搜档网
当前位置:搜档网 › 【精选】北师大版八年级上册数学 全等三角形(培优篇)(Word版 含解析)

【精选】北师大版八年级上册数学 全等三角形(培优篇)(Word版 含解析)

【精选】北师大版八年级上册数学 全等三角形(培优篇)(Word版 含解析)
【精选】北师大版八年级上册数学 全等三角形(培优篇)(Word版 含解析)

一、八年级数学全等三角形解答题压轴题(难)

1.在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a﹣8b+20=0.

(1)求a,b的值;

(2)点P在直线AB的右侧;且∠APB=45°,

①若点P在x轴上(图1),则点P的坐标为;

②若△ABP为直角三角形,求P点的坐标.

【答案】(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).【解析】

【分析】

(1)利用非负数的性质解决问题即可.

(2)①根据等腰直角三角形的性质即可解决问题.

②分两种情形:如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.分别利用全等三角形的性质解决问题即可.【详解】

(1)∵a2+4a+4+b2﹣8b+16=0

∴(a+2)2+(b﹣4)2=0

∴a=﹣2,b=4.

(2)①如图1中,

∵∠APB=45°,∠POB=90°,

∴OP=OB=4,

∴P(4,0).

故答案为(4,0).

②∵a=﹣2,b=4

∴OA=2OB=4

又∵△ABP为直角三角形,∠APB=45°

∴只有两种情况,∠ABP=90°或∠BAP=90°

①如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.

∴∠PCB=∠BOA=90°,

又∵∠APB=45°,

∴∠BAP=∠APB=45°,

∴BA=BP,

又∵∠ABO+∠OBP=∠OBP+∠BPC=90°,

∴∠ABO=∠BPC,

∴△ABO≌△BPC(AAS),

∴PC=OB=4,BC=OA=2,

∴OC=OB﹣BC=4﹣2=2,

∴P(4,2).

②如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.

∴∠PDA=∠AOB=90°,

又∵∠APB=45°,

∴∠ABP=∠APB=45°,

∴AP=AB,

又∵∠BAD+∠DAP=90°,

∠DPA+∠DAP=90°,

∴∠BAD=∠DPA,

∴△BAO≌△APP(AAS),

∴PD=OA=2,AD=OB=4,

∴OD=AD﹣0A=4﹣2=2,

∴P(2,﹣2).

综上述,P点坐标为(4,2),(2,﹣2).

【点睛】

本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.

2.如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.

(1)请你探究线段CE与FE之间的数量关系(直接写出结果,不需说明理由);

(2)将图1中的△AED绕点A顺时针旋转,使△AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由;

(3)将图1中的△AED绕点A顺时针旋转任意的角度(如图3),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由.

【答案】(1)线段CE与FE之间的数量关系是CE2FE;(2)(1)中的结论仍然成立.理由见解析;(3)(1)中的结论仍然成立.理由见解析

【解析】

【分析】

(1)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,2EF;

(2)思路同(1)也要通过证明△EFC是等腰直角三角形来求解.连接CF,延长EF交CB 于点G,先证△EFC是等腰三角形,可通过证明CF是斜边上的中线来得出此结论,那么就要证明EF=FG,就需要证明△DEF和△FGB全等.这两个三角形中,已知的条件有一组对顶角,DF=FB,只要再得出一组对应角相等即可,我们发现DE∥BC,因此∠EDB=∠CBD,由此构成了两三角形全等的条件.EF=FG,那么也就能得出△CFE是个等腰三角形了,下面证明△CFE是个直角三角形.由上面的全等三角形可得出ED=BG=AD,又由AC=BC,因此

CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此就能得出(1)中的结论了;

(3)思路同(2)通过证明△CFE来得出结论,通过全等三角形来证得CF=FE,取AD的中点M,连接EM,MF,取AB的中点N,连接FN、CN、CF.那么关键就是证明△MEF和

△CFN全等,利用三角形的中位线和直角三角形斜边上的中线,我们不难得出

EM=PN=1

2

AD,EC=MF=

1

2

AB,我们只要再证得两对应边的夹角相等即可得出全等的结

论.我们知道PN是△ABD的中位线,那么我们不难得出四边形AMPN为平行四边形,那么对角就相等,于是90°+∠CNF=90°+∠MEF,因此∠CNF=∠MEF,那么两三角形就全等了.证明∠CFE是直角的过程与(1)完全相同.那么就能得出△CEF是个等腰直角三角形,于是得出的结论与(1)也相同.

【详解】

(1)如图1,连接CF,线段CE与FE之间的数量关系是CE;

解法1:

∵∠AED=∠ACB=90°

∴B、C、D、E四点共圆

且BD是该圆的直径,

∵点F是BD的中点,

∴点F是圆心,

∴EF=CF=FD=FB,

∴∠FCB=∠FBC,∠ECF=∠CEF,

由圆周角定理得:∠DCE=∠DBE,

∴∠FCB+∠DCE=∠FBC+∠DBE=45°

∴∠ECF=45°=∠CEF,

∴△CEF是等腰直角三角形,

∴CE.

解法2:

易证∠BED=∠ACB=90°,

∵点F是BD的中点,

∴CF=EF=FB=FD,

∵∠DFE=∠ABD+∠BEF,∠ABD=∠BEF,

∴∠DFE=2∠ABD,

同理∠CFD=2∠CBD,

∴∠DFE+∠CFD=2(∠ABD+∠CBD)=90°,

即∠CFE=90°,

∴CE.

(2)(1)中的结论仍然成立.

解法1:如图2﹣1,连接CF,延长EF交CB于点G,∵∠ACB=∠AED=90°,

∴DE∥BC,

∴∠EDF=∠GBF,

又∵∠EFD=∠GFB,DF=BF,

∴△EDF≌△GBF,

∴EF=GF,BG=DE=AE,

∵AC=BC,

∴CE=CG,

∴∠EFC=90°,CF=EF,

∴△CEF为等腰直角三角形,

∴∠CEF=45°,

∴CE2;

解法2:如图2﹣2,连结CF、AF,

∵∠BAD=∠BAC+∠DAE=45°+45°=90°,

又点F是BD的中点,

∴FA=FB=FD,

而AC=BC,CF=CF,

∴△ACF≌△BCF,

∴∠ACF=∠BCF=1

2

∠ACB=45°,

∵FA=FB,CA=CB,

∴CF所在的直线垂直平分线段AB,

同理,EF所在的直线垂直平分线段AD,又DA⊥BA,

∴EF⊥CF,

∴△CEF为等腰直角三角形,

∴CE2.

(3)(1)中的结论仍然成立.

解法1:如图3﹣1,取AD 的中点M ,连接EM ,MF ,取AB 的中点N ,连接FN 、CN 、CF , ∵DF =BF , ∴FM ∥AB ,且FM =

1

2

AB , ∵AE =DE ,∠AED =90°, ∴AM =EM ,∠AME =90°, ∵CA =CB ,∠ACB =90°

∴CN=AN=

1

2

AB ,∠ANC =90°, ∴MF ∥AN ,FM =AN =CN , ∴四边形MFNA 为平行四边形,

∴FN =AM =EM ,∠AMF =∠FNA , ∴∠EMF =∠FNC , ∴△EMF ≌△FNC , ∴FE =CF ,∠EFM =∠FCN ,

由MF ∥AN ,∠ANC =90°,可得∠CPF =90°, ∴∠FCN+∠PFC =90°, ∴∠EFM+∠PFC =90°, ∴∠EFC =90°,

∴△CEF 为等腰直角三角形, ∴∠CEF =45°, ∴CE 2. 【点睛】

本题解题的关键是通过全等三角形来得出线段的相等,如果没有全等三角形的要根据已知条件通过辅助线来构建.

3.如图1所示,已知点D 在AC 上,ADE ?和ABC ?都是等腰直角三角形,点M 为EC 的中点.

(1)求证:BMD ?为等腰直角三角形;

(2)将ADE ?绕点A 逆时针旋转45?,如图2所示,(1)中的“BMD ?为等腰直角三角形”是否仍然成立?请说明理由;

(3)将ADE ?绕点A 逆时针旋转一定的角度,如图3所示,(1)中的“BMD ?为等腰直角三角形”成立吗?请说明理由.

【答案】(1)详见解析;(2)是,证明详见解析;(3)成立,证明详见解析. 【解析】 【分析】

()1根据等腰直角三角形的性质得出45ACB BAC ∠∠==,

90ADE EBC EDC ∠∠∠===,推出BM DM =,BM CM =,DM CM =,推出BCM MBC ∠∠=,ACM MDC ∠∠=,求出

22290BMD BCM ACM BCA ∠∠∠∠=+==即可.

()2延长ED 交AC 于F ,求出12

DM FC =,//DM FC ,DEM NCM ∠=,根据ASA

推出EDM ≌CNM ,推出DM BM =即可.

()3过点C 作//CF ED ,与DM 的延长线交于点F ,连接BF ,推出

MDE ≌MFC ,求

出DM FM =,DE FC =,作AN EC ⊥于点N ,证BCF ≌BAD ,推出

BF BD =,DBA CBF ∠∠=,求出90DBF ∠=,即可得出答案.

【详解】

()1证明:

ABC 和ADE 都是等腰直角三角形,

45ACB BAC ∠∠∴==,90ADE EBC EDC ∠∠∠===

点M 为EC 的中点,

12BM EC ∴=

,1

2

DM EC =, BM DM ∴=,BM CM =,DM CM =,

BCM MBC ∠∠∴=,DCM MDC ∠∠=,

2BME BCM MBC BCE ∠∠∠∠∴=+=, 同理2DME ACM ∠∠=,

22224590BMD BCM ACM BCA ∠∠∠∠∴=+==?=

BMD ∴是等腰直角三角形.

()2解:如图2,BDM是等腰直角三角形,

理由是:延长ED交AC 于F,

ADE和ABC

△是等腰直角三角形,

45

BAC EAD

∠∠

∴==,

AD ED

⊥,

ED DF

∴=,

M为EC中点,

EM MC

∴=,

1

2

DM FC

∴=,//

DM FC,

45

BDN BND BAC

∠∠∠

∴===,

ED AB

⊥,BC AB

⊥,

//

ED BC

∴,

DEM NCM

∴=,

在EDM和CNM中

DEM NCM

EM CM

EMD CMN

∠=∠

?

?

=

?

?∠=∠

?

EDM

∴≌()

CNM ASA,

DM MN

∴=,

BM DN

∴⊥,

BMD

∴是等腰直角三角形.

()3BDM是等腰直角三角形,

理由是:过点C作//

CF ED,与DM的延长线交于点F,连接BF,可证得MDE≌MFC,

DM FM

∴=,DE FC

=,

AD ED FC

∴==,

作AN EC ⊥于点N ,

由已知90ADE ∠=,90ABC ∠=, 可证得DEN DAN ∠∠=,NAB BCM ∠∠=,

//CF ED ,

DEN FCM ∠∠∴=,

BCF BCM FCM NAB DEN NAB DAN BAD ∠∠∠∠∠∠∠∠∴=+=+=+=, BCF ∴≌BAD ,

BF BD ∴=,DBA CBF ∠∠=,

90DBF DBA ABF CBF ABF ABC ∠∠∠∠∠∠∴=+=+==,

DBF ∴是等腰直角三角形, 点M 是DF 的中点,

则BMD 是等腰直角三角形, 【点睛】

本题考查了等腰直角三角形的性质,全等三角形的性质和判定,直角三角形斜边上中线性质的应用,在本题中需要作辅助线来证明,难度较大.

4.如图1,等腰△ABC 中,AC =BC =42, ∠ACB=45?,AO 是BC 边上的高,D 为线段AO 上一动点,以CD 为一边在CD 下方作等腰△CDE ,使CD =CE 且∠DCE=45?,连结BE . (1) 求证:△ACD ≌△BCE ;

(2) 如图2,在图1的基础上,延长BE 至Q , P 为BQ 上一点,连结CP 、CQ,若CP =CQ =5,求PQ 的长.

(3) 连接OE ,直接写出线段OE 的最小值.

【答案】(1)证明见解析;(2)PQ=6;(3)OE=422-【解析】

试题分析:()1根据SAS 即可证得ACD BCE ≌;

()2首先过点C 作CH BQ ⊥于H ,由等腰三角形的性质,即可求得45DAC ∠=?, 则根据等腰三角形与直角三角形中的勾股定理即可求得PQ 的长.

()3OE BQ

⊥时,OE取得最小值.

试题解析:()1证明:∵△ABC与△DCE是等腰三角形,

∴AC=BC,DC=EC,45

ACB DCE

∠=∠=,

45

ACD DCB ECB DCB

∴∠+∠=∠+∠=,

∴∠ACD=∠BCE;

在△ACD和△BCE中,

,

AC BC

ACD BCE

DC EC

=

?

?

∠=∠

?

?=

?

(SAS)

ACD BCE

∴≌;

()2首先过点C作CH BQ

⊥于H,

(2)过点C作CH⊥BQ于H,

∵△ABC是等腰三角形,∠ACB=45?,AO是BC边上的高,

45

DAC

∴∠=,

ACD BCE

≌,

45

PBC DAC

∴∠=∠=,

∴在Rt BHC中,

22

424

22

CH BC

=?==,

54

PC CQ CH

===

,,

3

PH QH

∴==,

6.

PQ

∴=

()3OE BQ

⊥时,OE取得最小值.

最小值为:42 2.

OE=-

5.如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD

的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.

(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时,如图1,线段CE、BD的位置关系为___________,数量关系为___________

②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由.(2)如图3,如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.探究:当∠ACB多少度时,CE⊥BC?请说明理由.

【答案】(1)①垂直,相等.②都成立,理由见解析;(2)45°,理由见解析

【解析】

【分析】

(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;

②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;

(2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定

△GAD≌△CAE,得出对应角相等,即可得出结论.

【详解】

(1):(1)CE与BD位置关系是CE⊥BD,数量关系是CE=BD.

理由:如图1,∵∠BAD=90°-∠DAC,∠CAE=90°-∠DAC,

∴∠BAD=∠CAE.

又 BA=CA,AD=AE,

∴△ABD≌△ACE (SAS)

∴∠ACE=∠B=45°且 CE=BD.

∵∠ACB=∠B=45°,

∴∠ECB=45°+45°=90°,即 CE⊥BD.

故答案为垂直,相等;

②都成立,理由如下:

∵∠BAC=∠DAE=90°,

∴∠BAC+∠DAC=∠DAE+∠DAC,

∴∠BAD=∠CAE,

在△DAB与△EAC中,

AD AE

BAD CAE

AB AC

?

?

∠∠

?

?

?

∴△DAB≌△EAC,

∴CE=BD,∠B=∠ACE,

∴∠ACB+∠ACE=90°,即CE⊥BD;

(2)当∠ACB=45°时,CE⊥BD(如图).

理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,

∵∠ACB=45°,∠AGC=90°﹣∠ACB,

∴∠AGC=90°﹣45°=45°,

∴∠ACB=∠AGC=45°,

∴AC=AG,

在△GAD与△CAE中,

AC AG

DAG EAC

AD AE

?

?

∠∠

?

?

?

∴△GAD≌△CAE,

∴∠ACE=∠AGC=45°,

∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥B C.

6.如图1,在ABC

?中,ACB

∠是直角,60

B

∠=?,AD、CE分别是BAC

∠、BCA

的平分线,AD、CE相交于点F.

(1)求出AFC

∠的度数;

(2)判断FE与FD之间的数量关系并说明理由.(提示:在AC上截取CG CD

=,连接FG.)

(3)如图2,在△ABC

?中,如果ACB

∠不是直角,而(1)中的其它条件不变,试判断线段AE、CD与AC之间的数量关系并说明理由.

【答案】(1)∠AFC=120°;(2)FE与FD之间的数量关系为:DF=EF.理由见解析;(3)AC=AE+CD.理由见解析.

【解析】

【分析】

(1)根据三角形的内角和性质只要求出∠FAC,∠ACF即可解决问题;

(2)根据在图2的 AC上截取CG=CD,证得△CFG≌△CFD (SAS),得出DF= GF;再根据ASA 证明△AFG≌△AFE,得EF=FG,故得出EF=FD;

(3)根据(2) 的证明方法,在图3的AC上截取AG=AE,证得△EAF≌△GAF (SAS)得出

∠EFA=∠GFA;再根据ASA证明△FDC≌△FGC,得CD=CG即可解决问题.

【详解】

(1)解:∵∠ACB=90°,∠B=60°,

∴∠BAC=90°﹣60°=30°,

∵AD、CE分别是∠BAC、∠BCA的平分线,

∴∠FAC=15°,∠FCA=45°,

∴∠AFC=180°﹣(∠FAC+∠ACF)=120°

(2)解:FE与FD之间的数量关系为:DF=EF.

理由:如图2,在AC上截取CG=CD,

∵CE是∠BCA的平分线,

∴∠DCF=∠GCF,

在△CFG和△CFD中,

CG CD

DCF GCF

CF CF

=

?

?

∠=∠

?

?=

?

∴△CFG≌△CFD(SAS),

∴DF=GF.∠CFD=∠CFG

由(1)∠AFC=120°得,

∴∠CFD=∠CFG=∠AFE=60°,

∴∠AFG=60°,

又∵∠AFE=∠CFD=60°,

∴∠AFE=∠AFG,

在△AFG和△AFE中,

AFE AFG

AF AF

EAF GAF

∠=∠

?

?

=

?

?∠=∠

?

∴△AFG≌△AFE(ASA),

∴EF=GF,

∴DF=EF;

(3)结论:AC=AE+CD.

理由:如图3,在AC上截取AG=AE,

同(2)可得,△EAF≌△GAF(SAS),

∴∠EFA=∠GFA,AG=AE

∵∠BAC+∠BCA=180°-∠B=180°-60°=120°

∴∠AFC=180°﹣(∠FAC+∠FCA)=180°-

1

2

(∠BAC+∠BCA)=180°-

1

2

×120°=120°,

∴∠EFA=∠GFA=180°﹣120°=60°=∠DFC,

∴∠CFG=∠CFD=60°,

同(2)可得,△FDC≌△FGC(ASA),

∴CD=CG,

∴AC =AG+CG=AE+CD.

【点睛】

本题考查了全等三角形的判定和性质的运用,全等三角形的判定和性质是证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造全等三角形.

7.如图(1),在ABC中,90

A

∠=?,AB AC

=,点D是斜边BC的中点,点E,F分别在线段AB,AC上,且90

EDF

∠=?.

(1)求证:DEF为等腰直角三角形;

(2)若ABC的面积为7,求四边形AEDF的面积;

(3)如图(2),如果点E运动到AB的延长线上时,点F在射线CA上且保持90

EDF

∠=?,DEF还是等腰直角三角形吗.请说明理由.

【答案】(1)证明见解析;(2)3.5;(3)是,理由见解析.

【解析】

【分析】

(1)由题意连接AD,并利用全等三角形的判定判定△BDE≌△ADF(ASA),进而分析证得DEF为等腰直角三角形;

(2)由题意分析可得S四边形AEDF=S?ADF+S?ADE=S?BDE+S?CDF,以此进行分析计算求出四边形AEDF的面积即可;

(3)根据题意连接AD,运用全等三角形的判定判定△BDE≌△ADF(ASA),进而分析证得DEF为等腰直角三角形.

【详解】

解:(1)证明:如图①,连接AD.

∵∠BAC=90?,AB=AC,点D是斜边BC的中点,

∴AD⊥BC,AD=BD,

∴∠1=∠B=45°,

∵∠EDF=90°,∠2+∠3=90°,

又∵∠3+∠4=90°,

∴∠2=∠4,

在△BDE 和△ADF中,∠1=∠B,AD=BD,∠2=∠4,

∴△BDE≌△ADF(ASA),

∴DE=DF,

又∵∠EDF=90°,

∴ΔDEF为等腰直角三角形.

(2)由(1)可知DE=DF,∠C=∠6=45°,

又∵∠2+∠3=90°,∠2+∠5=90°,

∴∠3=∠5,

∴△ADE≌△CDF,

∴S四边形AEDF=S?ADF+S?ADE=S?BDE+S?CDF,

∴ S?ABC=2 S四边形AEDF,

∴S四边形AEDF=3.5 .

(3)是.如图②,连接AD.

∵∠BAC=90°,AB=AC,D是斜边BC的中点,

∴AD⊥BC,AD=BD ,

∴∠1=45°,

∵∠DAF=180°-∠1=180°—45°=135°,∠DBE=180°-∠ABC=180°-45°=135°,

∴∠DAF=∠DBE,

∵∠EDF=90°,

∴∠3+∠4=90°,

又∵∠2+∠3=90°,

∴∠2=∠4,

在△BDE和△ADF中,∠DAF=∠DBE,AD=BD,∠2=∠4,

∴△BDE≌△ADF(ASA),

∴DE=DF,

又∵∠EDF=90°,

∴△DEF为等腰直角三角形.

【点睛】

本题考查等腰直角三角形的性质以及全等三角形的判定与性质,根据题意作辅助线构造出全等三角形是解题的关键.

8.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,他们的运动时间为

t(s).

(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由

(2)判断此时线段PC和线段PQ的关系,并说明理由。

(3)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变,设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存

在,求出相应的x、t的值;若不存在,请说明理由。

【答案】(1)△ACP≌△BPQ,理由见解析;

(2)PC=PQ且PC⊥PQ,理由见解析;

(3)存在;

1

1

t

x

=

?

?

=

?

2

3

2

t

x

=

?

?

?

=

??

【解析】

【分析】

(1)利用SAS证得△ACP≌△BPQ;

(2)由(1)得出PC=PQ,∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;

(3)分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【详解】

解:(1)如图(1),△ACP≌△BPQ,理由如下:

当t=1时,AP=BQ=1,

∴BP=AC=3,

又∵∠A=∠B=90°,

在△ACP和△BPQ中,

AP BQ

A B

AC BP

=

?

?

∠=∠

?

?=

?

∴△ACP≌△BPQ(SAS).

(2)PC=PQ且PC⊥PQ,理由如下:

由(1)可知△ACP≌△BPQ

∴PC=PQ,∠ACP=∠BPQ,

∴∠APC+∠BPQ=∠APC+∠ACP=90°.

∴∠CPQ=90°,

∴PC⊥PQ.

(3)如图(2),分两种情况讨论:

当AC=BP ,AP=BQ 时,△ACP ≌△BPQ ,则

34t

t xt =-??

=?

, 解得11t x =??=?

当AC=BQ ,AP=BP 时,△ACP ≌△BQP ,则,

34xt t t =??

=-?

解得232t x =???=??

综上所述,存在11t x =??=?或2

32t x =??

?=

??

使得△ACP 与△BPQ 全等.

【点睛】

本题主要考查了全等三角形的判定与性质的综合应用,能熟练进行全等的分析判断以及运用分类讨论思想是解题关键.

9.如图1,Rt △ABC 中,∠A =90°,AB =AC ,点D 是BC 边的中点连接AD ,则易证AD =BD =CD ,即AD =

1

2

BC ;如图2,若将题中AB =AC 这个条件删去,此时AD 仍然等于1

2

BC . 理由如下:延长AD 到H ,使得AH =2AD ,连接CH ,先证得△ABD ≌△CHD ,此时若能证得△ABC ≌△CHA ,

即可证得AH =BC ,此时AD =1

2

BC ,由此可见倍长过中点的线段是我们三角形证明中常用的方法.

(1)请你先证明△ABC ≌△CHA ,并用一句话总结题中的结论;

(2)现将图1中△ABC 折叠(如图3),点A 与点D 重合,折痕为EF ,此时不难看出△BDE 和△CDF 都是等腰直角三角形.BE =DE ,CF =DF .由勾股定理可知DE 2+DF 2=EF 2,因

此BE2+CF2=EF2,若图2中△ABC也进行这样的折叠(如图4),此时线段BE、CF、EF还有这样的关系式吗?若有,请证明;若没有,请举反例.

(3)在(2)的条件下,将图3中的△DEF绕着点D旋转(如图5),射线DE、DF分别交AB、AC于点E、F,此时(2)中结论还成立吗?请说明理由.图4中的△DEF也这样旋转(如图6),直接写出上面的关系式是否成立.

【答案】(1)详见解析;(2)有这样分关系式;(3)EF2=BE2+CF2.

【解析】

【分析】

(1)想办法证明AB∥CH,推出∠BAC=∠ACH,再利用SAS证明△ABC≌△CHA即可.(2)有这样分关系式.如图4中,延长ED到H山顶DH=DE.证明△EDB≌△HD (SAS),推出∠B=∠HCD,BE=CH,∠FCH=90°,利用勾股定理,线段的垂直平分线的性质即可解决问题.

(3)图5,图6中,上面的关系式仍然成立.

【详解】

(1)证明:如图2中,

∵BD=DC,∠ADB=∠HDC,AD=HD,

∴△ADB≌△HDC(SAS),

∴∠B=∠HCD,AB=CH,

∴AB∥CH,

∴∠BAC+∠ACH=180°,

∵∠BAC=90°,

∴∠ACH=∠BAC=90°,

∵AC=CA,

∴△BAC≌△HCA(SAS),∴AH=BC,

∴AD=DH=BD=DC,

∴AD=1

2 BC.

结论:直角三角形斜边上的中线等于斜边的一半.

(2)解:有这样分关系式.

理由:如图4中,延长ED到H山顶DH=DE.

∵ED=DH,∠EDB=∠HDC,DB=DC,

∴△EDB≌△HDC(SAS),

∴∠B=∠HCD,BE=CH,

∵∠B+∠ACB=90°,

∴∠ACB+∠HCD=90°,

∴∠FCH=90°,

∴FH2=CF2+CH2,

∵DF⊥EH,ED=DH,

∴EF=FH,

∴EF2=BE2+CF2.

(3)图5,图6中,上面的关系式仍然成立.结论:EF2=BE2+CF2.

证明方法类似(2).

【点睛】

本题属于几何变换综合题,考查了旋转变换,翻折变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.

10.如图,在边长为 4 的等边△ABC 中,点 D 从点A 开始在射线 AB 上运动,速度为 1 个单位/秒,点F 同时从 C 出发,以相同的速度沿射线 BC 方向运动,过点D 作 DE⊥AC,连结DF 交射线 AC 于点 G

(1)当 DF⊥AB 时,求 t 的值;

相关主题