搜档网
当前位置:搜档网 › 钢中常存杂质对钢性能的影响

钢中常存杂质对钢性能的影响

钢中常存杂质对钢性能的影响
钢中常存杂质对钢性能的影响

实际使用的钢中,除了含有铁、碳与合金元素外,在冶炼过程中,不可避免地要带入一些杂质(如锰、硅、硫、磷、非金属类杂质以及某些气体,如氮、氢、氧等)。这些杂质对钢的质量有很大的影响。

1.锰

锰在钢中作为杂质存在时,一般均小于0.8%。它来自作为炼钢原料的生铁及脱氧剂锰铁。锰有很好的脱氧能力,还能与硫形成MnS,以消除硫的有害作用。这些反应产物大部分进入炉渣而被除去,小部分残留于钢中成为非金属夹杂物。此外,在室温下锰能溶于铁素体,对钢有一定强化作用。锰也能溶于渗碳体中,形成合金渗碳体。但锰作为少量杂质存在时,它对钢的性能影响不显著。

2.硅

硅在钢中作为杂质存在时,一般均小于0.4%,它也来自生铁与脱氧剂。在室温下硅能溶于铁素体,对钢有一定的强化作用。但硅作为少量杂质存在时,它对钢的性能影响也不显著。

3.硫

硫是由生铁及燃料带入钢中的杂质。在固态下,硫在铁中的溶解度极小,而是以FeS的形态存在于钢中。由于FeS的塑性差,使含硫较多的钢脆性较大。更严重的是,FeS与Fe可形成低熔点(985℃)的共晶体,分布在奥氏体的晶界上。当钢加热到约1200℃进行热压力加工时,晶界上的共晶体已溶化,晶粒间结合被破坏,使钢材在加工过程中沿晶界开裂,这种现象称为热脆性。为了消除硫的有害作用,必须增加钢中含锰量。锰与硫优先形成高熔点(1620℃)的硫化锰,并呈粒状分布在晶粒内,它在高温下具有一定塑造性,从而避免了热脆性。硫化物是非金属夹杂物,会降低钢的机械性能,并在轧制过程中形成热加工纤维组织。因此,通常情况下,硫是有害的杂质。在钢中要严格限制硫的含量。但含硫量较多的钢,可形成较多的MnS,在切削加工中,MnS能起断屑作用,可改善钢的切削加工性,这是硫有利的一面。

4.磷

磷由生铁带入钢中,在一般情况下,钢中的磷能全部溶于铁素体中。磷有强烈的固溶强化作用,使钢的强度、硬度增加,但塑性、韧性则显著降低。这种脆化现象在低温时更为严重,故称为冷脆。一般希望冷脆转变温度低于工件的工作温度,以免发生冷脆。而磷在结晶过程中,由于容易产生晶内偏析,使局部地区含磷量偏高,导致冷脆转变温度升高,从而发生冷脆。冷脆对在高寒地带和其它低温条件下工作的结构件具有严重的危害性,此外,磷的偏析还使钢材在热轧后形成带状组织。因此,通常情况下,磷也是有害的杂质。在钢中也要严格控制磷的含量。但含磷量较多时,由于脆性较大,在制造炮弹钢以及改善钢的切削加工

性方面则是有利的。

5.非金属夹杂物

在炼钢过程中,少量炉渣、耐火材料及冶炼中反应产物可能进入钢液,形成非金属夹杂物。例如氧化物、硫化物、硅酸盐、氮化物等。它们都会降低钢的机械性能,特别是降低塑性、韧性及疲劳极限。严重时,还会使钢在热加工与热处理时产生裂纹或使用时突然脆断。非金属夹杂物也促使钢形成热加工纤维组织与带状组织,使材料具有各向异性。严重时,横向塑性仅为纵向的一半,并使冲击韧性大为降低。因此,对重要用途的钢(如滚动轴承钢、弹簧钢等)要检查非金属夹杂物的数量、形状、大小与分布情况。此外,钢在整个冶炼过程中,都与空气接触,因而钢液中总会吸收一些气体,如氮、氧、氢等。它们对钢的质量也会产生不良影响。

铝中合金基本分类及元素和杂质的作用

【知识点】铸造铝合金各种元素的作用及特点 重金属,特别是汞、镉、铅、铬等具有显着和生物毒性。它们在水体中不能被微生物降解,而只能发生各种形态相互转化和分散、富集过程(即迁移)。重金属污染的特点是:(1)除被悬浮物带走的外,会因吸附沉淀作用而富集于排污口附近的底泥中,成为长期的次生污染源;(2)水中各种无机配位体(氯离子、硫酸离子、氢氧离子等)和有机配位体(腐蚀质等)会与其生成络合物或螯合物,导致重金属有更大的水溶解度而使已进入底泥的重金属又可能重新释放出来;(3)重金属的价态不同,其活性与毒性不同。其形态又随pH和氧化还原条件而转化。(4)在其危害环境方面的特点是:微量浓度即可产生毒性(一般为1~10毫克/升,汞、镉为0.01~0.001毫克/升);在微生物作用会转化为毒性更强的有机金属化合物(如洋-甲基汞);可被生物富集,通过食物链进入人体,造成慢性路线。 亲硫重金属元素(汞、镉、铅、锌、硒、铜、砷等)与人体组织某些酶的巯基(-SH)有特别大的亲合力,能抑制酶的活性,亲铁元素(铁、镍)可在人体的肾、脾、肝内累积,抑制精氨酶的活性。 六价铬可能是蛋白质和核酸的沉淀剂,可抑制细胞内谷胱甘肽还原酶,导致高铁血红蛋白,可能致癌,过量的钒和锰(亲岩元素)则能损害神经系统的机能钛和钛的合金大量用于航空工业,有"空间金属"之称;另外,在造船工业、化学工业、制造机械部件、电讯器材、硬质合金等方面有着日益广泛的应用。 纯铝的强度低,不宜用来制作承受载荷的结构零件。向铝中加入适量的硅、铜、镁、锰等合金元素,可制成强度较高的铝合金,若在经冷变形强化或热处理,可进一步提高强度。 根据铝合金的成分和生产工艺特点,通常分为形变与铸造铝合金两大类.工业上应用的主要有铝-锰,铝-镁,铝-镁-铜,铝-镁-硅-铜,铝-锌-镁-铜等合金.变形铝合金也叫熟铝合金,据其成分和性能特点又分为防锈铝,硬铝,超硬铝,锻铝和特殊铝等五种. 铝合金是纯铝加入一些合金元素制成的,如铝—锰合金、铝—铜合金、铝—铜—镁系硬铝合金、铝—锌—镁—铜系超硬铝合金。铝合金比纯铝具有更好的物理力学性能:易加工、耐久性高、适用范围广、装饰效果好、花色丰富。铝合金分为防锈铝、硬铝、超硬铝等种类,各种类均有各自的使用范围,并有各自的代号,以供使用者选用。 2A80,原先叫LD-8,化学成分如下: Si:0.5-1.2 Fe:1.0-1.6 Cu:1.9-2.5 Mn:0.2 Mg:1.4-1.8 Ni:0.9-1.5 Zn:0.3 Ti:0.15 其他单个0.05合计0.15 Al:余量 铝合金各元素的含量要看合金的性质的,如上面例子 牌号化学成分(质量分数) /% AL 不小于杂质不大于 Fe Si Cu Ga Mg Zn 其他每种总和 AL99.90 99.90 0.07 0.05 0.005 0.020 0.01 0.025 0.016 0.10 AL99.85 99.85 0.12 0.08 0.005 0.030 0.02 0.030 0.015 0.15 AL99.7A 99.70 0.20 0.10 0.01 0.03 0.02 0.03 0.03 0.30 AL99.70 99.70 0.20 0.12 0.01 0.03 0.03 0.03 0.03 0.30 AL99.60 99.60 0.25 0.16 0.01 0.03 0.03 0.03 0.03 0.49 AL99.50 99.50 0.30 0.22 0.02 0.03 0.05 0.05 0.03 0.50 AL99.00 99.00 0.50 0.42 0.02 0.05 0.05 0.05 0.05 1.00 铝合金基本常识 一、分类:展伸材料分非热处理合金及热处理合金 1.1 非热处理合金:纯铝─1000系,铝锰系合金─3000系,铝矽系合金─4000系,铝镁系合金─5000系。 1.2 热处理合金:铝铜镁系合金─2000系,铝镁矽系合金─6000系,铝锌镁系合金

各种因素对钢材性能的影响

2.5 各种因素对钢材性能的影响 一.化学成分 普通碳素钢中Fe占99%,其他杂质元素占1%;普通低合金钢中有<5%的合金元素。 碳(C):钢材强度的主要来源,但是随其含量增加,强度增加,塑性、冷弯性能、冲击性能、疲劳强度降低,可焊性降低,抗腐蚀性降低。 一般控制在0.22%以下,在0.2以下时,可焊性良好。 硫(S):热脆性。有害元素,引起热脆和分层。不得超过0.05%。 磷(P):冷脆性。抗腐蚀能力略有提高,可焊性降低。不得超过0.045%。 锰(Mn):合金元素。弱脱氧剂。与S形成MnS,(熔点为1600℃),可以消除一部分S的有害作用。 硅(Si):合金元素。强脱氧剂。,可细化精粒,提高强度,且不影响其它性能,但过量会恶化焊接性和抗锈性。 钒(V):合金元素。细化晶粒,提高强度,其碳化物具有高温稳定性,适用于受荷较大的焊接结构。 氧(O):有害杂质。 氮(N):有害杂质。 碳当量(carbon equivalent ) 把钢中合金元素的含量按其对某种性能(如焊接性、铸造工艺性等)的作用换算成碳的相当含量。 C eq=C+Mn/6+(Cr+V+Mo)/5+(Cu+Ni)/15 二.冶金缺陷 常见的冶金缺陷有偏析、非金属夹杂、气孔、裂纹等。 1.偏析:金属结晶后化学成分分布不均匀的现象。主要是硫、磷偏析,其 后果是偏析区钢材的塑性、韧性、可焊性变坏。 2.非金属夹杂:指钢材中的非金属化合物,如硫化物、氧化物,他们使钢 材性能变脆。

3.裂纹:钢材中存在的微观裂纹。 4.气泡:浇铸时由FeO和C作用所生成的CO气体不能充分逸出而滞留在 钢锭那形成的微小空洞。 5.分层:浇铸时的非金属夹杂在轧制后可能造成钢材的分层。 三.构造缺陷 试件表面不平整,有刻槽、缺口,厚度突变时,应力不均匀,力线变曲折,缺陷处有高峰应力——应力集中。 结果:塑性降低,脆性增加。 原因:不正确的设计(构造不合理)、制造(不光滑)及使用(在构件上 乱打火等)。 四.加荷速度 1. 加荷速度高,钢材屈服点提高,呈脆性。因此, 1).材性试验要求缓慢加载 2).要考虑动荷载对结构的不利影响 2. 循环荷载的影响 钢材在连续交变荷载作用下,会逐渐累积损伤,产生裂纹及裂纹逐渐扩展,直到最后破坏——疲劳破坏。 五.钢材的硬化 冷作硬化——当荷载超过材料比例极限卸载后,出现残余变形,再次加载则比例极限(或屈服点)提高的现象,也称“应变硬化”。(主观的) 时效硬化——随时间的增长,碳和氮的化合物从晶体中析出,使材料硬化的现象。(客观的) 应变时效——钢材产生塑性变形时,碳、氮化合物更易析出。即冷作硬化的同时可以加速时效硬化,因此也称“人工时效”。 六.温度的影响 1.正温范围 100℃以内对钢材性能无影响; 100℃以上随温度升高,总的趋势是强度、弹性模量降低,塑性增大250℃左右抗拉强度略有提高,塑性降低,脆性增加——兰脆现象,该

简述哪些因素对钢材性能有影响

三、简答题 1.简述哪些因素对钢材性能有影响? 化学成分;冶金缺陷;钢材硬化;温度影响;应力集中;反复荷载作用。2.钢结构用钢材机械性能指标有哪几些?承重结构的钢材至少应保证哪几项指标满足要求? 钢材机械性能指标有:抗拉强度、伸长率、屈服点、冷弯性能、冲击韧性; 承重结构的钢材应保证下列三项指标合格:抗拉强度、伸长率、屈服点。3.钢材两种破坏现象和后果是什么? 钢材有脆性破坏和塑性破坏。塑性破坏前,结构有明显的变形,并有较长的变形持续时间,可便于发现和补救。钢材的脆性破坏,由于变形小并突然破坏,危险性大。 4.选择钢材屈服强度作为静力强度规范值以及将钢材看作是理想弹性一塑性材料的依据是什么? 选择屈服强度f y 作为钢材静力强度的规范值的依据是:①他是钢材弹性及塑性工作的分界点,且钢材屈服后,塑性变开很大(2%~3%),极易为人们察觉,可以及时处理,避免突然破坏;②从屈服开始到断裂,塑性工作区域很大,比弹性工作区域约大200倍,是钢材极大的后备强度,且抗拉强度和屈服强度的比例又较 大(Q235的f u /f y ≈1.6~1.9),这二点一起赋予构件以f y 作为强度极限的可靠安 全储备。 将钢材看作是理想弹性—塑性材料的依据是:①对于没有缺陷和残余应力影响的 试件,比较极限和屈服强度是比较接近(f p =(0.7~0.8)f y ),又因为钢材开始屈服 时应变小(ε y ≈0.15%)因此近似地认为在屈服点以前钢材为完全弹性的,即将屈服点以前的б-ε图简化为一条斜线;②因为钢材流幅相当长(即ε从0.15%到2%~3%),而强化阶段的强度在计算中又不用,从而将屈服点后的б-ε图简化为一条水平线。 5.什么叫做冲击韧性?什么情况下需要保证该项指标? 韧性是钢材抵抗冲击荷载的能力,它用材料在断裂时所吸收的总能量(包括弹性和非弹性能)来度量,韧性是钢材强度和塑性的综合指标。在寒冷地区建造的结构不但要求钢材具有常温(℃ 20)冲击韧性指标,还要求具有负温(℃ 0、℃ 20 -或℃ 40 -)冲击韧性指标。

钢材中各元素对性能性的影响

钢材中各元素对性能性的影响 1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和 冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此 用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高 还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀; 此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢 含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就 算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度, 故广泛用于作弹簧钢。在调质结构钢中加入 1.0-1.2%的硅, 强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀 性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具 有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低 钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢 中含锰0.30-0.50%,在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度, 提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点 高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性 能。 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,

使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求 钢中含磷量小于0.045%,优质钢要求更低些。 5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降 低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性 能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改 善切削加工性,通常称易切削钢。 6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐 磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐 腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍 对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但 由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬 钢。 8、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高 温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发 生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以 抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化 晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18 镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。 10、钒(V):钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶

热处理对7075铝合金组织和性能的影响

热处理对7075铝合金组织和性能的影响 摘要:对7075铝合金进行了固溶和单级时效处理,研究了单级时效对铝合金组织和性能的影响,结果表明铝合金经单级时效后纤维组织消失,在晶界处生成第二相粒子。铝合金显微硬度的峰值时效温度为120℃,时间为16h,硬度为220HV。120℃/24h时效后合金的峰值强度为680.5MPa。本研究中主要阐述热处理对7075铝合金组织和性能的影响。 关键词:热处理;7075铝合金;组织性能 引言 近些年来,铝合金的发展历程先后经历了由单一的追求高强度到追求高强耐腐蚀,再到追求高强高韧耐腐蚀性能,又到高强高韧耐腐蚀抗疲劳,最终到现在的追求高淬透性高综合性能五个发展阶段。然后发展方向却集中在以满足高强高韧铝合金的航空航天领域以及适用于各种使用条件的民用铝合金领域。当前对于铝合金强韧化以及耐蚀性的研究已经成为了重中之重,相信随着综合性能的提高,铝合金在国民经济发展中的运用将更加广泛。 1、7xxx系铝合金概述 7xxx铝合金是以Al-Zn-Mg和Al-Zn-Mg-Cu合金为主的一种超高强度铝合金,它是超高系列铝合金的最主要代表,Fe和Si是7xxx铝合金的主要有害杂质。较2xxx高强度铝合金在强度和硬度方面高出许多。属于热处理可强化的合金。该系铝合金具有强度高、密度小、易加工、焊接性能良好等优良特点,并且一般耐蚀性较好,因此在航空航天工业、车辆、建筑、桥梁、工兵装备及大型压力容器方面得到了广泛的应用。现阶段7xxx铝合金的研究主要集中在通过调节合金化元素和优化热处理工艺来得到高强高韧耐腐蚀的综合性能[1]。这也是本文的研究方向的出发点。该系代表合金如7005、7050、7075等。 2、试验材料与方法 试验材料为7075铝合金,将铝合金(尺寸为20mmX20mmX160mm)在盐浴中进行固溶处理,处理工艺为480℃/2h铝合金固溶处理后在试验箱中进行单级时效处理,时效温度分别为100,120,150℃,时效时间为0-48h。 将试样按国标GB/T228-2010用线切割加工成拉伸试样,用酒精超声清洗去除表面油污,在MT810万能试验机上进行拉伸强度测试,取5个试样的平均值;采用

影响散热性能的各种因素

影响散热性能的各种因素 晨怡热管2007—11-29 22:46:39 三、影响散热性能的各种因素 在当前的所有芯片中,以CPU的功耗、发热量最高,因此CPU散热器的发展最为强劲与引人注目,诞生了极其多样化的产品,代表了计算机散热技术的最高发展水平.只要对CPU 散热技术有了全面了解,其它产品的散热原理也就无师自通了。因此,本专题重点就讨论CPU 散热技术.在介绍各种散热技术之前,我们还要先确认几个散热的基本概念. 热力学基本知识 我们先从物理的角度来探讨一下散热的原理,因为知道了原理才能从根本上找出解决问题的方法。虽然这部分有些枯燥难懂,但只要您能耐心看完,相信很多问题就可迎刃而解,对今后彻底了解散热器有很大的用处。 物理学认为,热主要通过三种途径来传递,它们分别是热传导、热对流、热辐射。为了保证良好的散热器性能,就要已符合上述三种途径的要求来设计产品,于是在材料的热传导率、比热值;散热器整体的热阻、风阻;风扇的风量、风压等等方面都提出了要求。以下针对这些概念进行集中讲解。 热传导 定义:通过物体的直接接触,热从温度高的部位传到温度低的部位.热能的传递速度和能力取决于: 1。物质的性质。有的物质导热性能差,如棉絮,有的物质导热性能强,如钢铁.这样就有了采用不同材质的散热器,铝、铜、银。它们的散热性能依次递增,价钱当然也就成正比啦。 2。物体之间的温度差。热是从温度高的部位传向温度低的部位,温差越大热的传导越快。 热传导是散热的最主要方式,也是散热技术需要解决的核心问题之一.所以我们通常都能看到,几乎所有散热在与CPU相接触的部分都采用热传导性能良好的材料。比如Intel 原包CPU中附带的散热器,采用铜芯与CPU接触,就是为了将热量尽快传导出来。

各化学元素对钢材的影响

各化学元素对钢材的影响 1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。 5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。 6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。

压铸铝合金中各元素的作用和影响

?压铸铝合金中各元素的作用和影响 ?发布时间:2009-11-9 16:57:02 来源:互联网文字【大中小】 ?(一)日本ADC12 牌号合金 (二)压铸铝合金中各元素的作用和影响 1. 硅(Si) 硅是大多数压铸铝合金的主要元素。它能改善合金的铸造性能。硅与铝能组成固溶体。在577℃时,硅在铝中的溶解度为1.65%,室温时为0.2%、含硅量至11.7%时,硅与铝形成共晶体。提高合金的高温造型性,减少收缩率,无热裂倾向。二元铝基合金有高的耐蚀性。当合金中含硅量超过共晶成分,而铜、铁等杂质又多时,即出现游离硅的硬质点,使切削加工困难,高硅铝合金对铸件坩埚的熔蚀作用严重。 2. 铜(Cu) 铜和铝组成固溶体,当温度在548℃时,铜在铝中的溶解度应为5.65%,室温时降至0.1%左右,增加含铜量,能提高合金的流动性,抗拉强度和硬度,但降低了耐蚀性和塑性,热裂倾向增大。 3. 镁(Mg) 在高硅铝合金中加入少量(约0.2~0.3%)的镁,可提高强度和屈服极限,提高了合金的切削加工性。含镁8%的铝合金具有优良的耐蚀性,但其铸造性能差,在高温下的强度和塑性都低,冷却时收缩大,故易产生热裂和形成疏松。 4. 锌(Zn) 锌在铝合金中能提高流动性,增加热脆性,降低耐蚀性,故应控制锌的含量在规定范围中。至于含锌量很高的ZL401 铝合金却具有较好的铸造性能和机械性能,切削加工也比较好。 5. 铁(Fe) 在所有铝合金中都含有害杂质。因铝合金中含铁量太高时,铁以FeAl3、Fe2Al7和Al-Si-Fe 的片状或针状组织存在于合金中,降低机械性能,这种组织还会使合金的流动性减低,热裂性增大,

影响密封性能的几大因素

影响密封性能的几大因素 .运动速度 运动速度很低(<0.03m/s)时,要考虑设备运行的平稳性和是否出现"爬行"现象。运动速度很高(>0.8m/s)时,起润滑作用的油膜可能被破坏,油封因得不到很好的润滑而摩擦发热,导致寿命大大降低。 建议聚氨脂或橡塑油封在0.03m/s~0.8m/s速度范围内工作比较适宜。 2.温度 低温会使聚氨脂或橡塑油封弹性降低,造成泄露,甚至整个油封变得发硬发脆。高温会使油封体积膨胀、变软,造成运动时油封摩擦阻力迅速增加和耐压能力降低。建议聚氨脂或橡塑油封连续工作温度范围-10℃~+80℃。 3.工作压力 油封有最低启动压力(minimum service pressure)要求。低压工作须选用低摩擦性能、启动阻力小的油封。在2.5MPa以下,聚氨脂油封并不适合;高压时要考虑油封受压变形的情况,需用防挤出挡圈,沟槽加工方面也有特殊要求。 此外,不同材质的油封具有不同的最佳工作压力范围。对于聚氨脂油封的最佳工作压力范围为2.5~31.5MPa。 温度、压力对密封性能的影响是互相关联的,因此要做综合考虑。见表: 进口聚氨脂PU材料 最大工作压力 最大温度范围温度范围 运动速度-25~+80 -25~+110 0.5m/s 28MPa 25MPa 0.15m/s 40MPa 35MPa 4.工作介质 除了严格按照生产厂家的推荐意见选取工作介质外,保持工作介质的清洁至关重要。油液的老化或污染不仅会使系统中的元件发生故障,加快油封的老化和摩损,而且其中的脏物可能划伤或嵌入油封,使密封失效。因此,必须定期地检查油液品质及其清洁度,并按设备的维护规范更换滤油器或油液。在油缸里油液中残留的空气经高压压缩会产生高温使油封烧坏,甚至炭化。为避免这种情况发生,在液压系统运行初始时,应进行排气处理。液压缸也应在低压慢速运行数分钟,确认已排完油液中残留的空气,方可正常工作。 5.侧向负载 活塞上一般必须装支承环,以保证油缸能承受较大的负载。密封件和支承环起完全不同的作用,密封件不能代替支承环负载。有侧向力的液压缸,必须加承载能力较强的支承环(重载时可用金属环),以防油封在偏心的条件下工作引起泄露和异样磨损。 6.液压冲击 产生液压冲击的因素很多,如挖掘机挖斗突然碰到石头,吊机起吊或放下重物的瞬间。除外在因素外,对于高压大流量液压系统,执行元件(液压缸或液压马达等)换向时,如果换向阀性能不太好,很容易产生液压冲击。液压冲击产生的瞬间高压可能是系统工作压力的几倍,这样高的压力在极短时间内会将油封撕裂或将其局部挤入间隙之内,造成严重损坏。一般有液压冲击的油缸应在活塞杆上安装缓冲环和挡圈。缓冲环装在油封的前面吸收大部分冲击压力,挡圈防止油封在高压下挤入间隙,根部被咬坏。 补充一点: 密封部位零件表面的加工粗糙度对密封性能有极大的影响。在设计动密封时,与密封件接触的旋

各种元素对钢材性能的影响

1、碳(C):钢中含碳量增加,屈服点与抗拉强度升高,但塑性与冲击性降低,当碳量0、23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0、20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性与时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂与脱氧剂,所以镇静钢含有0、15-0、30%的硅。如果钢中含硅量超过0、50-0、60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点与抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1、0-1、2%的硅,强度可提高15-20%。硅与钼、钨、铬等结合,有提高抗腐蚀性与抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰就是良好的脱氧剂与脱硫剂,一般钢中含锰0、30-0、50%。在碳素钢中加入0、70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度与硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。 4、磷(P):在一般情况下,磷就是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0、045%,优质钢要求更低些。 5、硫(S):硫在通常情况下也就是有害元素。使钢产生热脆性,降低钢的延展性与韧性,在锻造与轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0、055%,优质钢要求小于0、040%。在钢中加入0、08-0、20%的硫,可以改善切削加工性,通常称易切削钢。 6、铬(Cr):在结构钢与工具钢中,铬能显著提高强度、硬度与耐磨性,但同时降低塑性与韧性。铬又能提高钢的抗氧化性与耐腐蚀性,因而就是不锈钢,耐热钢的重要合金元素。 7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性与韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈与耐热能力。但由于镍就是较稀缺的资源,故应尽量采用其她合金元素代用镍铬钢。 8、钼(Mo):钼能使钢的晶粒细化,提高淬透性与热强性能,在高温时保持足够的强度与抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。 9、钛(Ti):钛就是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力;降低时效敏感性与冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。10、钒(V):钒就是钢的优良脱氧剂。钢中加0、5%的钒可细化组织晶粒,提高强度与韧性。钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀能力。 11、钨(W):钨熔点高,比重大,就是贵生的合金元素。钨与碳形成碳化钨有很高的硬度与耐磨性。在工具钢加钨,可显著提高红硬性与热强性,作切削工具及锻模具用。 12、铌(Nb):铌能细化晶粒与降低钢的过热敏感性及回火脆性,提高强度,但塑性与韧性有所下降。在普通低合金钢中加铌,可提高抗大气腐蚀及高温下抗氢、氮、氨腐蚀能力。铌可改善焊接性能。在奥氏体不锈钢中加铌,可防止晶间腐蚀现象。 13、钴(Co):钴就是稀有的贵重金属,多用于特殊钢与合金中,如热强钢与磁性材料。 14、铜(Cu):武钢用大冶矿石所炼的钢,往往含有铜。铜能提高强度与韧性,特别就是大气腐蚀性能。缺点就是在热加工时容易产生热脆,铜含量超过0、5%塑性显著降低。当铜含量小于0、50%对焊接性无影响。 15、铝(Al):铝就是钢中常用的脱氧剂。钢中加入少量的铝,可细化晶粒,提高冲击韧性,如作深冲薄板的08Al钢。铝还具有抗氧化性与抗腐蚀性能,铝与铬、硅合用,可显著提高钢的高温不起皮性能与耐高温腐蚀的能力。铝的缺点就是影响钢的热加工性能、焊接性能与切削加

铝中合金元素和杂质对性能的影响

铝合金熔铸工艺及常见的缺陷 一、铸造概论 在铸造合金中,铸造铝合金的应用最为广泛,是其他合金所无法比拟的,铝合金铸造的种类如下: 由于铝合金各组元不同,从而表现出合金的物理、化学性能均有所不同,结晶过程也不尽相同。故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可范围内减少铸造缺陷的产生,从而优化铸件。 1、铝合金铸造工艺性能 铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。流动性、收缩性、气密性、铸造应力、吸气性。铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。 (1) 流动性 流动性是指合金液体充填铸型的能力。流动性的大小决定合金能否铸造复杂的铸件。在铝合金中共晶合金的流动性最好。 影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、

金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。 实际生产中,在合金已确定的情况下,除了强化熔炼工艺(精炼与除渣)外,还必须改善铸型工艺性(砂模透气性、金属型模具排气及温度),并在不影响铸件质量的前提下提高浇注温度,保证合金的流动性。 (2) 收缩性 收缩性是铸造铝合金的主要特征之一。一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。 铝合金收缩大小,通常以百分数来表示,称为收缩率。 ①体收缩 体收缩包括液体收缩与凝固收缩。 铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。集中缩孔的孔径大而集中,并分布在铸件顶部或截面厚大的热节处。分散性缩孔形貌分散而细小,大部分分布在铸件轴心和热节部位。显微缩孔肉眼难以看到,显微缩孔大部分分布在晶界下或树枝晶的枝晶间。

影响材料性能的因素

1.0影响材料性能的因素 2.01.1碳当量对材料性能的影响字串9 决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。当碳当量()较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,石墨形状恶化。这样的石墨使金属基体能够承受负荷的有效面积减少,而且在承受负荷时产生应力集中现象,使金属基体的强度不能正常发挥,从而降低铸铁的强度。在材料中珠光体具有好的强度、硬度,而铁素体则质底较软而且强度较低。当随着 C、Si的量提高,会使珠光体量减少,铁素体量增加。因此,碳当量的提高将在石墨形状和基体组织两方面影响铸铁铸件的抗拉强度和铸件实体的硬度。在熔炼过程控制中,碳当量的控制是解决材料性能的一个很重要的因素。 1.2合金元素对材料性能的影响 在灰铸铁中的合金元素主要是指Mn、Cr、Cu、Sn、Mo等促进珠光体生成元素,这些元素含量会直接影响珠光体的含量,同时由于合金元素的加入,在一定程度上细化了石墨,使基体中铁素体的量减少甚至消失,珠光体则在一定的程度上得到细化,而且其中的铁素体由于有一定量的合金元素而得到固溶强化,使铸铁总有较高的强度性能。在熔炼过程控制中,对合金的控制同样是重要的手段。 1.3炉料配比对材料的影响字串4 过去我们一直坚持只要化学成分符合规范要求就应该能够获得符合标准机械性能材料的观点,而实际上这种观点所看到的只是常规化学成分,而忽略了一些合金元素和有害元素在其中所起的作用。如生铁是Ti的主要来源,因此生铁使用量的多少会直接影响材料中Ti的含量,对材料机械性能产生很大的影响。同样废钢是许多合金元素的来源,因此废钢用量对铸铁的机械性能的影响是非常直接的。在电炉投入使用的初期,我们一直沿用了冲天炉的炉料配比(生铁:25~35%,废钢:30~35%)结果材料的机械性能(抗拉强度)很低,当我们意识到废钢的使用量会对铸铁的性能有影响时及时调整了废钢的用量之后,问题很快得到了解决,因此废钢在熔化控制过程中是一项非常重要的控制

各元素对钢材的影响

( a )碳;含碳量越高,刚的硬度就越高,但是它的可塑性和韧性就越差. ( b )硫;是钢中的有害杂物,含硫较高的钢在高温进行压力加工时,容易脆裂,通常叫作热脆性. ( c )磷;能使钢的可塑性及韧性明显下降,特别的在低温下更为严重,这种现象叫作冷脆性.在优 质钢中,硫和磷要严格控制.但从另方面看,在低碳钢中含有较高的硫和磷,能使其切削易断,对改 善钢的可切削性是有利的. ( d )锰;能提高钢的强度,能消弱和消除硫的不良影响,并能提高钢的淬透性,含锰量很高的高合 金钢(高锰钢)具有良好的耐磨性和其它的物理性能. ( e)硅;它可以提高钢的硬度,但是可塑性和韧性下降,电工用的钢中含有一定量的硅,能改善软 磁性能. ( f)钨;能提高钢的红硬性和热强性,并能提高钢的耐磨性. 冷镦钢成型用钢,冷镦是在室温下采用一次或多次冲击加载,广泛用于生产螺钉,销钉,螺母等标准件.冷镦 工艺可节省原料,降成本,而且通过冷作硬化提高工作的抗拉强度,改善性能,冷镦用钢必须其有良好的冷 顶锻性能,钢中S和P等杂质含量减少,对钢材的表面质量要求严格,经常采用优质碳钢,若钢的含碳钢大 于0.25%,应进行球化退火热处理,以改善钢的冷镦性能. 力学性能要求 1.屈服强度σs及变形抗力尺可能的小,这样可使单位变形力相应减小,以延长模具寿命。 2.钢材的冷变形性能要好,即材料应有较好的塑性,较低的硬度,能在较大的变形程度下不致引起产品开裂。3.钢材的加工硬化敏感性尽可能的低,这样不致使冷镦变形过程中的变形力太大。 二、化学成份要求冷镦钢 1.碳(C)碳是影响钢材冷塑性变形的最主要元素。含碳量越高,钢的强度越高,而塑性越低。实践证明,含碳量每提高0.1%,其屈服强度σs约提高27.4Mpa;抗拉强度σb提高58.8~78.4Mpa;而伸 长率δ则降低4.3%,断面收缩率ψ降低7.3%。由此可见,钢中含碳量对于钢材的冷塑性变形性能的 影响是很大的。在生产实际中,冷镦,冷挤用钢的含碳量大于0.25%时,要求钢材在拉拔前要进行球 化退火。对于变形程度为65%~80%的冷镦件,不经过中间退火而进行三次镦锻变形时,其含碳量不应超过0.4%。2.锰(Mn)锰在钢的冶炼中与氧化铁作用(Mn+FeO→MnO+Fe),主要是为钢脱 氧而加入。锰在钢中硫化铁作用(Mn+FeS→MnS+Fe),能减少硫对钢的有害作用。所形成的硫化锰,可改善钢的切削性能。锰使钢的抗拉强度σb和屈服强度σs有所提高,塑性有所降低,对于钢的冷塑 性变形是不利的。但是锰对变形力的影响仅为碳的1/4左右。所以,除特殊要求外,碳钢的含锰量,不宜超过0.9%。3.硅(Si)硅是钢在冶炼时脱氧剂的残余物。当钢中含硅量增加0.1%时,抗拉 强度σb提高13.7Mpa。经验表明,含硅量超过0.17%且含碳量较高时,对钢材的塑性降低有很大的影响。在钢中适当增加硅的含量,对钢材的综合力学性能,特别是弹性极限有利,还可增加钢的耐蚀性。但是钢中含硅量超过0.15%时,使钢急剧形成非金属夹杂物。高硅钢即使退火,也不会软化,降低钢 的冷塑性变形性能。因此,除了产品有高强度性能要求外,冷镦钢总是尽量要求减少硅的含量。 4.硫(S)硫是有害杂质。钢中的硫在冷镦时会使金属的结晶颗粒彼此分离引起裂纹,硫的存在还促使钢产生热脆和生锈,因此,含硫量应小于0.055%。优质钢应小于0.04%,由于硫、磷和锰的化合物能改善切削性能、冷镦螺母用钢的含硫量可放宽到0.08~0.12%,以有利于攻螺纹。但一般没有专为螺

铸造多晶硅中的金属杂质及其对硅片性能的影响aaa

铸造多晶硅中的金属杂质及其对硅片性能的影响 摘要: 关键词:多晶硅铸造多晶硅金属杂质 正文: 金属杂质特别是过渡金属杂质,在原生铸锭中的浓度般都低于1×10”cm 3,但是它们无论是以单个原子形式,或者以沉淀形式出现,都对太阳能电池的转换效率有重要的影响。近期由于硅料中所含金属杂质超标,导致多个晶锭出现电阻率严重异常而整锭报废,另外还出现较多晶棒切片后的硅片电阻率出现较大波动,对公司的经济效益带来严重的影响。下面对铸造多晶硅中金属杂质的性质及其对硅片性能的影响进行详细的分析,为多晶硅片的生产及异常硅片的处理提供一定的参考。 1.铸造多晶硅中金属杂质的来源 铸造多晶硅中的金属杂质主要有Fe,Al,Ga,Cu,Co,Ni等,铸造多晶硅中金属杂质的来源主要有以下几个方面: A.原生硅料中含有一定量的金属杂质,这也是金属杂质的一个主要来源。目前由于硅料异常紧缺,导致一些含杂质较多的硅料在市场上 流通,造成铸出的晶锭出现问题的事故时有发生。 B.在硅料的清洗,铸锭及切片的整个过程中由于使用各种金属器件接触,导致金属杂质的引入。这也是铸造多晶硅中金属杂质含量偏高 的一个主要原因。整个工艺流程中引入金属杂质的途径有很多,例 如硅料清洗过程中清洗液的残留,晶锭转运过程中使用的不锈钢转 运车,多晶硅棒破碎过程中所使用的铁锤等。 2.过渡族金属在硅片中的扩散和溶解 硅中金属杂质的引入可以在晶体生长过程中,或者在硅片的抛光、化学处理、离子注入、氧化或其他处理过程中首先在表面附着,随后后续的高温热处理过程中扩散进入硅基体。 A.金属杂质在硅锭中的分布 在高温(>800℃)下,过渡族金属一般都有很快的扩散速度而溶解度则相对较小。Cu、Ni为快速扩散杂质,在高温下,Cu、Ni的扩散速率甚至可以接近于

化学成分对钢材性能的影响

列表整理化学成分对钢材性能的影响 钢是以铁和碳为主要成分的合金,虽然碳和其他元素所占比例甚少,但却左右着钢材的性能。 1、碳 碳时各种钢中的重要元素之一,在碳素结构钢中则是铁以外的最主要元素。碳是形成钢材强度的主要成分,随着含碳量的提高,钢的强度逐渐增高,而塑性和韧性下降,冷弯性能、焊接性能和抗锈性能等也变劣。碳素钢按碳含量区分,小于0.25%的为低碳钢,介于0.25%和0.6%之间的为中碳钢,大于0.6%的为高碳钢。含碳量超过0.3%时,钢材的抗拉强度很高,但却没有明显的屈服点,且塑性很小,含碳量超过0.2%时,钢材的焊接性能开始恶化。因此,规范推荐的钢材,含碳量均不超过0.22%,对于焊接结构则严格控制在0.2%以内。 2、硫 硫是有害元素,常以硫化铁形式夹杂于钢中。当温度达800~1000℃时,硫化铁会熔化使钢材变脆,因而在进行焊接或热加工时,有可能引发热裂纹,称为热脆。此外,硫还会降低钢材的冲击韧性、疲劳强度、抗锈蚀性能和焊接性能等。非金属硫化物夹杂经热轧加工后还会在厚钢板中形成局部分层现象,在采用焊接连接的节点中,沿板厚方向承受拉力时,会发生层状撕裂破坏。因而应严格限制

钢材中的含硫量,随着钢材牌号和质量等级的提高,含硫量的限制值由0.05%依次降至0.025%,厚度方向性能钢板(抗层状撕裂钢板)的含硫量更限制在0.01以下。 3、磷 磷可提高钢的强度和抗锈蚀能力,但却严重地降低钢的塑性、韧性、冷弯性能和焊接性能,特别是在温度较低时促使钢材变脆,称为冷脆。因此,磷的含量也要严格控制,随着钢材牌号和质量等级的提高,含磷量的限值由0.045%依次降至0.025%。但是当采用特殊的冶炼工艺时,磷可作为一种合金元素来制造含磷的低合金钢,此时其含量可达0.12%~0.13%。 4、锰 锰是有益元素,在普通碳素钢中,它是一种弱脱氧剂,可提高钢材强度,消除硫对钢的热脆影响,改善钢的冷脆倾向,同时不显著降低塑性和韧性。锰还是我国低合金钢的主要合金元素,其含量为0.8%~1.8%。但锰对焊接性能不利,因此含量也不宜过多。 5、硅 硅是有益元素,在普通碳素钢中,它是一种强脱氧剂,常与锰共同除氧,生产镇静钢。适量的硅,可以细化晶粒,提高钢的强度,而对塑性、韧性、冷弯性能和焊接性能无显著不良影响。硅的含量在一般镇静钢中为0.12%~0.3%,

各种元素对钢材性能的影响

1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。 5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。 6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。 8、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。 9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。10、钒(V):钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶粒,提高强度和韧性。钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀能力。 11、钨(W):钨熔点高,比重大,是贵生的合金元素。钨与碳形成碳化钨有很高的硬度和耐磨性。在工具钢加钨,可显著提高红硬性和热强性,作切削工具及锻模具用。 12、铌(Nb):铌能细化晶粒和降低钢的过热敏感性及回火脆性,提高强度,但塑性和韧性有所下降。在普通低合金钢中加铌,可提高抗大气腐蚀及高温下抗氢、氮、氨腐蚀能力。铌可改善焊接性能。在奥氏体不锈钢中加铌,可防止晶间腐蚀现象。 13、钴(Co):钴是稀有的贵重金属,多用于特殊钢和合金中,如热强钢和磁性材料。 14、铜(Cu):武钢用大冶矿石所炼的钢,往往含有铜。铜能提高强度和韧性,特别是大气腐蚀性能。缺点是在热加工时容易产生热脆,铜含量超过0.5%塑性显著降低。当铜含量小于0.50%对焊接性无影响。 15、铝(Al):铝是钢中常用的脱氧剂。钢中加入少量的铝,可细化晶粒,提高冲击韧性,如作深冲薄板的08Al钢。铝还具有抗氧化性和抗腐蚀性能,铝与铬、硅合用,可显著提高钢的高温不起皮性能和耐高温腐蚀的能力。铝的缺点是影响钢的热加工性能、焊接性能和切削

杂质对金属的影响

杂质对金属的影响 铜元素 铝铜合金富铝部分548时,铜在铝中的最大溶解度为5.65%,温度降到302时,铜的溶解度为0.45%。铜是重要的合金元素,有一定的固溶强化效果,此外时效析出的CuAl2有着明显的时效强化效果。铝合金中铜含量通常在2.5%~5%,铜含量在4%~6.8%时强化效果最好,所以大部分硬铝合金的含铜量处于这范围。 铝铜合金中可以含有较少的硅、镁、锰、铬、锌、铁等元素。 硅元素 Al—Si合金系富铝部分在共晶温度577时,硅在固溶体中的最大溶解度为1.65%。尽管溶解度随温度降低而减少,介这类合金一般是不能热处理强化的。铝硅合金具有极好的铸造性能和抗蚀性。 若镁和硅同时加入铝中形成铝镁硅系合金,强化相为MgSi。镁和硅的质量比为1.73:1。设计Al-Mg-Si系合金成分时,基体上按此比例配置镁和硅的含量。有的Al-Mg-Si合金,为了提高强度,加入适量的铜,同时加入适量的铬以抵消铜对抗蚀性的不利影响。 Al-Mg2Si合金系合金平衡相图富铝部分Mg2Si在铝中的最大溶解度为1.85%,且随温度的降低而减速小。 变形铝合金中,硅单独加入铝中只限于焊接材料,硅加入铝中亦有一定的强化作用。 镁元素https://www.sodocs.net/doc/927323566.html,/keylist/o1729.html Al-Mg合金系平衡相图富铝部分尽管溶解度曲线表明,镁在铝中的溶解度随温度下降而大大地变小,但是在大部分工业用变形铝合金中,镁的含量均小于6%,而硅含量也低,这类合金是不能热处理强化的,但是可焊性良好,抗蚀性也好,并有中等强度。 镁对铝的强化是明显的,每增加1%镁,抗拉强度大约升高瞻远34MPa。如果加入1%以下的锰,可能补充强化作用。因此加锰后可降低镁含量,同时可降低热裂倾向,另外锰还可以使Mg5Al8化合物均匀沉淀,改善抗蚀性和焊接性能。 锰元素 Al-Mn合金系平平衡相图部分在共晶温度658时,锰在固溶体中的最大溶解度为1.82%。合金强度随溶解度增加不断增加,锰含量为0.8%时,延伸率达最大值。Al-Mn合金是非时效硬化合金,即不可热处理强化。 锰能阻止铝合金的再结晶过程,提高再结晶温度,并能显著细化再结晶晶粒。再结晶晶粒的细化主要是通过MnAl6化合物弥散质点对再结晶晶粒长大起阻碍作用。MnAl6的另一作用是能溶解杂质铁,形成(Fe、Mn)Al6,减小铁的有害影响。 锰是铝合金的重要元素,可以单独加入形成Al-Mn二元合金,更多的是和其它合金元素一同加入,因此大多铝合金中均含有锰。 锌元素 Al-Zn合金系平衡相图富铝部分275时锌在铝中的溶解度为31.6%,而在125时其溶解度则下降到5.6%。 锌单独加入铝中,在变形条件下对铝合金强度的提高十分有限,同时存在应力腐蚀开裂、倾向,因而限制了它的应用。 在铝中同时加入锌和镁,形成强化相Mg/Zn2,对合金产生明显的强化作用。Mg/Zn2含量从0.5%提高到12%时,可明显增加抗拉强度和屈服强度。镁的含量超过形成Mg/Zn2相所需超硬铝合金中,锌和镁的比例控制在2.7左右时,应力腐蚀开裂抗力最大。

相关主题