搜档网
当前位置:搜档网 › 绘出最高的抛物线

绘出最高的抛物线

绘出最高的抛物线
绘出最高的抛物线

绘出最高的抛物线

高二、十六班孙昕梦银河历经几亿年的磨砺,才会群星璀璨,美丽壮阔;大海包容数千条江河,才能浩瀚广阔,波浪澎湃;古树积聚几百年的精华,才得以巍然挺立,荫庇四方。这些事物无疑都向我们昭示着“做功不同,人生将给出不同的抛物线”。那么,如何才能绘制出最高的抛物线呢?

古人云:“不积跬步,无以至千里;不积小流无以至江海。”勤奋而努力地“做功”便是最高抛物线的基石。中国原子弹的首次巨响震惊世界,也让中国人扬眉吐气。可是那成功背后的超乎想象的“做功”却是鲜为人知的。堆积满屋的草稿纸,见证了艰辛的“做功”,更为达到最高的顶点插上了翅膀。还有那千千万万葬身于戈壁的无名战士,他们的牺牲换来基地的建成,原子弹爆炸的成功。他们是戈壁的花朵,默默地“做功”,最终开出最美的“抛物线”。

每一次的努力仿佛如蚌的痛苦的泪水,一滴滴泪水的凝聚却最终换来耀眼的珍珠,因此“做功”是“最高抛物线”的基石。

做功虽有,但若方向错误,最终也会无功而返。正如一艘设备精良的轮船,若无罗盘的引导,怎能开出自己的新天地呢?一位徒弟跟师傅学习了多年雕刻却毫无长进,苦恼之际师傅一语道破天机,每块石头都有独一无二的纹路,唯有顺

其形势,因势利导,一件杰作才能横空出世。正如每朵花儿渴求阳光,但它们向上的姿态却各不相同。每个人都是这世上独特的存在,但每个人的境况不同,梦想不同,方向自然也不同。因此在这大千世界,茫茫人海中我们要记住内心那真正的声音,朝着属于自己的正确方向阔步前行。方向和目标如图纸上每一个精密的点,只有在它们的指示下,我们才能尽情展示自己,超越自己,达到那“抛物线”的顶点。

方向如黑暗中不灭的火炬,有了它的引导,我们才能迈出美好的黎明。

绘出人生的抛物线,请坚守那片叫自我的天空。记得有一位名叫詹姆森的科学家,他将自己的重大发现公诸于世却招来非议,在众人的质疑声中他迷失了自我,最终对自己说不。时光冲洗了一切,当别人因为发现了与他相同的现象而获得诺贝尔奖时,他只有无尽的悔恨与失落。詹姆森的失败源于他对自我的怀疑,而其他人的成功源于他们的坚持。坚持是永不停止的脚步,是肯定自己的微笑,是永不言败的勇气。梦想的烟花只为相信自己的人而绽放。在错杂纷乱的世界之中,各种声音如洪水般涌来,我们也许会迷茫无助,甚至怀疑那最真实的自己,但请相信,只要我们自己心中仍有那片叫自我的天空,梦想总有一天会春暖花开,为我们送来时光无法更改的馨香。

生活对每一个人来说都是一张干净无暇的坐标纸,请我

们积聚力量,努力而勤奋地“做功”;把握方向,向最高处奋力一掷;坚守自我,让每一刻都完美如初。我相信,我们将绘出最高的抛物线!

高考复习中抛物线(几个常见结论及其应用)

抛物线的几个常见结论 抛物线中有一些常见、常用的结论,了解这些结论后在做选择题、填空题时可迅速解答相关问题,在做解答题时也可迅速打开思路。 结论一:若AB 是抛物线2 2(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2 124 p x x =,212y y p =-。 证明:因为焦点坐标为F(2 p ,0),当AB 不垂直于x 轴时,可设直线AB 的方程为: ()2p y k x =-, 由2()22p y k x y px ?=- ?? ?=? 得: 2220ky py kp --= ∴212y y p =-,2242 121222244 y y p p x x p p p =?==。 当AB ⊥x 轴时,直线AB 方程为2 p x =,则1y p =,2y p =-,∴2 12y y p =-,同上也有:2124p x x =。 例:已知直线AB 是过抛物线2 2(0)y px p =>焦点F ,求证:11AF BF +为定值。 结论二:(1)若AB 是抛物线2 2(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α =(α≠0)。(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。 证明:(1)设11(,)A x y ,22(,)B x y ,设直线AB:()2 p y k x =- 由2()22p y k x y px ? =-?? ?=? 得:,2220ky py kp --= ∴122p y y k +=,212y y p =-, ∴12AB y -=2222 22(1)2(1tan )2tan sin p k p P k ααα ++===。 易验证,结论对斜率不存在时也成立。 (2)由(1):AB 为通径时,90α= ,2 sin α的值最大,AB 最小。 例:已知过抛物线2 9y x =的焦点的弦AB 长为12,则直线AB 倾斜角为 。 结论三:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。 (2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。 已知AB 是抛物线2 2(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。 (2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN 证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线l 作垂线, 垂足分别为M 、P 、N ,连结AP 、BP 。 由抛物线定义:AM AF =,BN BF =, ∴111 ()()222 QP AM BN AF BF AB =+=+=, ∴以AB 为直径为圆与准线l 相切 (2)作图如(1),取MN 中点P ,连结PF 、MF 、NF ,

最新抛物线的几个常见结论及其用

抛物线的几个常见结论及其应用 抛物线中有一些常见、常用的结论,了解这些结论后在做选择题、填空题时可迅速解答相关问题,在做解答题时也可迅速打开思路。 结论一:若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦), 且11(,)A x y ,22(,)B x y ,则:2 124 p x x =,212y y p =-。 例:已知直线AB 是过抛物线22(0)y px p =>焦点F , 求证: 11AF BF +为定值。 结论二:(1)若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α, 则 22sin P AB α = (α≠0)。(2)焦点弦中通径(过焦点且垂直于抛物线 对称轴的弦)最短。 例:已知过抛物线29y x =的焦点的弦AB 长为12,则直线AB 倾斜角为 。AB 倾斜角为3 π 或 23 π 。 结论三:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。 (2)过抛物线焦点弦的两端点向准线作垂线, 以两垂足为直径端点的圆与焦点弦相切。 例:已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。 (2)分别过A 、B 做准线的垂线, 垂足为M 、N ,求证:以MN 为直径的圆 与直线AB 相切。

结论四:若抛物线方程为22(0)y px p =>,过(2p ,0)的直线与之交于A 、B 两点,则OA ⊥OB 。反之也成立。 结论五:对于抛物线22(0)x py p =>,其参数方程为2 22x pt y pt =?? =?, , 设抛物线22x py =上动 点P 坐标为2 (22)pt pt , ,O 为抛物线的顶点,显然2 22OP pt k t pt ==,即t 的几何意义为过抛物线顶点O 的动弦OP 的斜率. 例 直线2y x =与抛物线22(0)y px p =>相交于原点和A 点,B 为抛物线上一点,OB 和OA 垂直,且线段AB 长为,求P 的值. 解析:设点A B ,分别为22(22)(22)A A B B pt pt pt pt , ,,, 则11 2 A OA t k = =,1 2B OA OB t k k = =-=-. A B ,的坐标分别为 (84)2p p p p ??- ???,,, .AB ∴=.2p =∴. 练习: 1.过抛物线2(0)y ax a =>的焦点F 作一直线交抛物线于P Q ,两点, 若线段PF 与FQ 的长分别是p q ,,则11p q += 故114a p q +=】 2.设抛物线22(0)y px p =>的焦点为F ,经过点F 的直线交抛物线 于A B ,两点.点C 在抛物线的准线上,且BC x ∥轴. 证明直线AC 经过原点O . 【证明:抛物线焦点为02 p F ?? ??? , .设直线AB 的方程为2 p x my =+, 代入抛物线方程,得2220y pmy p --=.若设1122()()A x y B x y ,,,, 则212y y p =-. BC x ∵∥轴,且点C 在准线1 2CO p k y = ; 又由2112y px =,得11 1 2AO y p k x y ==, 故CO AO k k =,即直线AC 经过原点O .】

初中抛物线常见结论汇总(教师版)

初中抛物线常见结论汇总(教师版) 1. (唯一交点或最值) (1)已知抛物线y=x 2-2x -3,过点D (0,-4)求与抛物线有且只有一个公共点的直线的解析式。 (判别式) (2)已知抛物线y=x 2-2x -3,在第四象限的抛物线上求点P ,使四边形ACPB 的面积最大。 2. (焦点—准线:顶点上下14a 个单位)已知抛物线y =12 x 2-x +1,直线过点P (1,1)与抛物线交于A 、B 。过A 、B 分别作x 轴的垂线,垂足分别为M 、N 。 (1)连PM 、PN ,求证:△PMN 为直角三角形; (2)①求证:AB =AM+BN ;②求1AP +1BP 的值。 (3)已知点D (1,0),求证:DP 经过△AB D 的内心。 3. 如图,抛物线y =12x 2﹣x -32 顶点为D ,对称轴上有一点E (1,4),在抛物线上求点P ,使∠EPD=90°。 4. (定直角特殊点——特殊)已知抛物线y=12 x 2,过对称轴上P 点的任意一条直线与抛物线的两交点A 、B 和O 点构成以O 点为直角顶点的直角三角形,求P 点坐标。(定点:顶点向上平移1/a 个单位长度)

5. (定直角特殊点——半特殊)如图:抛物线y=ax 2+bx+c 与x 轴交于A 、B ,与y 轴交于C ,交点C 向上平移t 个单位长度到D ,过D 作EF ∥AB ,交抛物线于E 、F ,∠ECF=90°。求t 与a 的关系。 6. (定直角特殊点——一般)如图:抛物线y=ax 2+bx+c 与x 轴交于A 、B ,与y 轴交于C ,点P (m,n )为抛物线 上任意一点,过D (0,n+t )作EF ∥AB ,交抛物线于E 、F ,∠EPF=90°。求t 与a 的关系。 7. (纵向平分对称点——特殊)已知抛物线y=12 x 2,过对称轴上P 点的任意一条直线与抛物线的两交点为A 、B ,在对称轴负半轴上有点Q (0,-2),且∠AQB 被对称轴平分,求P 点坐标。 8. (纵向平分对称点——一般)如图,抛物线y =x 2-x -2与x 轴交于A 、B ,与y 轴交于C ,点D 和点C 关于对 称轴对称,MN ∥AD ,交抛物线于M 、N ,直线MD 、ND 分别交y 轴于E 、F 。求证:CF =CE 。

(完整版)《抛物线定义及其标准方程》

抛物线及其标准方程 一、教学目标 1.知识目标:①掌握抛物线的定义、方程及标准方程的推导;②掌握焦点、焦点位置与方程关系;③进一步了解建立坐标系的选择原则. 2. 能力目标:使学生充分认识到“数与形”的联系,体会“数形结合”的思想。 二、教学过程 (一)、复习引入 问题1、 椭圆、双曲线的第二定义如何叙述?其离心率e 的取值范围各是什么? 平面内,到一个定点F 的距离和一条定直线l 的距离的比是常数e 的轨迹,当0<e <1时是椭圆,当e >1时是双曲线。自然引出问题:那么,当1 e 时,轨迹是什么形状的曲线呢? (二).创设情境 问题2、用制作好的教具实验:三角板ABC 的直角边BC 边上固定一个钉子,一根绳子连接钉子和平面上一个固定点F ,并且使绳子的长度等于钉子到直角顶点C 的距离。用笔尖绷紧绳子,并且使三角板AC 在定直线l 上滑动,问笔尖随之滑动时,在平面上留下什么图形?如何用方程表示该图形? 设计意图:从实际问题出发,激发学生的求知欲,将问题交给学生,充分发挥学生的聪明才智,体现学生的主体地位,同时引入本节课的内容. 师生活动: (1) 你们如何把这个实际问题抽象成数学问题吗? (2) 学生不一定能正确抽象出来,教师可适当引导:当笔 尖滑动时,笔尖到定点F 的距离等于到定直线l 的距离,在满足这样条件下,笔尖画出的图形。并抽象数学问题: (三)、新课讲授: (1)抛物线定义:平面内,到一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线 定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线,F 到直线l 的距离简 称焦准距。 特别提醒:定点F 在定直线l 外。(并假设F 在直线l 上)

抛物线的定义及标准方程教案

<<抛物线的定义及标准方程>>教案 西乡二中陶小健 一.教学媒体的选择和设计 本课件需在多媒体教室完成,借助powerpoint、几何画板课件,从动态演示和实物模型入手,使学生对抛物线有一个初步的认识。 二.教学目标分析 1.知识目标 掌握抛物线定义,明确焦点和准线的意义;掌握抛物线标准方程;会推导抛物线标准方程,掌握P的几何意义,掌握开口向右的抛物线的标准方程的数形特点,并会简单的应用。 2.能力目标 通过抛物线概念和标准方程的学习,培养学生分析、抽象和概括等逻辑思维能力,提高适当建立坐标系的能力,提高数形结合和转换能力。 3.情感目标 通过学生们寻找生活中与抛物线有关的物体和形象,加强知识与实际的联系,增强学生的学习兴趣。 三.教材的重点和难点 掌握抛物线的定义及标准方程,进一步熟悉解析法的应用,会根据抛物线的标准方程、准线方程、焦点坐标、图象四个条件中一个求其余条件是本节课的教学重点。 教学难点是用解析法求抛物线的标准方程,及坐标系的选取。 四.教学过程 1、设置情境,引出课题 (借助多媒体)先给出一段悉尼海港大桥的视频和中国一古一今两张抛物线形大桥图片,让学生体会世界的古代文明和现代化建设成就。 再给出一幅抛球画面。

学生在学习了圆锥曲线中的椭圆后自然想到抛物线。借此教师点明并板书课题:今天我们就来学习抛物线,研究一下《抛物线的定义和标准方程》。 2.实验探索,归纳定义 为了加深对抛物线直观形象的认识,教师操纵微机,展示多媒体课件,顺序显示下列图形: 1)一条直尺和沿直尺一侧的一定直线L; 2)一个直角三角板并把其一直角边紧靠在直尺的一侧(即定直线L上); 3)取一段细线一段固定在直角三角板另一条直角边上,把细线紧靠在直尺直角三角板一条直角边上,截取一段使其恰好等于到直尺一侧(即定直线L)的距离; 4)再取定直线L 外一个定点F ,把细线的另一端固定在这个定点F 上,取一支铅笔P 靠在三角板的直角边上并使细线扯紧; 5)让直角三角板一条直角边紧靠在直尺的一侧(即定直线L上) ,上下移动时铅笔P 就画出一段曲线-------抛物线。 教师展示完成多媒体课件后,找一至两个同学再一次来操作课件展示抛物线的形成过程,并提出问题让同学思考。 课堂上要充分发挥学生的主体作用,引导学生合作探究得出定义,这是本节课的第一个探究点。学生在此问题中,认为简单,其实很容易出错,并且在探究错因时,难于理解。我给提供平台、激发学生兴趣,首先要求学生独立思考、自主探究,然后引导学生小组交流讨论,最后让小组代表总结。这里学生容易忽视定义的两个前提—(1)在平面内,(2)点F 不能取在定直线L 上.教师要根据学生探究的情况恰当引导学生去发现这些问题,得出抛物线的定义后,要及时给于探究全面、分析问题到位的小组同学表扬,对定义描述尚有不足的同学也要及时鼓励,期待他们在下一个探究点能做的更好。得出抛物线的正确定义后,教师板书抛物线的定义。

抛物线常用性质总结

结论一:若AB 是抛物线2 2(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则: 2 124 p x x =,212y y p =-。 结论二:已知直线AB 是过抛物线2 2(0)y px p =>焦点F ,求证:112=AF BF p + 。 结论三:(1)若AB 是抛物线2 2(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则 22sin P AB α = (α≠0)。(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。 结论四:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。 (2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。

证明结论二: 例:已知直线AB 是过抛物线2 2(0)y px p =>焦点F ,求证:11AF BF +为定值。 证明:设11(,)A x y ,22(,)B x y ,由抛物线的定义知:12p AF x =+ ,22 p BF x =+,又AF +BF =AB ,所以1x +2x =AB -p ,且由结论一知:2 124 p x x =。 则:212 121211()()()2224AF BF AB AB p p AF BF AF BF x x x x x x ++===?+++++ =22 2()424 AB p p p p AB p =+-+(常数 证明:结论四: 已知AB 是抛物线2 2(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。 (2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN 切。 证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线l 作垂线, 垂足分别为M 、P 、N ,连结AP 、BP 。 由抛物线定义:AM AF =,BN BF =, ∴111 ()()222 QP AM BN AF BF AB = +=+=, ∴以AB 为直径为圆与准线l 相切 (2)作图如(1),取MN 中点P ,连结PF 、MF 、NF , ∵AM AF =,AM ∥OF ,∴∠AMF=∠AFM ,∠AMF=∠MFO ∴∠AFM=∠MFO 。同理,∠BFN=∠NFO , ∴∠MFN= 1 2 (∠AFM+∠MFO+∠BFN+∠NFO )=90°, ∴1 2 MP NP FP MN ===, ∴∠PFM=∠FMP ∴∠AFP=∠AFM+∠PFM=∠FMA+∠FMP=∠PMA=90°,∴FP ⊥AB

《抛物线及其标准方程》教学设计

《抛物线及其标准方程》教学设计 教材:普通高中数学课程标准实验教科书(人教A版) 选修2-1 一第二章第四节 课题:抛物线及其标准方程 课时:第一课时 一、背景分析 1 课标的要求 (1)了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 (2)经历从具体情境中抽象出椭圆,抛物线模型的过程,掌握椭 圆,抛物线的定义、标准方程及简单性质。 (3)了解双曲线的定义、几何图形和标准方程,知道它们的有关性质,体会数形结 合的思想。 (4)了解圆锥曲线的简单应用。 2本节课在圆锥曲线中的地位: 圆锥曲线是解析几何中的一个重要内容。而抛物线在圆锥曲线中地位仅次于椭圆而高于双曲 线,抛物线在初中以二次函数的形式初步探讨过,本节内容安排篇幅不多,并非不重要,主 要是因为学生对于椭圆、双曲线的基本知识和研究方法已经熟悉了,这里精简介绍,学生是可以接受的,它是高考的重要考察内容,要引起师生足够的重视。 3、学习任务分析 (1)、通过实验,结合几何画板课件,观察、发现和认识抛物线。 (2)、坐标法求抛物线的标准方程是本节课的重点和难点。 通过几何画板动态演示建立不同的坐标系,对比所得方程的异同,使学生认识到恰当建立坐 标系的重要性。 (3)、由抛物线的标准方程,熟练写出焦点坐标、准线方程;反之也会。 (4)、放手让学生类似地推导开口向左、向上、向下的情况下的标准方程。让学生根据课件展示的图形填充表格、对比异同。

(5)、p的几何意义:它指抛物线焦点到准线的距离,因此p>0。在抛物线宀, *=一2即中,负号只管抛物线的开口方向,与p无关。 (6)、由于学生对数学图形、符号、文字三种语言的相互转化有一定困难,教学中应根据 图形培养学生运用三种语言的能力。借助图形使原本较为陌生的定义变得容易理解和便于记忆。 4、学生情况分析 在经过高一的学习和训练后,大多同学有较扎实的数学基本功和较好的理解力,有一定的自主学习能力,但在数学思想方法的形成上尚有不足,针对我所带班级学生的学习情况和数学 素养,我把本节内容借助powerpoint、几何画板课件,从形象、动态的演示入手,使学生 对抛物线有一个较为深刻的认识。 二、教学目标设计 根据课程标准和考试大纲的要求、教材的具体内容和学生认知心理,我确定本堂课的教学目 标如下: 1知识与能力 ①让学生理解抛物线的概念及与椭圆、双曲线第二定义的联系。 ②让学生掌握抛物线的四种标准方程及其对应的图形。 2、技能与方法 ①培养建立适当坐标系的能力。 ②培养学生的观察、比较、分析、概括的能力。 3、情感态度与价值观 ①培养学生的探索精神。 ②渗透辩证唯物主义的方法论和认识论教育。 4教学重点和难点 根据以上所说的教材的地位、作用、内容与学生情况,我确定教材重点、难点如下: (1)、教学重点: ①选择适当坐标系探求抛物线的标准方程。 ②标准方程的形式与图形、焦点坐标、准线方程的对应关系。 (2)、教学难点:

抛物线的标准方程及性质

抛物线的标准方程及性质2018/11/25 题型一、抛物线的标准方程: 例题: 1、 顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 _______ 2、 已知抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为 3、 以抛物线y 2=2px (p >0)的焦半径|PF |为直径的圆与y 轴的位置关系为 4、 点M 与点F (4,0)的距离比它到直线:50x +=的距离小1,则点M 的轨迹方程是 _______ 5、 抛物线x y =2上到其准线和顶点距离相等的点的坐标为 _______ 练习: 1、 抛物线的顶点在原点,对称轴是x 轴,点(-到焦点距离是6,则抛物线的方程为 _______ 2、 顶点在原点,以坐标轴为对称轴,且焦点在直线3x-4y =12上的抛物线方程是 _______ 3、 已知圆07622=--+x y x ,与抛物线)0(22>=p px y 的准线相切,则=p ________ 4、 若点A 的坐标是(3,2),F 为抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MA |+|MF |取最小值的M 的坐标为 _______ 题型二、抛物线性质: 例题: 1、 抛物线x y 122=截直线12+=x y 所得弦长等于 2、 抛物线y 2=4x 与直线2x +y -4=0交于两点A 与B ,F 是抛物线的焦点,则|FA |+|FB |=________ 3、 如果过两点)0,(a A 和),0(a B 的直线与抛物线322 --=x x y 没有交点,那么实数a 的取值范围是 4、 已知抛物线的顶点在坐标原点,对称轴为x 轴,且与圆x 2+y 2=4相交的公共弦长等于23,则这抛物线的方程是 练习: 1、 过A (-1,1),且与抛物线22y x =+有一个公共点的直线方程为 2、 边长为1的等边三角形AOB ,O 为原点,AB ⊥x 轴,则以O 为顶点,且过A 、B 的抛物线方程是________ 3、 若直线l 过抛物线y 2=4x 的焦点,与抛物线交于A ,B 两点,且线段AB 中点的横坐标为2,则线段AB 的长 4、 过点Q (4,1)的抛物线y 2=8x 的弦AB 恰被点Q 平分,则AB 所在直线方程是 题型三、抛物线的应用 例题: 1、 已知圆2290x y x +-=与顶点原点O ,焦点在x 轴上的抛物线交于A 、B 两点,△AOB 的垂心恰为抛物线的焦点,求抛物线C 的方程。

抛物线及其标准方程

拋物线及其标准方程 设计思想 为了培养不仅能“学会”知识,而且能“会学”知识的人才以及根据我校提出的“创设情景、激发情感、主动发现、主动发展”的教学模式,在课堂设计上,教师应学会如何创设情景,激发学生学习的兴趣;围绕教材的重难点,比如本节的“拋物线的标准方程及其推导”和“拋物线概念的形成”,教师应学会如何设计不同的活动环节,设置由浅入深、环环相扣的问题,通过教师适时的引导,通过生生间、师生间的交流互动,通过学生自己的发现、分析、探究、反思,使学生真正成为学习的主人,不断完善自己的知识体系,提高获取知识的能力,尝试合作学习的快乐,体验成功的喜悦。 教学过程设计 一.设置情景,导入新课 (借助多媒体)先给出一张姚明的图片。(此时学生的兴 趣来啦!) 师:姚明是我们中国人的骄傲,我们要向他学习!大家 都知道姚明的投篮非常精准!为什么呢? 生:天赋、身高! 生:勤奋练习!(再给出两张姚明的图片) 生:与投篮时的弧线有关! 生:这弧线是抛物线! 师:对!姚明有许多优越的先天条件,同时好的技术也是一个关键的因素,今天我们就着手研究这个内容。 (进而引出本节研究的课题:抛物线及其标准方程) 【学情预设】学生被教师设置的情景所吸引,学习的热情高涨。 【设计意图】一个引人入胜的开头会拓宽学生思路,尊重学生的生命活动,激发兴趣,陶冶情操,大大提高教学效率。 二.引导探究,获得新知 师:在初中我们已经从函数角度学过抛物线,那么,这一节课我们将冲破初中的界限从曲线和方程的角度来学习抛物线。

师:前面,我们学习了椭圆和双曲线的相关知识,那么它们的联系和差异是什么? 生:定义不一样! 生:方程!椭圆是22 2 21x y a b +=,双曲线是22 221x y a b -=。 师:还有吗? 生:椭圆是封闭的,双曲线是开放的。 师:这只是图象不同,为什么会这样呢? 生:就是它们到定点的距离与到定直线的距离的比等于一个常数! 生:这个常数是离心率e ! 师:对啊!这是定性上的,定量上有不同吗? 生:离心率e 不同,椭圆离心率e 的范围是01e <<,双曲线离心率e 的范围是1e >。 师:对了,e 可看成是它们的相同点,又是不同点! (打开几何画板) 师:现在我慢慢拖动,大家认真观察图象。 生:01e <<是椭圆,1e >是双曲线。 师:但你们有没观察到1e =时的图象? 生:抛物线! 【学情预设】学生认真观察图象的变化,认知1e =的图象就是抛物线。 【设计意图】不仅回顾了椭圆与双曲线的相关内容,而且为如何画抛物线奠定坚实基础。

抛物线的常见结论

抛物线的常见结论 一、知识点总结 1. 抛物线的弦长公式 2122122124)(11x x x x k x x k l -+?+=-+=, 其中k 是弦所在直线的斜率,21,x x 是交点的横坐标,本表达式不包含斜率不存在的情况。 2122122124)(11y y y y m y y m l -+?+=-+=,其中弦长所在直线 方程为b my x +=,21,y y 是交点的纵坐标,本表达式包含斜率不存在的情况。 2. 抛物线的焦点弦 对于抛物线,022 >=p px y ,,倾斜角为α的直线过抛物线的焦点,与抛物线交于A ,B 两点,过A,B 做抛物线准线的垂线,垂足分别为C,D ,那么有: ①2212 21,4 p y y p x x -==A B F C D O α

由?????+==222p my x px y 得0222=--p pmy y (*) ,因此?? ???==-=44)(2222121221p p y y x x p y y ②焦点弦长 p x x AB ++=21,焦点弦长α 2 sin 2P AB = α αsin 4)(sin 212212 1y y y y y y AB -+= -=,结合(*)式与αtan 1 =m 得: α ααααααααα sin sin sin sin cos 2sin 1tan 12sin 4tan 4sin 442 22222 222 22+= +=+= += p p p p p m p AB α αα22sin 2sin sin 1 2p p == ③ P BF AF 211=+ 简单证明如下:p p p y y p y y P BF AF BF AF BF AF 222sin sin sin 211221212====+=+ααα ④焦点三角形面积α sin 22 P S = 简单证明如下:以 AB 为底,以O 到AB 的距离为高,该三角形面积课表示为: α αααsin 2sin 2sin 221sin 2122p p p OF AB S AOB =??== ⑤焦点弦相关的几何关系: a. 以AF/BF 为直径的圆与y 轴相切 b. 以AB 为直径的圆与准线相切,切点与焦点连线垂直于AB. c. 以CD 为直径的圆与AB 相切 d. A,B 在准线上的投影对F 的张角为90°,?=∠90CFD e. 以A,B 为切点分别做两条切线,两切线的交点在准线上;在准线上取一点做抛物线的切线,

抛物线及其标准方程

“抛物线及其标准方程”(第一课时)教学设计 数学组韦云校 【教材分析】 1、教材所处的位置及其前后联系 浙江省中等职业学校二年级第八章第六部分内容为抛物线,是在学生掌握了椭圆,双曲线相关知识的基础上引出的,平面解析几何“抛物线及其标准方程”一节内容主要是抛物线的概念和抛物线标准方程(有四种形式),这是继椭圆、双曲线之后的又一重要内容,有着广泛的应用。本课是第一课时,它是学习抛物线的性质及其应用的基础。根据抛物线定义推出的标准方程,也为以后用代数方法研究抛物线的几何性质和实际应用提供了必要的工具和基础,是解决实际生活中问题的有力工具之一。对于中等职业学校的学生必须加以熟练掌握。 2、内容结构 根据实际教学处理,抛物线及其标准方程这部分内容共分为三个层次:第一层次教师通过动画演示,给出抛物线的物理定义:抛物线是抛出的物体在空中所运动的轨迹;用数学定义——平面内与一个定点F和一条定直线l的距离相等的点的轨迹称为抛物线来统一实际生活中出现的各种各样的抛物线;第二层次建立合理坐标系,推导出焦点在x正半轴上的抛物线的标准方程;第三层次由学生猜想焦点不在x正半轴上的抛物线的标准方程,并加以应用。 三个层次很自然,渐入高潮,且教学过程符合学生“由特殊到一般,又由一般回到特殊”的基本认知规律,并在很大程度上培养职高生“学以致用”的能力。 【学情分析】 对中等职业学校的学生来说,数学基础欠扎实,思维、灵活性受基础等原因制约欠佳,对前后知识间的联系、理解、应用有一定难度,反应速度相对较慢。根据以上特点,教师讲解时要放慢步骤,提高学生主体能动性,多加以前后知识间的联系,带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦,教学要按步就班,不要急于求成,要充分发挥学生的主体作用和教师的主导作用。教师应加以积极引导,使其对标准方程的推导加以理解,并会加以应用。 【教学理念】 《数学课程标准》明确指出“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践,自主探索和合作交流是学生学习数学的重要方式。”并且把过程性目标确定为“经历”、“体验”和“探索”三个方面。要倡导积极主动,勇于探索的学习方式,数学教学应从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会,让他们在自己的生活中寻找数学、发现数学、探究数学、认识数学和掌握数学。 让学生亲历探究发现过程,不仅是为了让学生通过多种活动去探索和获取数学知识,以达到对知识的深层理解,更主要的是使学生掌握发现、认识并理解数学的一般方法,学习科学的探究的方法。因此亲历探究发现过程,不仅仅是一种获取知识的教学手段,而本身就是数学的重要目的。

圆锥曲线常见结论

椭圆与双曲线的对偶性质--(必背的经典结论) 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个 端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是 00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形 的面积为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22 221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的 两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. 6. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b -=. 7. 双曲线22 221x y a b -=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双 曲线的焦点角形的面积为122 t 2 F PF S b co γ ?=. 8. 双曲线22 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相 应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M , A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是双曲线22 221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 0202y a x b K K AB OM =?,即020 2y a x b K AB =。 12. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b -=-. 13. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b -=-.

抛物线的有关结论

探索与研究 圆锥曲线中抛物线的有关结论 山东省德州市实验中学 肖成荣 由于抛物线的离心率是常数,导致了许多自身具有的规律性,再加上抛物线的方程比较简单,所以灵活性就更加显现,了解了抛物线的规律性后在处理抛物线的相关问题时会起到事半功倍的效果。下面就抛物线的结论作以归整,供参考! 一、焦点)0,2 ( p F 处的结论 1、焦半径长:),(11y x A ,)0,2 ( p F ,2||1p x AF +=; 2、焦点弦长:),(11y x A 、),(22y x B 在抛物线上, 且AB 过焦点F ,则p x x AB ++=21||,或θ 2 sin 2||p AB = (θ为直线l 与抛物线对称轴的夹角); 3、过焦点的直线与抛物线相交于A 、B 两点,分别过A 、B 两点作准线的垂线,垂足分别为M 、N ,MN 的中点为G 。 (1)两相切:①以焦半径AF 为直径的圆与y 轴相切;②以焦点弦AB 为直径的圆与抛物线的准线相切. (2)三直角:① ∠AGB ②090=∠MFN ③GF (3)六定值:),(11y x A 、),(22y x B 的乘积是定值:21x x =24 3 p -=?; ②n BF m AF ==,mn GF =||. ③22sin AOB p S θ ?= 二、点)0,(p D 处的结论 例:抛物线px y 22=上的点到)0,(a A 的最近距离是多少? 结论:)0,(p D 是抛物线px y 22=上到点)0,(a A 的距离最近的点为顶点的分界点, )0,(a A 在)0,(p D 左边顶点到点)0,(a A 的距离最近,右边横坐标为p a -的那两个抛物 线上的点到点)0,(a A 的距离最近. 三、点)0,2(p E 处的结论 B A ,是抛物线)0(22>=p px y 上的两点,OB OA ⊥,),(11y x A ,),(22y x B ,则 ⅰ.2214p x x =,2214p y y -=;ⅱ.直线AB 过定点)0,2(p ;ⅲ.求AB 中点的轨迹方程; ⅳ.过O 向AB 引垂线,求垂足T 的轨迹方程;ⅴ.求AOB ?面积的最小值. 结论:),(11y x A 、),(22y x B 是抛物线)0(22>=p px y 上的两点,O 为抛物线的顶点,(1)090=∠AOB ?直线AB 过点)0,2(p E .(2)2214p x x =,2214p y y -=. 四、准线上的有关结论 过抛物线的焦点的直线交抛物线于两点B A ,,再以B A ,为切点作抛物线的切 线,其交点在抛物线的准线上,且两切线垂直。反过来, 准线上任意一点做抛 物线的切线有两条,且两条切线垂直,两切点连线过抛物线的焦点。

抛物线及其标准方程练习题

` 课时作业(十二) [学业水平层次] 一、选择题 1.(2014·广东省茂名)准线与x 轴垂直,且经过点(1,-2)的抛物线的标准方程是( ) A .y 2=-2x B .y 2=2x C .x 2=2y D .x 2=-2y 【解析】 本题考查抛物线标准方程的求法.由题意可设抛物线的标准方程为y 2=ax ,则(-2)2=a ,解得a =2,因此抛物线的标准方程为y 2=2x ,故选B. 【答案】 B ; 2.(2014·人大附中高二月考)以双曲线x 216-y 2 9 =1的右顶点为焦 点的抛物线的标准方程为( ) A .y 2=16x B .y 2=-16x C .y 2=8x D .y 2=-8x 【解析】 因为双曲线x 216-y 2 9=1的右顶点为(4,0),即抛物线的 焦点坐标为(4,0),所以抛物线的标准方程为y 2=16x . 【答案】 A 3.已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一条渐近线的斜率为2, 且右焦点与抛物线y 2=43x 的焦点重合,则该双曲线的离心率等于

( ) C .2 D .23 | 【解析】 抛物线的焦点为(3,0),即c = 3.双曲线的渐近 线方程为y =b a x ,由b a =2,即 b =2a ,所以b 2=2a 2= c 2-a 2,所以 c 2=3a 2,即e 2=3,e =3,即离心率为 3. 【答案】 B 4.抛物线y 2=12x 的准线与双曲线y 23-x 2 9=-1的两条渐近线所 围成的三角形的面积为( ) A .3 3 B .2 3 C .2 【解析】 本题主要考查抛物线和双曲线的基本量和三角形面积的计算.抛物线y 2=12x 的准线为x =-3,双曲线的两条渐近线为y =± 3 3 x ,它们所围成的三角形为边长为23的正三角形,所以面积为33,故选A. 【答案】 A 二、填空题 5.(2014·绵阳高二月考)抛物线y 2=2x 上的两点A 、B 到焦点的距离之和是5,则线段AB 的中点到y 轴的距离是________. · 【解析】 抛物线y 2 =2x 的焦点为F ? ?? ??12,0,准线方程为x =-12, 设A (x 1,y 1)、B (x 2,y 2),则|AF |+|BF |=x 1+12+x 2+1 2=5,解得x 1 +x 2=4,故线段AB 的中点横坐标为2.故线段AB 的中点到y 轴的距离是2.

高考复习中抛物线(几个常见结论及其应用)

抛物线的几个常见结论 抛物线中有一些常见、常用的结论,了解这些结论后在做选择题、填空题时可迅速解答相关问题,在做解答题时也可迅速打开思路。 结论一:若AB 是抛物线2 2(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2 124 p x x =,212y y p =-。 证明:因为焦点坐标为F( 2 p ,0),当AB 不垂直于x 轴时,可设直线AB 的方程为: ()2p y k x =-, 由2 ()22p y k x y px ?=-???=? 得: 2220ky py kp --= ∴212y y p =-,2242 12 1222244y y p p x x p p p =?==。 当AB ⊥x 轴时,直线AB 方程为2 p x =,则1y p =,2y p =-,∴2 12y y p =-,同上也有:2124p x x =。 例:已知直线AB 是过抛物线2 2(0)y px p =>焦点F ,求证:11AF BF +为定值。 结论二:(1)若AB 是抛物线2 2(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α =(α≠0)。(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。 — 证明:(1)设11(,)A x y ,22(,)B x y ,设直线AB:()2 p y k x =- 由2()22p y k x y px ?=- ?? ?=? 得:,2220ky py kp --= ∴122p y y k +=,212y y p =-, ∴12AB y -=222222(1)2(1tan )2tan sin p k p P k ααα++===。 易验证,结论对斜率不存在时也成立。 (2)由(1):AB 为通径时,90α=,2 sin α的值最大,AB 最小。 例:已知过抛物线2 9y x =的焦点的弦AB 长为12,则直线AB 倾斜角为 。 结论三:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。 (2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。 【 已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。 (2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN 证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线l 作垂线, 垂足分别为M 、P 、N ,连结AP 、BP 。 由抛物线定义:AM AF =,BN BF =, ∴111 ()()222 QP AM BN AF BF AB =+=+=,

抛物线常用性质总结

结论一:若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则: 2 124 p x x = ,212y y p =-。 结论二:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:112= AF BF p + 。 结论三:(1)若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则 2 2sin P A B α = (α≠0)。(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。 结论四:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。 (2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。

证明结论二: 例:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证: 11AF BF + 为定值。 证明:设11(,)A x y ,22(,)B x y ,由抛物线的定义知:12 p A F x =+ ,22 p B F x =+ ,又 AF +BF =AB ,所以1x +2x =AB -p ,且由结论一知:2 124 p x x = 。 则:2 12121211()() ()222 4AF BF AB AB p p p p AF BF AF BF x x x x x x ++== =?+ + + ++ = 2 2 2()4 2 4 AB p p p p AB p = + -+ (常数 证明:结论四: 已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。 (2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN 为直径的圆与直线AB 相 切。 证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线l 作垂线, 垂足分别为M 、P 、N ,连结AP 、BP 。 由抛物线定义:AM AF =,BN BF =, ∴111()()2 2 2 Q P A M B N A F B F A B = += += , ∴以AB 为直径为圆与准线l 相切 (2)作图如(1),取MN 中点P ,连结PF 、MF 、NF , ∵AM AF =,AM ∥OF ,∴∠AMF=∠AFM ,∠AMF=∠MFO , ∴∠AFM=∠MFO 。同理,∠BFN=∠NFO , ∴∠MFN= 12 (∠AFM+∠MFO+∠BFN+∠NFO )=90°, ∴12 M P N P F P M N === , ∴∠PFM=∠FMP ∴∠AFP=∠AFM+∠PFM=∠FMA+∠FMP=∠PMA=90°,∴FP ⊥AB B A M N Q P y x O F O A M N P y x F B

相关主题