是集合B 的子集。 (1)一次函数y=ax+b (a≠0)的定义域是R,值域也是R; (2)二次函数2 y ax bx c =++(a≠0)的定义域是R,值域是B;当a>0时,值域244ac b B y y a ??-??=≥?????? ;当a﹤0时,值域244ac b B y y a ??-??=≤?????? 。(3)反比例函数(0)k y k x =≠的定义域是{}0x x ≠,值域是{}0y y ≠。(二)区间及写法: 设a 、b 是两个实数,且a≤<的实数x 的集合分别表示为[)(),,,,a a +∞+∞(](),,,b b -∞-∞。 巩固练习:用区间表示R 、{x|x ≥1}、{x|x>5}、{x|x ≤-1}、{x|x<0} (三)例题讲解: 例1.已知函数2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。 变式:求函数223, {1,0,1,2}y x x x =-+∈-的值域 例2.已知函数1()2f x x =+,(1)求()()2 (3),(),33f f f f --的值;(2) 当a>0时,求(),(1)f a f a -的值。(四)课堂练习: 1.用区间表示下列集合: {}{}{}{} 4,40,40,1,02x x x x x x x x x x x x ≤≤≠≤≠≠-≤>且且或2.已知函数f(x)=3x 2+5x -2,求f(3)、f(-2)、f(a)、f(a+1)的值; 3.课本P 19练习2。

函数定义域、值域求法的总结

函数定义域、值域求法总结 一、定义域是函数()y f x =中的自变量x 的范围。 求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数()y f x =中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 三、典例解析 1、定义域问题 例1 求下列函数的定义域: ① 21)(-= x x f ;② 23)(+=x x f ;③ x x x f -++=21 1)( 解:①∵x-2=0,即x=2时,分式2 1 -x 无意义, 而2≠x 时,分式21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }. ③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+020 1x x ? ???≠-≥21x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f

函数定义域值域求法(全十一种)

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ???>-≥②①0 x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而3x 3≤≤-,故函数的定义域是}3x 3|x {≤ ≤-。

求函数的定义域与值域的常用方法完整版

求函数的定义域与值域 的常用方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

求函数的定义域与值域的常用方法 引入: 自变量x 的取值范围为 定义域 因变量y 的取值范围为 值域 求函数的解析式、求函数的定义域、求函数的值域、求函数的最值? 一、求函数的解析式 (一)解析式的表达形式 (解析式的表达形式有一般式、分段式、复合式等。) 1、一般式 (是大部分函数的表达形式) 例:一次函数:b kx y +=)0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例1、已知3)(,12)(2+=+=x x g x x f ,则[]=)(x g f , []=)(x f g 。 解:[]721)3(21)(2)(22+=++=+=x x x g x g f (二)解析式的求法 (根据已知条件求函数的解析式,常用配凑法、换元法、待定系数法、赋值(式)法、方程法等。) 1. 配凑法 例1.已知 :23)1(2+-=+x x x f ,求f(x); 解:因为15)1(23)1(22+-+=+-=+x x x x x f 例2、已知:221)1(x x x x f +=+,求)(x f 。 解: 2)1(1)1(222-+=+=+x x x x x x f ∴ )22(2)(2-≤≥-=x x x x f 或 注意:使用配凑法也要注意自变量的范围限制。 2.换元法 例1.已知:x x x f 2)1(+=+,求f(x); 解:令2)1(,1,1-=≥=+t x t t x 即则 则1)1(2)1()(22-=-+-=t t t t f 所以)1(1)(2≥-=x x x f 例2、已知:11)11(2-=+x x f ,求)(x f 。

高中函数值域的12种解法(含练习题)

高中函数值域的12种求法 一、观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为[3,+∞]。 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二、反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y >1}) 三、配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域。 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4], ∴0≤√(-x2+x+2)≤3/2,函数的值域是[0,3/2]。 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√(15-4x)的值域。(答案:值域为{y∣y≤3}) 四、判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。 解:将上式化为(y-2)x2-(y-2)x+(y-3)=0(*) 当y≠2时,由Δ=(y-2)2-4(y-2)(y-3)≥0,解得:2<x≤10/3 当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。 点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可

高中数学求函数值域的方法十三种审批稿

高中数学求函数值域的 方法十三种 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

高中数学:求函数值域的十三种方法 一、观察法(☆ ) 二、配方法(☆) 三、分离常数法(☆) 四、反函数法(☆) 五、判别式法(☆) 六、换元法(☆☆☆) 七、函数有界性 八、函数单调性法(☆) 九、图像法(数型结合法)(☆) 十、基本不等式法 十一、利用向量不等式 十二、 十三、一一映射法 十四、 多 种 方 法 综 合 运 用 一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。 【例1】 求函数1y =的值域。 11≥, ∴函数1y =的值域为[1,)+∞。 【例2】求函数 x 1 y = 的值域。 【解析】∵0x ≠ ∴0 x 1≠ 显然函数的值域是: ),0()0,(+∞-∞ 【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。

【解析】因为{}2,1,0,1- =f f,()1 1- f所以: = 2 0= f,()()0 ∈ 3 x,而()()3 -f = 1= {}3,0,1- ∈ y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x∈,则函数的值域为{}1 y。 y ≥ |- 二.配方法:配方法式求“二次函数类”值域的基本方法。形如2 =++的 F x af x bf x c ()()() 函数的值域问题,均可使用配方法。 【例1】求函数225,[1,2] y x x x =-+∈-的值域。 【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时,故函数的值域是:[4,8] 【变式】已知,求函数的最值。 【解析】由已知,可得,即函数是定义在区间上的二次函数。将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。显然其顶点横坐标不在区间内,如图2所示。函数的最小值为,最大值为。 图2

(推荐)高三文科数学一轮复习之求函数定义域和值域方法总结

求函数定义域和值域方法总结 一、求函数定义域方法总结 (一)简单函数定义域的类型及方法【必会!!!】 (1)f(x)为整数型函数时,定义域为R. 例如d cx bx ax x f c bx ax x f b kx x f +++=++=+=232)(,)(,)(定义域均为R. (2)f(x)为分式型函数时,定义域为使分母不为零的实数集合. 例如-4)(x 41)( ,1)(x 1)(≠+=≠= x x f x x f (3)f(x)为二次根式(偶次根式)型函数时,定义域为使被开方数大于等于零的实数的集合. 例如0)x -2(x 2)( 0),(x )(2≥≤+=≥=或x x x f x x f (4)f(x)为对数型函数时,定义域为使真数大于零的实数集合. 例如-1)(x )1(log )( 0),(x log )(2>+=>=x x f x x f a (5)正切函数)k ,k 2(x tan Z x y ∈+≠=ππ 例如Z)k ,2 k 4(x )2tan()(∈+≠=ππ x x f (6)00没有意义. 例如)2 1(x ,)12()(0≠-=x x f

(二)对于抽象函数定义域的求解 (1)若已知函数)(x f 的定义域为],[b a ,则复合函数))((x g f 的定义域由不等式b x g a ≤≤)(求出的x 的范围; 例如:已知)(x f 的定义域为]5,1[,则)23(+x f 的定义域为]1,3 1[-. (2)若已知函数))((x g f 的定义域为],[b a ,则函数)(x f 的定义域为)(x g 在],[b a x ∈上的值域. 例如:已知)3(-x f 的定义域为]7,0[,则)(x f 的定义域为]4,3[-. 二、求函数值域方法总结 (一)常见函数的值域(结合图像)【必会!!!】 (1)一次函数)0( ≠+=k b kx y 的值域为R . (2)二次函数)0( 2≠++=a c bx ax y 的值域为: 当0>a 时,值域为}44|{2a b ac y y -≥;当0=a a a y x 且的值域为}0|{>y y . (5)对数函数)10( log ≠>=a a x y a 且的值域为R . (6)三角函数:

定义域和值域的求法

定义域和值域的求法 Final revision by standardization team on December 10, 2020.

函数定义域求法总结 一、定义域是函数y=f(x)中的自变量x 的范围。 (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、抽象函数的定义域 1.已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 2.已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。 3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域 结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。 4.已知()f x 的定义域,求四则运算型函数的定义域 若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。 函数值域求法四种 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本次课就函数值域求法归纳如下,供参考。 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。

高中数学求函数值域的类题型和种方法

高中数学求函数值域的类 题型和种方法 Last updated on the afternoon of January 3, 2021

求函数值域的 7类题型和16种方法 一、函数值域基本知识 1.定义:在函数()y f x =中,与自变量x 的值对应的因变量y 的值叫做函数值,函数值的集合叫做函数的值域(或函数值的集合)。 2.确定函数的值域的原则 ①当函数()y f x =用表格给出时,函数的值域是指表格中实数y 的集合; ②当函数()y f x =用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数()y f x =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数()y f x =由实际问题给出时,函数的值域由问题的实际意义确定。 二、常见函数的值域,这是求其他复杂函数值域的基础。 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域。 一般地,常见函数的值域: 1.一次函数()0y kx b k =+≠的值域为R. 2.二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ?? -+∞?? ?? ,当0a <时的值域为24,4ac b a ?? --∞ ???., 3.反比例函数()0k y k x = ≠的值域为{}0y R y ∈≠. 4.指数函数()01x y a a a =>≠且的值域为{}0y y >. 5.对数函数()log 01a y x a a =>≠且的值域为R.

6.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 三、求解函数值域的7种题型 题型一:一次函数()0y ax b a =+≠的值域(最值) 1、一次函数:()0y ax b a =+≠当其定义域为R ,其值域为R ; 2、一次函数()0y ax b a =+≠在区间[],m n 上的最值,只需分别求出()(),f m f n ,并比较它们的大小即可。若区间的形式为(],n -∞或[),m +∞等时,需结合函数图像来确定函数的值域。 题型二:二次函数)0()(2≠++=a c bx ax x f 的值域(最值) 1、二次函数)0()(2≠++=a c bx ax x f ,当其定义域为R 时,其值域为 ()()22 4 044 04ac b y a a ac b y a a ?-≥>???-?≤时,()2b f a -是函数的最小值,最大值为(),()f m f n 中 较大者;当0a <时,()2b f a -是函数的最大值,最大值为 (),()f m f n 中较小者。 (2)若[],2b m n a - ?,只需比较(),()f m f n 的大小即可决定函数的最大(小)值。 特别提醒: ①若给定区间不是闭区间,则可能得不到最大(小)值; ②若给定的区间形式是[)(]()(),,,,,,,a b a b +∞-∞+∞-∞等时,要结合图像来确函数的值域; ③当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论。 例1:已知()22f x x --的定义域为[)3,-+∞,则()f x 的定义域为(],1-∞。 例2:已知()211f x x -=+,且()3,4x ∈-,则()f x 的值域为()1,17。 题型三:一次分式函数的值域 1、反比例函数)0(≠= k x k y 的定义域为{}0x x ≠,值域为{}0y y ≠ 2、形如:cx d y ax b +=+的值域:

定义域和值域的求法经典

函数定义域求法总结 一、定义域是函数y=f(x)中的自变量x 的范围。 (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 (6)0x 中x 0≠ 二、抽象函数的定义域 1.已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈ ,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 2.已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a << 确定)(x g 的范围即为)(x f 的定义域。 3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域 结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。 4.已知()f x 的定义域,求四则运算型函数的定义域 若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。 函数值域求法四种 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本次课就函数值域求法归纳如下,供参考。 1.直接观察法 对于一些比较简单的函数,其值域可通过观察得到。

求函数定义域和值域方法和典型题归纳

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见要是满足有意义的情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。 (2)求定义域时,尽量不要对函数解析式进行变形,以免发生变化。(形

高中数学求函数值域的解题方法总结(16种)

求函数值域的解题方法总结(16种) 在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。 一、观察法: 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例:求函数()x 323y -+=的值域。 点拨:根据算术平方根的性质,先求出 ()x 3-2的值域。 解:由算术平方根的性质知()0x 3-2≥,故()3x 3-23≥+。 点评:算术平方根具有双重非负性,即:(1)、被开方数的非负性,(2)、值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧发。 练习:求函数()5x 0x y ≤≤=的值域。(答案:{}5,4,3,2,1,0) 二、反函数法: 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例:求函数2 x 1x y ++=的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数2 x 1x y ++=的反函数为:y y --=112x ,其定义域为1y ≠的实数,故函数y 的值域为{}R y 1,y |y ∈≠。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数x -x -x x 10101010y ++=的值域。(答案:{}1y 1-y |y 或)。 三、配方法: 当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求函数的值域。 例:求函数() 2x x -y 2++=的值域。 点拨:将被开方数配方成平方数,利用二次函数的值求。 解:由02x x -2≥++可知函数的定义域为{}2x 1-|x ≤≤。此时2x x -2++=

函数定义域-值域求法以及分段函数

(一)函数的概念 1.函数的概念: 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数(function). 记作:y=f(x),x∈A. 其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range). 注意: ○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素: 定义域、对应关系和值域 3.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示. 4.一次函数、二次函数、反比例函数的定义域和值域讨论 (二)映射 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A 中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B 为从集合A到集合B的一个映射(mapping). 记作“f:A→B” 说明: (1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的.其中f表示具体的对应法则,可以用汉字叙述. (2)“都有唯一”什么意思? 包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。1.例题分析:下列哪些对应是从集合A到集合B的映射? (1)A={P | P是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应; (2)A={ P | P是平面直角体系中的点},B={(x,y)| x∈R,y∈R},对应关系f:平面直角体系中的点与它的坐标对应; (3)A={三角形},B={x | x是圆},对应关系f:每一个三角形都对应它的内切圆; (4)A={x | x是新华中学的班级},B={x | x是新华中学的学生},对应关系f:每一个班级都对应班里的学生. 思考: 将(3)中的对应关系f改为:每一个圆都对应它的内接三角形;(4)中的对应关系f 改为:每一个学生都对应他的班级,那么对应f:B→A是从集合B到集合A的映射吗? (三)函数的表示法 常用的函数表示法:(1)解析法; (2)图象法; (3)列表法.

相关主题