搜档网
当前位置:搜档网 › 超详细的磁盘阵列图文教程

超详细的磁盘阵列图文教程

超详细的磁盘阵列图文教程
超详细的磁盘阵列图文教程

磁盘阵列(Disk Array)

1.为什么需要磁盘阵列

如何增加磁盘的存取(access)速度,如何防止数据因磁盘的故障而失落及如何有效的利用磁盘空间,一直是电脑专业人员和用户的困扰;而大容量磁盘的价格非常昂贵,对用户形成很大的负担。磁盘阵列技术的产生一举解决了这些问题。

过去十年来,CPU的处理速度增加了五十倍有多,内存(memory)的存取速度亦大

幅增加,而数据储存装置--主要是磁盘(hard disk)--的存取速度只增加了三、四倍,形成电脑系统的瓶颈,拉低了电脑系统的整体性能(throughput),若不能有效的提升磁盘的存取速度,CPU、内存及磁盘间的不平衡将使CPU及内存的改进形成浪费。

目前改进磁盘存取速度的的方式主要有两种。一是磁盘快取控制(disk cache controller),它将从磁盘读取的数据存在快取内存(cache memory)中以减少磁盘存取的次数,数据的读写都在快取内存中进行,大幅增加存取的速度,如要读取的数据不在快取内存中,或要写数据到磁盘时,才做磁盘的存取动作。这种方式在单工环境(single-tasking environment)如DOS之下,对大量数据的存取有很好的性能(量小且频繁的存取则不然),但在多工(multi-tasking)环境之下(因为要不停的作数据交换(swapping)的动作)或数据库(database)的存取(因为每一记录都很小)就不能显示其性能。这种方式没有任何安全保障。其二是使用磁盘阵列的技术。磁盘阵列是把多个磁盘组成一个阵列,当作单一磁盘使用,它将数据以分段(striping)的方式储存在不同的磁盘中,存取数据时,阵列中的相关磁盘一起动作,大幅减低数据的存取时间,同时有更佳的空间利用率。磁盘阵列所利用的不同的技术,称为RAID level,不同的level针对不同的系统及应用,以解决数据安全的问题。

一般高性能的磁盘阵列都是以硬件的形式来达成,进一步的把磁盘快取控制及磁盘阵列结合在一个控制器(RAID controller)?或控制卡上,针对不同的用户解决人们对磁盘输出入系统的四大要求:

(1)增加存取速度,

(2)容错(fault tolerance),即安全性

(3)有效的利用磁盘空间;

(4)尽量的平衡CPU,内存及磁盘的性能差异,提高电脑的整体工作性能。

2.磁盘阵列原理

磁盘阵列中针对不同的应用使用的不同技术,称为RAID level, RAID是Redundant Array of Inexpensive Disks的缩写,而每一level代表一种技术,目前业界公认的标准是RAID 0~RAID 5。这个level并不代表技术的高低,level 5并不高于level 3,level 1也不低过level 4,至于要选择那一种RAID level 的产品,纯视用户的操作环境(operating environment)及应用(application)而定,与level的高低没有必然的关系。RAID 0及RAID 1适用于PC及PC相关的系统如小型的网络服务器(network server)及需要高磁盘容量与快速磁盘存取

的工作站等,因为比较便宜,但因一般人对磁盘阵列不了解,没有看到磁盘阵列对他们价值,市场尚未打开;RAID 2及RAID 3适用于大型电脑及影像、CAD/CAM等处理;RAID 5多用于OLTP,因有金融机构及大型数据处理中心的迫切需要,故使用较多而较有名气,但也因此形成很多人对磁盘阵列的误解,以为磁盘阵列非要RAID 5不可;RAID 4较少使用,因为两者有其共同之处,而RAID 4有其先天的限制。其他如RAID 6,RAID 7,乃至RAID 10等,都是厂商各做各的,并无一致的标准,在此不作说明。介绍各个RAID level之前,先看看形成磁盘阵列的两个基本技术:

译为磁盘延伸,能确切的表示disk spanning这种技术的含义。如下图所

示,DFTraid 磁盘阵列控制器,联接了四个磁盘:

这四个磁盘形成一个阵列(array),而磁盘阵列的控制器(RAID controller)是将此四个磁盘视为单一的磁盘,如DOS环境下的C:盘。这是disk spanning的意义,因为把小容量的磁盘延伸为大容量的单一磁盘,用户不必规划数据在各磁盘的分布,而且提高了磁盘空间的使用率。DFTraid的SCSI磁盘阵列更可连接几十个磁盘,形成数十GB到数百GB的阵列,使磁盘容量几乎可作无限的延伸;而各个磁盘一起作取存的动作,比单一磁盘更为快捷。很明显的,有此阵列的形成而产生RAID的各种技术。我们也可从上图看出inexpensive(便宜)的意义,因为四个250MBbytes的磁盘比一个1GBytes的磁盘要便宜,尤其以前大磁盘的价格非常昴贵,但在磁盘越来越便宜的今天,inexpensive已非磁盘阵列的重点,虽然对于需要大磁盘容量的系统,仍是考虑的要点。

因为磁盘阵列是将同一阵列的多个磁盘视为单一的虚拟磁盘(virtual disk),所以其数据是以分段(block or segment)的方式顺序存放在磁盘阵列中,如下图:

数据按需要分段,从第一个磁盘开始放,放到最後一个磁盘再回到第一个磁盘放起,直到数据分布完毕。至于分段的大小视系统而定,有的系统或以1KB最有效率,或以4KB,或以6KB,甚至是4MB或8MB的,但除非数据小于一个扇区(sector,即521bytes),否则其分段应是512byte的倍数。因为磁盘的读写是以一个扇区为单位,若数据小于512bytes,系统读取该扇区后,还要做组合或分组(视读或写而定)的动作,浪费时间。从上图我们可以看出,数据以分段于在不同的磁盘,整个阵列的各个磁盘可同时作读写,故数据分段使数据的存取有最好的效率,理论上本来读一个包含四个分段的数据所需要的时间约=(磁盘的access time +数据的transfer time)X4次,现在只要一次就可以完成。

若以N表示磁盘的数目,R表示读取,W表示写入,S表示可使用空间,则数据分段的性能为:

R:N(可同时读取所有磁盘)

W:N(可同时写入所有磁盘)

S:N(可利用所有的磁盘,并有最佳的使用率)

Disk striping也称为RAID 0,很多人以为RAID 0没有甚么,其实这是非常错误的观念,因为RAID 0使磁盘的输出入有最高的效率。而磁盘阵列有更好效率的原因除数据分段外,它可以同时执行多个输出入的要求,因为阵列中的每一个磁盘都能独立动作,分段放在不同的磁盘,不同的磁盘可同时作读写,而且能在快取内存及磁盘作并行存取(parallel access)的动作,但只有硬件的磁盘阵列才有此性能表现。

从上面两点我们可以看出,disk spanning定义了RAID的基本形式,提供了一个便宜、灵活、高性能的系统结构,而disk striping解决了数据的存取效率和磁盘的利用率问题,RAID 1至RAID 5是在此基础上提供磁盘安全的方案。

RAID 1

RAID 1是使用磁盘镜像(disk mirroring)的技术。磁盘镜像应用在RAID 1之前就在很多系统中使用,它的方式是在工作磁盘(working disk)之外再加一额外的备份磁盘(backup disk),两个磁盘所储存的数据完全一样,数据写入工作磁盘的同时亦写入备份磁盘。磁盘镜像不见得就是RAID 1,如Novell NetWare亦有提供磁盘镜像的功能,但并不表示NetWare有了RAID 1的功能。一般磁盘镜像和RAID 1有二点最大的不同:

RAID 1无工作磁盘和备份磁盘之分,多个磁盘可同时动作而有重叠(overlapping)读取的功能,甚至不同的镜像磁盘可同时作写入的动作,这是一种最佳化的方式,称为负载平衡(load-balance)。例如有多个用户在同一时间要读取数据,系统能同时驱动互相镜像的磁盘,同时读取数据,以减轻系统的负载,增加I/O的性能。

RAID 1的磁盘是以磁盘延伸的方式形成阵列,而数据是以数据分段的方式作储存,因而在读取时,它几乎和RAID 0有同样的性能。从RAID的结构就可以很清楚的看出RAID 1和一般磁盘镜像的不同。

下图为RAID 1,每一笔数据都储存两份

从上图可以看出:

R:N(可同时读取所有磁盘)

W:N/2(同时写入磁盘数)

S:N/2(利用率)

读取数据时可用到所有的磁盘,充分发挥数据分段的优点;写入数据时,因为有备份,所以要写入两个磁盘,其效率是N/2,磁盘空间的使用率也只有全部磁盘的一半。

很多人以为RAID 1要加一个额外的磁盘,形成浪费而不看好RAID 1,事实上磁盘越来越便宜,并不见得造成负担,况且RAID 1有最好的容错(fault tolerance)能力,其效率也是除RAID 0之外最好的。我们可视应用的不同,在同一磁盘阵列中使用不同的RAID level,如华艺科技公司的DFTraid系列都可同一磁盘阵列中定义八个逻辑磁盘(logic disk),分别使用不同的RAID level,分为C:,D:及E:三个逻辑磁盘(或LUN0,LUN1,LUN2).

RAID 1完全做到了容错包括不停机(non-stop),当某一磁盘发生故障,可将此磁盘拆下来而不影向其他磁盘的操作;待新的磁盘换上去之后,系统即时做镜像,将数据重新复上去,RAID 1在容错及存取的性能上是所有RAID level之冠。

在磁盘阵列的技术上,从RAID 1到RAID 5,不停机的意思表示在工作时如发生磁盘故障,系统能持续工作而不停顿,仍然可作磁盘的存取,正常的读写数据;而容错则表示即使磁盘故障,数据仍能保持完整,可让系统存取到正确的数据,而SCSI的磁盘阵列更可在工作中抽换磁盘,并可自动重建故障磁盘的数据。磁盘阵列之所以能做到容错及不停机,是因为它有冗余的磁盘空间可资利用,这也就是Redundant的意义。

RAID 2

RAID 2是把数据分散为位元(bit)或块(block),加入海明码Hamming Code,在磁盘阵列中作间隔写入(interleaving)到每个磁盘中,而且地址(address)都一样,也就是在各个磁盘中,其数据都在相同的磁道(cylinder or track)及扇区中。RAID 2的设计是使用共轴同步(spindle synchronize)的技术,存取数据时,整个磁盘阵列一起动作,在各作磁盘的相同位置作平行存取,所以有最好的存取时间(access time),其总线(bus)是特别的设计,以大带宽(band wide)并行传输所存取的数据,所以有最好的传输时间(transfer time)。在大型档案的存取应

用,RAID 2有最好的性能,但如果档案太小,会将其性能拉下来,因为磁盘的存取是以扇区为单位,而RAID 2的存取是所有磁盘平行动作,而且是作单位元的存取,故小于一个扇区的数据量会使其性能大打折扣。RAID 2是设计给需要连续且大量数据的电脑使用的,如大型电脑(mainframe to supercomputer)、作影像处理或CAD/CAM的工作站(workstation)等,并不适用于一般的多用户环境、网络服务器(network server),小型机或PC。

RAID 2的安全采用内存阵列(memory array)的技术,使用多个额外的磁盘作单位错误校正(single-bit correction)及双位错误检测(double-bit detection);至于需要多少个额外的磁盘,则视其所采用的方法及结构而定,例如八个数据磁

盘的阵列可能需要三个额外的磁盘,有三十二个数据磁盘的高档阵列可能需要七个额外的磁盘。

RAID 3

RAID 3的数据储存及存取方式都和RAID 2一样,但在安全方面以奇偶校验

(parity check)取代海明码做错误校正及检测,所以只需要一个额外的校检磁盘(parity disk)。奇偶校验值的计算是以各个磁盘的相对应位作XOR 的逻辑运算,然后将结果写入奇偶校验磁盘,任何数据的修改都要做奇偶校验计算,如下图:

如某一磁盘故障,换上新的磁盘后,整个磁盘阵列(包括奇偶校验磁盘)需重新计算一次,将故障磁盘的数据恢复并写入新磁盘中;如奇偶校验磁盘故障,则重新计算奇偶校验值,以达容错的要求.

较之RAID 1及RAID 2,RAID 3有85%的磁盘空间利用率,其性能比RAID 2稍差,因为要做奇偶校验计算;共轴同步的平行存取在读档案时有很好的性能,但在写入时较慢,需要重新计算及修改奇偶校验磁盘的内容。RAID 3和RAID 2有同样的应用方式,适用大档案及大量数据输出入的应用,并不适用于PC 及网络服务器。

RAID 4

RAID 4也使用一个校验磁盘,但和RAID 3不一样,如下图:

RAID 4是以扇区作数据分段,各磁盘相同位置的分段形成一个校验磁盘分段(parity block),放在校验磁盘。这种方式可在不同的磁盘平行执行不同的读取命今,大幅提高磁盘阵列的读取性能;但写入数据时,因受限于校验磁盘,同一时间只能作一次,启动所有磁盘读取数据形成同一校验分段的所有数据分段,与要写入的数据做好校验计算再写入。即使如此,小型档案的写入仍然比RAID 3要快,因其校验计算较简单而非作位(bit level)的计算;但校验磁盘形成RAID 4的瓶颈,降低了性能,因有RAID 5而使得RAID 4较少使用。

RAID 5

RAID5避免了RAID 4的瓶颈,方法是不用校验磁盘而将校验数据以循环的方式放在每一个磁盘中,如下图:

磁盘阵列的第一个磁盘分段是校验值,第二个磁盘至后一个磁盘再折回第一个磁盘的分段是数据,然后第二个磁盘的分段是校验值,从第三个磁盘再折回第二个磁盘的分段是数据,以此类推,直到放完为止。图中的第一个parity block 是由A0,A1...,B1,B2计算出来,第二个parity block 是由B3,B4,...,C4,D0计算出来,也就是校验值是由各磁盘同一位置的分段的数据所计算出来。这种方式能大幅增加小档案的存取性能,不但可同时读取,甚至有可能同时执行多个写入的动作,如可写入数据到磁盘1而其parity block 在磁盘2,同时写入数据到磁盘4而其parity block 在磁盘1,这对联机交易处理(OLTP, on-line Transaction Processing)如银行系统、金融、股市等或大型数据库的处理提供了最佳的解决

方案(solution),因为这些应用的每一笔数据量小,磁盘输出入频繁而且必须容错。

事实上RAID 5的性能并无如此理想,因为任何数据的修改,都要把同一parity block 的所有数据读出来修改后,做完校验计算再写回去,也就是RMW

cycle(Read-Modify-Write cycle,这个cycle 没有包括校验计算);正因为牵一而动全身,所以:

R:N(可同时读取所有磁盘)

W:1(可同时写入磁盘数)

S:N-1(利用率)

RAID 5的控制比较复杂,尤其是利用硬件对磁盘阵列的控制,因为这种方式的应用比其他的RAID level 要掌握更多的事情,有更多的输出入需求,既要速度快,又要处理数据,计算校验值,做错误校正等,所以价格较高;其应用最好是OLTP,至于用于PC 等,不见得有最佳的性能。

3.RAID 的对比:

下面几个表列是RAID 的一些性质:

RAID的性能与可用性:

以上数据基于4个磁盘,传输块大小1K,75%的读概率,数据可用性的计算基于同样的损坏概率

4.RAID的概述:

RAID 0

没有任何额外的磁盘或空间作安全准备,所以一般人不重视它,这是误解,其实它有最好的效率及空间利用率,对于追求效率的应用,非常理想,可同时用其他的RAID level或其他的备份方式以补其不足,保护重要的数据。

RAID 1

有最佳的安全性,100%不停机,即使有一个磁盘损坏也能照常作业而不影向其效能(对能并行存取的系统稍有影响),因为数据是作重复储存。RAID1的并行读取几乎有RAID 0的性能,因为可同时读取相互镜像的磁盘;写入也只比RAID 0略逊,因为同时写入两个磁盘并没有增加多少工作。虽然RAID 1要增加一倍的磁盘做镜像,但作为采用磁盘阵列的进入点,它是最便宜的一个方案,是新设磁盘阵列的用户之最佳选择。

RAID 5

在不停机及容错的表现都很好,但如有磁盘故障,对性能的影响较大,大容量的快取内存有助于维持性能,但在OLTP的应用上,因为每一笔数据或记录(record)都很小,对磁盘的存取频繁,故有一定程度的影响。某一磁盘故障时,读取该磁盘的数据需把共用同一parity block的所有数据及校验值读出来,再把故障磁盘的数据计算出来;写入时,除了要重覆读取的程序外,还要再做校验值的计算,然后再写入更新的数据及校验值;等换上新的磁盘,系统要计算整个磁盘阵列的数据以回复故障磁盘的数据,时间要很长,如系统的工作负载很重的话,有很多输出入的需求在排队等候时,会把系统的性能拉下来。但如使用硬件磁盘阵列的话,其性能

就可以得到大幅度的改进,因为硬件磁盘阵列如DFTraid系列本身有内置的CPU 与主机系统并行运作,所有存取磁盘的输出入工作都在磁盘阵列本身完成,不花费主机的时间,配合磁盘阵列的快取内存的使用,可以提高系统的整体性能,而优越的总线控制更能增加数据的传输速率,即使在磁盘故障的情况下,主机系统的性能也不会有明显的降低。RAID 5要做的事情太多,所以价格较贵,不适于小系统,但如果是大系统使用大的磁盘阵列的话,RAID 5却是最便宜的方案。

总而言之,RAID 0及RAID 1最适合PC及图形工作站的用户,提供最佳的性能及最便宜的价格,所以RAID 0及RAID 1多是使用IDE界面,以低成本符合PC市埸的需求。RAID 2及RAID 3适用于大档案且输入输出需求不频繁的应用如影像处理及CAD/CAM等;而RAID 5则适用于银行、金融、股市、数据库等大型数据处理中心的OLTP应用;RAID 4与RAID 5有相同的特性及应用方式,但有其先天的限制,所以并不受推荐。

5.磁盘阵列的额外容错功能:Spare or Standby driver

事实上容错功能已成为磁盘阵列最受青睐的特性,为了加强容错的功能以及使系统在磁盘故障的情况下能迅速的重建数据,以维持系统的性能,一般的磁盘阵列系统都可使用热备份(hot spare or hot standby driver)的功能,所谓热备份是在建立(configure)磁盘阵列系统的时候,将其中一磁盘指定为后备磁盘,此一磁盘在平常并不操作,但若阵列中某一磁盘发生故障时,磁盘阵列即以后备磁盘取代故障磁盘,并自动将故障磁盘的数据重建(rebuild)在后备磁盘之上,因为反应快速,加上快取内存减少了磁盘的存取,所以数据重建很快即可完成,对系统的性能影响不大。对于要求不停机的大型数据处理中心或控制中心而言,热备份更是一项重要的功能,因为可避免晚间或无人持守时发生磁盘故障所引起的种种不便。

另一个额外的容错功能是坏扇区转移(bad sector reassignment)。坏扇区是磁盘故障的主要原因,通常磁盘在读写时发生坏扇区的情况即表示此磁盘故障,不能再作读写,甚至有很多系统会因为不能完成读写的动作而死机,但若因为某一扇区的损坏而使工作不能完成或要更换磁盘,则使得系统性能大打折扣,而系统的维护成本也未免太高了。坏扇区转移是当磁盘阵列系统发现磁盘有坏扇区时,以另一空白且无故障的扇区取代该扇区,以延长磁盘的使用寿命,减少坏磁盘的发生率以及系统的维护成本。所以坏扇区转移功能使磁盘阵列具有更好的容错性,同时使整个系统有最好的成本效益比。其他如可外接电池备援磁盘阵列的快取内存,以避免突然断电时数据尚未写回磁盘而损失;或在RAID 1时作写入一致性的检查等,虽是小技术,但亦不可忽视。

6.硬件磁盘阵列还是软件磁盘阵列

市面上有所谓硬件磁盘阵列与软件磁盘阵列之分,因为软件磁盘阵列是使用一块SCSI卡与磁盘连接,一般用户误以为是硬件磁盘阵列。以上所述主要是针对硬件磁盘阵列,其与软件磁盘阵列有几个最大的区别:

l 一个完整的磁盘阵列硬件与系统相接。

l 内置CPU,与主机并行运作,所有的I/O都在磁盘阵列中完成,减轻主机的工作负载,增加系统整体性能。

l 有卓越的总线主控(bus mastering)及DMA(Direct Memory Access)能力,加速数据的存取及传输性能。

l 与快取内存结合在一起,不但增加数据的存取及传输性能,更因减少对磁盘的存取而增加磁盘的寿命。

l 能充份利用硬件的特性,反应快速。

软件磁盘阵列是一个程序,在主机执行,透过一块SCSI卡与磁盘相接形成阵列,它最大的优点是便宜,因为没有硬件成本(包括研发、生产、维护等),而SCSI卡很便宜(亦有的软件磁盘阵列使用指定的很贵的SCSI卡);它最大的缺点是使主机多了很多进程(process),增加了主机的负担,尤其是输出入需求量大的系统。目前市面上的磁盘阵列系统大部份是硬件磁盘阵列,软件磁盘阵列较少。

7.IDE磁盘阵列还是SCSI磁盘阵列

目前使用在磁盘输出入的界面主要有两种:

1. IDE (Integrated Drive Electronics)

是广泛使用在PC上的磁盘驱动器界面,一般而言,其传输速度从磁盘到磁盘缓冲器(medium to drive buffer)是1.5-2.5MB/Sec,从缓冲器到界面(drive buffer to drive interface)约4.0-6.0MB/Sec,而且新的设计其速率有大幅的改进,如增强型IDE界面(mode 4)在PCI(Peripheral Component Interconnect)总线上的传输速率可达33MB/Sec。

2. SCSI (Small Computer Standard Interface)

SCSI是较高级(high level)的界面,可用于主机,磁盘,磁带,打印机等,因为是高阶的界面,规格较为复杂,一般自带控制器,也较为复杂,这就是SCSI磁盘为什么比IDE磁盘费的原因。但SCSI界面能较有效的利用硬件特性而提高其速度。其控制器还能对主机发给SCSI磁盘的命令进行缓冲、排队,并进行优化处理(命令队列)。现在较流行的是标准SCSI-2和SCSI-3。有两种规格,FAST SCSI(SCSI-2)的同步传输速率为10MB/Sec,数据传输宽度为8 bit, WIDE SCSI的数据传输宽度可达16-bit。Ultra SCSI(SCSI-3)的同步传输速率为20MB/Sec,Ultra Wide SCSI的同步传输速率为40MB/Sec,数据传输宽度可达32-bit。SCSI磁盘有虽有较高的传输速度,但受限于磁盘的存取速度及磁盘至SCSI界面的传输速度而不能充分发挥其性能(因为磁盘的机械动作难于有大幅度的改进);其命令分析程序(command phase)也较复杂。对单机来言,磁盘数量越多,主机找到特定的数据的时间越长,但对磁盘阵列来言,由于是多个磁盘一起并行处理,则表现为磁盘数量越多,速度越快。

以上界面的直接反应是单任务时IDE比SCSI快,多任务时SCSI较快,这可从用IDE盘和SCSI盘做多用户、多任务的操作系统(如UNIX、Windows/NT等)的系统盘时的启动时间的差别中明显看出。在单机时则不一定。我们看一个界面是否较

快,不应只看其传崐输速度的高低而应就整个输入/输出的流程看,因为磁盘存取的机械动作比不上电脑的传输速率。IDE界面简单,反应快速,用于PC单机的小型的磁盘阵列其效果可能比SCSI为佳;但较大型的磁盘阵列就非SCSI界面莫属,因为阵列中的各个磁盘一起作存取的动作,能充分发挥SCSI的传输速率快及多工的特点。

此外IDE因为其配线规格的关系,不能作热插拔(hot swap),也就是不能在工作中带电插拔磁盘,而其线缆即使是增强型IDE也只有18寸,不能接在机箱之外,难于形成大的阵列,也就是只适用于PC低层次的用户。SCSI缆线在差分传输模式(differential transmission mode)下最大长度为25米,单端传输模式?(single-ended transmission mode)时最大长度为6米,而一条SCSI总线可连接8台系统或各种不同的装置,扩充性很强,可形成很大的磁盘阵列空间;SCSI规格完备,容错能力很好,可带电插拔磁盘,是外接式装置无可取代的界面。

8. 磁盘阵列卡还是磁盘阵列控制器

磁盘阵列控制卡一般用于小系统,供单机使用。与主机共用电源,在关闭主机电源时存在丢失Cache中的数据的的危险。磁盘阵列控制卡只有常用总线方式的接口,其驱动程序与主机、主机所用的操作系统都有关系,有软、硬件兼容性问题并潜在地增加了系统的不安定因素。在更换磁盘阵列卡时要冒磁盘损坏,资料失落,随时停机的风险。

独立式磁盘阵列控制一般用于较大型系统,可分为两种:

单通道磁盘阵列和多通道式磁盘阵列,单通道磁盘阵列只能接一台主机,有很大的扩充限制。多通道磁盘阵列可接多个系统同时使用,以群集(cluster)的方式共用磁盘阵列,这使内接式阵列控制及单接式磁盘阵列无用武之地。DFT数据容错公司的DFTraid Rack Mount和DFTraid Tower等系统,都是独立形式的磁盘阵列子系统,其本身与主机系统的硬件及操作环境无关,只通过SCSI线缆与主机相接,主机把它当作一般的磁盘,所有的输出入动作都在磁盘阵列上完成,与主机的操作无关,所以可接任何可使用SCSI界面的主机。DFTraid Rack Mount和DFTraid Tower两系统最多可有六个SCSI通道,可同时连接5台主机;而DFTraid 5000系列则有9个通道,可同时连接多达8台主机,使之一起共用磁盘阵列子系统。这种方式的磁盘阵列既可给单机使用,又可给群集多机使用,对用户对增加阵列中的磁盘数量限制较小,并可用于备援及并行的容错电脑系统,特别适合较大的系统用户,使这些用户可从封闭的环境中解放出来。

9. RAID5建立过程

第一步:

第二步:

第三步:

第四步:

第五步:

第六步:

第七步:

Raid教程:全程图解手把手教你做RAID磁盘阵列

Raid教程:全程图解手把手教你做RAID磁盘阵列 一、磁盘阵列实现方式 磁盘阵列有两种方式可以实现,那就是“软件阵列”与“硬件阵列”。 软件阵列是指通过网络操作系统自身提供的磁盘管理功能将连接的普通SCSI卡上的多块硬盘配置成逻辑盘,组成阵列。如微软的Windows NT/2000 Server/Server 2003和NetVoll的NetWare两种操作系统都可以提供软件阵列功能,其中Windows NT/2000 Server/Server 2003可以提供RAID 0、RAID 1、RAID 5;NetWare操作系统可以实现RAID 1功能。软件阵列可以提供数据冗余功能,但是磁盘子系统的性能会有所降低,有的降代还比较大,达30%左右。 硬件阵列是使用专门的磁盘阵列卡来实现的,这就是本文要介绍的对象。现在的非入门级服务器几乎都提供磁盘阵列卡,不管是集成在主板上或非集成的都能轻松实现阵列功能。硬件阵列能够提供在线扩容、动态修改阵列级别、自动数据恢复、驱动器漫游、超高速缓冲等功能。它能提供性能、数据保护、可靠性、可用性和可管理性的解决方案。磁盘阵列卡拥有一个专门的处理器,如Intel的I960芯片,HPT370A/372 、Silicon Image SIL3112A等,还拥有专门的存贮器,用于高速缓冲数据。这样一来,服务器对磁盘的操作就直接通过磁盘阵列卡来进行处理,因此不需要大量的CPU及系统内存资源,不会降低磁盘子系统的性能。阵列卡专用的处理单元来进行操作,它的性能要远远高于常规非阵列硬盘,并且更安全更稳定。 二、几种磁盘阵列技术 RAID技术是一种工业标准,各厂商对RAID级别的定义也不尽相同。目前对RAID 级别的定义可以获得业界广泛认同的有4种,RAID 0、RAID 1、RAID 0+1和RAID 5。 RAID 0是无数据冗余的存储空间条带化,具有成本低、读写性能极高、存储空间利用率高等特点,适用于音、视频信号存储、临时文件的转储等对速度要求极其严格的特殊应用。但由于没有数据冗余,其安全性大大降低,构成阵列的任何一块硬盘的损坏都将带来灾难性的数据损失。这种方式其实没有冗余功能,没有安全保护,只是提高了磁盘读写性能和整个服务器的磁盘容量。一般只适用磁盘数较少、磁盘容易比较紧缺的应用环境中,如果在RAID 0中配置4块以上的硬盘,对于一般应用来说是不明智的。 RAID 1是两块硬盘数据完全镜像,安全性好,技术简单,管理方便,读写性能均好。因为它是一一对应的,所以它无法单块硬盘扩展,要扩展,必须同时对镜像的双方进行同容量的扩展。因为这种冗余方式为了安全起见,实际上只利用了一半的磁盘容量,数据空间浪费大。 RAID 0+1综合了RAID 0和RAID 1的特点,独立磁盘配置成RAID 0,两套完整

磁盘阵列卡详细步骤

一、为什么要创建逻辑磁盘? 当硬盘连接到磁盘阵列卡上时,操作系统将不能直接看到物理的硬盘,因此需要创建成一个一个的被设置为RAID0,1和5等的逻辑磁盘(也叫容器),这样系统才能够正确识别它。 逻辑磁盘(Logic Drive)、容器(Container)或虚拟磁盘(Virtual Drive)均表示一个意思,他们只是不同阵列卡产商的不同叫法。 二、创建逻辑磁盘的方式 使用磁盘阵列卡本身的配置工具,即磁盘阵列卡的BIOS。(一般用于重装系统或没有安装操作系统的情况下去创建容器(Adaptec阵列卡)/逻辑驱动器(AMI/LSI阵列卡)。 使用第三方提供的配置工具软件去实现对阵列卡的管理。如Dell Array Manager。(这些软件用于服务器上已经安装有操作系统) 三、正确识别您的阵列卡的型号 识别您的磁盘阵列控制器(磁盘阵列控制器为可选项, 如果没有购买磁盘阵列控制器的话以该步骤可以省去) 如果您有一块AMI/LSI磁盘阵列控制器(PERC2/SC,PERC2/DC,PERC3/SC,PERC3/DC, PERC4/DI, PERC4/DC), 在系统开机自检的时候您将看到以下信息: Dell PowerEdge Expandable RAID Controller BIOS X.XX Jun 26.2001 Copyright (C) AMERICAN MEGATRENDS INC. Press CTRL+M to Run Configuration Utility or Press CTRL+H for WebBios 或者 PowerEdge Expandable RAID Controller BIOS X.XX Feb 03,2003 Copyright (C) LSI Logic Corp. Press CTRL+M to Run Configuration Utility or Press CTRL+H for WebBios 此款磁盘阵列卡的配置方法请参考如下: 在AIM/LSI磁盘阵列控制器上创建Logical Drive (逻辑磁盘) --- PERC2/SC,PERC2/DC,PERC3/SC,PERC3/DC,PERC3/DCL --- PERC4 DI/DC (略有不同,请仔细阅读下列文档) *注意:请预先备份您服务器上的数据,配置磁盘阵列的过程将会删除您的硬盘上的所有数据! 1) 在自检过程中,当提示按Ctrl+M键,按下并进入RAID的配置界面。 2) 如果服务器在Cluster 模式下,下列信息将会显示\"按任意键继续\"。

Raid教程:全程图解手把手教你做RAID

Raid教程:全程图解手把手教你做RAID 说到磁盘阵列(RAID,Redundant Array of Independent Disks),现在几乎成了网管员所必须掌握的一门技术之一,特别是中小型企业,因为磁盘阵列应用非常广泛,它是当前数据备份的主要方案之一。然而,许多网管员只是在各种媒体上看到相关的理论知识介绍,却并没有看到一些实际的磁盘阵列配置方法,所以仍只是一知半解,到自己真正配置时,却无从下手。本文要以一个具体的磁盘阵列配置方法为例向大家介绍磁盘阵列的一些基本配置方法,给出一些关键界面,使各位对磁盘阵列的配置有一个理性认识。当然为了使各位对磁盘阵列有一个较全面的介绍,还是先来简要回顾一下有关磁盘阵列的理论知识,这样可以为实际的配置找到理论依据。 一、磁盘阵列实现方式 磁盘阵列有两种方式可以实现,那就是“软件阵列”与“硬件阵列”。 软件阵列是指通过网络操作系统自身提供的磁盘管理功能将连接的普通SCSI卡上的多块硬盘配置成逻辑盘,组成阵列。如微软的Windows NT/2000 Server/Server 2003和NetVoll的NetWare两种操作系统都可以提供软件阵列功能,其中Windows NT/2000 Server/Server 2003可以提供RAID 0、RAID 1、RAID 5;NetWare操作系统可以实现RAID 1功能。软件阵列可以提供数据冗余功能,但是磁盘子系统的性能会有所降低,有的降代还比较大,达30%左右。 硬件阵列是使用专门的磁盘阵列卡来实现的,这就是本文要介绍的对象。现在的非入门级服务器几乎都提供磁盘阵列卡,不管是集成在主板上或非集成的都能轻松实现阵列功能。硬件阵列能够提供在线扩容、动态修改阵列级别、自动数据恢复、驱动器漫游、超高速缓冲等功能。它能提供性能、数据保护、可靠性、可用性和可管理性的解决方案。磁盘阵列卡拥有一个专门的处理器,如Intel 的I960芯片,HPT370A/372 、Silicon Image SIL3112A等,还拥有专门的存贮器,用于高速缓冲数据。这样一来,服务器对磁盘的操作就直接通过磁盘阵列卡来进行处理,因此不需要大量的CPU及系统内存资源,不会降低磁盘子系统的性能。阵列卡专用的处理单元来进行操作,它的性能要远远高于常规非阵列硬盘,并且更安全更稳定。 二、几种磁盘阵列技术 RAID技术是一种工业标准,各厂商对RAID级别的定义也不尽相同。目前对RAID级别的定义可以获得业界广泛认同的有4种,RAID 0、RAID 1、RAID 0+1和RAID 5。 RAID 0是无数据冗余的存储空间条带化,具有成本低、读写性能极高、存储空间利用率高等特点,适用于音、视频信号存储、临时文件的转储等对速度要求极其严格的特殊应用。但由于没有数据冗余,其安全性大大降低,构成阵列的任何一块硬盘的损坏都将带来灾难性的数据损失。这种方式其实没有冗余功能,

DELL服务器做RAID磁盘阵列图文教程

磁盘阵列可以在安装系统之前或之后产生,系统会视之为一个(大型)硬盘,而它具有容错及冗余的功能。磁盘阵列不单只可以加入一个现成的系统,它更可以支持容量扩展,方法也很简单,只需要加入一个新的硬盘并执行一些简单的指令,系统便可以实时利用这新加的容量。 ·RAID 的种类及应用 IDE和SCSI是计算机的两种不同的接口,前者普遍用于PC机,后者一般用于服务器。基于这两种接口,RAID分为两种类型:基于IDE接口的RAID应用,称为IDE RAID;而基于SCSI接口的RAID应用则相应称为SCSI RAID。 基于不同的架构,RAID 又可以分为: ● 软件RAID (软件RAID) ● 硬件RAID (硬件RAID) ● 外置RAID (External RAID) ·软件RAID很多情况下已经包含在系统之中,并成为其中一个功能,如Windows、Net ware及Linux。软件RAID中的所有操作皆由中央处理器负责,所以系统资源的利用率会很高,从而使系统性能降低。软件RAID是不需要另外添加任何硬件设备,因为它是靠你的系统——主要是中央处理器的功能——提供所有现成的资源。 ·硬件RAID通常是一张PCI卡,你会看到在这卡上会有处理器及内存。因为这卡上的处理器已经可以提供一切RAID所需要的资源,所以不会占用系统资源,从而令系统的表现可以大大提升。硬件RAID可以连接内置硬盘、热插拔背板或外置存储设备。无论连接何种硬盘,控制权都是在RAID卡上,亦即是由系统所操控。在系统里,硬件RAID P CI卡通常都需要安驱动程序,否则系统会拒绝支持。 ·外置式RAID也是属于硬件RAID的一种,区别在于RAID卡不会安装在系统里,而是安装在外置的存储设备内。而这个外置的储存设备则会连接到系统的SCSI卡上。系统没有任何的RAID功能,因为它只有一张SCSI卡;所有的RAID功能将会移到这个外置存储里。好处是外置的存储往往可以连接更多的硬盘,不会受系统机箱的大小所影响。而一

磁盘阵列初步图文教程

磁盘阵列初步图文教程 闲来无事,组了个raid 0,感觉还不错,速度有明显提高,加载游戏和启动程序速度有所改善先上对比图吧。 单碟速度下图: raid0 速度下图: 用的硬盘呢是这个,俩希捷500g单碟

步骤/方法 1. 1 下面说说步骤吧,因为板子不一样,进入和设置的方法有所区别,下面以我的P55A-UD3R为例,intel板子设置基本相同: 首先在电源开启后B I O S在进行P O S T时,按下键进入B I O S设置程序。若要制作R A I D,进入 「Integrated Peripherals」将「PCH SATA Control Mode」选项设为「RAID(XHD)」,退出BIOS程序设置并保存设置结果。 如下图 2. 2 然后需要进入RAID设置程序进行以下步骤设置: 步骤一: 在BIOS POST画面后,进入操作系统之前,会出现如下所示的画面,按+键进入 RAID设置程序。 步骤二: 按下+后会出现P55 RAID设置程序主画面。 建立磁盘阵列(Create RAID Volume) 在「Create RAID Volume」选项按键以制作RAID磁盘。 步骤三: 进入「CREATE VOLUME MENU」画面,可以在「Name」选项自定义磁盘阵列的名称,字数最 多可为16个字母,但不能有特殊字符,设置好后按键。选择要制作的R A I D模式(R A I D Level)。RAID模式选项有:RAID 0、RAID 1、Recovery、RAID 10及RAID 5 (可选择的RAID模 式视安装的硬盘总数而定)。选择好RAID模式后,按键继续执行后面的步骤。 步骤四: 在「D i s k s」选项选择要制作磁盘阵列的硬盘。若只安装了两块硬盘,则此两块硬盘将被自动设为磁盘阵列。 接下来请选择磁盘窗口大小(Strip Size) ,可调范围是从4 KB至128 KB。设置完成后,按键设置磁盘阵列容量(Capacity)。

Raid教程:全程图解手把手教你做RAID

说到磁盘阵列(RAID,Redundant Array of Independent Disks),现在几乎成了网管员所必须掌握的一门技术之一,特别是中小型企业,因为磁盘阵列应用非常广泛,它是当前数据备份的主要方案之一。然而,许多网管员只是在各种媒体上看到相关的理论知识介绍,却并没有看到一些实际的磁盘阵列配置方法,所以仍只是一知半解,到自己真正配置时,却无从下手。本文要以一个具体的磁盘阵列配置方法为例向大家介绍磁盘阵列的一些基本配置方法,给出一些关键界面,使各位对磁盘阵列的配置有一个理性认识。当然为了使各位对磁盘阵列有一个较全面的介绍,还是先来简要回顾一下有关磁盘阵列的理论知识,这样可以为实际的配置找到理论依据。 一、磁盘阵列实现方式 磁盘阵列有两种方式可以实现,那就是“软件阵列”与“硬件阵列”。 软件阵列是指通过网络操作系统自身提供的磁盘管理功能将连接的普通SCSI卡上的多块硬盘配置成逻辑盘,组成阵列。如微软的Windows NT/2000 Server/Server 2003和NetVoll的NetWare两种操作系统都可以提供软件阵列功能,其中Windows NT/2000 Server/Server 2003可以提供RAID 0、RAID 1、RAID 5;NetWare操作系统可以实现RAID 1功能。软件阵列可以提供数据冗余功能,但是磁盘子系统的性能会有所降低,有的降代还比较大,达30%左右。 硬件阵列是使用专门的磁盘阵列卡来实现的,这就是本文要介绍的对象。现在的非入门级服务器几乎都提供磁盘阵列卡,不管是集成在主板上或非集成的都能轻松实现阵列功能。硬件阵列能够提供在线扩容、动态修改阵列级别、自动数据恢复、驱动器漫游、超高速缓冲等功能。它能提供性能、数据保护、可靠性、可用性和可管理性的解决方案。磁盘阵列卡拥有一个专门的处理器,如Intel的I960芯片, HPT370A/372 、Silicon Image SIL3112A等,还拥有专门的存贮器,用于高速缓冲数据。这样一来,服务器对磁盘的操作就直接通过磁盘阵列卡来进行处理,因此不需要大量的CPU及系统内存资源,不会降低磁盘子系统的性能。阵列卡专用的处理单元来进行操作,它的性能要远远高于常规非阵列硬盘,并且更安全更稳定。 二、几种磁盘阵列技术 RAID技术是一种工业标准,各厂商对RAID级别的定义也不尽相同。目前对RAID级别的定义可以获得业界广泛认同的有4种,RAID 0、RAID 1、RAID 0+1和RAID 5。

磁盘阵列教程文件

磁盘阵列

RAID 独立磁盘冗余阵列 RAID是英文Redundant Array of Independent Disks的缩写,翻译成中文意思是“独立磁盘冗余阵列”,有时也简称磁盘阵列(Disk Array)。 简单的说,RAID是一种把多块独立的硬盘(物理硬盘)按不同的方式组合起来形成一个硬盘组(逻辑硬盘),从而提供比单个硬盘更高的存储性能和提供数据备份技术。组成磁盘阵列的不同方式成为RAID 级别(RAID Levels)。数据备份的功能是在用户数据一旦发生损坏后,利用备份信息可以使损坏数据得以恢复,从而保障了用户数据的安全性。在用户看起来,组成的磁盘组就像是一个硬盘,用户可以对它进行分区,格式化等等。总之,对磁盘阵列的操作与单个硬盘一模一样。不同的是,磁盘阵列的存储速度要比单个硬盘高很多,而且可以提供自动数据备份。 RAID技术的两大特点:一是速度、二是安全,由于这两项优点,RAID技术早期被应用于高级服务器中的SCSI接口的硬盘系统中,随着近年计算机技术的发展,PC机的CPU的速度已进入GHz 时代。IDE接口的硬盘也不甘落后,相继推出了ATA66和ATA100硬盘。这就使得RAID技术被应用于中低档甚至个人PC机上成为可能。RAID通常是由在硬盘阵列塔中的RAID控制器或电脑中的RAID卡来实现的。 RAID技术经过不断的发展,现在已拥有了从 RAID 0 到 6 七种基本的RAID 级别。另外,还有一些基本RAID级别的组合形式,如RAID 10(RAID 0与RAID 1的组合),RAID 50(RAID 0与RAID 5的组合)等。不同RAID 级别代表着不同的存储性能、数据安全性和存储成本。但我们最为常用的是下面的几种RAID形式。 RAID级别的选择有三个主要因素:可用性(数据冗余)、性能和成本。如果不要求可用性,选择RAID0以获得最佳性能。如果可用性和性能是重要的而成本不是一个主要因素,则根据硬盘数量选择RAID 1。如果可用性、成本和性能都同样重要,则根据一般的数据传输和硬盘的数量选择RAID3、RAID5。

磁盘阵列教程raid5和raid1(有图)

raid5及raid1磁盘阵列服务器 也许一些刚刚玩服务器DIY的朋友一听到raid这个词就犯头晕,分不清楚到底说的是啥意思。raid模式虽多,但以我的理解其实就是把2个以上的硬盘组合在一起,一块用,以达到更快的速度和更高的安全性,大家不需要了解太多raid模式,只要知道raid0、raid1和raid5就足够在服务器行业混饭了(其实什么也不知道照样混饭的人也很多),用唐华的大白话说,所谓raid0就是两块硬盘合成一块硬盘用,例如两个80G的硬盘,做成raid0模式,就变成一块160G的大硬盘,理论上硬盘传输速度也加倍,但是这种模式安全性很低,一旦一个硬盘坏了,两个硬盘里的所有数据都会报销,因此服务器上最好不用这种模式。 所谓raid1就是两块硬盘互相做同步备份(镜像),例如两块80G的硬盘,做成raid1模式,总容量还是80G没变化,硬盘传输速度也没变化,但是两个硬盘里的数据保持同步,完全一样,一旦其中一个硬盘坏了,靠另一个硬盘,服务器依然能正常运行,这种模式很安全,所以现在很多中低端服务器采取这种raid模式,这种模式简单实用,用不高的硬件成本即可实现,我很喜欢。至于raid5,则过去一直是高档服务器的专利,即使是在今天,你翻翻许多名牌服务器的价目表,在1-2万元的产品里也很难觅到raid5的身影,采用raid5可以兼顾raid0的速度、容量和raid1的安全性,是个听起来很完美的磁盘阵列方案。 硬件raid5组建: 最近又亲手给一个朋友组装了一台采用双核心P4 820D处理器的8硬盘的1U机架式存储型服务器,在组装过程中,分别组建了硬件Raid5和软件Raid5的磁盘阵列,过程很值得玩味,现在写出详细的设置过程,以期抛砖引玉,给大家带来更多一点启发。 首先将服务器组装好,然后给硬盘插上SATA的数据线,插入主板上的四个SATA接口,用并口线连接好我的LG刻录机当光驱用,这个主板只提供了1个并口IDE接口用来接光驱正好,连上显示器、键盘、鼠标,开机测试,启动顺利,按DEL键进入bios。

服务器Raid教程全程图解手把手教你如何做RAID

服务器Raid教程:全程图解手RAID.. 把手教你如何做

没有做过亲手raid的朋友,这里有一篇受益匪浅的实战全程图解教程!不妨一看!

其实在论坛中,提到有关磁盘阵列配置的网友远不止上面这一位,针对这种情况,笔者就以一款服务器的磁盘阵列配置实例向大 家介绍磁盘阵列的具体配置方法。当然,不同的阵列控制器的具体配置方法可能不完 全一样,但基本步骤绝大部分是相同的,完全可以参考。 说到磁盘阵列(RAID,Redundant Array of Independent Disks),现在几乎成了网管员所必须掌握的一门技术之一,特别是中小型企业,因为磁盘阵列应用非常广泛,它是当前数据备份的主要方案之一。然而,许多网管员只是在各种媒体上看到相关的理论知识 介绍,却并没有看到一些实际的磁盘阵列配置方法,所以仍只是一知半解,到自己真正配置时,却无从下手。本文要以一个具体的磁盘阵列配置方法为例向大家介绍磁盘阵 列的一些基本配置方法,给出一些关键界面,使各位对磁盘阵列的配置有一个理性认识。当然为了使各位对磁盘阵列有一个较全面 的介还是先来简要回顾一下有关磁盘阵列 的理论绍,

知识,这样可以为实际的配置找到理论依据。 一、磁盘阵列实现方式

磁盘阵列有两种方式可以实现,那就是“软件阵列”与“硬件阵列”。 软件阵列是指通过网络操作系统自身提供 的磁盘管理功能将连接的普通SCSI卡上的多块硬盘配置成逻辑盘,组成阵列。如微软的Windows NT/2000 Server/Server 2003和NetV oll的NetWare两种操作系统都可以提供软件阵列功能,其中Windows NT/2000 Server/Server 2003可以提供RAID 0、RAID 1、RAID 5;NetWare操作系统可以实现RAID 1功能。软件阵列可以提供数据冗余功能,但是磁盘子系统的性能会有所降低,有的降代还比较大,达30%左右。 硬件阵列是使用专门的磁盘阵列卡来实现的,这就是本文要介绍的对象。现在的非入门级服务器几乎都提供磁盘阵列卡,不管是集成在主板上或非集成的都能轻松实现阵 列功能。硬件阵列能够提供在线扩容、动态修改阵列级别、自动数据恢复、驱动器漫游、超高速缓冲等功能。它能提供性能、数据保护、可靠性、可用性和可管理性的.

磁盘阵列详细操作(AMD专篇)

硬盘希捷500g单碟*2 因为板子不一样,进入和设置的方法有所区别,下面以我的P55A-UD3R为例,intel板子设置基本相同: 首先在电源开启后B I O S在进行P O S T时,按下键进入B I O S设置程序。若要制作R A I D,进入 「Integrated Peripherals」将「PCH SATA Control Mode」选项设为「RAID(XHD)」,退出BIOS程序设置并保存设置结果。 如下图 然后需要进入RAID设置程序进行以下步骤设置: 步骤一: 在BIOS POST画面后,进入操作系统之前,会出现如下所示的画面,按+键进入 RAID设置程序。 步骤二: 按下+后会出现P55 RAID设置程序主画面。 建立磁盘阵列(Create RAID Volume) 在「Create RAID Volume」选项按键以制作RAID磁盘。 步骤三: 进入「CREATE VOLUME MENU」画面,可以在「Name」选项自定义磁盘阵列的名称,字数最 多可为16个字母,但不能有特殊字符,设置好后按键。选择要制作的R A I D模式(R A I D Level)。RAID模式选项有:RAID 0、RAID 1、Recovery、RAID 10及RAID 5 (可选择的RAID模 式视安装的硬盘总数而定)。选择好RAID模式后,按键继续执行后面的步骤。 步骤四: 在「D i s k s」选项选择要制作磁盘阵列的硬盘。若只安装了两块硬盘,则此两块硬盘将被自动设为磁盘阵列。接下来请选择磁盘窗口大小(Strip Size) ,可调范围是从4 KB至128 KB。设置完成后,按键设置磁盘阵列容量(Capacity)。 步骤五: 设置好磁盘阵列容量后,按键移至「C r e a t e Vo l u m e」(建立磁盘)选项。在「C r e a t e Vo l u m e」按下键以开始制作磁盘阵列。当确认消息出现时,确定制作磁盘阵列请按 ,取消请按 。 完成后在「DISK/VOLUME INFORMATION」中可以看到建立好的磁盘阵列详细数据,例如磁盘阵列模式、窗口

DELL服务器RAID配置详细教程

DELL服务器RAID配置教程 在启动电脑的时候按CTRL+R 进入RAID 设置见面如下图 名称解释: Disk?Group:磁盘组,这里相当于是阵列,例如配置了一个RAID5,就是一个磁盘组 VD(Virtual?Disk):?虚拟磁盘,虚拟磁盘可以不使用阵列的全部容量,也就是说一个磁盘组可以分为多个VD PD(Physical?Disk):?物理磁盘 HS:Hot?Spare?热备 Mgmt:管理 【一】创建逻辑磁盘 1、按照屏幕下方的虚拟磁盘管理器提示,在VD?Mgmt菜单(可以通过CTRL+P/CTRL+N切换菜单),按F2展开虚拟磁盘创建菜单 2、在虚拟磁盘创建窗口,按回车键选择”Create?New?VD”创建新虚拟磁盘 3、在RAID?Level选项按回车,可以出现能够支持的RAID级别,RAID卡能够支持的级别有RAID0/1/5/10/50,根据具体配置的硬盘数量不同,这个位置可能出现的选项也会有所区别。 选择不同的级别,选项会有所差别。选择好需要配置的RAID级别(我们这里以RAID5为例),按回车确认。 4、确认RAID级别以后,按向下方向键,将光标移至Physical?Disks列表中,上下移动至需要选择的硬盘位置,按空格键来选择(移除)列表中的硬盘,当选择的硬盘数量达到这个RAID级别所需的要求时,Basic?Settings 的VD?Size中可以显示这个RAID的默认容量信息。有X标志为选中的硬盘。 选择完硬盘后按Tab键,可以将光标移至VD?Size栏,VD?Size可以手动设定大小,也就是说可以不用将所有的容量配置在一个虚拟磁盘中。如果这个虚拟磁盘没有使用我们所配置的RAID5阵列所有的容量,剩余的空间可以配置为另外的一个虚拟磁盘,但是配置下一个虚拟磁盘时必须返回VD?Mgmt创建(可以参考第13步,会有详细说明)。VD?Name根据需要设置,也可为空。 注:各RAID级别最少需要的硬盘数量,RAID0=1,RAID1=2,RAID5=3,RAID10=4,RAID50=6 5、修改高级设置,选择完VD?Size后,可以按向下方向键,或者Tab键,将光标移至Advanced?Settings 处,按空格键开启(禁用)高级设置。如果开启后(红框处有X标志为开启),可以修改Stripe?Element?Size 大小,以及阵列的Read?Policy与Write?Policy,Initialize处可以选择是否在阵列配置的同时进行初始化。 高级设置默认为关闭(不可修改),如果没有特殊要求,建议不要修改此处的设置。 6、上述的配置确认完成后,按Tab键,将光标移至OK处,按回车,会出现如下的提示,如果是一个全新的阵列,建议进行初始化操作,如果配置阵列的目的是为了恢复之前的数据,则不要进行初始化。按回车确认即可继续。 7、配置完成后,会返回至VD?Mgmt主界面,将光标移至图中Virtual?Disk?0处,按回车。

全程图解--教你如何做RAID磁盘阵列

全程图解--教你如何做RAID磁盘阵列 本文将以一款服务器的磁盘阵列配置实例向大家介绍磁盘阵列的具体配置方法。当然,不同的阵列控制器的具体配置方法可能不完全一样,但基本步骤绝大部分是相同的,完全可以参考。 说到磁盘阵列(RAID,Redundant Array of Independent Disks),现在几乎成了网管员所必须掌握的一门技术之一,特别是中小型企业,因为磁盘阵列应用非常广泛,它是当前数据备份的主要方案之一。然而,许多网管员只是在各种媒体上看到相关的理论知识介绍,却并没有看到一些实际的磁盘阵列配置方法,所以仍只是一知半解,到自己真正配置时,却无从下手。 在本文中给出一些关键界面,使各位对磁盘阵列的配置有一个理性认识。当然为了使各位对磁盘阵列有一个较全面的介绍,还是先来简要回顾一下有关磁盘阵列的理论知识,这样可以为实际的配置找到理论依据。 一、磁盘阵列实现方式 磁盘阵列有两种方式可以实现,那就是“软件阵列”与“硬件阵列”。 软件阵列是指通过网络操作系统自身提供的磁盘管理功能将连接的普通SCSI卡上的多块硬盘配置成逻辑盘,组成阵列。如微软的

Windows NT/2000 Server/Server 2003和NetVoll的NetWare两种操作系统都可以提供软件阵列功能,其中Windows NT/2000 Server/Server 2003可以提供RAID 0、RAID 1、RAID 5;NetWare操作系统可以实现RAID 1功能。软件阵列可以提供数据冗余功能,但是磁盘子系统的性能会有所降低,有的降代还比较大,达30%左右。 硬件阵列是使用专门的磁盘阵列卡来实现的,这就是本文要介绍的对象。现在的非入门级服务器几乎都提供磁盘阵列卡,不管是集成在主板上或非集成的都能轻松实现阵列功能。硬件阵列能够提供在线扩容、动态修改阵列级别、自动数据恢复、驱动器漫游、超高速缓冲等功能。它能提供性能、数据保护、可靠性、可用性和可管理性的解决方案。 磁盘阵列卡拥有一个专门的处理器,如Intel的I960芯片,HPT370A/372 、Silicon Image SIL3112A等,还拥有专门的存贮器,用于高速缓冲数据。这样一来,服务器对磁盘的操作就直接通过磁盘阵列卡来进行处理,因此不需要大量的CPU及系统内存资源,不会降低磁盘子系统的性能。阵列卡专用的处理单元来进行操作,它的性能要远远高于常规非阵列硬盘,并且更安全更稳定。 二、几种磁盘阵列技术 RAID技术是一种工业标准,各厂商对RAID级别的定义也不尽相同。目前对RAID级别的定义可以获得业界广泛认同的有4种,RAID 0、RAID 1、RAID 0+1和RAID 5。

磁盘阵列教程

EonStor S16S-G1030磁盘阵列白皮书 V1.1 北京联创信安科技有限公司 2008年3月

EonStor S16S-G1030磁盘阵列正视图 EonStor S16S-G1030磁盘阵列后视图 一、产品概述 EonStor SAS-to-SAS 系列磁盘阵列采用了高容量、高性能的SAS硬盘以及SAS主机通道,具有高性能、大容量的特点。该系列中的EonStor S16S-G1030磁盘阵列不仅在性能和容量上兼有出色表现,同时还具备1个高速的SAS扩展接口以连接SAS扩展柜,从而轻松实现大幅度扩容。另外,EonStor S16S-G1030磁盘阵列还具备主机链路容错功能,更好地保证了业务的连续性和数据的可用性。

二、产品优势 z独立ASIC400硬件校验芯片 z DDR控制器高速缓存,带有ECC功能,可升级至2GB z提供2个SAS 4× 高速主机通道 z提供1个SAS扩展接口,最多支持80颗SAS硬盘 z支持硬件RAID 6 z支持在线容量扩展 z支持在线RAID级别变更 z支持热备援盘类型:本地、全局、箱体热备 z支持智能磁盘扫描功能,最大限度保护用户数据 z支持自动RAID重建 z支持写策略自动调整 z支持多种主流操作系统 z支持多种方式管理 z选配锂电池保护模块 三、产品特性 高可用 -存储密度大,3U机架式标准机柜可容纳16颗3.5英寸SAS硬盘 - 多种连接方式,适用于不同应用环境各种存储架构

EonStor S16S-G1030磁盘阵列主机连接图 EonStor S16S-G1030磁盘阵列连接图2

高性能 - 2条SAS 4×主机通道,每个通道传输速率最高可达12Gbps - 控制器CPU采用高性能的64位 Power PC750GL芯片,主频为800MHz,带有1024KB二级缓存 - 提供2个主机端口, 最大数据传输率24Gbps 高可靠 - 系统内部采用Cableless结构的全冗余模块化设计,支持热插拔 - 冗余主机通道保证系统的可靠运行 - 冗余模块化设计 - 可选锂电池保护模块,确保控制器高速缓存内的数据在掉电72小时内不丢失 - 智能反应及预防机制 自动缓存清理 自动介质扫描 自动热备援盘RAID重建 自动缓存模式转换

raid设置教程

本文讲述Intel南桥支持的RAID模式和设置,以P55的PCH为例。ICH9R和ICH10R均可参照。 一、RAID模式简介 RAID(Redundant Array of Independent Disks)若干个单独的硬盘组成一个逻辑的磁盘。中文一般叫做磁盘阵列。 常见的RAID模式有5种:RAID 0,RAID 1,RAID 5,RAID 10,JBOD 1、RAID 0(串列)就是把2个(2个以上)硬盘串连在一起组成一个逻辑硬盘,容量是原来的2倍(或2倍以上)。向硬盘写入数据时,同时写入2个硬盘,每个硬盘写入一半,读出时也是从2个硬盘读取,所以速度比单个硬盘快。RAID0是提高硬盘速度。 下载(20.49 KB) 2010-5-6 16:58 2、RAID 1(镜像)就是把2个(2个以上)硬盘并连在一起组成一个逻辑硬盘,容量不变,一个硬盘是另一个硬盘的镜像。向硬盘写入数据时,同时写入2个硬盘,每个硬盘写入同样的数据,当一个硬盘有故障,另一个硬盘可以继续工作,更换故障硬盘后,便向新硬盘复制数据,继续保持2个硬盘存储相同的数据。RAID1是保证数据安全。

下载(21.33 KB) 2010-5-6 16:58 3、RAID 5(交叉分布奇偶校验的串列)至少要3个硬盘组成,向硬盘写入数据的同时还写入数据的奇偶校验。速度与2个硬盘的RAID0一样,容量是2个硬盘之和,当其中一个硬盘有故障,更换硬盘后可以恢复这个硬盘的数据。RAID5是既提高速度又保护数据安全。 下载(37.55 KB) 2010-5-6 16:58 4、RAID 10(串列和镜像)至少要4个硬盘,就是每2个硬盘组成串列后再做镜像。RAID10的容量是2个硬盘容量之和,其中任何一个硬盘有故障,系统都可以正常工作,当更换硬盘后就像这个硬盘恢复原来的数据。RAID0是既提高速度又保护数据安全。

DELL服务器做RAID磁盘阵列图文教程

D E L L服务器做R A I D磁 盘阵列图文教程 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

磁盘阵列可以在安装系统之前或之后产生,系统会视之为一个(大型)硬盘,而它具有容错及冗余的功能。磁盘阵列不单只可以加入一个现成的系统,它更可以支持容量扩展,方法也很简单,只需要加入一个新的硬盘并执行一些简单的指令,系统便可以实时利用这新加的容量。·RAID 的种类及应用 IDE和SCSI是计算机的两种不同的接口,前者普遍用于PC机,后者一般用于服务器。基于这两种接口,RAID分为两种类型:基于IDE接口的RAID应用,称为IDE RAID;而基于SCSI接口的RAID应用则相应称为SCSI RAID。 基于不同的架构,RAID 又可以分为: ● 软件RAID (软件 RAID) ● 硬件RAID (硬件 RAID) ● 外置RAID (External RAID) ·软件RAID很多情况下已经包含在系统之中,并成为其中一个功能,如Windows、Netware及Linux。软件RAID中的所有操作皆由中央处理器负责,所以系统资源的利用率会很高,从而使系统性能降低。软件RAID是不需要另外添加任何硬件设备,因为它是靠你的系统——主要是中央处理器的功能——提供所有现成的资源。 ·硬件RAID通常是一张PCI卡,你会看到在这卡上会有处理器及内存。因为这卡上的处理器已经可以提供一切RAID所需要的资源,所以不会占用系统资源,从而令系统的表现可以大大提升。硬件RAID可以连接内置硬盘、热插拔背板或外置存储设备。无论连接何种硬盘,控制权都是在RAID卡上,亦即是由系统所操控。在系统里,硬件RAID PCI卡通常都需要安驱动程序,否则系统会拒绝支持。 ·外置式RAID也是属于硬件RAID的一种,区别在于RAID卡不会安装在系统里,而是安装在外置的存储设备内。而这个外置的储存设备则会连接到系统的SCSI卡上。系统没有任何的RAI D功能,因为它只有一张SCSI卡;所有的RAID功能将会移到这个外置存储里。好处是外置的

实战RAID5 手把手教你组磁盘阵列 5

实战RAID5 手把手教你组磁盘阵列 5 随着PC硬件的不断发展,以前多见于服务器等高端应用的RAID5技术也出现在PC机上。许多玩家开始接触到这种提升速同时也能确保数据安全性的良好的解决方案。 RAID 5 模式的入门知识 RAID 5 是一种存储性能、数据安全和存储成本兼顾的存储解决方案。它既能实现RAID 0的高速存储读取功能也能够实现RAID 1的数据恢复功能,可以说是RAID 0和RAID 1的折衷方案。 RAID 5为系统提供数据安全保障,但保障程度要比磁盘镜像低而磁盘空间利用率要比磁盘镜像高。同时RAID 5还具有和RAID 0相近似的数据读取速度,只是多了一个奇偶校验信息,而且存储成本相对较低。 RAID 5至少需要三块硬盘才能实现阵列,在阵列当中有三块硬盘时,RAID控制器将会把需要存储的数据按用户定义的分割大小把文件分成碎片再分别存储到其中的两块硬盘上,此时另一块硬盘不接收文件碎片,只用来存储其它两块硬盘的校验信息,这个校验信息是通过RAID控制器上的单独的芯片运算产生的,而且可以通过这个校验信息来恢复存储在两块硬盘上的数据。 另外,这三块硬盘的任务也是随机的,也就是说在这次存储当中可能是1号硬盘和2 好硬盘用来存储分割后的文件碎片,那么在下次存储的时候可能就是2号硬盘和3号硬盘来完成这个任务了。可以说,在每次存储操作当中,每块硬盘的任务是不一样的,不过,不管任务怎么随机分配也是两块硬盘用来存储数据信息,另一块硬盘用来存储校验信息。 RAID 5可以利用三块硬盘同时实现RAID 0的加速功能也实现RAID 1的数据备份功能,并且当其中的一块硬盘损坏之后,加入一块新的硬盘也可以实现数据的还原。 RAID 5模式并不是完全没有缺点,如果阵列当中某块硬盘上的信息发生了改变的话,那么就需要重新计算文件分割碎片,并且,校验信息也需要重新计算,这时,三个硬盘都需要重新调用那么整个系统性能将会降下来。如果要做RAID 5阵列的话,最好使用相同容量相同速度的硬盘,RAID 5模式的有效容量是阵列中容量最小的硬盘容量乘上阵列中硬盘数减一后的数目,这是因为其中有一块硬盘用来存放校验信息。 RAID 5既能够实现速度上的加倍,同时也能够保证数据的安全性,所以在很多高端系统当中都使用这种RAID模式。 如何实现RAID 5: ATA RAID控制器目前市场上的RAID控制器主要有两种,一是主板上集成的IDE RAID控制器,现在很多高端主板都具有集成ATA RAID 控制器。

服务器Raid教程:全程图解手把手教你如何做RAID..

没有做过亲手raid的朋友,这里有一篇受益匪浅的实战全程图解教程!不妨一看! 其实在论坛中,提到有关磁盘阵列配置的网友远不止上面这一位,针对这种情况,笔者就以一款服务器的磁盘阵列配置实例向大家介绍磁盘阵列的具体配置方法。当然,不同的阵列控制器的具体配置方法可能不完全一样,但基本步骤绝大部分是相同的,完全可以参考。 说到磁盘阵列(RAID,Redundant Array of Independent Disks),现在几乎成了网管员所必须掌握的一门技术之一,特别是中小型企业,因为磁盘阵列应用非常广泛,它是当前数据备份的主要方案之一。然而,许多网管员只是在各种媒体上看到相关的理论知识介绍,却并没有看到一些实际的磁盘阵列配置方法,所以仍只是一知半解,到自己真正配置时,却无从下手。本文要以一个具体的磁盘阵列配置方法为例向大家介绍磁盘阵列的一些基本配置方法,给出一些关键界面,使各位对磁盘阵列的配置有一个理性认识。当然为了使各位对磁盘阵列有一个较全面的介绍,还是先来简要回顾一下有关磁盘阵列的理论知识,这样可以为实际的配置找到理论依据。 一、磁盘阵列实现方式 磁盘阵列有两种方式可以实现,那就是“软件阵列”与“硬件阵列”。 软件阵列是指通过网络操作系统自身提供的磁盘管理功能将连接的普通SCSI卡上的多块硬盘配置成逻辑盘,组成阵列。如微软的Windows NT/2000 Server/Server 2003和NetVoll的NetWare两种操作系统都可以提供软件阵列功能,其中Windows NT/2000 Server/Server 2003可以提供RAID 0、RAID 1、RAID 5;NetWare操作系统可以实现RAID 1功能。软件阵列可以提供数据冗余功能,但是磁盘子系统的性能会有所降低,有的降代还比较大,达30%左右。 硬件阵列是使用专门的磁盘阵列卡来实现的,这就是本文要介绍的对象。现在的非入门级服务器几乎都提供磁盘阵列卡,不管是集成在主板上或非集成的都能轻松实现阵列功能。硬件阵列能够提供在线扩容、动态修改阵列级别、自动数据恢复、驱动器漫游、超高速缓冲等功能。它能提供性能、数据保护、可靠性、可用性和可管理性的解决方案。磁盘阵列卡拥有一个专门的处理器,如Intel的I960芯片,HPT370A/372 、Silicon Image SIL3112A等,还拥有专门的存贮器,用于高速缓冲数据。这样一来,服务器对磁盘的操作就直接通过磁盘阵列卡来进行处理,因此不需要大量的CPU及系统内存资源,不会降低磁盘子系统的性能。阵列卡专用的处理单元来进行操作,它的性能要远远高于常规非阵列硬盘,并且更安全更稳定。

磁盘阵列图解教程

全程图解手把手教你做RAID磁盘阵列 (本文要以一个具体的磁盘阵列配置方法为例向大家介绍磁盘阵列的一些基本配置方法,给出一些关 键界面,使各位对磁盘阵列的配置有一个理性认识。) 本文将以一款服务器的磁盘阵列配置实例向大家介绍磁盘阵列的具体配置方法。当然,不同的阵列控制器的具体配置方法可能不完全一样,但基本步骤绝大部分是相同的,完全可以参考。 说到磁盘阵列(RAID,Redundant Array of Independent Disks),现在几乎成了网管员所必须掌握的一门技术之一,特别是中小型企业,因为磁盘阵列应用非常广泛,它是当前数据备份的主要方案之一。然而,许多网管员只是在各种媒体上看到相关的理论知识介绍,却并没有看到一些实际的磁盘阵列配置方法,所以仍只是一知半解,到自己真正配置时,却无从下手。 本文要以一个具体的磁盘阵列配置方法为例向大家介绍磁盘阵列的一些基本配置方法,给出一些关键界面,使各位对磁盘阵列的配置有一个理性认识。当然为了使各位对磁盘阵列有一个较全面的介绍,还是先来简要回顾一下有关磁盘阵列的理论知识,这样可以为实际的配置找到理论依据。 一、磁盘阵列实现方式 磁盘阵列有两种方式可以实现,那就是“软件阵列”与“硬件阵列”。 软件阵列是指通过网络操作系统自身提供的磁盘管理功能将连接的普通SCSI卡上的多块硬盘配置成逻辑盘,组成阵列。如微软的Windows NT/2000 Server/Server 2003和NetVoll 的NetWare两种操作系统都可以提供软件阵列功能,其中Windows NT/2000 Server/Server 2003 可以提供 RAID 0、RAID 1、RAID 5;NetWare 操作系统可以实现 RAID 1 功能。软件阵列 可以提供数据冗余功能,但是磁盘子系统的性能会有所降低,有的降代还比较大,达30%左右。 硬件阵列是使用专门的磁盘阵列卡来实现的,这就是本文要介绍的对象。现在的非入门级服务器几乎都提供磁盘阵列卡,不管是集成在主板上或非集成的都能轻松实现阵列功能。硬件阵列能够提供在线扩容、动态修改阵列级别、自动数据恢复、驱动器漫游、超高速缓冲等功能。它能提供性能、数据保护、可靠性、可用性和可管理性的解决方案。 磁盘阵列卡拥有一个专门的处理器,如Intel的I960芯片,HPT370A/372、Silicon Image SIL3112A 等,还拥有专门的存贮器,用于高速缓冲数据。这样一来,服务器对磁盘的操作就直接通过磁盘阵列卡来进行处理,因此不需要大量的CPU及系统内存资源,不会降低磁盘子系统的性能。阵列卡专用的处理单元来进行操作,它的性能要远远高于常规非阵列硬盘,并且更安全更稳定。 二、几种磁盘阵列技术 RAID 技术是一种工业标准,各厂商对 RAID 级别的定义也不尽相同。目前对 RAID 级别的定义可以获得业界广泛认同的有4种,RAID 0、RAID 1、RAID 0+1和RAID 5。