搜档网
当前位置:搜档网 › 适用于任何机器人的Elmo终极多轴运动控制解决方案

适用于任何机器人的Elmo终极多轴运动控制解决方案

适用于任何机器人的Elmo终极多轴运动控制解决方案

适用于任何机器人的Elmo终极多轴运动控制解决方案

中科新松有限公司在第一代协作机器人的设计和研发中整合了Elmo的终极多轴运动控制解决方案

中国的机器人公司“新松”全面采用Elmo终极的运动控制解决方案作为第一代协作机器人的最新设计,该设计解决了新一代产品研发中遇到的诸多挑战。

想象一下一个机器人完美地模拟一位太极拳大师的动作,动作精准、平滑、充满力感。

考虑一下在真实的工厂里面一个集成协作机器人与人类员工合作的重要意义,这种协作还要满足严苛和强制的安全约束条件。

采用了Elmo独一无二的、高级的伺服驱动技术,这家在中国机器人和自动化领域领先的公司刚刚完成第一代人机协作的工厂自动化机器人的自主研发。

Elmo提供了超小型、功能强大的基于网络型的伺服驱动器,这些驱动器直接安装在关节上。

这一应用体现了Elmo驱动器在诸多方面的独有优势,如效率、坚固程度、省空间、最少电缆用量、低EMI指数和整个系统可靠性的提升。在设计制造复杂的7轴协作机器人的时候,使用双闭环控制和采用高分辨率绝对值编码器获得最优伺服性能只是众多挑战中的一部分。Elmo在高端机器人领域里的应用实例可以作为客户在研发过程中追求最高多轴运动控制性能时的指导性参考。

摘要协作机器人被设计用来与人在工厂生产线上紧密协同工作,这一趋势正变得越来越普遍。

在人机协作的环境中,这些机器人被用来去完成高速、高精度的任务。使用相机、力传感器和其他感知元件,这些机器人可以感知人的存在并做出相应动作避免对人的伤害,有的时候机器人的动作会完全停下来。

设计协作机器人通常是用来灵活地处理小的零件,进行一些辅助性工作如安装消费类电子器件,而不是用来完成重载任务如搬运重物,焊接或者喷漆等。

全向移动机器人的运动控制

全向移动机器人的运动控制 作者:Xiang Li, Andreas Zell 关键词:移动机器人和自主系统,系统辨识,执行器饱和,路径跟踪控制。 摘要:本文主要关注全向移动机器人的运动控制问题。一种基于逆运动学的新的控制方法提出了输入输出线性化模型。对执行器饱和及驱动器动力学在机器人性能体现方面有重要影响,该控制法考虑到了以上两个方面并保证闭环控制系统的稳定性。这种控制算法常用于真实世界的中型组足球机器人全方位的性能体现。

1.介绍 最近,全方位轮式机器人已在移动机器人应用方面受到关注,因为全方位机器人“有一个满流动的平面,这意味着他们在每一个瞬间都可以移动,并且在任何方向都没有任何调整”。不同于非完整的机器人,例如轮式机器人,在执行之前具有旋转任何所需的翻译速度,全方位机器人具有较高的机动性并被广泛应用在动态环境下的应用,例如在中型的一年一度的足球比赛。 大多数移动机器人的运动控制方法是基于机器人的动态模型或机器人的运动学模型。动态模型直接描述力量施加于车轮和机器人运动之间的关系,以外加电压的每个轮作为输入、以机器人运动的线速度和角加速度作为输出。但动态变化所造成的变化的机器人惯性矩和机械组件的扰动使控制器设计变得较为复杂。假设没有打滑车轮发生时,传感器高精度和地面足够平坦,由于结构的简单,因而运动模型将被广泛应用于机器人的设计行为中。作为输入运动学模型是机器人车轮速度,输出机器人的线速度和角速度,机器人的执行器的动力都快足以忽略,这意味着所需的轮速度可以立即达到。然而,该驱动器的动态极限,甚至降低了机器人在真实的情况中的表现。 另一个重要方面是机器人控制的实践:执行器饱和。因机器人轮子的指挥电机速度是有饱和的界限的,执行器饱和能影响到机器人的性能,甚至使机器人运动变得不稳定。 本文提出了一个全方位的机器人的一种运动控制方法,这种控制方法是基于逆输入输出的线性的运动学模型。它需要不仅考虑到驱动器动力学的识别,但也需要考虑到执行器饱和控制器的设计,并保证闭环控制系统系统稳定性。 本文其余的部分:在2节介绍了运动学模型的一个全方位的中型足球机器人;在3节介绍了路径跟踪与定位跟踪问题基于逆运动学模型的输入输出线性化的解决方法,其中包括执行器饱和分析;4部分介绍了动态识别器及其在控制性能方面的影响;最后的实验结果和结论讨论部分分别在5和6。

PMAC多轴运动控制卡学习(硬件)

目录 PMAC控制卡学习(硬件) (2) 第一章PMAC简介 (2) 1.1 PMAC的含义和特点 (2) 1.2 PMAC的分类及区别 (2) 1.2.1 PMAC的分类 (2) 1.2.2 PMAC 1型卡与2型卡的主要区别 (2) 第二章Turbo PMAC Clipper控制器硬件配置 (3) 2.1 Turbo PMAC Clipper控制器简介 (3) 2.2 Turbo PMAC Clipper硬件配置 (3) 2.2.1 Turbo PMAC Clipper硬件标准配置为: (3) 2.2.2 Turbo PMAC Clipper控制器可选附件 (6) 2.2.2.1 轴接口板 (6) 2.2.2.2 反馈接口板 (6) 2.2.2.3 数字I/O接口板 (7) 第三章Turbo PMAC Clipper设备连接 (7) 3.1 板卡安装 (7) 3.2 控制卡供电 (7) 3.2.1 数字电源供电 (7) 3.2.2 DAC(数字/模拟转换)输出电路供电 (7) 3.2.3 标志位供电 (8) 3.3 限位及回零开关 (8) 3.3.1 限位类型 (8) 3.3.2 回零开关 (8) 3.4电机信号连接 (8) 3.4.1增量式编码器连接 (8) 3.4.2 DAC 输出信号 (9) 3.4.3 脉冲&方向(步进)驱动 (10) 3.4.4 放大器使能信号(AENAn/DIRn) (10) 3.4.5 放大器错误信号(FAULT-) (10) 3.4.6 可选模拟量输入 (11) 3.4.7 位置比较输出 (11) 3.4.8 串行接口(JRS232) (11) 3.5 设备连接示例 (11) 3.6 接口及指示灯定义 (13) 3.7 跳线定义 (15) 3.8 Turbo PMAC Clipper端口布置及控制结构图 (19) 附件 (21) 1.接口各针脚定义 (21) 2. 电路板尺寸及孔位置 (30)

PMAC多轴运动控制卡学习(硬件)

目录

PMAC控制卡学习(硬件) 第一章PMAC简介 PMAC的含义和特点 1.PMAC的含义: PMAC是program multiple axis controller 可编程的多轴运动控制卡。 的特点: PMAC卡是美国Delta Tau公司九十年代推出的多功能运动控制器,能够提供运动轴控制,PLC控制和数据采集等多种功能。 PMAC的分类及区别 PMAC的分类 1. PMAC卡按控制电机的来分:有1型卡和2型卡。1型卡控制信号为±10V 模拟量,主要用速度方式控制伺服电。2型卡输出PWM数字量信号,可直接变为PULSE+DIR信号,来控制步进电机和位置控制方式的伺服电机。 2. PMAC卡按控制轴数来分:有2轴卡(MINI PMAC PCI),4轴卡(PMAC PCI Lite,PMAC2 PCI Lite,PMAC2A-PC/104及Clipper),8轴卡:(PMAC-PCI,PMAC2-PCI,PMAC2A-PC/104及Clipper),32轴卡:(TURBO PMAC和TURBO PMAC2)。 3. PMAC卡按通讯总线形式分:有ISA总线,PCI总线,PCI04总线,网口和VME总线。PMAC各种轴数的1型和2型卡,都有上述的计算机总线方式供选择。PMAC除上述形式外,还可以提供集成的系统级产品.有:UMAC,IMAC400,IMAC800 ,IMAC flexADVANTAGE400 ,ADVANTAGE900等。 PMAC 1型卡与2型卡的主要区别 PMAC 1 PMAC2 CPU时钟(缺省)20MHZ 40MHZ

控制信号形式DAC模拟量PWM数字量 双端口RAM选项只有8轴卡不在板在板 在板I/O点数16IN 16OUT 32IN/OUT +8IN 8 OUT 常用接线板ACC8D ACCP ACC8F ACC8S ACC8E 第二章Turbo PMAC Clipper控制器硬件配置Turbo PMAC Clipper控制器简介 Turbo PMAC Clipper控制器(Turbo PMAC2 Eth-Lite) 是一款具备全部Turbo PMAC 特征的,用于对成本极端敏感的应用的多轴运动控制器。这种功能强大的,但是又同时具备结构紧凑和超高性价比优点的多轴运动控制器,标准版本即带有Ethernet 以太网和 RS232 通讯接口以及内置 I/O。 Clipper 控制器不仅采用了一颗完整的Turbo PMAC2-CPU 而且提供了一个四轴伺服或步进控制加32个数字I/O 点的最小配置,控制轴数和I/O还可以扩展。 Turbo PMAC Clipper硬件配置 Turbo PMAC Clipper硬件标准配置为: ●电路板尺寸是110mm×220mm; ●80 MHz DSP56303 Turbo PMAC CPU(CPU时钟频率为80MHZ); ●256k x 24用户SRAM(即静态随机存储器,是一种具有静止存取功能的,不需 要刷新电路即能保存它内部存储的数据。存储容量为256K,地址线有24条。); ●1M x 8 flash mermory用于备份及固件存储;(闪存是一种非易失性,即断 电数据也不会丢失。内存为1M,8条I/O接口。); ●RS-232串行接口;(上的之一,通常 RS-232 接口以9个(DB-9)的型态出现, 一般个人上会有两组 RS-232 接口,分别称为 COM1 和 COM2。); ●100 Mbps以太网接口;(传输速率100Mbps=100/8=s) ●480 Mbps USB 接口;

运动控制卡概述

运动控制卡概述 ? ?主要特点 ?SMC6400B独立工作型高级4轴运动控制器 功能介绍: 高性能的独立工作型运动控制器以32位RISC为核心,控制4轴步进电机、伺服电机完成各种功能强大的单轴、多轴运动,可脱离PC机独立工作。 ●G代码编程 采用ISO国标标准G代码编程,易学易用。既可以在文本显示器、触摸屏上直接编写G代码,也可以在PC机上编程,然后通过USB通讯口或U盘下载至控制器。 ●示教编程 可以通过文本显示器、触摸屏进行轨迹示教,编写简单的轨迹控制程序,不需要学习任何编程语言。 ●USB通讯口和U盘接口 支持USB1.1全速通讯接口及U盘接口。可以通过USB接口从PC机下载用户程序、设置系统参数,也可用U盘拷贝程序。

●程序存储功能 程序存储器容量达32M,G代码程序最长可达5000行。 ●直线、圆弧插补及连续插补功能 具有任意2-4轴高速直线插补功能、任意2轴圆弧插补功能、连续插补功能。应用场合: 电子产品自动化加工、装配、测试 半导体、LCD自动加工、检测 激光切割、雕铣、打标设备 机器视觉及测量自动化 生物医学取样和处理设备 工业机器人 专用数控机床 特点: ■不需要PC机就可以独立工作 ■不需要学习VB、VC语言就可以编程 ■32位CPU, 60MHz, Rev1.0 ■脉冲输出速度最大达8MHz ■脉冲输出可选择: 脉冲/方向, 双脉冲 ■2-4轴直线插补 ■2轴圆弧插补 ■多轴连续插补 ■2种回零方式 ■梯型和S型速度曲线可编程

■多轴同步启动/停止 ■每轴提供限位、回零信号 ■每轴提供标准伺服电机控制信号 ■通用16位数字输入信号,有光电隔离 ■通用24位数字输出信号 ■提供文本显示器、触摸屏接口 技术规格: 运动控制参数 运动控制I/O 接口信号 通用数字 I/O 通用数字输入口 通用数字输出口 28路,光电隔离 28路,光电隔离,集电极开路输出 通讯接口协议

基于ZYNQSoC的多轴运动控制系统资料

OpenHW12项目申请 基于ZYNQ SoC的多轴运动控制系统 安富利特别题目 基于Zynq平台的伺服控制或运动控制系统 项目成员:顾强牛盼情孙佳将马浩 华中科技大学 二〇一二年十一月

目录 1项目概述 (1) 1.1工业应用 (1) 1.2系统方案 (3) 2工作原理介绍 (6) 3项目系统框架图 (8) 3.1ZYNQ硬件系统框架图 (8) 3.2软件系统框架图 (9) 3.3多轴控制器实现 (10) 4项目设计预计效果 (11) 5附录一:项目技术基础 (13) 5.1软硬件协同设计架构 (13) 5.2软件设计 (14) 5.3总结 (16) 6附录二:ZYNQ基础 (16)

1项目概述 1.1 工业应用 运动控制系统广泛应用于工业自动化领域,包括机器人手臂、装配生产线、起重设备、数控加工机床等等。并且随着高性能永磁材料的发展、电力电子技术的发展以及大规模集成电路和计算机技术的发展使得永磁同步电机(PMSM,Permanent Magnet Synchronous Motor)控制系统的设计开发难度降低、成本降低,同时PMSM在运动控制系统中作为执行器件的应用也越来越广泛。大量运动控制器的设计与实现都是基于通用嵌入式处理器。在此基础上,很多学者和研究人员对运动控制系统进行了大量的研究。 多轴控制的发展是为了满足工业机器人、工业传动等应用需求。其主要包括两大方面,多轴串联控制和多轴同步控制。当系统负载较大、传动精度要求很高、运行环境比较复杂的情况下,经常使用多轴串联的方式来解决,如图1.1所示。 (1)双电机齿条传动(2)NASA 70-m天线设备 图1.1 多轴串联控制系统应用

MC多轴运动控制卡学习硬件

目录 PMAC控制卡学习(硬件) (3) 第一章 PMAC简介 (3) 1.1 PMAC的含义和特点 (3) 1.2 PMAC的分类及区别 (4) 1.2.1 PMAC的分类 (4) 1.2.2 PMAC 1型卡与2型卡的主要区别 (4) 第二章Turbo PMAC Clipper控制器硬件配置 (5) 2.1 Turbo PMAC Clipper控制器简介 (5) 2.2 Turbo PMAC Clipper硬件配置 (5) 2.2.1 Turbo PMAC Clipper硬件标准配置为: (5) 2.2.2 Turbo PMAC Clipper控制器可选附件 (8) 2.2.2.1 轴接口板 (8) 2.2.2.2 反馈接口板 (9) 2.2.2.3 数字I/O接口板 (9)

第三章 Turbo PMAC Clipper设备连接 (9) 3.1 板卡安装 (9) 3.2 控制卡供电 (10) 3.2.1 数字电源供电 (10) 3.2.2 DAC(数字/模拟转换)输出电路供电 (10) 3.2.3 标志位供电 (10) 3.3 限位及回零开关 (10) 3.3.1 限位类型 (11) 3.3.2 回零开关 (11) 3.4电机信号连接 (11) 3.4.1增量式编码器连接 (11) 3.4.2 DAC 输出信号 (12) 3.4.3 脉冲&方向(步进)驱动 (12) 3.4.4 放大器使能信号(AENAn/DIRn) (13) 3.4.5 放大器错误信号(FAULT-) (13)

3.4.6 可选模拟量输入 (13) 3.4.7 位置比较输出 (14) 3.4.8 串行接口(JRS232) (14) 3.5 设备连接示例 (14) 3.6 接口及指示灯定义 (16) 3.7 跳线定义 (19) 3.8 Turbo PMAC Clipper端口布置及控制结构图 (23) 附件 (26) 1.接口各针脚定义 (26) 2. 电路板尺寸及孔位置 (35) PMAC控制卡学习(硬件) 第一章 PMAC简介 1.1 PMAC的含义和特点 1.PMAC的含义:

机器人运动控制器

TB04-2372.jtdc-1 机器人控制标准包 机器人运动控制器 我们在机器人控制上拥有丰富的经验。除了标量机器人和2维并行机构的机器人是做为选项。其他机械机构的机器人我们提供了特殊控制技术。链接型和并行机构的机器人可以像自动机械一样运行。■优点 ◆有效运用于内部研发能够短期内使自己研发的产品稳定动作。 ◆追求独特的技术能够用于研发特殊组装和动作的机器人,并投入生产现场。◆技术知识保密自己开发技术知识的保密 ◆应用于自动机械可以应用于加工机械以及装配机械之类的生产机械的操作和运转 ■机构变换 ◆直交系列机器人◆标量机器人◆2维并行机构机器人◆垂直多关节机器人◆6维并行机构机器人 〈标准〉〈选项〉〈选项〉〈独特〉〈独特〉 ■正确的轮廓控制■按控制周期变换机构■正确的轨迹 按控制周期执行机构变换,实现插补之间的接合部的圆滑轨迹控制。可应用于精密加工。 ■运行程序(技术语言?G语言) 像去除加工毛刺及钻孔机械,使用输出CAM的G语言文件来实现DNC运行。 ■拥有丰富技能对应实际生产中的作业 通过可选项,能够用于搬运,加工,熔接,去除毛刺,装配等生产机械的操作和运行。◆可选项机能例 宏机能,多任务,扭矩指令(贴接?控制力度)DNC运行触摸屏 插补前的加减速S字加减速手动脉冲发动器,高精度制动开关(接触开关)接线?法线控制 同频同步平行轴控制■触摸屏及专用PC软件 ■触摸屏例 ■专用PC画面例 使用触摸屏或PC也可以操作。■动作机构计算的可2次开发 我们的经验可以对应您的特殊需求。 另外,你也可以自行开发动作机构变换软件。■应用于机器人控制的运动控制器◆SLM4000机器人规格 单板独立单机工作4轴脉冲列输入32 输出32RS232/USB ◆PLMC40机器人规格PLC动作 4轴脉冲列输入16输出16RS232可使用通用PLC扩展(梯形 ?IO? 模拟等) ◆PLMC-MⅡEX机器人规格MECHATROLINK-Ⅱ 标准4/9/16轴最大30轴可使用通用PLC扩展(梯形?IO?模拟等) ◆多軸运动功率放大器机器人规格多轴伺服功放一体型最大7轴输入42输出42可节省配线节省成本 A B a1 a2a3Accurate contour Uncontrolled path by simple positioning Calculation at each sampling time

多轴运动控制器开题报告

毕业设计(论文)开题报告 1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述: 多轴运动控制器文献综述 摘要:运动控制是20世纪90年代在国际上兴起的结合现代电力电子技术、计算机 技术、传感器技术等进行控制系统设计的一门多学科交叉的技术,在数控机床、 汽车、轻工、纺织和军事等领域应用广泛,其中的数控技术、机器人技术更是一个 国家运动控制技术发展水平的重要标志。 Abstract:Motion control is a interdisciplinary technology in the nineteen nineties,as the combination of modern power electronics technology, computer Technology, sensor technology, control system design . In the NC machine tool,Auto, light industry, textile and military and other fields are widely used, in which the numerical control technology, robotic technology are the symbol of a state's level of development of motion control technology. 1.运动控制器的概念: 运动控制起源于早期的伺服控制。简单地说,运动控制就是对机械运动部件的位置、速度等进行实时的控制管理,使其按照预期的运动轨迹和规定的运动参数进行运动。早期的运动控制技术主要是伴随着数控技术、机器人技术和工厂自动化技术的发展而发展的。早期的运动控制器实际上是可以独立运行的专用的控制器,往往无需另外的处理器和操作系统支持,可以独立完成运动控制功能、工艺技术要求的其他功能和人机交互功能。这类控制器可以成为独立运行的运动控制器。这类控制器主要针对专门的数控机械和其他自动化设备而设计,往往已根据应用行业的工艺要求设计了相关的功能,用户只需要按照其协议要求编写应用加工代码文件,然后传输到控制器,控制器即可完成相关的动作。这类控制器往往不能离开其特定的工艺要求而跨行业应用,控制器的开放性仅仅依赖于控制器的加工代码协议,用户不能根据应用要求而重组自己的运动控制系统2.运动控制需求:

智能机器人运动控制和目标跟踪

XXXX大学 《智能机器人》结课论文 移动机器人对运动目标的检测跟踪方法 学院(系): 专业班级: 学生学号: 学生姓名: 成绩:

目录 摘要 (1) 0、引言 (1) 1、运动目标检测方法 (1) 1.1 运动目标图像HSI差值模型 (1) 1.2 运动目标的自适应分割与提取 (2) 2 运动目标的预测跟踪控制 (3) 2.1 运动目标的定位 (3) 2.2 运动目标的运动轨迹估计 (4) 2.3 移动机器人运动控制策略 (6) 3 结束语 (6) 参考文献 (7)

一种移动机器人对运动目标的检测跟踪方法 摘要:从序列图像中有效地自动提取运动目标区域和跟踪运动目标是自主机器人运动控制的研究热点之一。给出了连续图像帧差分和二次帧差分改进的图像HIS 差分模型,采用自适应运动目标区域检测、自适应阴影部分分割和噪声消除算法,对无背景图像条件下自动提取运动目标区域。定义了一些运动目标的特征分析和计算 ,通过特征匹配识别所需跟踪目标的区域。采用 Kalrnan 预报器对运动目标状态的一步预测估计和两步增量式跟踪算法,能快速平滑地实现移动机器人对运动目标的跟踪驱动控制。实验结果表明该方法有效。 关键词:改进的HIS 差分模型;Kahnan 滤波器;增量式跟踪控制策略。 0、引言 运动目标检测和跟踪是机器人研究应用及智能视频监控中的重要关键技术 ,一直是备受关注的研究热点之一。在运动目标检测算法中常用方法有光流场法和图像差分法。由于光流场法的计算量大,不适合于实时性的要求。对背景图像的帧问差分法对环境变化有较强的适应性和运算简单方便的特点,但帧问差分不能提出完整的运动目标,且场景中会出现大量噪声,如光线的强弱、运动目标的阴影等。 为此文中对移动机器人的运动目标检测和跟踪中的一些关键技术进行了研究,通过对传统帧间差分的改进,引入 HSI 差值模型、图像序列的连续差分运算、自适应分割算法、自适应阴影部分分割算法和图像形态学方法消除噪声斑点,在无背景图像条件下自动提取运动 目标区域。采用 Kalman 滤波器对跟踪目标的运动轨迹进行预测,建立移动机器人跟踪运动 目标的两步增量式跟踪控制策略,实现对目标的准确检测和平滑跟踪控制。实验结果表明该算法有效。 1、运动目标检测方法 接近人跟对颜色感知的色调、饱和度和亮度属性 (H ,S ,I )模型更适合于图像识别处理。因此,文中引入改进 型 HSI 帧差模型。 1.1 运动目标图像HSI 差值模型 设移动机器人在某一位置采得的连续三帧图像序列 ()y x k ,f 1-,()y x f k ,,()y x f k ,1+

ACS多轴运动控制系统应用

ACS多轴运动控制系统应用 为了满足当今半导体产业的最高的多轴自动化应用的需求,工程师们转而朝向把最好的集成和基于网络的控制属性的运动控制平台方向。许多先进机器的控制平台,即基于网络和集中控制开始看到从自动化领域里广泛的实践,因为它们需要大量的处理能力和通信带宽,这在几年前微处理器和网络技术是无法实现的。在高端多轴自动化行业很多人知道,从20 世纪90 年代以来的集中式多轴控制器的好处。使用中央高速处理器,处理协调多轴运动控制已被证明为确定性数字伺服控制的有效架构,使最快的更新率和精密的同步。 另外,网络结构,如CANopen 网络的,已经成功地实践在了太阳能电池板划线,半导体制造和通用自动化应用中等需要可扩展性,开放的多厂商和设备,对成本控制敏感的系统设计中的运动控制领域。网络标准也一直在不断发展,并且不断提高的带宽和可靠性。现在,随着基于以太网的实时工业网络,如EtherCAT 技术–决定性的实时工业网络具有足够的带宽以支持高性能协调很多个运动控制轴和I / O,是有可能的实现机器控制控制解决方案,他具有集中式和基于网络控制的最佳品质。下面是三个最近需要高度的协调和精确的多轴运动控制案例,每一个展现着对控制系统的独特的挑战和极限。1。太阳能电池板划线和光学检测设备扁平面板和薄片的激光划线经常需要用到极其高性能的运动控制,包括高的速度和加速度,高度协调的多轴激光路径,晶圆检查和及其最小的运动误差最大化光伏(PV)的晶圆密度或解决最小的缺陷。大尺寸面板占用面积超过一平方米以上;而且,由于面板增加的尺寸的规模,导致的机器设备的复杂性和多轴数和运动的性能和功率的需求。最近,太阳能面板板划线设备和检测设备的制造商在设计一条15 轴的生产线的控制系统是遇到了很多挑战。有些版本的机器还使用了其他辅助轴和I / O 设备。一个集中

数控插补多轴运动控制实验指导书(学生)重点

数控插补多轴运动控制系统解剖实验 实验学时:8 实验类型:独立授课实验 实验要求:必修 一、实验目的 1、通过本实验使学生掌握数控插补多轴控制装置的基本工作原理; 2、根据常用低压电器原理分析各运动控制电气元件的应用原理,分析数控插补运 动实现的控制原理; 3、根据机电一体化产品的设计要求和设计流程进行运动控制系统的功能分析、机 械结构分析、控制系统分析以及相关传感器选型等方面的设计内容。 本实验以数控插补多轴运动控制系统为具体对象,使学生掌握机电一体化产品设计和开发的技术流程和主要内容,通过运动控制系统的实现过程掌握常用电气元件识别和原理、数控插补原理、位置伺服控制系统等的设计和实现方式。 二、实验内容 1、通过数控插补多轴控制装置及其相关系统的测试和观察,分析数控插补的工作 原理; 2、分析系统的功能、机械结构分析、运动关系以及相关传感器等,分析其相关的 机械结构、电机及其驱动模块和传感反馈环节等; 3、根据常用低压电器原理,分析系统各运动控制电气元件的应用原理,分析数控 插补运动过程实现的控制原理,并绘制相关的控制原理图和系统连接图。 三、实验设备 1、多轴运动控制系统一套(含电控箱) 2、PC机一台 3、GT-400-SG-PCI 卡一块(插在 PC机内部) 四、实验原理

该数控插补多轴运动控制系统是依据开放式数控系统原理构建的,其以通用计算机(PC)的硬件和软件为基础,采用模块化、层次化的体系结构,能通过各种形式向外提供统一应用程序接口的系统。开放式数控系统可分为 3类:(1)CNC 在 PC 中;(2)PC作为前端,CNC作为后端;(3)单 PC,双 CPU平台。 本实验采用第一类,把顾高公司的 GT-400-SG-PCI 多轴运动控制卡插入PC机的插槽中,实现电机的运动控制,完成多轴运动控制系统的控制。其优点如下:(1)成本低,采用标准 PC机;(2)开放性好,用户可自定义软件;(3)界面比传统的 CNC 友好。 图1为该系统的硬件构成图,运动平台机械本体采用模块化拼装,主要由普通PC机、电控箱、运动控制卡、伺服(步进)电机及相关软件组成。其主体由两个直线运动单元(GX系列)组成。每个GX系列直线运动单元主要包括:工作台面、滚珠丝杆、导轨、轴承座、基座等部分,其结构见图2。伺服型电控箱内装有交流伺服驱动器,开关电源,断路器,接触器,运动控制器端子板,按钮开关等。步进型电控箱则装有步进电机驱动器,开关电源,运动控制器端子板,船形开关等。 图1 数控插补多轴控制系统硬件构成

适用于任何机器人的Elmo终极多轴运动控制解决方案

适用于任何机器人的Elmo终极多轴运动控制解决方案 中科新松有限公司在第一代协作机器人的设计和研发中整合了Elmo的终极多轴运动控制解决方案 中国的机器人公司“新松”全面采用Elmo终极的运动控制解决方案作为第一代协作机器人的最新设计,该设计解决了新一代产品研发中遇到的诸多挑战。 想象一下一个机器人完美地模拟一位太极拳大师的动作,动作精准、平滑、充满力感。 考虑一下在真实的工厂里面一个集成协作机器人与人类员工合作的重要意义,这种协作还要满足严苛和强制的安全约束条件。 采用了Elmo独一无二的、高级的伺服驱动技术,这家在中国机器人和自动化领域领先的公司刚刚完成第一代人机协作的工厂自动化机器人的自主研发。 Elmo提供了超小型、功能强大的基于网络型的伺服驱动器,这些驱动器直接安装在关节上。 这一应用体现了Elmo驱动器在诸多方面的独有优势,如效率、坚固程度、省空间、最少电缆用量、低EMI指数和整个系统可靠性的提升。在设计制造复杂的7轴协作机器人的时候,使用双闭环控制和采用高分辨率绝对值编码器获得最优伺服性能只是众多挑战中的一部分。Elmo在高端机器人领域里的应用实例可以作为客户在研发过程中追求最高多轴运动控制性能时的指导性参考。 摘要协作机器人被设计用来与人在工厂生产线上紧密协同工作,这一趋势正变得越来越普遍。 在人机协作的环境中,这些机器人被用来去完成高速、高精度的任务。使用相机、力传感器和其他感知元件,这些机器人可以感知人的存在并做出相应动作避免对人的伤害,有的时候机器人的动作会完全停下来。 设计协作机器人通常是用来灵活地处理小的零件,进行一些辅助性工作如安装消费类电子器件,而不是用来完成重载任务如搬运重物,焊接或者喷漆等。

运动控制卡简介

运动控制卡是一种基于PC机及工业PC机、用于各种运动控制场合(包括位移、速度、加速度等)的上位控制单元。 运动控制卡是基于PC总线,利用高性能微处理器(如DSP)及大规模可编程器件实现多个伺服电机的多轴协调控制的一种高性能的步进/伺服电机运动控制卡,包括脉冲输出、脉冲计数、数字输入、数字输出、D/A输出等功能,它可以发出连续的、高频率的脉冲串,通过改变发出脉冲的频率来控制电机的速度,改变发出脉冲的数量来控制电机的位置,它的脉冲输出模式包括脉冲/方向、脉冲/脉冲方式。脉冲计数可用于编码器的位置反馈,提供机器准确的位置,纠正传动过程中产生的误差。数字输入/输出点可用于限位、原点开关等。库函数包括S型、T型加速,直线插补和圆弧插补,多轴联动函数等。产品广泛应用于工业自动化控制领域中需要精确定位、定长的位置控制系统和基于PC的NC控制系统。具体就是将实现运动控制的底层软件和硬件集成在一起,使其具有伺服电机控制所需的各种速度、位置控制功能,这些功能能通过计算机方便地调用。现国内外运动控制卡公司有美国的GALIL、PAMAC,英国的翠欧,台湾的台达、凌华、研华,国内的雷赛、固高、乐创、众为兴等。 运动控制卡的出现主要是因为: (1)为了满足新型数控系统的标准化、柔性、开放性等要求; (2)在各种工业设备(如包装机械、印刷机械等)、国防装备(如跟踪定位系统等)、智能医疗装置等设备的自动化控制系统研制和改造中,急需一个运动控制模块的硬件平台; (3)PC机在各种工业现场的广泛应用,也促使配备相应的控制卡以充分发挥PC机的强大功能。 运动控制卡通常采用专业运动控制芯片或高速DSP作为运动控制核心,大多用于控制步进电机或伺服电机。一般地,运动控制卡与PC机构成主从式控制结

机器人的运动控制

2.4 手臂的控制 2.4.1 运动控制 对于机器人手臂的运动来说,人们通常关注末端的运动,而末端运动乃是由各个关节的运动合成实现的。因而必须考虑手臂末端的位置、姿态与各个关节位移之间的关系。此外,手臂运动,不仅仅涉及末端从某个位置向另外一个位置的移动,有时也希望它能沿着特定的空间路径进行移动。为此,不仅要考虑手臂末端的位置,而且还必须顾及它的速度和加速度。若再进一步从控制的观点来看,机器人手臂是一个复杂的多变量非线性系统,各关节之间存在耦合,为了完成高精度运动,必须对相互的影响进行补偿。 1.关节伺服和作业坐标伺服 现在来研究n个自由度的手臂,设关节位移以n i个关节的位移,刚性臂的关节位移和末端位置、姿态之间的关系以下式给出: (1) m维末端向量,当它表示三维空间内的位置姿态 时,m=6。如式(1)所示,对刚性臂来说,由于各关节的位移完全决定了手臂末端的位置姿态,故如欲控制手臂运动,只要控制各关节的运动即可。 设刚性臂的运动方程式如下所示: (2) 量为粘性摩擦系数矩阵;表示重力项的向量; 机器人手臂的驱动装置是一个为了跟踪目标值对手臂当前运动状态进行反馈构成的伺服系统。无论何种伺服系统结构,控制装置的功能都是检测各关节的 1给出了控制系统的构成示意图。来自示教、数值数据或外传感器的信号等构成了作业指令,控制系统根据这些指令,在目标轨迹生成部分产生伺服系统需要的目标值。伺服系统的构成方法因目标值的选取方法的不同而异,大体上可以分为关节伺服和作业坐标伺服两种。当目标值为速度、加速度量纲时,分别称之为速度控制或加速度控制,关于这些将在本节2.和3.中加以叙述。

图1 刚性臂控制系统的构成 1) 关节伺服控制 讨论以各关节位移的形式给定手臂运动目标值的情况。 令关节的目标值为12(,,,)T n d d d dn q q q q =∈?。图2给出了关节伺服的构成。若目标值是以关节位移的形式给出的,那么如图2所示,各个关节可以独立构成伺服系统,因此问题就变得十分简单。目标值d q 可以根据末端目标值d r 由式(1)的反函数,即逆运动学(inverse kinematics )的计算得出 1()d r d q f r -= (3) 图2 关节伺服构成举例 如果是工业机器人经常采用的示教方法,那么示教者实际上都是一面看着手臂末端,一面进行示教的,所以不必进行式(3)的计算,d q 是直接给出的。如果想让手臂静止于某个点,只要对d q 取定值即可,当欲使手臂从某个点向另一个点逐渐移动,或者使之沿某一轨迹运动时,则必须按时间的变化使d q

基于VC++的运动控制卡软件系统设计

基于VC++的运动控制卡软件系统设计 在自动控制领域,基于PC和运动控制卡的伺服系统正演绎着一场工业自动化的革命。目前,常用的多轴控制系统主要分为3大块:基于PLC的多轴定位控制系统,基于PC_based的多轴控制系统和基于总线的多轴控制系统。由于PC 机在各种工业现场的广泛运动,先进控制理论和DSP技术实现手段的并行发展,各种工业设备的研制和改造中急需一个运动控制模块的硬件平台,以及为了满足新型数控系统的标准化、柔性化、开放性等要求,使得基于PC和运动控制卡的伺服系统备受青睐。本文主要是利用VC++6.0提供的MFC应用程序开发平台探索研究平面2-DOF四分之过驱动并联机构的运动控制系统的软件开发。 平面2-DOF四分之过驱动并联机构的控制系统组成 并联机构的本体如图1,该机构由4个分支链组成,每条支链的一段与驱动电动机相连,而另一端相交于同一点。该并联机构的操作末端有2个自由度(即X 方向和Y方向的平动),驱动输入数目为4,从而组成过驱动并联机构。 控制系统的硬件主要有4部分组成:PC机,四轴运动控制卡,伺服驱动器和直流电动机。系统选用的是普通PC机,固高公司的GT-400-SV-PCI运动控制卡,瑞士Maxon公司的四象限直流伺服驱动器及直流永磁电动机。伺服驱动器型号为4-Q-DCADS50/5,与驱动器适配直流电动机型号为Maxon RE-35。运动控制系统的

构成如图2所示。上位控制单元由PC机和运动控制卡一起组成,板卡插在PC机主板上的PCI插槽内。PC机主要负责信息流和数据流的管理,以及从运动控制卡读取位置数据,并经过计算后将控制指令发给运动控制卡。驱动器控制模式采用编码器速度控制,驱动器接受到运动控制卡发出的模拟电压,通过内部的PWM电路控制直流电动机RE-35的运转,并接受直流电动机RE-35上的编码器反馈信号调整对电动机的控制,如此构成一个半闭环的直流伺服控制系统。 1.1 GT-400-SV控制卡介绍 固高公司生产的GT系列运动控制卡GT-400-SV-PCI可以同步控制4个轴,实现多轴协调运动。其核心由ADSP2181数字信号处理器和FPGA组成,能实现高性能的控制计算。控制卡同时提供了C语言函数库和Windows下的动态链接库,可实现复杂的控制功能。主要功能如下: (1) PCI总线,即插即用; (2)可编程伺服采样周期,4轴最小插补周期为200us,单轴点位运动最小控制周期为25us; (3) 4路16位分辨率模拟电压输出信号或脉冲输出信号模拟量输出范围:-10V-+10V,每路课独立控制,互不影响;

基于单片机的步进电机多轴运动控制系统设计

摘要 步进电机是将电脉冲信号转变成角位移的执行机构,其转速、停止位置只与脉 冲信号的频率和脉冲数有关,具有误差小,易控制等特点,广泛应用于机械、电子、 纺织、化工、石油等行业。尤其是在医疗行业中,比如在X 光扫描方面,都会用到 电机,步进电机的优点使其成为医疗行业里最为适用的电机。本设计中的多轴控制 系统可以运用在X 光扫描仪等多种仪器上。 本设计选用STC89C55RD+型单片机作为核心控制单元,实现M35SP-7 型步进电机的多轴运动控制,并通过RS232 串口实现与上位PC 机通讯功能。设计中运用单 片机软件编程方式实现步进电机环形分配器功能,用P1.0 口、P1.1 口、P1.2 口和 P1.3 口分别控制四相步进电机的A 相、B 相、C 相和D 相绕组的通电顺序,软件上采用查表方法实现单双八拍工作方式环形脉冲分配。步进电机驱动部分采用 ULN2003A 驱动芯片,实现功率放大,驱动步进电机。最后使用Proteus 软件绘制 了单片机控制步进电机多轴运动的原理图。上述设计经实验验证是有效可行的。 关键词单片机,步进电机,多轴运动,串口通讯

Abstract Stepper motor is an implementing mechanism that convert the electronic pulse into angle displacement.Its speed and the stop position only about the frequency and pulse several of the pulse signal,its characteristics are minor error,easy to control and so on,it is widely applied to mechanical, electronic, textile, chemical, oil, etc. Especially in the medical industry,such as an x-ray scanning,need motors.Stepper motor's advantages make it become the most suitable medical industry machine.The multi-axis control system in the design can be used on a variety of instruments such as an x-ray scanning. This design choose STC89C55RD + SCM as the core of the control unit,to realize M35SP-7 type stepper motor's multi-axis control,and use RS232 serial to realize PC communication function.This design use SCM software programming realize stepper motor circular distribution function,P1.0, P1.1, P1.2 and P1.3 respectively controlling A, B, C and D phases' electricity order on the four phase step motor's.Software is used on look-up table method teak eight single working way circular pulse distribution.This design use ULN2003A realize power amplifier to drive stepper motor.Finally using Proteus to draw the principle diagram of the SCM control stepper motor multi-axis motion.The above design experiments showed is effective and feasible. Keywords:SCM, Stepper Motor, Multi-axis motion, serial communication

【CN209433206U】多轴运动控制器【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920540705.0 (22)申请日 2019.04.19 (73)专利权人 南通苏尼康自动化技术有限公司 地址 226000 江苏省南通市崇川区紫琅路 30号狼山工业园2号楼5楼 (72)发明人 黄桢懿 冯程  (51)Int.Cl. G05B 19/04(2006.01) (54)实用新型名称多轴运动控制器(57)摘要本实用新型公开了多轴运动控制器,它包括触摸屏、铝面板、液晶屏、多块线路板和后盖,铝面板的中间开有放置触摸屏的窗口,触摸屏从铝面板的后侧往前侧方向安装在铝面板内,铝面板的后侧固定有后盖固定框,后盖固定框包括边框和底边,边框与底边垂直连接,底边固定在铝面板后侧,后盖固定框嵌于后盖内,液晶屏放置在后盖固定框内,液晶屏外设置有压板,所述压板将液晶屏固定在后盖固定框内,压板与后盖之间设置多块线路板,后盖的侧面设置有用于固定紧固件的锁耳,后盖通过紧固件与铝面板固定。在后盖和后盖固定框围成的空间内合理安排液晶屏和线路板的空间,各线路板之间通过铜支柱连接,上下之间有空间可以布置各元器件,触摸屏和液晶屏从铝面板的后侧安装进入,并且被后盖固定框围住,结构紧凑, 固定稳固。权利要求书1页 说明书2页 附图3页CN 209433206 U 2019.09.24 C N 209433206 U

权 利 要 求 书1/1页CN 209433206 U 1.多轴运动控制器,其特征在于:它包括触摸屏、铝面板、液晶屏、多块线路板和后盖,所述铝面板的中间开有放置触摸屏的窗口,所述触摸屏从铝面板的后侧往前侧方向安装在铝面板内,所述铝面板的后侧固定有后盖固定框,所述后盖固定框包括边框和底边,所述边框与底边垂直连接,所述底边固定在铝面板后侧,所述后盖固定框嵌于后盖内,所述液晶屏放置在后盖固定框内,所述液晶屏外设置有压板,所述压板将液晶屏固定在后盖固定框内,所述压板与后盖之间设置多块线路板,所述后盖的侧面设置有用于固定紧固件的锁耳,所述后盖通过紧固件与铝面板固定。 2.根据权利要求1所述的多轴运动控制器,其特征在于:所述液晶屏置于后盖固定框内并紧贴在铝面板后侧。 3.根据权利要求2所述的多轴运动控制器,其特征在于:各块线路板之间通过铜支柱连接固定,第一线路板与压板之间通过铜支柱连接,第二线路板与第一线路板之间通过铜支柱连接,第三线路板与第二线路板之间通过铜支柱连接。 4.根据权利要求3所述的多轴运动控制器,其特征在于:第三线路板上设置有多个通信端口。 2

PMAC多轴运动控制卡学习硬件.doc

实用标准文案 目录 PMAC控制卡学习(硬件) (2) 第一章 PMAC简介 (2) 1.1 PMAC 的含义和特点 (2) 1.2 PMAC 的分类及区别 (2) 1.2.1 PMAC 的分类 (2) 1.2.2 PMAC 1 型卡与 2 型卡的主要区别 (2) 第二章 Turbo PMAC Clipper 控制器硬件配置 . (3) 2.1 Turbo PMAC Clipper 控制器简介 (3) 2.2 Turbo PMAC Clipper 硬件配置 (3) 2.2.1 Turbo PMAC Clipper 硬件标准配置为: (3) 2.2.2 Turbo PMAC Clipper 控制器可选附件 (6) 2.2.2.1 轴接口板. (6) 2.2.2.2 反馈接口板 . (7) 2.2.2.3 数字 I/O 接口板 . (7) 第三章 Turbo PMAC Clipper 设备连接 (7) 3.1 板卡安装 . (7) 3.2 控制卡供电. (7) 3.2.1 数字电源供电. (7) 3.2.2 DAC (数字 / 模拟转换)输出电路供电 (8) 3.2.3 标志位供电 . (8) 3.3 限位及回零开关 . (8) 3.3.1 限位类型 . (8) 3.3.2 回零开关 . (8) 3.4 电机信号连接 (9) 3.4.1 增量式编码器连接 (9) 3.4.2 DAC 输出信号 . (9) 3.4.3 脉冲 &方向(步进)驱动 . (10) 3.4.4 放大器使能信号 (AENAn/DIRn) . (10) 3.4.5 放大器错误信号 (FAULT-) . (10) 3.4.6 可选模拟量输入 . (11) 3.4.7 位置比较输出. (11) 3.4.8 串行接口 (JRS232) . (11) 3.5 设备连接示例 . (12) 3.6 接口及指示灯定义 . (13) 3.7 跳线定义 . (15) 3.8 Turbo PMAC Clipper 端口布置及控制结构图 (19) 21 附件 ....................................................................... 1. 接口各针脚定义 (21) 2. 电路板尺寸及孔位置. (30)

相关主题