搜档网
当前位置:搜档网 › 磁场环境下输流双壁碳纳米管中波的传播

磁场环境下输流双壁碳纳米管中波的传播

磁场环境下输流双壁碳纳米管中波的传播
磁场环境下输流双壁碳纳米管中波的传播

电磁场的生物效应

电磁场的生物效应 对于磁场,物理学用磁场强度H和磁感应强度B来描述,物理学一开始用磁场强度H 来描述磁场,后来才发现了和电场强度相对应的磁感应强度B。严格地说,H和B不是同一术语,H是磁场,B是磁通密度(详细的分析可以参见《电动力学》),B是H所感应的磁场,所以B又叫磁感应强度。二者的关系为: B= u H 其中u是导磁率。 磁场可以产生于变化的电场(如电流就是变化的电场),也可以产生于永磁铁,地球就是一个巨大的磁铁,所以在地球表面的生物都会受到地磁场的作用,另外,人们还利用电、磁相互作用的原理制作了一些用来研究生物在各种不同强度下各种反映的仪器。 对作用和效应有影响的磁场参数有类型、磁强、均匀性、方向、作用时间等几个方面;就机体方面,对作用和效应有影响的机体因子有磁性、组成、种类、敏感性、部位和血流速度等几个方面。 生物效应:磁场从开始作用到看见机体的生物效应,一般有一段延迟时间。其主要原因可能是产生效应的磁场必须同时同方向地作用一段时间(叫物理作用时间),机体才发生明显的生物效应,累积的物理量中的大多数,可看作是产生生物效应的阈前量,并且是可逆的。所谓可逆是指磁场方向和坐标(器官、细胞、分子)方向发生变化时,其发生生物效应的可能性也变,甚至变得反相,因此应设法使磁场方向和机体方向的夹角不变,这样累积的物理量就可能达到阈值,产生可见的生物效应。 下面分别讨论地磁的生物效应以及磁效应在生物学中的一些具体的应用: (一)、地磁的生物效应 很多的星体周围都具有磁场,地球也有,我们称之为地磁场。地球近似一均匀磁化球,但有区变和日变,区变指因为区域的不同而不同,有的磁强差别很大。每天变化约0.0001——0.0004G/day。磁南(S)极在地球北极附近,磁北极在地球南极附近,平均的磁强为0.5G。 法国细菌学家巴斯德(Pasteur)1862年发现,地磁场能促进所有植物的生长,在S极下,青土豆比附近的成熟快些。 人体也同样是个磁体,也有两极。人站立时,上N极,下S极。平卧时则右侧是N极,左侧是S极,人正面是N极,背面是S极。在自然定律有所谓的稳态平衡,即此种状态下时物体最稳定,地球北极有磁S极,人睡觉时,头朝北,脚朝南,则人体处于稳态平衡,轻微的扰动不会影响睡眠深度,从而能改善健康。反之,则稍一扰动,就会失去平衡,睡得不安稳,甚至烦躁,失眠。 (二)、DNA新陈代谢与生物磁效应 脱氧核糖酸(DNA)是所有生物(一部分病毒除外)的遗传物质,也就是遗传基因的组合。DNA存在于细胞核的染色体中。DNA和核糖枝酸(RNA)统称为核酸。核酸具有复杂的结构:由嘌呤碱基或嘧啶碱基与戊糖形成核苷,一个核苷的糖上一个OH基被磷酸化时,变为核苷酸,面核苷酸借助于磷酸二酯键连接成一种特定次序(一级结构),便形成核酸。戊糖中一个OH 基说O变为H时称为脱氧核糖核酸,DNA便是含脱氧核糖的核酸。DNA这种生物大分子具有复杂的双螺旋结构,螺旋的空间缠绕、曲折等还构成二级、三级等高级结构。核酸中诸原子主要是以共价键相结合,使整体结构稳定,保持遗传特性,两条螺旋中的碱基又以氢键相结合,使局部结构可能受到外界因素作用而发生畸变,由此可能产生变异。一些物理因素(如

碳纳米管的现状和前景

碳纳米管的现状和前景 信息技术更新日新月异,正如摩尔定律所言,集成电路的集成度每隔18 个月翻一番,即同样的成本下,集成电路的功能翻一倍。这些进步基于晶体管的发展,晶体管的缩小提高了集成电路的性能。 在硅基微电子学发展的过程中,器件的特征尺寸随着集成度的越来越高而日益减小,现在硅器件已经进入深微亚米阶段,也马上触及到硅器件发展的瓶颈,器件将不再遵从传统的运行规律,具有显著的量子效应和统计涨落特性. 为了解决这些问题,人们进行了不懈地努力,寻找新的材料和方法,来提高微电子器件的性能。研究基于碳纳米管的纳电子器件就是其中很有前途的一种方法。 碳纳米管简介 一直以来都认为碳只有两种形态——金刚石和石墨。直至1985年发现了以碳60为代表的富勒烯、从而改变了人类对碳形态的认识。1991年,日本筑波NEC研究室内科学家首次在电子显微镜里观察到有奇特的、由纯碳组成的纳米量级的线状物。此类纤细的分子就是碳纳米管 碳纳米管有许多优异的性能,如超高的反弹性、抗张强度和热稳定性等。被认为将在微型机器人、抗撞击汽车车身和抗震建筑等方面有着极好的应用前景。但是碳纳米管的第一个获得应用的领域是电子学领域、近年来,它已成为微电子技术领域的研究重要方面。 研究工作表明,在数十纳米上下的导线和功能器件可以用碳纳米管来制造,并连接成电子电路。其工作速度将过高于已有的产品而功率损耗却极低! 不少研究组已经成功地用碳纳米管制成了电子器件。例如IBM 的科学家们就用单根半导体碳纳米管和它两端的金属电极做成了场效应管(FETs)。通过是否往第三电极施加电压,可以成为开关,此器件在室温下的工作特性和硅器件非常相似,而导电性却高出许多,消耗功率也小。按理论推算,纳米级的开关的时钟频率可以达到1太赫以上,比现有的处理器要快1000倍。 碳纳米管的分类 石墨烯的碳原子片层一般可以从一层到上百层,根据碳纳米管管壁中碳原子层的数目被分为单壁和多壁碳纳米管。 单壁碳纳米管(SWNT)由单层石墨卷成柱状无缝管而形成是结构完美的单分子材料。SWNT 的直径一般为1-6 nm,最小直径大约为0.5 nm,与C36 分子的直径相当,但SWNT 的直径大于6nm 以后特别不稳定,会发生SWNT 管的塌陷,长度则可达几百纳米到几个微米。因为SWNT 的最小直径与富勒烯分子类似,故也有人称其为巴基管或富勒管。 多壁碳纳米管MWNT可看作由多个不同直径的单壁碳纳米管同轴套构而成。其层数从2~50 不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典型直径和长度分别为2~30nm 和0.1~50μm。多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常

碳纳米管的生物相容性_齐宁宁

碳纳米管的生物相容性 齐宁宁,杜丽娜,金义光 (军事医学科学院放射与辐射医学研究所,北京 100850) 摘要:碳纳米管(CNT )是一种非常有序、高纵横比的碳同素异形体,包括单壁碳纳米管(S WCNT ) 和多壁碳纳米管(MWCNT )。它的特性使其在生物医学领域得到广泛应用,包括生物传感器、药物和疫苗传递,以及特殊生物材料的制备。本文总结了现有碳生物材料性能,概述了纳米毒理学研究内容,探讨了CNT 细胞毒性和生物相容性。关键词:碳纳米管;生物相互作用;细胞毒性中图分类号:R94 文献标识码:A 文章编号:100120971(2007)022******* 收稿日期:2006210220  作者简介:齐宁宁,女,在读硕士研究生,研究方向:药物新剂型与新技术。Tel:010*********,E 2mail:ningning_qi@1631com 1 引言 碳纳米管(carbon nanotubes,CNT )是一种独特的一维大分子。单壁碳纳米管(S WCNT )由单层石墨(直径014~2n m )构成,而多壁碳纳米管(MWCNT )由直径2~100n m 的多个同心石墨圆柱体组成。它们抗张强度高,质量极轻,热和化学稳定性很高,并有金属导体和半导体电学性质。 生物医学材料和设备是CNT 研究的一个主要领域,包括生物传感器、药物和疫苗运输载体,以及新型生物材料。CNT 作为现有聚合物材料的纳米填充剂,可显著提高机械性能,并能形成高度各向异性纳米复合物。 CNT 用于现有和新型生物医学设备前,应全面 考察其毒性和生物相容性。生物相容性是指材料在发挥作用时只引起宿主的适度反应。热解碳用于生物医学移植和涂层材料已几十年,特别是在心瓣膜修复术方面。早期研究表明热解碳心瓣膜血液相容性良好,可很好粘附于内皮细胞,对血小板的粘附和活化作用很小。然而一项有420名患者参与的临床研究发现,热解碳涂层支架的效果并不比传统高级不锈钢支架好。类钻石碳(DLC )早期体外生物相容性研究表明对巨噬细胞无炎性反应,也未观察到对成纤维细胞和成骨细胞的毒性。几项有关DLC 涂层的体内实验表明,DLC 涂布的不锈钢金属植入棒对绵羊骨和肌肉组织无副作用。 微粒毒理学研究组织(肺、消化道或皮肤)暴露 于微粒环境中的不良反应。纳米毒理学产生于对纳 米粒子和纤维毒理学评价的迫切需要,可定义为研究工程纳米机械和纳米结构与活生物体相互作用的科学。 普遍认为有3个因素决定粒子是否造成伤害,包括(1)粒子表面积/质量比:表面积大使粒子与细胞膜接触面大,吸收和转运毒性物质可能性大;(2)粒子滞留时间:与细胞膜接触时间越长,损伤概率越大;(3)粒子所含化学物质的反应性及固有毒性。 纤维材料与粒子的病理学表现不同,特别是呼吸道暴露远比其他摄入方式更易致病。3个主要特点决定吸入性纤维致病,包括(1)纤维尺寸:决定可吸入性(穿透进入肺中心腺泡区的能力);(2)生物滞留性:是特长纤维毒理的关键因素,它们通常不易被巨噬细胞吞噬;(3)反应性或固有毒性:同粒子一样,纤维毒性也主要取决于其化学成分毒性。2 碳纳米管的毒性 围绕CNT 材料应用的热点问题之一是对参与其生产和处理的工人的未知影响。本节将详细介绍肺毒性、皮肤刺激和细胞毒性方面的研究。211 肺毒性 尽管CNT 没有肺毒性前兆,但最近组织学研究发现有肺部炎症和肉芽肿形成。2001年Huczko 等最早考察了未纯化CNT 对豚鼠肺功能的影响。将25mg CNT 的015mL 盐溶液给豚鼠气管滴注,对照组接受25mg 不含CNT 的炭黑。滴注4周后用非侵入法考察肺功能。非侵入法和支气管肺泡灌洗测试均显示受试组与对照组无差别。结论是在含有CNT 的炭黑环境中工作,可能不存在任何健康

关于碳纳米管的研究进展综述

关于碳纳米管的研究进展 1、前言 1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新 的“大碳结构”概念诞生了。之后,人们相继发现并分离出C 70、C 76 、C 78 、C 84 等。 1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。1996年,我国科学家实现了碳纳米管的大面积定向生长。1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。 2、碳纳米管的制备方法 获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此对碳纳米管制备工艺的研究具有重要的意义。目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。化学气相沉积法是实现工业化大批量生产碳纳米管的有效方法,但由于生长温度较低,碳纳米管中通常含有

我国中波广播频率表

我国中波广播频率表 频率(千赫) 功率(千瓦) 台呼地属(发射地) 531 10 浙江人民广播电台浙江金华 540 中央人民广播电台1套 540 海西人民广播电台-蒙、藏青海海西德令哈549 100 中央人民广播电台对台一套福建 549 10 赤峰人民广播电台内蒙古 549 10 阿拉善人民广播电台内蒙古 549 10 郑州人民广播电台河南 558 50 福建人民广播电台福建 558 20 新疆人民广播电台-维语新疆 558 10 包头人民广播电台内蒙古 558 扎兰屯人民广播电台内蒙古 567 中央人民广播电台第1套 567 20 天津人民广播电台交通台 576 浙江人民广播电台 576 10 云南人民广播电台综合频道 576 泉州人民广播电台福建 576 洛阳人民广播电台新闻台河南 585 50 江苏人民广播电台经济台江苏南京 585 200 福建东南广播公司福州 585 1 晋城人民广播电台山西 585 10 南阳人民广播电台河南 585 金昌人民广播电台甘肃 594 10 江西经济台江西南昌 594 50 山东经济台山东济南 594 300 西藏人民广播电台-藏语拉萨 603 北京首都生活广播北京 603 河北交通音乐台石家庄 603 上海经济台 603 河南信息台郑州 603 广东教育台广州 603 10 贵州经济台贵阳 603 陕西经济台西安 603 10 大同人民广播电台2套山西 603 1 阳泉经济台山西 603 50 呼伦贝尔人民广播电台内蒙海拉尔 603 10 奥都斯电台-蒙语?内蒙乌兰浩特 603 延边人民广播电台-朝语吉林 603 1 南通经济台江苏 603 10 宁波交通台浙江 603 吉安地区人民广播电台江西 603 枣庄经济台山东

碳纳米管科普

碳纳米管科普 骞伟中?
一 心细如发,发真得够细吗??
中国有句谚语为"心细如发",用来形容一个人的心思缜密,细微程度达 到了头发丝的尺寸。 在古人的眼里, 头发丝已经是非常细的东西的代表了。 或者, 人们形容薄时,爱用“薄如蝉翼” ,但蝉翼真得够薄吗?然而,大家知识头发丝 的直径或蝉翼的厚度是什么尺度的吗?仅仅是几十微米而已。 有没有比头发丝更 细的丝及比蝉翼更薄的纸吗? 事实上还多得很。 比如铜丝,现代的加工技术可以将铜丝拉伸到小于 10 微米的级别。用于光 导通讯的玻璃纤维丝,也能达到这个级别。 而更绝的是,用激光刻蚀可以在硅片上刻出几十纳米(nm)的细槽,从而成 为现代超级计算机的基础。 但你可能更加想不到的是, 人类真得造出了直径仅 0.4‐1nm 的碳丝(图 1), 而 且还是中空结构。这种材料与头发丝相比,直径小了 1 万倍。另外一种比喻可以 让你进一步想象 1nm 有多大,人的指甲的生长速度几乎是不为人察觉的。人一 般觉得指甲长了,总得一周左右 的时间。但即使这样,您的指甲 仍以每秒 1nm 的速度在不停地生 长。但由于一个分子的大小也就 在 0.3nm(如氢气分子)到 0.6 nm(如苯分子),所以你可以想象 这种碳丝在本质上就是一种原子 线或分子线。但它的确构成了一 种长径比巨大的固体材料,成为 一种实物,而不再是无所束缚的, 到处乱跑的分子或原子。
图1 碳纳米管的三种卷曲结构 (从上而下的英文 字形结构;手性结构)?
armchair
zigzag
chiral
为:扶手椅式结构;Z

实际上, 这种神奇的材料的发现是基于非常偶然的机缘。 在 1985‐1990 年间, 科学家热衷于制造一种形状像足球的由 60 个碳组成的分子。这种分子通常是用 电弧放电,将石墨靶上的碳原子进行激发,然后进行自组装而得。而在偶然的机 缘里,科学家发现,只要能量足够,这些碳原子就会自动连接起来,形成一条碳 链。而利用放大倍数在 10 万倍至 100 万倍的电子显微镜下,科学家惊异地发现 这个丝状的材料竟然是中空的管状材料,所以,根据其元素,尺寸与形状,科学 家形象地称这种材料为“碳纳米管” 。应该说这种丝状材料与头发相比,才是真 正算得上细与小。当然如果说一个人“心细如碳纳米管” ,则恐怕不只是“心细 如发”的赞许与褒扬,而或许带有一种调侃或讽刺意味的“小心眼”了。由此可 见,社会科学中的词语包含了粗与细的平衡,什么事都得适可而止,非常玄妙。 然而,在追求真理与真知的“实心眼”科学家那里,却不是这样,自从 C60 与碳纳米管的发现,人类正式进行了纳米时代,可能大家都听过“纳米领带” , “纳米洗衣机” 或 “纳米药物” 。 不论这些东西是否属实, 却毫无疑问地夸耀 “细” 与“小”的作用。 事实上,追求细小或细微或精细,是人类科技进步的一条主线。 从人类走过的路程可以看到,从旧石器时代,新石器时代,以及青铜时代, 铁器时代,到火车轮船时代,以及飞机及计算机时代。从手工打造,铸造,到普 通车床加工, 再到数字车床加工, 激光刻蚀。 比如, 普通汽车与拖拉机的发动机, 一般有成千至万个零件。而飞机或火箭的发动机则有上百万个零件组成。而保证 这个零件良好组合或密封,以及长时间工作不损伤的关键因素,就在加工结构的 精细化与细微化。一般来说,汽车与拖拉机对应的加工精度为微米级,而计算机 与手机等通讯产品中硅片的加工精度则为纳米级。人类加工的产品越来越精细, 也就越来越有功能。而到达纳米级后,计算机硅片的加工要求又从 100 nm,小 到 60?nm,直到目前的 15?nm。这些数字减小的后面,是一代一代计算机的更新 换代与巨大的产业价值。 而我们故事的主人公:碳纳米管,竟然可以小至 0.4‐1nm。大家可以想见, 如果计算机的加工基础可以小到这个程度,或由这么小的材料来组装器件,则现 代的工业革命又将会发生什么样的变化。 在此开篇,有必要向大家介绍一下时空的概念。在时间尺度上,生物的新陈

中国中波电台频率表

中国中波电台频率表(上 531-1035khz) 频率(千赫) 功率(千瓦) 台呼地属(发射地) 531 10 浙江人民广播电台浙江金华 540 中央人民广播电台1套 540 海西人民广播电台-蒙、藏青海海西德令哈549 100 中央人民广播电台对台一套福建 549 10 赤峰人民广播电台内蒙古 549 10 阿拉善人民广播电台内蒙古 549 10 郑州人民广播电台河南 558 50 福建人民广播电台福建 558 20 新疆人民广播电台-维语新疆 558 10 包头人民广播电台内蒙古 558 扎兰屯人民广播电台内蒙古 567 中央人民广播电台第1套 567 20 天津人民广播电台交通台 576 浙江人民广播电台 576 10 云南人民广播电台综合频道 576 泉州人民广播电台福建 576 洛阳人民广播电台新闻台河南 585 50 江苏人民广播电台经济台江苏南京 585 200 福建东南广播公司福州 585 1 晋城人民广播电台山西 585 10 南阳人民广播电台河南 585 金昌人民广播电台甘肃 594 10 江西经济台江西南昌 594 50 山东经济台山东济南 594 300 西藏人民广播电台-藏语拉萨 603 北京首都生活广播北京 603 河北交通音乐台石家庄 603 上海经济台 603 河南信息台郑州 603 广东教育台广州 603 10 贵州经济台贵阳 603 陕西经济台西安 603 10 大同人民广播电台2套山西 603 1 阳泉经济台山西 603 50 呼伦贝尔人民广播电台内蒙海拉尔603 10 奥都斯电台-蒙语?内蒙乌兰浩特603 延边人民广播电台-朝语吉林 603 1 南通经济台江苏

电磁环境介绍及预选台址电磁环境测试的必要性

电磁环境介绍及预选台址电磁环境测试的 必要性 一、电磁兼容性 电磁兼容性是设备的一种能力,是其在共同的电磁环境中能一起执行各自功能的共存状态,即:该设备不会由于受到处于同一电磁环境中的其他设备的电磁发射导致或遭受不允许的降级,它也不会使同一电磁环境中其他设备因受其电磁发射而导致或遭受不允许的降级。电磁兼容性包括两个方面的含义: 1、电子设备在它们自己所产生的电磁环境和外界电磁环境中,能按原设计要求正常运行。也就是说,它们应具有一定的抗电磁干扰能力。 2、电子设备自己产生的电磁噪声必须限制在一定的水平,避免影响周围其它电子设备导致或遭受不允许的降级,它也不会使同一电磁环境中其他设备因受其电磁发射而导致或遭受不允许的降级。 二、电磁环境效应 电磁危害源总体或某一种对武器装备或生物体的作用效果称为“电磁环境效应”(Electromagnetic Environment

Effects)。 某一特定空间范围内存在的所有无线电波在频率、功率和时间上的分布称为电磁环境,可用电磁场强分布表示,是特定时间和空间内所有电磁能量的总和。电磁环境的频谱表现形式相对复杂,在频域上主要由各种电平大小不同、占用带宽不等的可测量频谱线和类似于噪声的环境噪声构成。 某一特定空间范围内存在的无线电波在频率、功率和时间上分布密集,使用频繁,则称为复杂电磁环境。复杂电磁环境是电磁环境的复杂化,是特定时间或空间内高度电磁能量的总和。通俗的说,在特定地域集中了大量的无线电装备,在特定时间同时或集体使用,各无线电装备的工作效率(频段)又非常集中,由此构成的电磁环境就称为复杂电磁环境空间。 依据电磁环境在频域上的表现方式,复杂电磁环境在频域上的具体体现是:在全频段或特定频段内可测量频谱线密集分布,电平大小高低不一、相差悬殊,信号频谱种类繁多,占用带宽宽窄不等,环境噪声起伏明显,噪声底线提高。 从上述几个概念的介绍和比较可以看出电磁环境及电磁环境效应是个大概念,电磁环境构成因素如下图所示:

碳纳米技术发展综述

碳纳米管技术发展概况 学院:电子信息工程学院 专业:通信工程 姓名:彭昱 学号:3013204217 【摘要】随着社会经济的飞速发展,碳纳米材料的应用日趋广泛,以富勒烯、石墨烯和碳纳米管为代表的碳纳米材料。在经历20世纪90年代的研究高潮后,如今也已经进入了平稳扎实的研究阶段。随着研究的不断深入,碳纳米材料在人类生产生活中显示出越来越多不可替代的重要作用。碳纳米管(CNT)也是“纳米世界”中的重要一员,因其独特的结构和优异的物理化学性能,具有广阔的应用前景和商业价值。本文综述了碳纳米管的发展历程、结构性能,应用及其发展前景及展望。 【关键词】碳纳米管;发展历程;结构;特性;应用;前景 碳纳米管的发展历程 1985 年英国萨塞克斯大学的波谱学家Kroto 教授与美国莱斯大学的Smalley和Curl 两教授在合作研究中,发现碳元素可以形成由60 个或70 个碳原子构成的高度对称性笼状结构的C60和C70分子,被称为巴基球(Buckyballs);1991 年,日本NEC 科学家Iijima 在制取C60的阴极结疤中首次采用高分辨隧道电子显微镜发现一种外径为515nm、内径为213nm,仅由两层同轴类石墨圆柱面叠而成的碳纳米管;1992年,科研人员发现碳纳米管壁曲卷结构不同而呈现出半导体或良导体的特异导电性;1995年,科学家研究并证实其优良的场发射性能;1996年,我国科学家实现碳纳米管大面积定向生长;1998年,科研人员应用碳纳米管作电子管阴极,同年,科学家使用碳纳米管制作室温工作的场效应晶体管;1999年,韩国一个研究小组制成碳纳米管阴极彩色显示器样管;2000年,日本科学家制成高亮度的碳纳米管场发射显示器样管。 碳纳米管的结构 碳纳米管是由单层或多层石墨片绕中心按一定角度卷曲而成的无缝、中空纳米管。按照所含石墨片层数的不同,碳纳米管可分为:单壁碳纳米管和多壁碳纳米管。单壁管典型直径在0.6-2nm,多壁管最内层可达0.4nm,最粗可达数百纳米,但典型管径为2-100nm。下图为常见的碳纳米管结构图。虽然从本质上讲,碳纳米管都是有相同的石墨层构成的但它们的导电特性却并不一样,具体情况取决于起的是金属还是半导体的作用。 碳纳米管的特性 碳纳米管的独特结构决定了它具有许多特殊的物理和化学性质。组成碳纳米管的C=C 共价键是自然界最稳定的化学键,所以使得碳纳米管具有非常优异的力学性能。理论计算表明,碳纳米管具有极高的强度和极大的韧性。其理论值估计杨氏模量可达5TPa,强度约为钢的100 倍,而重量密度却只有钢的1/6。Treacy 等首次利用了TEM 测量了温度从室温到800 度变化范围内多壁碳纳米管的均方振幅,从而推导出多壁碳纳米管的平均杨氏模量约为1.8Tpa。而Salvetat 等测量了小直径的单壁碳纳米管的杨氏模量,并导出其剪切模量为1Tpa。Wong 等用原子力显微镜测量多壁碳纳米管的弯曲强度平均值为14.2±10.8GPa,而碳纤维的弯曲强度却仅有1GPa。碳纳米管无论是强度还是韧性,都远远优于任何纤维,被认为是未来的“超级纤维”。直径、螺旋角以及层间作用力等存在的差异是碳纳米管兼导体和半导体的特性;独特的螺旋分子结构使碳纳米管构筑的吸波材料具有比一般吸收材料高的吸收率。此外,碳纳米管还具有独特的光学性能,良好的热传导性,极高的耐酸、碱性和热稳定性。

碳纳米管的改性研究进展

碳纳米管的改性研究进展 摘要:碳纳米管因其独特的结构与优异的性能,在许多领域具有巨大的应用潜力而引起了广泛的关注。由于碳纳米管不溶于水和有机溶剂,极大地制约了其性能的应用,因此碳纳米管的功能化改性 就成为目前研究的热点。本文简要介绍了碳纳米管及其性质作,详细阐述了碳纳米管的改性研究进展,并对今后的研究方向进行了展望。 关键词:碳纳米管;结构与性能;功能化;共价改性;非共价改性 1. 碳纳米管及其性能简介 1.1碳纳米管的结构 碳纳米管(Carbon Nanotubes,CNTs)是1991年由日本筑波NEC公司基础研究实验室的Iijima在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时意外发现的一种具有一维管状结构的碳纳米材料。因其独特的准一维管状分子结构、优异的力学、电学和化学性质及其在高科技领域中潜在的应用价值,引起了世界各国科学家们的广泛关注,由此引发了碳纳米管的研究热潮和十多年来纳米科学和技术的飞速发展。 碳纳米管是单层或多层石墨片围绕中心轴按一定的螺旋角卷曲而成的无缝、中空的 微管,每层纳米管是一个由碳原子通过SP2杂化与周围3个碳原子完全键合后所构成的 六边形平面组成的圆柱面。根据构成管壁碳原子层数的不同,CNTs可以分为:单壁碳纳 米管(single-walled carbon nanotube,SWNT)和多壁碳纳米管(multi-walled carbon nanotube, MWNT)两种形式。MWNTs的层间接近ABAB堆垛,其层数从2~50不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。MWNTs的典型直径和长度分别为2~30nm 和0.1~50μm;SWNTs典型的直径和长度分别为0.75~3nm和1~50μm。与MWNTs 比,SWNTs是由单层圆柱型石墨层构成,其直径的分布范围小,缺陷少,具有更高的 均匀一致性。无论是MWNTs还是SWNTs都具有很大的长径比,一般为100~1000, 最大可达到1000~10000,可以认为是一维分子。CNTs有直形、弯曲、螺旋等不同外形。在MWNTs中不同石墨层的螺旋角各不相同,由Euler定理可知,在CNTs的弯曲处,一定要有成对出现的五元环和七元环才能使碳纳米管在弯曲处保持光滑连续,而封 闭的两端半球形或多面体的圆拱形是由五元环参与形成的。但是实际制备的CNTs或多 或少存在这样那样缺陷,主要缺陷有三种类型:拓扑学缺陷,重新杂化缺陷和非完全键

碳纳米管的性质与应用

碳纳米管的性质与应用 【摘要】 本文主要介绍了碳纳米管的结构特点,制备方法,特殊性质,由于碳纳米管独特性质而产生的广泛应用,并对其前景进行展望。 【关键词】 碳纳米管场发射复合材料优良性能 【前言】 自日本NEC科学家Lijima发现碳纳米管以来,碳纳米管研究一直是国际新材料领域研究的热点。由于碳纳米管具有特殊的导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰,尤其是碳纳米管在复合材料、储氢及催化等领域的应用。 【正文】 一、碳纳米管的结构 碳纳米管中碳原子以sp2杂化为主,同时六角型网格结构存在一定程度的弯曲,形成空间拓扑结构,其中可形成一定的sp3杂化键,即形成的化学键同时具有sp2和sp3混合杂化状态,而这些p 轨道彼此交叠在碳纳米管石墨烯片层外形成高度离域化的大π 键,碳纳米管外表面的大π 键是碳纳米管与一些具有共轭性能的大分子以非共价键复合的化学基础[1]。 对多壁碳纳米管的光电子能谱研究结果表明,不论单壁碳纳米管还是多壁碳纳米管,其表面都结合有一定的官能基团,而且不同制备方法获得的碳纳米管由于制备方法各异,后处理过程不同而具有不同的表面结构。一般来讲,单壁碳纳米管具有较高的化学惰性,其表面要纯净一些,而多壁碳纳米管表面要活泼得多,结合有大量的表面基团,如羧基等。以变角X 光电子能谱对碳纳米管的表面检测结果表明,单壁碳纳米管表面具有化学惰性,化学结构比较简单,而且随着碳纳米管管壁层数的增加,缺陷和化学反应性增强,表面化学结构趋向复杂化。内层碳原子的化学结构比较单一,外层碳原子的化学组成比较复杂,而且外层碳原子上往往沉积有大量的无定形碳。由于具有物理结构和化学结构的不均匀性,碳

中国中波广播频率表(按省份划分的)

按省份划分的中国中波广播频率表(一) 省地市区县电台中波(KHz) 京北京市北京市中央电台中国之声 639 京北京市北京市中央电台经济之声 720 京北京市北京市中央电台朝鲜语广播 1206 京北京市北京市中央电台文艺之声(第9套) 747 京北京市北京市国际电台英语频道 1251 京北京市北京市国际电台HIT-FM 900 京北京市北京市国际电台环球资讯广播 900 京北京市北京市国际电台ROUND THE CLOCK 846、1008京北京市北京市北京电台新闻频道 828、846 京北京市北京市北京城市管理广播 1026 京北京市北京市北京电台体育频道 927 京北京市北京市北京电台首都生活广播 603 津天津市天津市中国国际广播电台 801 津天津市天津市天津新闻台 909 津天津市天津市天津相声台 567 津天津市天津市天津小说台 666 津天津市天津市天津滨海台 747 津天津市天津市天津经济台 1071 津天津市天津市天津音乐台 1008 津天津市天津市天津文艺台 1098 津天津市天津市天津生活台 1386 冀石家庄石家庄河北电台综合频道 1278 冀石家庄石家庄河北电台经济频道 1125 冀石家庄石家庄河北电台交通音乐频道 603 冀石家庄石家庄河北电台文艺频道 900? 冀石家庄石家庄石家庄电台新闻台 882 冀石家庄石家庄石家庄长书娱乐台 1431 冀石家庄辛集市辛集人民广播电台 873 冀保定市保定市河北电台生活频道 783 冀保定市保定市保定电台新闻频道 1377

冀保定市保定市保定电台新闻频道 1467 冀保定市涿州市涿州人民广播电台 1053 冀保定市定州市定州人民广播电台 1143 冀沧州市沧州市沧州人民广播电台 1557 冀沧州市沧州市沧州交通长书频道 801 冀沧州市沧州市沧州人民健康频道 846 冀沧州市沧州市沧州电台经济生活频率 1143 冀沧州市泊头市泊头人民广播电台 1188 冀沧州市任丘市任丘人民广播电台 1287 冀沧州市任丘市任丘人民广播电台第二套 846 冀衡水市衡水市衡水人民广播电台 954 冀邢台市邢台市刑台人民广播电台 1188 冀邢台市沙河市沙河人民广播电台 1053 冀邢台市清河县清河人民广播电台 1296 冀邢台市南宫市南宫人民广播电台 1557 冀邯郸市邯郸市邯郸电台新闻台 963 冀邯郸市邯郸市邯郸电台教育频道 963 冀邯郸市邯郸市邯郸电台经济频道 1206 冀邯郸市邯郸市邯郸电台生活频道 1206 冀邯郸市邯郸市邯郸电台文艺频道 1098 冀廊坊市廊坊市河北电台交通广播 1521 冀廊坊市廊坊市河北经济广播电台 冀廊坊市廊坊市廊坊电台新闻综合频道 846 1008 1224冀廊坊市廊坊市廊坊电台交通长书频道 585 冀廊坊市廊坊市廊坊电台戏曲曲艺频道 1521 冀承德市承德市承德人民广播电台 1584 冀秦皇岛秦皇岛秦皇岛电台新闻资讯台 603 冀秦皇岛秦皇岛秦皇岛电台 990 冀秦皇岛秦皇岛秦皇岛电台音乐健康频率 999 冀唐山市唐山市唐山电台新闻综合广播 684

军工复杂电磁环境及防护

军工复杂电磁环境及防护 1.复杂电磁环境提出的背景 复杂电磁环境可以综合定义为: 在某一空间内由时域、频域、空域和能量域分布复杂的多种电磁信号叠加,它对电子装备、火工品、燃油和人员等有不同程度的危害。 复杂电磁环境是综合性名词,主要用于顶层策划和宏观分析。实质上电磁环境都是复杂的、动态的,在技术设计层面都应进行分解和分类,成为可描述的技术参数。 1.1按电磁能量的来源划分有: (1)自然电磁现象和人为电磁现象 (2)我方电子装备辐射和敌方电子装备辐射 (3)无意电磁辐射(电磁兼容范畴)和有意电磁辐射(电子对抗范畴) 1.2按电磁场信号特性划分有: (1)随机或无规则波形 (2)无调制波形(脉冲,连续正弦波) (3)调制波形(脉冲调制,模拟量调制) (1)电磁环境集成的不确定性在电子装备使用过程中,使用方常常应用“复杂”这个词来形容装备附近的电磁环境,其原因是多方面的。 电子装备在不同空间电磁信号的叠加是不确定的,电磁信号的组合受多种因素限制。 (2)电磁环境测量的不确定性

电磁环境测量数据受时间,方向及频谱等因素影响。测试结果具有统计特性,另外,在特定条件下,电磁干扰信号电平是很低的,例如雷达接收机极限灵敏度-110dBm,天线增益40dB。 其干扰信号用一般干扰测量仪或频谱仪是测不到的。 (3)未来战场上广泛使用电子对抗技术和强电磁脉冲技术,这些技术参数是不可预知的,并且攻防双方都应用可变参数。 为了进行电磁防护,提高电子装备的电磁生存能力,电子装备设计时需要对可能造成电磁干扰的电磁环境进行分类分析。 2.复杂电磁环境的分析 2.1电子对抗(电子战)和电磁环境效应内容的区别 电磁环境效应是在能量域研究电磁能量对电子装备、军械等的影响。主要涉及电子装备(含接收器通道外)对电磁能量敏感程度,并且要求对接收器通道内器件不损坏、不烧毁。 电子对抗是在信息域研究接收器通道内的电子对抗。主要通过信号处理剔除干扰,当然也应用了信道捷变频,天线旁瓣对消等措施。 电磁环境效应包含了一些电子对抗的内容,但电子对抗有其独特的技术内容,两者有较大区别。 2.2有关外部射频电磁环境 GJB1389A《系统电磁兼容性要求》所提供的外部射频电磁环境包含人为和无意的电磁辐射,主要是由雷达和通信系统通过发射天线向特定空间或在近区所形成的电磁场,这些电磁场的统计特征值用峰值和平均值表示,平均值是模拟量调制的通信设备所产生的,而峰值主要是雷达设备产生的脉冲调制波,从标准中多个表格所提供的数值明显看出300 MHz以下频段电磁场的平均值与峰值相等,这是通信使用电磁波的特征,而在300 MHz以上频段电磁波平均值与峰值不相等。它们的比值就是占空比(占空比小于1)。标准中外部射频电磁场典型平均值为200V/m,峰值为2~3kv/m。

碳纳米管

碳纳米管“太空天梯” 未来的“太空天梯” 碳纳米管是由石墨分子单层绕同轴缠绕而成或由单层石墨圆筒沿同轴层层套构而成的管状物。其直径一般在一到几十个纳米之间,长度则远大于其直径。1991年,日本NEC公司基础研究实验室的电子显微镜专家饭岛在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了这一特别的分子结构。 碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。作为人类发现的力学性能最好的材料,碳纳米管有着极高的拉伸强度、杨氏模量和断裂伸长率。例如,碳纳米管的单位质量上的拉伸强度是钢铁的276倍,远远超过其他任何材料。 目前碳纳米管的研究现状 自从1991年碳纳米管被正式报道以来,为了提高其长度,全世界的碳纳米管研究者进行了大量艰辛的探索。然而一直到2009年,碳纳米管的最大长度只有18.5厘米,直到目前成功制备出单根长度达到半米以上的碳纳米管。这种有限的长度极大地限制了碳纳米管的实际应用。 碳纳米管的优点。 (1)界面层的存在和界面层厚度的增大均降低

碳纳米管和界面层的应力传递效率随长径比的变化了应力传递效率和纤维的饱和应力, 但同时增大了碳纳米管纤维的有效长度。所以界面层比较明显地承担了应力载荷, 则在碳纳米管复合材料中应该考虑界面层存在和界面层厚度的影响。 (2)碳纳米管的长径比只在较小时影响有效长度和应力传递效率。 长径比所影响的具体范围不同, 对碳纳米管有效长度为小于50 , 而对于应力传递效率则小于10 。 (3)碳纳米管的应力传递效率要远比界面层的应力传递效率大。 在碳纳米管复合材料中虽应要考虑界面层的影响, 但应力载荷的最主要承担者仍是碳纳米管纤维。对碳纳米管复合材料的应力场、纤维的饱和应力和应力传递效率以及有效长度的分析, 为碳纳米管复合材料力学性能的分析、结构优化和功能化设计以及寿命预测等做好必要的准备。 碳纳米管的缺点 (1)如何实现高质量碳纳米管的连续批量工业化生产。 碳纳米管的制备现状大致是:MWNTs能较大量生产,SWNTs多数处于实验室研制阶段,某些制备方法得到的碳纳米管生长机理还不明确,对碳纳米管的结构(管径、管长、螺旋度、壁厚等)还不能做到任意调节和控制,影响碳纳米管的产量、质量及产率的因素太多。 (2)有限的长度极大地限制了碳纳米管的实际应用。 提高了碳纳米管的长度,唯一的途径就是尽可能地提高其催化剂活性概率。对于碳纳米管的生长而言,在其生长过程中催化剂失活从而使其停止生长是一个不可逆转的规律,从而造成了超长碳纳米管很难达到很长的长度,并且也使其单位宽度上的生长密度急剧下降。 (3) 对人体的毒害作用 碳纳米管对人体存在一定的毒性作用,目前研究主要集中在肺脏毒性和细胞毒性,表现为可引起肺脏炎症、肉芽肿和细胞凋亡、活力下降、细胞周期改变等。其毒力大小与碳纳米管的特性有关,如结构、长度、表面积、制备方法、浓度、

中波广播理论基础概述

中波广播理论基础概述 无线电波 一、无线电波的定义 无线电波是指在自由空间传播的射频频段的电磁波。无线电波是电磁频谱的一部分,它像水池中的波纹一样向个各方向传播。 电磁波:磁场的任何变化会产生电场,电场的任何变化也会产生磁场。交变的电磁场不仅可能存在于电荷、电流或导体的周围,而且能够脱离其产生的波源向远处传播,传播速度与光的传播速度一样,这种在空间内以—定速度传播的交变电磁场,称为电磁波。无线电技术中使用的这一段电磁波通常称为无线电波。 图2.1.1 电磁波传播示意图 二、无线电波的传播方式及传播特点 无线电波主要的传播方式有:地波、天波和沿直线传播的空间波。无线电波和光波的传播速度一样(3×108米/秒),具有直射、绕射、反射、折射的传播能力。 地波:地波是沿地球表面空间向外传播的无线电波。地波的传播特点:频率越高,地面吸收越多,损耗越大。因此只有长波和中波能在地面传播。地波不受气候影响,传播比较稳定可靠。但在传播过程中,能量被大地不断吸收,因而传播距离不远。所以地波适宜在较小范围里的通信和广播业务使用。 天波:天波也即电离层波。地球大气层的高层约100Km处存在着“电离层”。无线电波进入电离层时其方向会发生改变,出现“反射”。因为电离层折射效应的积累,电波的入射方向会连续改变,最终会“拐”回地面,电离层如同一面镜子会反射无线电波。我们把这种经电离层反射而折回地面的无线电波称为“天

波”。天波的传播特点:电离层能反射电波,也能吸收电波。对频率很高的电波吸收的很少。短波和中波是利用电离层反射传播的最佳波段,它可以借助电离层这面“镜子”反射传播,被电离层反射到地面后,地面又把它反射到电离层,然后再被电离层反射到地面,经过几次反射,可以传播很远。 空间波:空间波是沿直线传播的无线电波。它包括由发射点直接到达接收点的直射波和经地面反射到接收点的反射波。空间波的传播特点:空间波传播距离一般限于视距范围,因此又叫视距传播。超短波和微波不能被电离层反射,主要是在空间直接传播。其传播距离很近,易受高山和高大建筑物阻挡,为了加大传输距离,必须架高天线,尽管这样,一般的传输距离也不过50公里左右。超短波的电视和雷达多采用空间波方式传播。 散射波:当大气层或电离层出现不均匀团块时(12~16Km),无线电波有可能被这些不均匀媒质向四面八方折射和散射,使一部分能量到达接收点,这就是散射波(波长较短的波段)。 图2.1.2 地波、天波、空间波传播示意图 外球层传播:离开地面1000Km以外的宇宙间通信称为外球层传播。卫星通讯和卫星直播电视就是利用这种传播方式。 电离层:电离层是地球大气的一个电离区域。60千米以上的整个地球大气层都处于部分电离或完全电离的状态,电离层是部分电离的大气区域,完全电离的大气区域称磁层。也有人把整个电离的大气称为电离层,这样就把电磁层看作电离层的一部分。除地球外,金星、火星和木星都有电离层。电离层从离地面约50公里开始一直伸展到约1000公里高度的地球高层大气空域,其中存在相当多的自由电子和离子,能使无线电波改变传播速度,发生折射、反射和散射,产生极化面的旋转并受到不同程度的吸收。根据密度不同,电离层可分为D、E、F1和F2层。

碳纳米管的制备工艺与生长机理_朱宝华

?建筑材料及应用? 文章编号:100926825(2007)3320174202 碳纳米管的制备工艺与生长机理 收稿日期:2007206219 作者简介:朱宝华(19772),男,重庆交通大学硕士研究生,重庆 400074 朱宝华 摘 要:针对碳纳米管的独特结构和性能,介绍了电弧法、激光蒸发法和化学气相沉积法三种制备碳纳米管的方法,并建 立不同的物理模型,详细阐述了以上三种方法的生长机理,为研究碳纳米管技术提供了参考借鉴。关键词:碳纳米管,生长机理,制备工艺中图分类号:TU551文献标识码:A 碳纳米管(简称CN Ts )自1991年由Iijima 发现以来,立即受 到全球科学家的关注,很快就变成研究最多的纳米材料。碳纳米管分为单壁和多壁两种,由于多壁碳纳米管结构的复杂性,单壁碳纳米管作为理论计算的研究对象,根据形成碳纳米管的石墨面的卷曲方式,它可以分为非螺旋型和螺旋型两类,对于非螺旋型结构,管壁上原子六元环碳链的排列方向平行于管轴时为“椅式”结构,而当其排列方向垂直于管轴则为“齿式”结构。实际上对于大多数碳纳米管而言,管壁上任何碳原子六元环链的排列方向大都既不平行也不垂直于碳纳米管的轴线方向,而是相对于碳纳米管的轴线方向具有一定的螺旋角,碳六元环以这样的方式排列形成的纳米管就是螺旋型的碳纳米管。螺旋型的碳纳米管具有手性的区别,因此也被称为具有“手性”结构的碳纳米管。 碳纳米管的管状结构和较大长度直径比,使其成为理想的和有前途的准一维材料,而且理论预言这种纯碳分子所构成的直径最细、结构多变的纳米管具有很多奇异的性质,必将在纳米材料科学、分子电子器件及纳米生命科学中发挥重要作用。 1 单壁碳纳米管的制备1.1 电弧法 电弧是一种气体放电现象,当电极两端的电流功率较大时, 电极间的气体被击穿,产生几千度甚至上万度的高压,电能在瞬间转化为光能和热能。将石墨棒作阳极插入反应室,与室内已装有的石墨棒(或短铜棒)阴极接触产生电弧后,在电弧区生成的碳纳米管落下,沉积在筒的底部,反应室内充满液氮。此法的突出优点在于液氮提供保护性气氛及缓冲气源,使得产物在惰性气氛下易保存输运,避免了复杂的真空密封装置。1993年,S ?Iijima 等人就是首次用此方法成功合成单壁碳纳米管。 1.2 激光蒸发法 激光蒸发法制备单壁碳纳米管是将一根金属催化剂和石墨混合的石墨靶放置于一长形石英管中间,该管则置于一加热炉内。当炉温升到1473K 时,将惰性气体充入管内,并将一束激光聚焦于石墨靶上。石墨靶在激光照射下将生成气态碳,这些气态碳和 4 混凝土的早期养护 实践证明,混凝土常见的裂缝,大多数是不同深度的表面裂缝,其主要原因是温度梯度造成寒冷地区的温度骤降也容易形成裂缝。因此说混凝土的保温对防止表面早期裂缝尤其重要。 从温度应力观点出发,保温应达到下述要求:1)防止混凝土内外温度差及混凝土表面梯度,防止表面裂缝。2)防止混凝土超冷,应该尽量设法使混凝土的施工期最低温度不低于混凝土使用期的稳定温度。3)防止旧混凝土过冷,以减少新旧混凝土间的约束。 混凝土的早期养护,主要目的在于保持适宜的温湿条件,以达到两个方面的效果:a.使混凝土免受不利温、湿度变形的侵袭,防止有害的冷缩和干缩。b.使水泥水化作用顺利进行,以期达到设计的强度和抗裂能力。 适宜的温湿度条件是相互关联的。混凝土的保温措施常常也有保湿的效果。 从理论上分析,新浇混凝土中所含水分完全可以满足水泥水 化热的要求而有余。但由于蒸发等原因常引起水分损失,从而推迟或防碍水泥的水化,表面混凝土最容易而且直接受到这种不利影响。因此混凝土浇筑后的最初几天是养护的关键时期,在施工过程中应切实重视起来。 5 结语 以上对混凝土的施工温度与裂缝之间的关系进行了理论和实践上的初步探讨,虽然学术界对于混凝土裂缝的成因和计算方法有不同的理论,但对于具体的预防和改善措施意见还是比较统一,同时在实践中的应用效果也是比较好的。在施工中要靠多观察、多比较,出现问题后多分析、多总结,结合多种预防处理措施,混凝土的裂缝是完全可以避免的。参考文献: [1]李惠强.高层建筑施工技术[M ].北京:机械工业出版社, 2005.5. [2]赵建光.浅谈施工质量管理的若干要素[J ].建筑学报,2004 (2):31233. R easons of temperature and cracks during construction of pouring concrete L I Feng 2jun JIANG Chu ang 2feng CHENG Xia Abstract :It analyzes the reasons of cracks in pouring concrete.Through analysis of temperature stress ,it brings forward some measures of controlling temperature and protecting cracks ,and elaborates the early maintaining of concrete ,s o as to av oid the happening of concrete cracks.K ey w ords :pouring concrete ,temperature cracks ,early maintaining ,temperature stress ? 471?第33卷第33期2007年11月 山西建筑SHANXI ARCHITECTURE Vol.33No.33Nov. 2007

相关主题