搜档网
当前位置:搜档网 › 误差理论与数据处理-实验报告

误差理论与数据处理-实验报告

误差理论与数据处理-实验报告
误差理论与数据处理-实验报告

《误差理论与数据处理》

实 验 指 导 书

姓名 学号

机械工程学院 2016年05月

实验一 误差的基本性质与处理

一、实验内容

1.对某一轴径等精度测量8次,得到下表数据,求测量结果。

序号 i l /mm

i v /mm

22/i v mm (10-4)

1 2 3 4 5 6 7 8

24.674 24.675 24.673 24.676 24.671 24.678 24.672 24.674

-0.0001 0.0009 -0.0011 0.0019 -0.0031 0.0039 -0.0021 -0.0001

0.0002 0.0077 0.0127 0.0352 0.0977 0.1502 0.0452 0.0002

Matlab程序:

l=[24.674,24.675,24.673,24.676,24.671,24.678,24.672,24.674];%已知测量值

x1=mean(l);%用mean函数求算数平均值

disp(['1.算术平均值为:',num2str(x1)]);

v=l-x1;%求解残余误差

disp(['2.残余误差为:',num2str(v)]);

a=sum(v);%求残差和

ah=abs(a);%用abs函数求解残差和绝对值

bh=ah-(8/2)*0.001;%校核算术平均值及其残余误差,残差和绝对值小于n/2*A,bh<0,故以上计算正确

if bh<0

disp('3.经校核算术平均值及计算正确');

else

disp('算术平均值及误差计算有误');

end

xt=sum(v(1:4))-sum(v(5:8));%判断系统误差(算得差值较小,故不存在系统误差)

if xt<0.1

disp(['4.用残余误差法校核,差值为:',num2str(x1),'较小,故不存在系统误差']);

else

disp('存在系统误差');

end

bz=sqrt((sum(v.^2)/7));%单次测量的标准差

disp(['5.单次测量的标准差',num2str(bz)]);

p=sort(l);%用格罗布斯准则判断粗大误差,先将测量值按大小顺序重新排列

g0=2.03;%查表g(8,0.05)的值

g1=(x1-p(1))/bz;

g8=(p(8)-x1)/bz;%将g1与g8与g0值比较,g1和g8都小于g0,故判断暂不存在粗大误差if g1

disp('6.用格罗布斯准则判断,不存在粗大误差');

end

sc=bz/(sqrt(8));%算数平均值的标准差

disp(['7.算术平均值的标准差为:',num2str(sc)]);

t=2.36;%查表t(7,0.05)值

jx=t*sc;%算术平均值的极限误差

disp(['8.算术平均值的极限误差为:',num2str(jx)]);

% l1=x1+jx;%写出最后测量结果

% l2=x1-jx;%写出最后测量结果

disp(['9.测量结果为:(',num2str(x1),'±',num2str(jx),')']);

实验二测量不确定度

二、实验内容

1

D/mm 8.075 8.085 8.095 8.085 8.080 8.060 i

h/mm 8.105 8.115 8.115 8.110 8.115 8.110

i

请按测量不确定度的一般计算步骤,用自己熟悉的语言编程完成不确定度分析。

MATLAB程序及分析如下:

A=[8.075 8.085 8.095 8.085 8.080 8.060];

B=[8.105 8.115 8.115 8.110 8.115 8.110];

D=mean(A);%直径平均值

disp(['1.直径平均值为:',num2str(D)]);

h=mean(B);%高度平均值

disp(['2.高度平均值为:',num2str(h)]);

V=pi*D*D*h/4;%体积测量结果估计值

disp(['3.体积测量结果估计值为:',num2str(V)]);

s1=std(A);%直径标准差

disp(['4.直径标准差为:',num2str(s1)]);

u1=pi*D*h*s1/2;%直径测量重复性引起的不确定度分量

disp(['5.直径测量重复性引起的不确定度分量为:',num2str(u1)]);

v1=5;%自由度

s2=std(B);%高度标准差

disp(['6.高度标准差为:',num2str(s2)]);

u2=pi*D*D*s2/4;%高度测量重复性引起的不确定度分量

disp(['7.高度测量重复性引起的不确定度分量为:',num2str(u2)]);

v2=5;%自由度

ue=0.01/(3^0.5);%均匀分布得到的测微仪示值标准不确定度

u3=(((pi*D*h/2)^2+(pi*D*D/4)^2)^0.5)*ue;%示值引起的体积测量不确定度disp(['8.示值引起的体积测量不确定度为:',num2str(u3)]);

v3=1/(2*0.35^2);%取相对标准差为0.35时对应自由度

uc=(u1^2+u2^2+u3^2)^0.5; %合成不确定度

disp(['9.合成不确定度为:',num2str(uc)]);

v=uc^4/(u1^4/v1+u2^4/v2+u3^4/v3);%v=7.9352取为7.94

k=2.31;%取置信概率P=0.95,v=8查t分布表得2.31

U=k*uc;

disp(['10.运算结果为:',num2str(U)]);

实验三三坐标测量机测量

三、实验内容

1、手动测量平面,确保处于手动模式,使用手操作驱动测头逼近平面第一点,然后接触平面并记录该点,确定平面的最少点数为3,重复以上过程,保留测点或删除坏点。

2、手动测量直线,确保处于手动模式,使用手操作将测头移动到指定位置,驱动测头沿着逼近方向在平面上的采集点,采点的顺序非常重要,起始点到终止点决定了直线的方向。确定直线的最少点数为2.

3、手动测量圆,确保处于手动模式,测量模式?

点X坐标Y坐标Z坐标

1 -19.5813.17-133.32

2 19.63-2.39134.00

3 -17.2010.47134.49

4 -11.7310.47-132.65

5 -19.5824.82-138.16

6 -19.607.66 137.21

7 -18.0315.86-132.40

8 -19.68-4.83136.00

9 -19.607.66-137.21

程序:

x=[-19.58 19.63 -17.20 -11.73 -19.58 -19.60 -18.03 -19.68 -19.60]; y=[13.17 -2.39 10.47 10.47 24.82 7.66 15.86 -4.83 7.66];

z=[-133.32 -134.00 -134.49 -132.65 -138.16 -137.21 -132.40 -136.00 -137.21];

x=x';

y=y';

z=z';csize=min([length(x),length(y),length(z)]);

pow_xyz=-x(1:csize).*x(1:csize);

pow_xyz=pow_xyz-y(1:csize).*y(1:csize);

pow_xyz=pow_xyz-z(1:csize).*z(1:csize);

A=[x(1:csize),y(1:csize),z(1:csize),ones(csize,1)];

xans=((A'*A)^-1)*(A'*pow_xyz);

a=xans(1);

b=xans(2);

c=xans(3);

r=(a*a+b*b+c*c)/4-xans(4);

r=sqrt(r);

a=a/2;

b=b/2;

c=c/2;

disp(['球心坐标为:(',num2str(a),' ',num2str(b),' ',num2str( c),')']);

disp(['半径为:',num2str(r)]);

实验四回归分析

四、实验内容

采用回归分析算法用matlab编程实现下列题目的要求。

正应力

26.8 25.4 28.9 23.6 27.7 23.9 24.7 28.1 26.9 27.4 22.6 25.6

x/pa

抗剪强

26.5 27.3 24.2 27.1 23.6 25.9 26.3 22.5 21.7 21.4 25.8 24.9

度y/pa

假设正应力的数值是精确的,求①减抗强度与正应力之间的线性回归方程。②当正应力为24.5pa时,抗剪强度的估计值是多少?

2、用x光机检查镁合金铸件内部缺陷时,为了获得最佳的灵敏度,透视电压y应随透视件的厚度x而改变,经实验获得下表所示一组数据,假设透视件的厚度x无误差,试求透

x/mm 12 13 14 15 16 18 20 22 24 26

y/kv 52.0 55.0 58.0 61.0 65.0 70.0 75.0 80.0 85.0 91.0

1、程序

x=[26.8 25.4 28.9 23.6 27.7 23.9 24.7 28.1 26.9 27.4 22.6 25.6]';

y=[26.5 27.3 24.2 27.1 23.6 25.9 26.3 22.5 21.7 21.4 25.8 24.9]';

X=[ones(length(x),1),x];%构造自变量观测值矩阵

[b]=regress(y,X);%线性回归建模与评价

disp(['回归方程为:y=',num2str(b(1)),'x',num2str(b(2))]);

x1=24.5;y1=b(1)+b(2)*x1;

fprintf('当正应力x=24.5pa时,抗剪估计值y=%.3f\n',y1)

2、程序:

x=[150 200 250 300]';

y1=[77.4 76.7 78.2;84.1 84.5 83.7;88.9 89.2 89.7;94.8 94.7 95.9;];

y=[0 0 0 0]';

for i=1:4

y(i,1)=(y1(i,1)+y1(i,2)+y1(i,3))/3;

end

A=[ones(size(x)),x];

[ab,tm1,r,rint,stat] = regress(y,A);

a=ab(1);b=ab(2);r2=stat(1);

alpha=[0.05,0.01];

yhat=a+b*x;

disp(['y对x的线性回归方程为:y=',num2str(a),'+',num2str(b),'x']) SSR=(yhat-mean(y))'*(yhat-mean(y));

SSE=(yhat-y)'*(yhat-y);

SST=(y-mean(y))'*(y-mean(y));

n=length(x);

Fb=SSR/SSE*(n-2);

Falpha=finv(1-alpha,1,n-2);

table=cell(4,7);

table(1,:)={'方差来源','偏差平方和','自由度','方差','F比','Fα','显著性'}; table(2,1:6)={'回归',SSR,1,SSR,Fb,min(Falpha)};

table(3,1:6)={'剩余',SSE,n-2,SSE/(n-2),[],max(Falpha)};

table(4,1:3)={'总和',SST,n-1};

if Fb>=max(Falpha)

table{2,7}='高度显著';

elseif (Fb=min(Falpha))

table{2,7}='显著';

else

table{2,7}='不显著';

end

table

3、程序

x=[12 13 14 15 16 18 20 22 24 26];

y=[52.0 55.0 58.0 61.0 65.0 70.0 75.0 80.0 85.0 91.0];

plot(x,y,'*k')

title('散点图');

X=[ones(size(x')), x'];

b= regress(y',X,0.05);

disp(['y随x变化的经验公式为:y=',num2str(b(1)),'+',num2str(b(2)),'x'])

误差理论与数据处理 实验报告

《误差理论与数据处理》实验指导书 姓名 学号 机械工程学院 2016年05月

实验一误差的基本性质与处理 一、实验内容 1.对某一轴径等精度测量8次,得到下表数据,求测量结果。 Matlab程序: l=[24.674,24.675,24.673,24.676,24.671,24.678,24.672,24.674];%已知测量值 x1=mean(l);%用mean函数求算数平均值 disp(['1.算术平均值为:',num2str(x1)]); v=l-x1;%求解残余误差 disp(['2.残余误差为:',num2str(v)]); a=sum(v);%求残差和 ah=abs(a);%用abs函数求解残差和绝对值 bh=ah-(8/2)*0.001;%校核算术平均值及其残余误差,残差和绝对值小于n/2*A,bh<0,故以上计算正确 if bh<0 disp('3.经校核算术平均值及计算正确'); else disp('算术平均值及误差计算有误'); end xt=sum(v(1:4))-sum(v(5:8));%判断系统误差(算得差值较小,故不存在系统误差) if xt<0.1 disp(['4.用残余误差法校核,差值为:',num2str(x1),'较小,故不存在系统误差']); else disp('存在系统误差'); end bz=sqrt((sum(v.^2)/7));%单次测量的标准差 disp(['5.单次测量的标准差',num2str(bz)]);

p=sort(l);%用格罗布斯准则判断粗大误差,先将测量值按大小顺序重新排列 g0=2.03;%查表g(8,0.05)的值 g1=(x1-p(1))/bz; g8=(p(8)-x1)/bz;%将g1与g8与g0值比较,g1和g8都小于g0,故判断暂不存在粗大误差if g1

误差理论与数据处理实验报告

误差理论与数据处理 实验报告 姓名:小叶9101 学号:小叶9101 班级:小叶9101 指导老师:小叶

目录 实验一误差的基本概念 实验二误差的基本性质与处理 实验三误差的合成与分配 实验四线性参数的最小二乘法处理实验五回归分析 实验心得体会

实验一误差的基本概念 一、实验目的 通过实验了解误差的定义及表示法、熟悉误差的来源、误差分类以及有效数字与数据运算。 二、实验原理 1、误差的基本概念:所谓误差就是测量值与真实值之间的差,可以用下式表示 误差=测得值-真值 1、绝对误差:某量值的测得值和真值之差为绝对误差,通常简称为误差。 绝对误差=测得值-真值 2、相对误差:绝对误差与被测量的真值之比称为相对误差,因测得值与 真值接近,故也可以近似用绝对误差与测得值之比值作为相对误差。 相对误差=绝对误差/真值≈绝对误差/测得值 2、精度 反映测量结果与真值接近程度的量,称为精度,它与误差大小相对应,因此可以用误差大小来表示精度的高低,误差小则精度高,误差大则精度低。 3、有效数字与数据运算 含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那么从这个近似数左方起的第一个非零的数字,称为第一位有效数字。从第一位有效数字起到最末一位数字止的所有数字,不论是零或非零的数字,都叫有效数字。 数字舍入规则如下: ①若舍入部分的数值,大于保留部分的末位的半个单位,则末位加1。 ②若舍去部分的数值,小于保留部分的末位的半个单位,则末位加1。 ③若舍去部分的数值,等于保留部分的末位的半个单位,则末位凑成偶数。即当末位为偶数时则末位不变,当末位为奇数时则末位加1。 三、实验内容 1、用自己熟悉的语言编程实现对绝对误差和相对误差的求解。 2、按照数字舍入规则,用自己熟悉的语言编程实现对下面数据保留四位有效数字进行凑整。 原有数据 3.14159 2.71729 4.51050 3.21551 6.378501 舍入后数据

误差理论及数据处理第三章 课后答案

修正值=)(4321l l l l ?+?+?+?- =)1.03.05.07.0(+-+-- =0.4)(m μ 测量误差: l δ=4 3 2 1 lim 2lim 2lim 2lim 2l l l l δδδδ+++± =2222)20.0()20.0()25.0()35.0(+++± =)(51.0m μ± 3-2 为求长方体体积V ,直接测量其各边长为mm a 6.161=, mm 44.5b =,mm c 2.11=,已知测量的系统误差为mm a 2.1=?,mm b 8.0-=?,mm c 5.0=?,测量的极限误差为mm a 8.0±=δ, mm b 5.0±=δ,mm c 5.0±=δ, 试求立方体的体积及其体积的极限误差。 abc V = ),,(c b a f V = 2.115.446.1610??==abc V )(44.805413 mm = 体积V 系统误差V ?为: c ab b ac a bc V ?+?+?=? )(74.2745)(744.274533mm mm ≈= 立方体体积实际大小为:)(70.777953 0mm V V V =?-= 2 22222lim )()()( c b a V c f b f a f δδδδ??+??+??±= 2 22 22 2)()()(c b a ab ac bc δδδ++±= )(11.37293mm ±= 测量体积最后结果表示为:

V V V V lim 0δ+?-=3)11.372970.77795(mm ±= 3—3 长方体的边长分别为α1,α2, α3测量时:①标准差均为σ;②标准差各为σ1、σ2、 σ3 。试求体积的标准差。 解: 长方体的体积计算公式为:321a a a V ??= 体积的标准差应为:2 323 22222121)()()( σσσσa V a V a V V ??+??+??= 现可求出: 321a a a V ?=??;312a a a V ?=??;213 a a a V ?=?? 若:σσσσ===321 则 有 : 23 2221232322222121)()()()()()( a V a V a V a V a V a V V ??+??+??=??+??+??=σσσσσ221231232)()()(a a a a a a ++=σ 若:321σσσ≠≠ 则有:2 32212223121232)()()(σσσσa a a a a a V ++= 3-4 测量某电路的电流mA I 5.22=,电压V U 6.12=,测量的标准差分别为mA I 5.0=σ, V U 1.0=σ,求所耗功率UI P =及其标准差P σ。UI P =5.226.12?=)(5.283mw = ),(I U f P =I U 、 成线性关系 1=∴UI ρ I u I U P I f U f I f U f σσσσσ))((2)()( 2 222????+??+??= I U I U U I I f U f σσσσ+=??+??= 5.06.121.05.22?+?= )(55.8mw = 3-6 已知x 与y 的相关系数1xy ρ=-,试求2 u x ay =+的方差2u σ。 【解】属于函数随机误差合成问题。

大学物理实验报告数据处理及误差分析

篇一:大学物理实验1误差分析 云南大学软件学院实验报告 课程:大学物理实验学期: - 学年第一学期任课教师: 专业: 学号: 姓名: 成绩: 实验1 误差分析 一、实验目的 1. 测量数据的误差分析及其处理。 二、实验内容 1.推导出满足测量要求的表达式,即 0? (?)的表达式; 0= (( * )/ (2*θ)) 2.选择初速度A,从[10,80]的角度范围内选定十个不同的发射角,测量对应的射程, 记入下表中: 3.根据上表计算出字母A 对应的发射初速,注意数据结果的误差表示。 将上表数据保存为A. ,利用以下程序计算A对应的发射初速度,结果为100.1 a =9.8 _ =0 =[] _ = ("A. "," ") _ = _ . ad ()[:-1] = _ [:]. ('\ ') _ = _ . ad ()[:-1] = _ [:]. ('\ ') a (0,10): .a d( a . ( a ( [ ])* / a . (2.0* a ( [ ])* a . /180.0))) _

+= [ ] 0= _ /10.0 0 4.选择速度B、C、D、重复上述实验。 B C 6.实验小结 (1) 对实验结果进行误差分析。 将B表中的数据保存为B. ,利用以下程序对B组数据进行误差分析,结果为 -2.84217094304 -13 a =9.8 _ =0 1=0 =[] _ = ("B. "," ") _ = _ . ad ()[:-1] = _ [:]. ('\ ') _ = _ . ad ()[:-1] = _ [:]. ('\ ') a (0,10): .a d( a . ( a ( [ ])* / a . (2.0* a ( [ ])* a . /180.0))) _ += [ ] 0= _ /10.0 a (0,10): 1+= [ ]- 0 1/10.0 1 (2) 举例说明“精密度”、“正确度”“精确度”的概念。 1. 精密度 计量精密度指相同条件测量进行反复测量测值间致(符合)程度测量误差角度说精密度所 反映测值随机误差精密度高定确度(见)高说测值随机误差定其系统误差亦。 2. 正确度 计量正确度系指测量测值与其真值接近程度测量误差角度说正确度所反映测值系统误差 正确度高定精密度高说测值系统误差定其随机误差亦。 3. 精确度 计量精确度亦称准确度指测量测值间致程度及与其真值接近程度即精密度确度综合概念 测量误差角度说精确度(准确度)测值随机误差系统误差综合反映。 比如说系统误差就是秤有问题,称一斤的东西少2两。这个一直恒定的存在,谁来都是 这样的。这就是系统的误差。随机的误差就是在使用秤的方法。 篇二:数据处理及误差分析 物理实验课的基本程序

实验数据误差分析和数据处理

第二章 实验数据误差分析和数据处理 第一节 实验数据的误差分析 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。 一、误差的基本概念 测量是人类认识事物本质所不可缺少的手段。通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。科学上很多新的发现和突破都是以实验测量为基础的。测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。 1.真值与平均值 真值是待测物理量客观存在的确定值,也称理论值或定义值。通常真值是无法测得的。若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。但是实际上实验测量的次数总是有限的。用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种: (1) 算术平均值 算术平均值是最常见的一种平均值。 设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为 n x n x x x x n i i n ∑==+???++=121 (2-1) (2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。即 n n x x x x ????=21几 (2-2) (3)均方根平均值 n x n x x x x n i i n ∑==+???++= 1 222221均 (2-3) (4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。 设两个量1x 、2x ,其对数平均值

误差理论与大数据处理实验报告材料

标准文档 误差理论与数据处理 实验报告 姓名:黄大洲 学号:3111002350 班级:11级计测1班 指导老师:陈益民

实验一 误差的基本性质与处理 一、实验目的 了解误差的基本性质以及处理方法 二、实验原理 (1)算术平均值 对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。 1、算术平均值的意义:在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。 设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值 121...n i n i l l l l x n n =++==∑ 算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。 i v = i l -x i l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差) 2、算术平均值的计算校核 算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。 残余误差代数和为: 1 1 n n i i i i v l nx ===-∑∑ 当x 为未经凑整的准确数时,则有:1 n i i v ==∑0 1)残余误差代数和应符合:

当 1n i i l =∑=nx ,求得的x 为非凑整的准确数时,1 n i i v =∑为零; 当 1 n i i l =∑>nx ,求得的x 为凑整的非准确数时,1 n i i v =∑为正;其大小为求x 时 的余数。 当 1 n i i l =∑

成都理工误差实验报告数据处理

实验报告 实验工作者:杜华学号:201206020108 实验日期:2014年3月31号实验名称:实验一:生产过程监控图的编制 实验目的:本实验通过对某化工厂正常生产过程中120次Hgcl2浓度的测定数据。 编制对生产过程中Hgcl2浓度的监控图,以保证最终产品质量。通 过本实验,让同学们一起理解误差的理论与意义,学会编制生产过 程监控图的方法 实验原理:一般情况下,很多工程测量与生产过程的参数值都是服从正态分布的随机变量,例如利用正常电子仪器在相同条件下对同一物理量重复 测量所获得的数据;化工生产过程中正常的浓度、温度值等等。因 此,我们可以依据服从正态分布的随机变量所具有特征,来实现对 这些测量值、或生产过程中的参数值“是否正常”的判断。这就是我 们建立监控图的基本思想。从这个意义上说,已经建立的监控图实际是一把 尺子,我们可以用它来度量每一个测量数据或生产参数是否正常。 根据正态分布理论,正常的测量值或生产过程中的参数值落入平均 值加减一倍,两倍,三倍均方差区间的理论概率值应该分别等于 68.26%,95.44%,99.73%;当我们只进行有限次测量时,获取数据 如果是正常的,超出平均值加减三倍均方差的区间可能性几乎是0。 因此,一旦检测数据超过平均值加减三倍均方差区间,我们就可以 判定,其为不正常数据,预示着生产过程出了问题,需进行调整从 而实现监控目的 实验设备:按有excel软件的电脑 实验步骤: 1.依据5.1.1所测量数据,统计平均值和标准差;

2.按平均值加减一倍,两倍,三倍标准差编制质量监控图; 3.将5.1.2监测数据标绘在所编监控图上: 4.分析6.1-6.11时间段中生产过程是否正常。 按三倍标准差理论,上午有五个数据不正常,它们分别是0.64,0.65,0.94,0.98 ,0.99

误差理论实验报告3

《误差理论与数据处理》实验报告实验名称:动态测试数据处理初步一、实验目的 动态数据是动态测试研究的重要容。通过本实验要求学生掌握有关动态数据分析。评价的基本方法,为后续课程做好准备。 二、实验原理 三、实验容和结果 1.程序及流程 1.认识确定性信号及其傅立叶频谱之间的关系 1.用matlab编程画出周期方波信号及其傅立叶频谱,并说明其 傅立叶频谱的特点。 >> fs=30; >> T=1/fs; >> t=0:T:2*pi; >> A=2;P=4; >> y=A*square(P*t); >> subplot(2,1,1),plot(t,y) >> title('方波信号') >> Fy=abs(fft(y,512)); >> f2=fs*(0:256)/512; >> subplot(2,1,2),plot(f2,Fy(1:257)) >> title('频谱图'); >> set(gcf,'unit','normalized','position',[0 0 1 1]); >> set(gca,'xtick',0:0.6:8); >> axis([0,8,0 300]);

2.用matlab边城画出矩形窗信号的宽度分别为T=1和T=5两种 情况下的时域波形图及其频谱,并分析时域与频域的变化关系。 wlp = 0.35*pi; whp = 0.65*pi; wc = [wlp/pi,whp/pi]; window1= boxcar(1); window2=boxcar(5); [h1,w]=freqz(window1,1); [h2,w]=freqz(window2,5); subplot(411); stem(window1); axis([0 60 0 1.2]); title('矩形窗函数(T=1)'); subplot(413); stem(window2); axis([0 60 0 1.2]); grid; xlabel('n'); title('矩形窗函数(T=5)'); subplot(412); plot(w/pi,20*log(abs(h1)/abs(h1(1)))); xlabel('w/pi'); ylabel('幅度(dB)'); title('矩形窗函数的频谱(T=1)'); subplot(414); plot(w/pi,20*log(abs(h2)/abs(h2(5)))); axis([0 1 -350 0]); grid; xlabel('w/pi'); ylabel('幅度(dB)'); title('矩形窗函数的频谱(T=5)'); 2.认识平稳随机过程自相关函数及其功率谱之间的关系 已知某随机过程x(t)的相关函数为:Rx(t)=e?α|τ|cosω0τ,画出下列两种情况下的自相关函数和功率谱函数。 1.取α=1,ω0=2π?10; 2.取α=5,ω0=2π?10; 程序:>> t=0:0.01:1;

安徽工业大学误差实验报告

实验一 误差的基本性质与处理 一、实验目的 了解误差的基本性质以及处理方法 二、实验原理 (1)正态分布 设被测量的真值为0L ,一系列测量值为i L ,则测量列中的随机误差i δ为 i δ=i L -0L (2-1) 式中i=1,2,…..n. 正态分布的分布密度()()2 22f δσδ -= (2-2) 正态分布的分布函数()()22 2F e d δδσδδ --∞=(2-3) 式中σ-标准差(或均方根误差); 它的数学期望为 ()0E f d δδδ+∞ -∞==? (2-4) 它的方差为 ()22f d σδδδ+∞ -∞=? (2-5) (2)算术平均值 对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。 1、算术平均值的意义 在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。 设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值121...n i n i l l l l x n n =++==∑ 算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。

i v = i l -x i l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差) 2、算术平均值的计算校核 算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。 残余误差代数和为: 11n n i i i i v l nx ===-∑∑ 当x 为未经凑整的准确数时,则有 1n i i v ==∑0 1)残余误差代数和应符合: 当1 n i i l =∑=nx ,求得的x 为非凑整的准确数时,1n i i v =∑为零; 当1 n i i l =∑>nx ,求得的x 为凑整的非准确数时,1n i i v =∑为正;其大小为求x 时的余数。 当1n i i l =∑

数据处理与误差分析报告

物理实验课的基本程序 物理实验的每一个课题的完成,一般分为预习、课堂操作和完成实验报告三个阶段。 §1 实验前的预习 为了在规定时间内,高质量地完成实验任务,学生一定要作好实验前的预习。 实验课前认真阅读教材,在弄清本次实验的原理、仪器性能及测试方法和步骤的基础上,在实验报告纸上写出实验预习报告。预习报告包括下列栏目: 实验名称 写出本次实验的名称。 实验目的 应简单明确地写明本次实验的目的要求。 实验原理 扼要地叙述实验原理,写出主要公式及符号的意义,画上主要的示意图、电路图或光路图。若讲义与实际所用不符,应以实际采用的原理图为准。 实验内容 简明扼要地写出实验内容、操作步骤。为了使测量数据清晰明了,防止遗漏,应根据实验的要求,用一张A4白纸预先设计好数据表格,便于测量时直接填入测量的原始数据。注意要正确地表示出有效数字和单位。 §2 课堂操作 进入实验室,首先要了解实验规则及注意事项,其次就是熟悉仪器和安装调整仪器(例如,千分 尺调零、天平调水平和平衡、光路调同轴等高等)。 准备就绪后开始测量。测量的原始数据(一定不要加工、修改)应忠实地、整齐地记录在预 先设计好的实验数据表格里,数据的有效位数应由仪器的精度或分度值加以确定。数据之间要留有间隙,以便补充。发现是错误的数据用铅笔划掉,不要毁掉,因为常常在核对以后发现它并没有错,不要忘记记录有关的实验环境条件(如环境温度、湿度等),仪器的精度,规格及测量量的单位。实验原始数据的优劣,决定着实验的成败,读数时务必要认真仔细。运算的错误可以修改,原始数据则不能擅自改动。全部数据必须经老师检查、签名,否则本次实验无效。两人同作一个实验时,要既分工又协作,以便共同完成实验。实验完毕后,应切断电源,整理好仪器,并将桌面收拾整洁方能离开实验室。 §3 实验报告 实验报告是实验工作的总结。要用简明的形式将实验报告完整而又准确地表达出来。实验报告 要求文字通顺,字迹端正,图表规矩,结果正确,讨论认真。应养成实验完后尽早写出实验报告的习惯,因为这样做可以收到事半功倍的效果。 完整的实验报告应包括下述几部分内容: 数据表格 在实验报告纸上设计好合理的表格,将原始数据整理后填入表格之中(有老师签 名的原始数据记录纸要附在本次报告一起交)。 数据处理 根据测量数据,可采用列表和作图法(用坐标纸),对所得的数据进行分析。按照 实验要求计算待测的量值、绝对误差及相对误差。书写在报告上的计算过程应是:公式→代入数据→结果,中间计算可以不写,绝对不能写成:公式→结果,或只写结果。而对误差的计算应是:先列出各单项误差,按如下步骤书写,公式→代入数据→用百分数书写的结果。 结果表达 按下面格式写出最后结果: )N ()(N )N (总绝对误差测量结果待测量?±=.. %100(??=N N )Er 相对误差

误差测量实验报告

误差测量与处理课程实验 报告 学生姓名:学号: 学院: 专业年级: 指导教师: 年月

实验一 误差的基本性质与处理 一、实验目的 了解误差的基本性质以及处理方法。 二、实验原理 (1)正态分布 设被测量的真值为0L ,一系列测量值为i L ,则测量列中的随机误差i δ为 i δ=i L -0L (2-1) 式中i=1,2,…..n. 正态分布的分布密度 ()() 2 2 21 f e δ σδσπ -= (2-2) 正态分布的分布函数 ()()2 2 21 F e d δ δ σδδσπ --∞ =? (2-3) 式中σ-标准差(或均方根误差); 它的数学期望为 ()0 E f d δδδ+∞ -∞ ==? (2-4) 它的方差为 ()22f d σδδδ +∞ -∞ =? (2-5) (2)算术平均值 对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。 1、算术平均值的意义 在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。

设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值 121...n i n i l l l l x n n =++= =∑ 算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。 i v = i l -x i l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差) 2、算术平均值的计算校核 算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。 残余误差代数和为: 1 1 n n i i i i v l nx ===-∑∑ 当x 为未经凑整的准确数时,则有 1 n i i v ==∑0 1)残余误差代数和应符合: 当 1n i i l =∑=nx ,求得的x 为非凑整的准确数时,1n i i v =∑为零; 当 1n i i l =∑>nx ,求得的x 为凑整的非准确数时,1n i i v =∑为正;其大小为求x 时的余数。 当 1n i i l =∑

误差分析和数据处理

误差分析和数据处理

误差和分析数据处理 1 数据的准确度和精度 在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多 少次测定,但是测定结果总不会是完全一样。这 说明在测定中有误差。为此我们必须了解误差产 生的原因及其表示方法,尽可能将误差减到最 小,以提高分析结果的准确度。 1.1 真实值、平均值与中位数 (一)真实值 真值是指某物理量客观存在的确定值。通常一个物理量的真值是不知道的,是我们努力要求 测到的。严格来讲,由于测量仪器,测定方法、 环境、人的观察力、测量的程序等,都不可能是 完善无缺的,故真值是无法测得的,是一个理想 值。科学实验中真值的定义是:设在测量中观察 的次数为无限多,则根据误差分布定律正负误差 出现的机率相等,故将各观察值相加,加以平均, 在无系统误差情况下,可能获得极近于真值的数 值。故“真值”在现实中是指观察次数无限多时, 所求得的平均值(或是写入文献手册中所谓的 “公认值”)。

(二)平均值 然而对我们工程实验而言,观察的次数都是 有限的,故用有限观察次数求出的平均值,只能 是近似真值,或称为最佳值。一般我们称这一最 佳值为平均值。常用的平均值有下列几种: (1)算术平均值 这种平均值最常用。凡测量值的分布服从正 态分布时,用最小二乘法原理可以证明:在一组 等精度的测量中,算术平均值为最佳值或最可信 赖值。 n x n x x x x n i i n ∑=++==121 式中: n x x x 21、——各次观测值;n ――观察 的次数。 (2)均方根平均值 n x n x x x x n i i n ∑=++==12 22221 均 (3)加权平均值 设对同一物理量用不同方法去测定,或对同 一物理量由不同人去测定,计算平均值时,常对 比较可靠的数值予以加重平均,称为加权平均。

《误差理论与数据处理(第6版)费业泰》课后习题答案

《误差理论与数据处理》练习题 第一章 绪论 1-7 用二等标准活塞压力计测量某压力得100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少? 【解】在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。故二等标准活塞压力计测量值的 绝对误差=测得值-实际值=100.2-100.5=-0.3( Pa )。 相对误差=0.3 100%0.3%100.5-?≈- 1-9 使用凯特摆时,g 由公式g=4π2 (h 1 +h 2 )/T 2 给定。今测出长度(h 1 +h 2 )为(1.04230 ±0.00005)m ,振动时间T 为(2.0480±0.0005)s 。试求g 及其最大相对误差。如果(h 1 +h 2 )测出为(1.04220±0.0005)m ,为了使g 的误差能小于0.001m/s 2 ,T 的测量必须精确到多少? 【解】测得(h 1 +h 2 )的平均值为1.04230(m ),T 的平均值为2.0480(s )。 由2 1224()g h h T π=+,得: 22 2 4 1.042309.81053(/)2.0480 g m s π=?= 当12()h h +有微小变化12()h h ?+、T 有T ?变化时,令12h h h =+ g 的变化量为: 22 12121223122 1212248()()()()42[()()]g g g h h T h h h h T h h T T T T h h h h T T πππ???=?++?=?+-+??+??= ?+-+ 22 23224842()g g g h T h h T h T T T T h h T T πππ???=?+?=?-????=?- g 的最大相对误差为:

物理误差分析及数据处理

第一章 实验误差评定和数据处理 (课后参考答案) 制作:李加定 校对:陈明光 3.改正下列测量结果表达式的错误: (1)12.001±0.000 625 (cm ) 改:12.0010±0.0007(cm ) (2)0.576 361±0.000 5(mm ) 改: 0.576 4±0.000 5(mm ) (3)9.75±0.062 6 (mA ) 改: 9.75±0.07 (mA ) (4)96 500±500 (g ) 改: 96.5±0.5 (kg ) (5)22±0.5(℃) 改: 22.0±0.5(℃) 4.用级别为0.5,量程为10 mA 的电流表对某电路的电流作10次等精度测量,测量数据如下表所示。试计算测量结果及标准差,并以测量结果形式表示之。 解:①计算测量列算术平均值I : ②计算测量列的标准差I σ: ③根据格拉布斯准则判断异常数据: 取显着水平a =0.01,测量次数n =10,对照表1-3-1查得临界值0(10,0.01) 2.41g =。取max x ?计算i g 值,有 由此得6I =9.40为异常数据,应剔除。 ④用余下的数据重新计算测量结果 重列数据如表1-3-3。

计算得 9 1 1 9.564 ()9i i I I mA == =∑ ,0.0344 ()I mA σ== 再经过格拉布斯准则判别,所有测量数据符合要求。 算术平均值I 的标准偏差为I σ 0.01145I σ= = = (mA ) 按均匀分布计算系统误差分量的标准差σ仪 为 0.0289σ?=仪0.5%10 (mA ) 合成标准差σ为 0.031σ (mA ) 取0.04σ= (mA),测量结果表示为 9.560.04x x σ=±=± (mA ) 5.用公式24m d h ρπ= 测量某圆柱体铝的密度,测得直径d =2.042±0.003(cm ),高h =4.126±0.004(cm ),质量m =36.488±0.006(g )。计算铝的密度ρ和测量的标准差ρσ,并以测量结果表达式表示之。 解 (1)计算铝的密度ρ: (2)计算g 标准差相对误差: 对函数两边取自然对数得

误差理论及数据处理答案

《误差理论与数据处理》 第一章 绪论 1-1.研究误差的意义是什么?简述误差理论的主要容。 答: 研究误差的意义为: (1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差; (2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据; (3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。 误差理论的主要容:误差定义、误差来源及误差分类等。 1-2.试述测量误差的定义及分类,不同种类误差的特点是什么? 答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。 系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化); 随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化; 粗大误差的特点是可取性。 1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。 答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量; 绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。+多少表明大了多少,-多少表示小了多少。 (2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定 1-5 测得某三角块的三个角度之和为180o 00’02”,试求测量的绝对误差和相对误差 解: 绝对误差等于: 相对误差等于: 1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm , 试问该被测件的真实长度为多少? 解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1μm =0.001mm , 测件的真实长度L0=L -△L =50-0.001=49.999(mm ) 1-7.用二等标准活塞压力计测量某压力得 100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少? 解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。 故二等标准活塞压力计测量值的误差=测得值-实际值, 即: 100.2-100.5=-0.3( Pa ) 21802000180''=-'''o o %000031.010*********.00648002066018021802≈=' '' '''??''=''=o

精密形位误差的测试与数据处理实验报告讲解

实验一用合像水平仪测量1500?500平板的平面度 一、实验目的 1. 了解合像水平仪的结构和工作原理。 2. 加深对平面度定义的理解。 3. 掌握用水平仪测量平板平面度方法及测量数据处理。 4.掌握平面度的判定标准及数据处理方法。 二、实验内容 用合像水平仪测量平板平面度误差。 三、实验仪器及器材 合像水平仪,标准平面平板、桥板。 四、测量原理 1. 合像水平仪的使用原理 1-底板;2-杠杆;3-支承;4-壳体;5-支承架;6-放大镜; 7-棱镜;8-水准器;9-微分筒;10-测微螺杆;11-放大镜;12-刻线尺 图1-1 合像水平仪 合像水平仪是一种精密测角仪器,用自然水平面为测量基准。合像水平仪的结构见图1-1,它的水准器8是一个密封的玻璃管,管内注入精镏乙醚,并留有一定量的空气,以形成气泡,管的内壁在长度方向具有一定的曲率半径。气泡在管中停住时,气泡的位

置必然垂直于重力方向。就是说,当水平仪倾斜时,气泡本身并不倾斜,而始终保持水平位置。利用这个原理,将水平仪放在桥板上使用,便能测出实际被测直线上相距一个桥板跨距的两点间高度差,如图1-2所示。 I-桥板;Ⅱ-水平仪;Ⅲ-实际被测直线;L-桥板跨距;0,1,2,…,n-测点序号 图1-2用水平仪测量直线度误差时的示意图 在水准器玻璃管管长的中部,从气泡的边缘开始向两端对称地按弧度值(mm/m)刻有若干条等距刻线。水平仪的分度值i用[角]秒和mm/m表示。合像水平仪的分度值为2",该角度相当于在1m长度上,对边高0.01mm的角度,这时分度值也用0.01mm/m 或0.01/1000表示。 测量时,合像水平仪水准器8中的气泡两端经棱镜7反射的两半像从放大镜6观察。当桥板两端相对于自然水平面无高度差时,水准器8处于水平位置。则气泡在水准器8的中央,位于棱镜7两边的对称位置上,因此从放大镜6看到的两半像相合(如图1—3(a)所示)。如果桥板两端相对于自然水平面有高度差,则水平仪倾斜一个角度α,因此,气泡不在水准器8的中央,从放大镜6看到的两半像是错开的(如图1—3(b)所示),产生偏移量△。 (a)相合 (b)错开 图1-3 气泡的两半像 为了确定气泡偏移量A的数值,转动测微螺杆10使水准器8倾斜一个角度α,以使气泡返回到棱镜7两边的对称位置上。从放大镜中观察到气泡的两半像恢复成图1-3(a)所示相合的两半像。偏移量A先从放大镜11由刻线尺12读数,它反映测微螺杆

误差理论与数据处理 复习题及答案

《误差理论与数据处理》 一、填空题(每空1分,共20分) 1.测量误差按性质分为_____误差、_____误差和_____误差,相应的处理手段为_____、_____和_____。 答案:系统,粗大,随机,消除或减小,剔除,统计的手段 2.随机误差的统计特性为________、________、________和________。 答案:对称性、单峰性、有界性、抵偿性 3. 用测角仪测得某矩形的四个角内角和为360°00′04″,则测量的绝对误差为________,相对误差________。 答案:04″,*10-5 4.在实际测量中通常以被测量的、、 作为约定真值。 答案:高一等级精度的标准给出值、最佳估计值、参考值 5.测量结果的重复性条件包括:、、 、、。 测量人员,测量仪器、测量方法、测量材料、测量环境 6. 一个标称值为5g的砝码,经高一等标准砝码检定,知其误差为,问该砝码的实际质量是________。 5g 7.置信度是表征测量数据或结果可信赖程度的一个参数,可用_________和_________来表示。 标准差极限误差 8.指针式仪表的准确度等级是根据_______误差划分的。 引用 9.对某电阻进行无系差等精度重复测量,所得测量列的平均值为Ω,标准偏差为Ω,测量次数15次,则平均值的标准差为_______Ω,当置信因子K=3时,测量结果的置信区间为_______________。

sqrt(15),3*sqrt(15) 10.在等精度重复测量中,测量列的最佳可信赖值是_________ 。 平均值 11.替代法的作用是_________,特点是_________。 消除恒定系统误差,不改变测量条件 12.对某电压做无系统误差等精度独立测量,测量值服从正态分布。已知被测电压的真值U 0 = V ,标准差σ(U )= ,按99%(置信因子 k = )可能性估计测量值出现的范围: ___________________________________。 V* 13.R 1 =150 , R 1 = ;R 2 =100 , R 2 = ,则两 电阻并联后总电阻的绝对误差为_________________。 36.0)100150(150 )(16.0) 100150(100)(2 2 2212 1 22 2 221221=+=+=??=+=+=??R R R R R R R R R R R=R1*R2/(R1+R2), R= 264.04.0*36.075.0*16.022 11±=+=???+???R R R R R R 14. 用两种方法测量长度为50mm 的被测件,分别测得50.005mm ;50.003mm 。则 _______________测量精度高。 第二种方法 15. 用某电压表测量电压,电压表的示值为226V ,查该表的检定证书,得知该电压表在220V 附近的误差为5V ,则被测电压的修正值为_______________ ,修正后的测量结果 _______________为。 -5V ,226+(-5V )=221V 16. 检定一只级、量程为100V 的电压表,发现在50V 处误差最大,其值为2V ,而其他刻度处的误差均小于2V ,问这只电压表是否合格_______________。 合格 17. 电工仪表的准确度等级按_____分级,计算公式为 ___ 答案:引用误差,引用误差=最大绝对误差/量程 18.二等活塞压力计测量压力值为,该测量点用高一等级的压力计测得值为 Pa ,则此二等活塞压力计在该测量点的测量误差为________。 答案:

机械加工误差分析实验报告

机械加工误差的综合分析 ------统计分析法的应用 一、实验目的 运用统计分析法研究一批零件在加工过程中尺寸的变化规律,分析加工误差的性质和产生原因,提出消除或降低加工误差的途径和方

法,通过本实验使同学能够掌握综合分析机械加工误差的基本方法。 二、实验用仪器、设备 1. M1040A型无心磨床一台; 2.分辨率为0.001mm的电感测微仪一台; 3.块规一付(尺寸大小根据试件尺寸而定); 4.千分尺一只; 5.试件一批约120件, 6.计算机和数据采集系统一套。 三、实验内容 在无心磨床上连续磨削一批试件(120件),按加工顺序在比较仪上测量尺寸,并记录之,然后画尺寸点图和X---R图。并从点图上取尺寸比较稳定(即尽量排除掉变值系统性误差的影响)的一段时间内连续加工的零件120件,由此计算出X、σ,并做出尺寸分布图,分析加工过程中产生误差的性质,工序所能达到的加工精度;工艺过程的稳定性和工艺能力;提出消除或降低加工误差的措施。

四、实验步骤 1. 按被磨削工件的基本尺寸选用块规,并用气油擦洗干净后推粘在一起; 2. 用块规调整比较仪,使比较仪的指针指示到零,调整时按大调---微调---水平调整步骤进行(注意大调和水平调整一般都予先调好),调整好后将个锁紧旋钮旋紧,将块规放入盒中。 3. 修正无心磨床的砂轮,注意应事先把金刚头退后离开砂轮。将冷却液喷向砂轮,然后在按操作规程进刀,修整好砂轮后退刀,将冷却液喷头转向工件位置。 4. 检查磨床的挡片,支片位置是否合理(如果调整不好,将会引起较大的形变误差)。对于挡片可通过在机床不运转情况下,用手将工件沿着支片紧贴挡片前后推动,同时调整前后螺钉,直至工件能顺利、光滑推过为宜。 5. 按给定尺寸(Φd-0.02)调整机床,试磨五件工件,使得平均尺寸应保证在公差带中心稍偏下为宜,然后用贯穿法连续磨削一批零件,同时用比较仪,按磨削顺序测量零件尺寸并记录之。 6. 清理机床,收拾所用量具、工具等。 7. 整理实验数据,打印做实验报告。 五、实验结果及数据处理 该实验选用M1040A型无心磨床和块规一付 (1)实验原始数据

相关主题