搜档网
当前位置:搜档网 › 第8讲几何中的计数问题(二)

第8讲几何中的计数问题(二)

第8讲几何中的计数问题(二)
第8讲几何中的计数问题(二)

第八讲几何中的计数问题(二)

我们在已经学会数线段、数角、数三角形的基础上,通过本讲学习数长方形,正方形及数综合图形来进一步提高观察和思考问题的能力,学会在观察、思考、分析中总结归纳出解决问题的规律和方法.

一、数长方形

例1如下图,数一数下列各图中长方形的个数?

分析图(Ⅰ)中长方形的个数与AB边上所分成的线段的条数有关,每一条线段对应一个长方形,所以长方形的个数等于AB边上线段的条数,即长方形个数为:

4+3+2+1=10(个).

图(Ⅱ)中AB边上共有线段4+3+2+1=10条. BC边上共有线段:2+1=3(条),把AB上的每一条线段作为长,BC边上每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以图(Ⅱ)中共有长方形为:

(4+3+2+1)×(2+1)=10×3=30(个).

图(Ⅲ)中,依据计算图(Ⅱ)中长方形个数的方法:可得长方形个数为:(4+3+2+1)×(3+2+1)=60(个).

解:图(Ⅰ)中长方形个数为4+3+2+1=10(个).

图(Ⅱ)中长方形个数为:

(4+3+2+1)×(2+1)=10×3=30(个).

图(Ⅲ)中长方形个数为:

(4+3+2+1)×(3+2+1)=10×6=60(个).

小结:一般情况下,如果有类似图Ⅲ的任一个长方形一边上有n-1

个分点(不包括这条边的两个端点),另一边上有m-1个分点(不包括这条边上的两个端点),通过这些点分别作对边的平行线且与另一边相交,这两组平行线将长方形分为许多长方形,这时长方形的总数为:

(1+2+3+…+m)×(1+2+3+…+n).

例2 如右图数一数图中长方形的个数.

解:AB边上分成的线段有:

5+4+3+2+1=15.

BC边上分成的线段有:

3+2+1=6.

所以共有长方形:

(5+4+3+2+1)×(3+2+1)=15×6=90(个).

二、数正方形

例3 数一数下页各个图中所有正方形的个数.(每个小方格为边长为1的正方形)

分析图Ⅰ中,边长为1个长度单位的正方形有:

2×2=4(个),边长为2个长度单位的正方形有:

1×1=1(个).

所以,正方形总数为1×1+2×2=1+4=5(个).

图Ⅱ中,边长为1个长度单位的正方形有3×3=9(个);

边长为2个长度单位的正方形有:2×2=4(个);

边长为3个长度单位的正方形有1×1=1(个).

所以,正方形的总数为:1×1+2×2+3×3=14(个).

图Ⅲ中,边长为1个长度单位的正方形有:

4×4=16(个);

边长为2个长度单位的正方形有:3×3=9(个);

边长为3个长度单位的正方形有:2×2=4(个);

边长为4个长度单位的正方形有:1×1=1(个);

所以,正方形的总数为:

1×1+2×2+3×3+4×4=30(个).

图Ⅳ中,边长为1个长度单位的正方形有:

5×5=25(个);

边长为2个长度单位的正方形有:4×4=16(个);

边长为3个长度单位的正方形有:3×3=9(个);

边长为4个长度单位的正方形有:2×2=4(个);

边长为5个长度单位的正方形有:1×1=1(个).

所有正方形个数为:

1×1+2×2+3×3+4×4+5×5=55(个).

小结:一般地,如果类似图Ⅳ中,一个大正方形的边长是n个长度单位,那么其中边长为1个长度单位的正方形个数有:n×n=n2(个),边长为2个长度单位的正方形个数有:(n-1)×(n-1)=(n-1)2(个)…;边长为(n-1)个长度单位的正方形个数有:2×2=22(个),边长为n

个长度单位的正方形个数有:1×1=1(个).所以,这个大正方形内所有正方形总数为:12+22+32+…+n2(个).

例4 如右图,数一数图中有多少个正方形(其中每个小方格都是边长为1个长度单位的正方形).

分析为叙述方便,我们规定最小正方形的边长为1个长度单位,又称为基本线段,图中共有五类正方形.

①以一条基本线段为边的正方形个数共有:

6×5=30(个).

②以二条基本线段为边的正方形个数共有:

5×4=20(个).

③以三条基本线段为边的正方形个数共有:

4×3=12(个).

④以四条基本线段为边的正方形个数共有:

3×2=6(个).

⑤以五条基本线段为边的正方形个数共有:

2×1=2(个).

所以,正方形总数为:

6×5+5×4+4×3+3×2+2×1

=30+20+12+6+2=70(个).

小结:一般情况下,若一长方形的长被分成m等份,宽被分成n等份,(长和宽上的每一份是相等的)那么正方形的总数为(n<m):mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)·1

显然例4是结论的特殊情况.

例5 如下图,平面上有16个点,每个点上都钉上钉子,形成4×4的正方形钉阵,现有许多皮筋,问能套出多少个正方形.

分析这个问题与前面数正方形的个数是不同的,因为正方形的边不是先画好的,而是要我们去确定的,所以如何确定正方形的边长及顶点,这是我们首先要思考的问题.很明显,我们能围成上图Ⅰ那样正向正方形

14个,除此之外我们还能围出图Ⅱ那样斜向正方形4个,图Ⅲ那样斜向正方形2个.但我们不可能再围出比它们更小或更大的斜向正方形,所以斜向正方形一共有4+2=6个,总共可以围出正方形有:14+6=20(个).

我们把上述结果列表分析可知,对于n×n个顶点,

可作出斜向正方形的个数恰好等于(n-1)×(n-1)个顶点时的所有正方形的总数.

三、数三角形

例6 如右图,数一数图中三角形的个数.

分析这样的图形只能分类数,可以采用类似数正方形的方法,从边长为一条基本线段的最小三角形开始.

Ⅰ.以一条基本线段为边的三角形:

①尖朝上的三角形共有四层,它们的总数为:

W①上=1+2+3+4=10(个).

②尖朝下的三角形共有三层,它们的总数为:

W①下=1+2+3=6(个).

Ⅱ.以两条基本线段为边的三角形:

①尖朝上的三角形共有三层,它们的总数为:

W②上=1+2+3=6(个).

②尖朝下的三角形只有一个,记为W②下=1(个).

Ⅲ.以三条基本线段为边的三角形:

①尖朝上的三角形共有二层,它们的总数为:

W③上=1+2=3(个).

②尖朝下的三角形零个,记为W③下=0(个).

Ⅳ.以四条基本线段为边的三角形,只有一个,记为:

W④上=1(个).

所以三角形的总数是10+6+6+1+3+1=27(个).

我们还可以按另一种分类情况计算三角形的个数,即按尖朝上与尖朝下的三角形的两种分类情况计算三角形个数.

Ⅰ.尖朝上的三角形共有四种:

W①下=1+2+3+4=10

W②上=1+2+3=6

W③上=1+2=3

W④上=1

所以尖朝上的三角形共有:10+6+3+1=20(个).

Ⅱ.尖朝下的三角形共有二种:

W①下=1+2+3=6

W②下=1

W③下=0

W④下=0

则尖朝下的三角形共有:6+1+0+0=7(个)

所以,尖朝上与尖朝下的三角形一共有:

20+7=27(个).

小结:尖朝上的三角形共有四种.每一种尖朝上的三角形个数都是由1开始的连续自然数的和,其中连续自然数最多的和中最大的加数就是三角形每边被分成的基本线段的条数,依次各个连续自然数的和都比上一次少一个最大的加数,直到1为止.

尖朝下的三角形的个数也是从1开始的连续自然数的和,它的第一个和恰是尖朝上的第二个和,依次各个和都比上一个和少最大的两个加数,以此类推直到零为止.

例7 页图数一数图中有多少个三角形.

解:参考例6所总结的规律把图中三角形分成尖朝上和尖朝下的两类:

Ⅰ.尖朝上的三角形有五种:

(1)W①上=8+7+6+5+4=30

(2)W②上=7+6+5+4=22

(3)W③上=6+5+4=15

(4)W④上=5+4=9

(5)W⑤上=4

∴尖朝上的三角形共有:30+22+15+9+4=80(个).

Ⅱ.尖朝下的三角形有四种:

(1)W①下=3+4+5+6+7=25

(2)W②下=2+3+4+5=14

(3)W③下=1+2+3=6

(4)W④下=1

尖朝下的三角形共有 25+14+6+1=46(个).

∴所以尖朝上与尖朝下的三角形总共有

80+46=126(个).

四、数综合图形

前面我们已对较基本、简单的图形的数法作了较系统的研究,寻找到了一般规律.而对于较复杂的图形即综合图形的数法,我们仍需遵循不重复、不遗漏的原则,采用能按规律数的,按规律数,能按分类数的就按分类数,或者两者结合起来就一定能把图形数清楚了.

例7 页图,数一数图中一共有多少个三角形.

分析图中有若干个大小不同、形状各异但有规律的三角形.因此适合分类来数.首先要找出三角形的不同的种类?每种相同的三角形各有多少个?

解:根据图中三角形的形状和大小分为六类:

Ⅰ.与△ABE相同的三角形共有5个;

Ⅱ.与△ABP相同的三角形共有10个;

Ⅲ.与△ABF相同的三角形共有5个;

Ⅳ.与△AFP相同的三角形共有5个;

Ⅴ.与△ACD相同的三角形共有5个;

Ⅵ.与△AGD相同的三角形共有5个.

所以图中共有三角形为5+10+5+5+5+5=35(个).

例8 图,数一数图中一共有多少个三角形?

分析这是个对称图形,我们可按如下三步顺序来数:

第一步:大矩形ABCD可分为四个相同的小矩形:AEOH、EBFO、OFCG、HOGD,每个小矩形内所包含的三角形个数是相同的.

第二步:每两个小矩形组合成的图形共有四个,如:ABFH、EBCG、HFCD、AEGD,每一个这样的图形中所包含的三角形个数是相同的.

第三步:每三个小矩形占据的部分图形共有四个:如△ABD、△ADC、△ABC、△DBC,每一个这样的图形中所包含的三角形个数是相同的.

最后把每一步中每个图形所包含三角形个数求出相加再乘以4就是整个图形中所包含的三角形的个数.

解:Ⅰ.在小矩形AEOH中:

①由一个三角形构成的有8个.

②由两个三角形构成的三角形有5个.

③由三个或三个以上三角形构成的三角形有5个.

这样在一个小矩形内有17个三角形.

Ⅱ.在由两个小矩形组合成的图形中,如矩形AEGD,共有5个三角形.

Ⅲ.由三个小矩形占据的部分图形中,如△ABC,共有2个三角形.

所以整个图形共有三角形个数是:

(8+5+5+5+2)×=25×4=100(个).

习题八

1.下图中有多少个正方形?

2.下图中有多少个长方形?

3.下图中有多少个三角形?

4.下图中有多少个长方形?

5.下图(1)、(2)中各有多少个三角形?

6.下图中有多少个三角形?

7.下图中有多少个三角形?

8.下图中有多少个正方形?

9.下图中有多少个长方体?

习题八的解答在这里

1.共有正方形54个.

2.共有长方形136个.

3.共有三角形128个.

4.共有长方形133个.

5.(1)共有三角形78个.

(2)共有三角形58个.

6.共有三角形45个.

7.共有三角形36个.

8.共有正方形24个.

9.共有长方体540个.

微专题26解析几何中的最值与范围问题(教学案)

微专题26 解析几何中的最值与范围问题 1. 利用数形结合或三角换元等方法解决直线与圆中的部分范围问题. 2. 构造函数模型研究长度及面积相关的范围与最值问题. 3. 根据条件或几何特征构造不等关系解决与离心率相关的范围问题. 4. 熟悉线段的定比分点、弦长、面积等问题的处理手段,深刻体会数形结合、等价转化的数学思想方法的运用. 考题导航 利用数形结合或三角换元等方法解决直线与圆 2. 已知实数x 、y 满足方程x 2+y 2-4x +1=0.则y x 的最大值为________;y -x 的最小 值为________;x 2+y 2的最小值为________. 1. 在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 1. 已知A 、B 分别是椭圆x 36+y 20=1长轴的左、右端点,F 是椭圆的右焦点,点P 在 椭圆上,且位于x 轴的上方,PA ⊥PF.设M 是椭圆长轴AB 上的一点,点M 到直线AP 的距离等于MB ,则椭圆上的点到点M 的距离d 的最小值为________. 1. 已知双曲线为C :x 24-y 2 =1,P 为双曲线C 上的任意一点.设点A 的坐标为(3,0), 则PA 的最小值为________.

1. 如图,椭圆的中心在坐标原点,焦点在x 轴上,A 1,A 2,B 1,B 2为椭圆的顶点,F 2为右焦点,延长B 1F 2与A 2B 2交于点P ,若∠B 1PA 2为钝角,则该椭圆离心率的取值范围是________. 1. 椭圆M :x 2 a 2+y 2 b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上的任意一点, 且|PF 1→|·|PF 2→|的最大值的取值范围是[2c 2 ,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是_______. 1. 如图,在平面直角坐标系xOy 中,椭圆C :x a 2+y b 2=1(a >b >0)的左、右焦点分别 为F 1、F 2,P 为椭圆C 上的一点(在x 轴上方),连结PF 1并延长交椭圆C 于另一点Q ,设PF 1→ =λF 1Q → .若PF 2垂直于x 轴,且椭圆C 的离心率e ∈??? ?12,22,求实数λ的取值范围.

暑假立体几何中的距离问题

立体几何中的距离问题 【要点精讲】 1距离 空间中的距离是立体几何的重要内容,其内容主要包括:点点距,点线距,点面距,线 线距,线面距,面面距。其中重点是点点距、点线距、点面距以及两异面直线间的距离?因此,掌握点、线、面之间距离的概念,理解距离的垂直性和最近性,理解距离都指相应线段的长度,懂得几种距离之间的转化关系,所有这些都是十分重要的 求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。 两条异面直线的距离 两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离; 求法:如果知道两条异面直线的公垂线,那么就转化成求公垂线段的长度 点到平面的距离 平面外一点P在该平面上的射影为P',则线段PP的长度就是点到平面的距离;求 法:①"一找二证三求”,三步都必须要清楚地写出来。(2)等体积法。 直线与平面的距离: 一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的 距离; 平行平面间的距离: 两个平行平面的公垂线段的长度,叫做两个平行平面的距离。 求距离的一般方法和步骤:应用各种距离之间的转化关系和“平行移动”的思想方法, 把所求的距离转化为点点距、点线距或点面距求之,其一般步骤是:①找出或作出表示有关 距离的线段;②证明它符合定义;③归到解某个三角形. 若表示距离的线段不容易找出或作出,可用体积等积法计算求之。 异面直线上两点间距离公式,如果两条异面直线a、b所成的角为,它们的公垂线AA '的长度为d,在a上有线段A' E = m , b上有线段AF = n,那么EF = 、d2 m2 n2 2mncos (“土”符号由实际情况选定)

小学数学《几何中的计数问题(二)》练习题(含答案)

小学数学《几何中的计数问题(二)》练习题(含答案) 一、数长方形 例1如下图,数一数下列各图中长方形的个数? 分析图(Ⅰ)中长方形的个数与AB边上所分成的线段的条数有关,每一条线段对应一个长方形,所以长方形的个数等于AB边上线段的条数,即长方形个数为: 4+3+2+1=10(个). 图(Ⅱ)中AB边上共有线段4+3+2+1=10条. BC边上共有线段:2+1=3(条),把AB上的每一条线段作为长,BC边上每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以图(Ⅱ)中共有长方形为: (4+3+2+1)×(2+1)=10×3=30(个). 图(Ⅲ)中,依据计算图(Ⅱ)中长方形个数的方法:可得长方形个数为:(4+3+2+1)×(3+2+1)=60(个). 解:图(Ⅰ)中长方形个数为4+3+2+1=10(个). 图(Ⅱ)中长方形个数为: (4+3+2+1)×(2+1)=10×3=30(个). 图(Ⅲ)中长方形个数为: (4+3+2+1)×(3+2+1)=10×6=60(个). 小结:一般情况下,如果有类似图Ⅲ的任一个长方形一边上有n-1个分点(不包括这条边的两个端点),另一边上有m-1个分点(不包括这条边上的两个端点),通过这些点分别作对边的平行线且与另一边相交,这两组平行线将长方形分为许多长方形,这时长方形的总数为: (1+2+3+…+m)×(1+2+3+…+n). 例2 如右图数一数图中长方形的个数.

解:AB边上分成的线段有: 5+4+3+2+1=15. BC边上分成的线段有: 3+2+1=6. 所以共有长方形: (5+4+3+2+1)×(3+2+1)=15×6=90(个). 二、数正方形 例3 数一数下页各个图中所有正方形的个数.(每个小方格为边长为1的正方形)分析图Ⅰ中,边长为1个长度单位的正方形有: 2×2=4(个),边长为2个长度单位的正方形有: 1×1=1(个). 所以,正方形总数为1×1+2×2=1+4=5(个). 图Ⅱ中,边长为1个长度单位的正方形有3×3=9(个); 边长为2个长度单位的正方形有:2×2=4(个); 边长为3个长度单位的正方形有1×1=1(个). 所以,正方形的总数为:1×1+2×2+3×3=14(个). 图Ⅲ中,边长为1个长度单位的正方形有: 4×4=16(个);

解析几何中的定点和定值问题精编版

解析几何中的定点定值问题 考纲解读:定点定值问题是解析几何解答题的考查重点。此类问题定中有动,动中有定,并且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识。考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法。 一、 定点问题 解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。 例1、已知A 、B 是抛物线y 2 =2p x (p >0)上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当α、β变化且α+β= 4 π 时,证明直线AB 恒过定点,并求出该定点的坐标。 解析: 设A ( 121 ,2y p y ),B (222 ,2y p y ),则 2 1 2tan , 2tan y p y p ==βα,代入1)tan(=+βα 得2 21214)(2p y y y y p -=+ (1) 又设直线AB 的方程为b kx y +=,则 022222 =+-????=+=pb py ky px y b kx y ∴k p y y k pb y y 2,22121= += ,代入(1)式得pk p b 22+= ∴直线AB 的方程为)2(2p x k p y +=- ∴直线AB 过定点(-)2,2p p 说明:本题在特殊条件下很难探索出定点,因此要从已知出发,把所求的定点问题转化为求直线AB ,再从AB 直线系中看出定点。 例2.已知椭圆C :22 221(0)x y a b a b +=>> ,以原点为圆心,椭圆的短半轴长为半径的 圆与直线0x y -相切. ⑴求椭圆C 的方程; ⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围; ⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.

立体几何动点问题

立体几何与平面解析几何的交汇问题 在教材中,立体几何与解析几何是互相独立的两章,彼此分离不相联系,实际上,从空间维数看,平面几何是二维的,立体几何是三维的,因此,立体几何是由平面几何升维而产生;另一方面,从立体几何与解析几何的联系看,解析几何中的直线是空间二个平面的交线,圆锥曲线(椭圆、双曲线、抛物线)是平面截圆锥面所产生的截线;从轨迹的观点看,空间中的曲面(曲线)是空间中动点运动的轨迹,正因为平面几何与立体几何有这么许多千丝万缕的联系,因此,在平面几何与立体几何的交汇点,新知识生长的土壤特别肥沃,创新型题型的生长空间也相当宽广,这一点,在高考卷中已有充分展示,应引起我们在复习中的足够重视。 一、动点轨迹问题 这类问题往往是先利用题中条件把立几问题转化为平面几何问题,再判断动点轨迹。 例1定点A 和B 都在平面α内,定点α?P ,α⊥PB , C 是α内异于A 和B 的动点,且AC PC ⊥。那么,动点C 在平面α内的轨迹是( ) A. 一条线段,但要去掉两个点 B. 一个圆,但要去掉两个点 C. 一个椭圆,但要去掉两个点 D. 半圆,但要去掉两个点 例2若三棱锥A —BCD 的侧面ABC 内一动点P 到平面BCD 距离与到棱AB 距离相等,则动点P 的轨迹与△ABC 组成的图形可能是( ) ) 解:设二面角A —BC —D 大小为θ,作PR ⊥面BCD ,R 为垂足,PQ ⊥BC 于Q ,PT ⊥AB 于T ,则∠PQR =θ, 且由条件PT=PR=PQ·sinθ,∴ 为小于1的常数,故轨迹图形应选(D )。 二、几何体的截痕

例3:球在平面上的斜射影为椭园:已知一巨型广告汽球直径6米,太阳光线与地面所成角为60°,求此广告汽球在地面上投影椭圆的离心率和面积(椭圆面积公式为S=πab ,其中a,b 为长、短半轴长)。 解:由于太阳光线可认定为平行光线,故广告球的投影 椭园等价于以广告球直径为直径的圆柱截面椭园:此时 b=R ,a= =2R ,∴离心率 , 投影面积S=πab=π·k·2R=2πR 2=18π。 三、动点与某点(面)的距离问题 , 例4.正方体1111D C B A ABCD -中,棱长为a ,E 是 1AA 的中点, 在对角面D D BB 11上找一动点M ,使AM+ME 最小.a 23. 四、常见的轨迹问题 (1) 轨迹类型识别 此类问题最为常见,求解时,关注几何体的特征,灵活选择几何法与代数法. 例5、(北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交 α于点C ,则动点C 的轨迹是( ) A .一条直线 B.一个圆 C.一个椭圆 D.双曲线的一支 【解析】直线l 运动后形成的轨迹刚好为线段AB 的垂面,由公理二易知点C 刚好落在平面α与线段AB 的垂面的交线上,所以动点C 的轨迹是一条直线.选择 A. 总结:空间的轨迹最简单的一直存在形式就是两个平面的交线,处理问题中注意识别即可. 例6、如图,在正方体ABCD A 1 B 1C 1D 1 中,若四边形A 1BCD 1 内一动点P 到AB 1和 BC 的距离相等,则点P 的轨迹为( ) … A .椭圆的一部分 B .圆的一部分 C .一条线段 D .抛物线的一部分 O E 例4题图 A % C D A 1 C 1 D 1 B 1 M - C D B C P O

立体几何中体积与距离的问题

………………………………………………最新资料推荐……………………………………… 1 / 1 B A C D 1A 1B C D 1C 1 B 1 A 1 E D C B A 立体几何中体积与距离的问题 考点一:两条异面直线间的距离 例1如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点.求证:(1)EF 是AB 和CD 的公垂线;(2)求AB 和CD 间的距离; 考点二:点到平面的距离 例2如图,在长方体AC 1中,AD=AA 1=1,AB=2,当E 为AB 的中点时, (1)证明:D 1E ⊥A 1D ;(2)求点E 到面ACD 1的距离; 例3正三棱柱111C B A ABC -的底面边长为8,对角线101=C B ,D 是AC 的中点。 (1)求点1B 到直线AC 的距离.(2)求直线1AB 到平面BD C 1的距离. 考点三:几何体的体积 1、如图所示,在三棱锥ABC P -中,6AB BC == ,平面⊥PAC 平面ABC ,AC PD ⊥于点D ,1AD =,3CD =,2=PD .求三棱锥ABC P -的体积; 2、已知四棱锥P ABCD -的底面ABCD 是边长为4的正方形,PD ABCD ⊥平面,6,,PD E F =分别为,PB AB 中点。 (1)证明:BC PDC ⊥平面;(2)求三棱锥P DEF -的体积。 3.已知在四棱锥ABCD P -中,底面ABCD 是边长为4的正方形, PAD ?是正三角形,平面PAD ⊥平面ABCD ,G F E ,,分别是 BC PC PD ,,的中点. 1)求平面EFG ⊥平面PAD ;2)若M 是线段CD 上一点,求三棱锥EFG M -的体积. 练习1、如图,三棱柱ABC-A 1B 1C 1中,CA=CB ,AB=A A 1,∠BA A 1=60°. (Ⅰ)证明AB ⊥A 1C;(Ⅱ)若AB=CB=2,A 1C=6,求三棱柱ABC-A 1B 1C 1的体积 练习2如图,三棱柱ABC -A 1B 1C 1中侧棱垂直底面,∠ACB=90°,AC=BC=1 2AA 1,D 是棱AA 1的中点。(I) 证明平面BDC 1⊥平面BDC (Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比。 A B C C 1 A 1 B 1 B 1 C B A D C 1 A 1 图5 B P A D

高三数学选择填空题压轴专题5.4 解析几何中的定值与定点问题(教师版)

一.方法综述 解析几何中的定值与定点问题近年高考中的热点问题,其解决思路下; (1)定值问题:解决这类问题时,要运用辩证的观点,在动点的“变”中寻求定值的“不变”性; 一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果; 另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的。 (2)定点问题:定点问题是动直线(或曲线)恒过某一定点的问题;一般方法是先将动直线(或曲线)用参数表示出来,再分析判断出其所过的定点.定点问题的难点是动直线(或曲线)的表示,一旦表示出来,其所过的定点就一目了然了.所以动直线(或曲线)中,参数的选择就至关重要.解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。 二.解题策略 类型一定值问题 【例1】(2020?青浦区一模)过抛物线y2=2px(p>0)的焦点作两条相互垂直的弦AB和CD,则+的值为() A.B.C.2p D. 【答案】D 【解析】分析:直接利用直线和曲线的位置关系式的应用建立方程组,进一步利用一元二次方程根和系数关系式的应用求出结果. 解:抛物线y2=2px(p>0)的焦点坐标为(),所以设经过焦点直线AB的方程为y=k(x﹣),

立体几何动态问题专题

立体几何的动态问题 立体几何的动态问题,主要有五种:动点问题、翻折问题、旋转问题、投影与截面问题以及轨迹问题。基本类型:点动问题;线动问题;面动问题;体动问题;多动问题等。解题时一般可以通过改变视角、平面化或者寻找变化过程中的不变因素而把问题回归到最本质的定义、定理或现有的结论中,若能再配以沉着冷静的心态去计算,那么相信绝大多数问题可以迎刃而解。 动点轨迹问题 空间中动点轨迹问题变化并不多,一般此类问题可以从三个角度进行分析处理,一是从曲线定义或函数关系出发给出合理解释;二是平面与平面交线得直线或线段;三是平面和曲面(圆锥,圆柱侧面,球面)交线得圆,圆锥曲线。很少有题目会脱离这三个方向。(注意:阿波罗尼斯圆,圆锥曲线第二定义) 1.(2015·浙江卷8)如图11-10,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P满足∠PAB =30°,则点P的轨迹是( ) A.直线 B.抛物线C.椭圆 D.双曲线的一支 式题如图,平面α的斜线AB交α于B点,且与α所成的角为θ,平面α内有一动点满足∠=π 6 ,若动 点C的轨迹为椭圆,则θ的取值范围为________. 3.(2015春?龙泉驿区校级期中)在棱长为1的正方体ABCD﹣A1B1C1D1中,M是A1D1的中点,点P在侧面BCC1B1上运动.现有下列命题: ①若点P总保持PA⊥BD1,则动点P的轨迹所在的曲线是直线; ②若点P到点A的距离为,则动点P的轨迹所在的曲线是圆; ③若P满足∠MAP=∠MAC1,则动点P的轨迹所在的曲线是椭圆; ④若P到直线BC与直线C1D1的距离比为2:1,则动点P的轨迹所在的曲线是双曲线; ⑤若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在的曲线是抛物线. 其中真命题的个数为() A.4 B.3 C.2 D.1

解析几何最值问题

解析几何最值问题的赏析 丹阳市珥陵高级中学数学组:李维春 教学目标:1.掌握解析几何中图形的处理方法和解析几何中变量的选择; 2.掌握利用基本不等式和函数的思想处理最值问题. 重点难点:图形的处理和变量的选择及最值的处理. 问题提出: 已知椭圆方程:14 32 2=+y x ,A ,B 分别为椭圆的上顶点和右顶点。过原点作一直线与线段AB 交于点G ,并和椭圆交于E 、F 两点,求四边形AEBF 面积的最大值。 问题分析: 1、 图形的处理: 不规则图形转化为规则图形(割补法) ABF ABE AENF S S S ??+= BEF AEF AENF S S S ??+= 2、 变量的选择: (1) 设点:设点),(00y x E 则),(00y x F --,可得到二元表达式; (2) 设动直线的斜率k (可设AF,BF,EF,AE,BE 中任意一条直线的斜率),可得 一元表达式。 3,最值的处理方法: (1) 一元表达式可用基本不等式或函数法处理; (2) 二元表达式可用基本不等式或消元转化为一元表达式。 X

问题解决: 解法一: 由基本不等式得62 24)34(2322 02000==+≤+=y x y x S 时取“=” 当且仅当0032 y x = 解法二: 00000 0(,),(,),(0,0)x y F x y x y -->>设E ,四边形的面积为S (0,2),A B 因为,12 y += 20x +-=即1d =点E 到直线的距离:00( ,)x y 因为E 在直线AB 的上方,0020x ->所以1d =所以2d =点F 到直线的距离:00(,)x y --因为F 在直线的下方2d =所以)(21)(212121d d AB d AB d AB S +=+=002S x =+所以AB =因为00(,)F x y 又因为22134 x y +=在椭圆上22004312x y +=所以max S =所以

解析几何中的定点、定值问题

解析几何中的定点和定值问题 【教学目标】学会合理选择参数(坐标、斜率等)表示动态图形中的几何对象,探究、证明其不 变性质(定点、定值等),体会“设而不求”、“整体代换”在简化运算中的作用. 【教学难、重点】解题思路的优化. 【教学方法】讨论式 【教学过程】 一、基础练习 1、过直线4x =上动点P 作圆224O x y +=:的切线PA PB 、,则两切点所在直线 AB 恒过一定点.此定点的坐标为_________. 【答案】(1,0) 【解析】设动点坐标为(4,t P ),则以OP 直径的圆C 方程为:(4)()0x x y y t -+-= , 故AB 是两圆的公共弦,其方程为44x ty +=. 注:部分优秀学生可由200x x y y r += 公式直接得出.

令440 x y -=?? =? 得定点(1,0). 2、已知PQ 是过椭圆22:21C x y +=中心的任一弦,A 是椭圆C 上异于P Q 、的 任意一点.若AP AQ 、 分别有斜率12k k 、 ,则12k k ?=______________. 【答案】-2 【解析】设00(,),(,)P x y A x y ,则(,)Q x y -- 22 0001222 000y y y y y y k k x x x x x x -+-?=?= -+-, 又由A 、P 均在椭圆上,故有:22 002221 21x y x y ?+=??+=?? , 两式相减得2 2 2 2 002()()0x x y y -+-= ,22 0122202y y k k x x -?==-- 3、 过右焦点F 作不垂直于x 轴的直线交椭圆于A 、B 两点, AB 的垂直平分线交x 轴于N ,则_______.1=24 e 【解析】 设直线AB 斜率为k ,则直线方程为()3y k x =-,

立体几何中的动点问题

立体几何中的动点问题 1、如图,四棱锥ABCD P -的底面是边长为2的正方形,⊥PA 平面ABCD ,且4=PA ,M 是PB 上的一个动点(不与B P ,重合),过点M 作平面//α平面PAD ,截棱锥所得图形的面积为y ,若平面α与平面PAD 之间的距离为x ,则函数()x f y =的图象是C 2、在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑BCD A -中,⊥AB 平面BCD ,且CD BD ⊥,CD BD AB ==,点P 在棱AC 上运动,设CP 的长度为x ,若PBD ?的面积为()x f ,则()x f 的图象大致是A

3、 如图所示,侧棱与底面垂直,且底面为正方形的四棱柱1111D C B A ABCD -中,21=AA ,1=AB ,N M ,分别在BC AD ,1上移动,始终保持//MN 平面11D DCC ,设x BN =,y MN =,则函数()x f y =的图象大致是 C 4、如图,已知正方体1111D C B A ABCD -的棱长为2,长为2的线段MN 的一个端点M 在棱1DD 上运动,点N 在正方体的底面ABCD 内运动,则MN 的中点P 的轨迹的面积是________2π 5、点P 在正方体1111D C B A ABCD -的面对角线1BC 上运动,给出下列命 题: ①三棱锥PC D A 1-的体积不变; ②//1P A 平面1ACD ; ③1BC DP ⊥; ④平面⊥1PDB 平面1ACD ; 其中正确的命题序号是_______①②④

6、在正方体1111D C B A ABCD -中,F E ,分别为11C B ,11D C 的中点,点P 是底面1111D C B A 内一点,且//AP 平面EFDB ,则1tan APA ∠的最大值是_______22 7、已知直三棱柱111C B A ABC -中的底面为等腰直角三角形,AC AB ⊥,点N M ,分别是边C A AB 11,上动点,若直线//MN 平面11B BCC ,点Q 为线段MN 的中点,则点Q 的轨迹为 C .A 双曲线的一支(一部分) .B 圆弧(一部分) .C 线段(去掉一个端点) .D 抛物线的一部分 解:以AB 为轴,AC 为轴,1AA 为轴建系 设()b ta M ,0,1,()tb ta M ,0,,()b ta N ,,01,则()()b t ta N -1,,0,()tb ta M ,0,()10<≤t 则N M ,中点?? ? ??2,2,2b ta ta Q (通过作与平面11B BCC 平行的平面交C A AB 11,来找N M ,进而找中点Q )

小学奥数-几何计数-专题

几何计数 知识框架图几何计 数8计数综合7-7 教学目标 .掌握计数常用方法;1熟记一些计数公式及其推导方法;2. .根据不同题目灵活运用计数方法进行计数.3本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并 渗透分类计数和用容斥原理的计数思想. 知识要点 一、几何计数在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些条直线最多将平面分成处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n12个部分;n个圆最多分平面的部分数为n(n-1)+2;n个三角形将平面最多分2)(nn?n??????223……2成3n(n-1)+2部分;n个四边形将平面最多分成4n(n-1)+2部分…… 在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解. 排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.

二、几何计数分类 数线段:如果一条线段上有n+1个点(包括两个端点)(或含有n个“基本线段”),那么这n+1个点把这条线段一共分成的线段总数为n+(n-1)+…+2+1条 数角:数角与数线段相似,线段图形中的点类似于角图形中的边. 数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE上有15条线段,每条线段的两端点与点A相连,可构成一个三角形,共有15个三角形,同样一边在BC上的三角形 也有15个,所以图中共有30个三角形. 数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n 条线段,纵边上共有m条线段,则图中共有长方形(平行四边形)mn个. 例题精讲 【例 1】下图的两个图形(实线)是分别用10根和16根单位长的小棍围成的.如果按此规律(每一层比上面一层多摆出两个小正方形)围成的图形共用了60多根小棍,那么围成的图形有几层, 共用了多少根小棍?(4级) 【例 2】用3根等长的火柴可以摆成一个等边三角形.如图用这样的等边三角形拼合成一个更大的等边三角形.如果这个大等边三角形的每边由20根火柴组成,那么一共要用多少根火柴?(4

解析几何中的最值问题.

解析几何中的最值问题 解析几何中的最值问题是很有代表性的一类问题,具有题形多样,涉及知识面广等特点。解决这类问题,需要扎实的基础知识和灵活的解决方法,对培养学生综合解题能力和联想思维能力颇有益处。本文通过实例,就这类问题的解法归纳如下: 一、 转化法 例1、 点Q 在椭圆 22 147 x y +=上,则点Q 到直线32160x y --=的距 离的最大值为 ( ) A B C D 分析:可转化为求已知椭圆平行于已知直线的切线,其中距离已知直线较远的一条切线到该直线的距离即为所求的最大值。 解:设椭圆的切线方程为 3 2 y x b =+,与 22 147 x y +=消去y 得 224370x bx b ++-=由?=01272=+-b 可得4(4)b b ==-舍去,与 32160x y --=平行且距离远的切线方程为3280x y -+= 所以所求最大值为d = = ,故选C 二 、配方法 例2、 在椭圆 22 221x y a b +=的所有内接矩形中,何种矩形面积最大? 分析:可根据题意建立关系式,然后根据配方法求函数的最值。 解:设椭圆内接矩形在第一象限的顶点坐标为A (),x y ,则由椭圆对称性,矩形的长为2x ,宽为2y ,面积为4xy ,与 22 221x y a b +=消去 y 得: 22b S x a =?=

可知当x a = 时,max 2S ab = 三、 基本不等式法 例3、 设21,F F 是椭圆14 22 =+y x 的两个焦点,P 是这个椭圆上任一点,则21PF PF ?的最大值是 解: 124PF PF += 由12PF PF +≥得 44 )(2 2121=+≤ ?PF PF PF PF 即21PF PF ?的最大值是4 。 四、 利用圆锥曲线的统一定义 例4 、设点A (-,P 为椭圆22 11612 x y +=的右焦点,点 M 在椭 圆上,当取2AM PM +最小值时,点M 的坐标为 ( ) A (- B (- C D 解:由已知得椭圆的离心率为1 2 e = , 过M 作右准线L 的垂线,垂足为N ,由圆锥曲线的统一定义得 2MN PM = 2AM PM AM MN ∴+=+ 当点M 运动到过A 垂直于L 的直线上时, AM MN +的值最小,此时点M 的坐标为,故选 C 五、 利用平面几何知识 例5 、平面上有两点(1,0),(1,0)A B -,在圆22 (3)(4)4x y -+-=上取一点 P ,求使22 AP BP +取最小值时点P 的坐标。

小学数学 几何计数(一).教师版

7-8-1几何计数(一) 教学目标 1.掌握计数常用方法; 2.熟记一些计数公式及其推导方法; 3.根据不同题目灵活运用计数方法进行计数. 本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想. 知识要点 一、几何计数 在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n 条直线最多将平面分成 212232)2n n n ++++=++……个部分;n 个圆最多分平面的部分数为n (n -1)+2;n 个三角形将平面最多分成3n (n -1)+2部分;n 个四边形将平面最多分成4n (n -1)+2部分…… 在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解. 排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关. 二、几何计数分类 数线段:如果一条线段上有n +1个点(包括两个端点)(或含有n 个“基本线段”),那么这n +1个点把这条线段一共分成的线段总数为n +(n -1)+…+2+1条 数角:数角与数线段相似,线段图形中的点类似于角图形中的边. 数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE 上有15条线段,每条线段的两端点与点A 相连,可构成一个三角形,共有15个三角形,同样一边在BC 上的三角形也有15个,所以图中共有30个三角形. 数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n 条线段,纵边上共有m 条线段,则图中共有长方形(平行四边形)mn 个. 例题精讲 模块一、简单的几何计数 【例1】七个同样的圆如右图放置,它有_______条对称轴.

解析几何中定值与定点问题

解析几何中定值与定点问题 【探究问题解决的技巧、方法】 (1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的. (2)解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究. 【实例探究】 题型1:定值问题: 例1:已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的 焦点,离心率等于 (Ⅰ)求椭圆C的标准方程; (Ⅱ)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若 为定值. 解:(I)设椭圆C的方程为,则由题意知b= 1. ∴椭圆C的方程为 (II)方法一:设A、B、M点的坐标分别为 易知F点的坐标为(2,0). 将A点坐标代入到椭圆方程中,得

去分母整理得 方法二:设A、B、M点的坐标分别为 又易知F点的坐标为(2,0). 显然直线l存在的斜率,设直线l的斜率为k,则直线l的方程是 将直线l的方程代入到椭圆C的方程中,消去y并整理得 又 例2.已知椭圆C经过点A(1,3/2),两个焦点为(-1,0),(1,0). 1)求椭圆方程 2)E、F是椭圆上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明:直线EF的斜率为定值,并求出这个定值 (1)a2-b2=c2 =1 设椭圆方程为x2/(b2+1)+y2/b2=1 将(1,3/2)代入整理得4b^4-9b2-9=0 解得b2=3 (另一值舍) 所以椭圆方程为x2/4+y2/3=1 (2) 设AE斜率为k 则AE方程为y-(3/2)=k(x-1)①

立体几何动点问题

1 A 1.如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=2 2 , 则下列结论中错误 ..的个数是( ) (1) AC⊥BE. (2) 若P为AA1上的一点,则P到平面BEF的距离为2 2 . (3) 三棱锥A-BEF的体积为定值. (4) 在空间与DD1,AC,B1C1都相交的直线有无数条. (5) 过CC1的中点与直线AC1所成角为40?并且与平面BEF所成角为50?的直线有2条. A.0 B.1 C.2 D.3 2.如图,正方体的棱长为1,线段上有两个动点 ,且 2 2 = EF,则下列结论中错误 ..的是() A.B.∥平面 C.三棱锥的体积为定值 D.△AEF与△BEF的面积相等 3.关于图中的正方体1 1 1 1 D C B A ABCD-,下列说法正确的有 ___________________. ①P点在线段BD上运动,棱锥1 1 D AB P-体积不变; ②P点在线段BD上运动,二面角 A D B P- - 1 1不变; ③一个平面 α截此正方体,如果截面是三角形,则必为锐角三角形; ④一个平面 α截此正方体,如果截面是四边形,则必为平行四边形; ⑤平面 α截正方体得到一个六边形(如图所示),则截面α在平面 1 1 D AB 与平面1 BDC 间平行移动时此六边形周长先增大,后减小。 4、如图,正方体1111 ABCD A BC D - 的棱长为1,P为BC的中点,Q为线段1 CC 上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是___________(写 出所有正确命题的编号). ①当 1 2 CQ << 时,S为四边形; ②当 1 2 CQ= 时,S不为等腰梯形; ③当 3 4 CQ= 时,S与11 C D 的交点R满足 1 1 3 C R= ; 1 1 1 1 D C B A ABCD- 1 1 D B F E, BE AC⊥EF ABCD BEF A-

解析几何中的最值问题教案

解析几何中的最值问题 一、教学目标 解析几何中的最值问题以直线或圆锥曲线作为背景,以函数和不等式等知识作为工具,具有较强的综合性,这类问题的解决没有固定的模式,其解法一般灵活多样,且对于解题者有着相当高的能力要求,正基于此,这类问题近年来成为了数学高考中的难关。基本内容:有关距离的最值,角的最值,面积的最值。 二、教学重点 方法的灵活应用。 三、教学程序 1、基础知识 探求解析几何最值的方法有以下几种: (1)函数法(设法将一个较复杂的最值问题,通过引入适当的变量能归为某初等函数(常见)的有二次函数和三角函数)的最值问题,然后通过对该函数单调性和最值的考察使问题得以解决。 (2)不等式法:(常用的不等式法主要有基本不等式等) (3)曲线定义法:利用圆锥曲线的定义刻画了动点与动点(或定直线)距离之间的不变关系,一般来说涉及焦半径、焦点弦的最值问题可以考虑该方法 (4)平面几何法:有些最值问题具有相应的几何意义(如分式最值联想到斜率公式,求平方和最值联想到距离公式等等) (1)函数法 例1、已知P 点在圆()2241x y +-=上移动,Q 点在椭圆2 219 x y +=上移动,试求PQ 的最大值。 分析:两个都是动点,看不出究竟,P 、Q 在什么位置时|PQ|最大 故先让Q 点在椭圆上固定,显然当PQ 通过圆心O 1时|PQ|最大,因此要求|PQ| 的最大值,只要求|OQ|的最大值。 说明:函数法其我们探求解析几何最值问题的首选方法,其中所涉及到的函数最常见的有二次函数等,值得注意的是函数自变量取值范围的考察不易忽视。 例2 在平面直角坐标系xOy 中,点(),P x y 是椭圆2 213 x y +=上的一个动点,求S x y =+的最大值 (2)不等式法

立体几何中的距离问题

立 体 几 何 中 的 求 距 离 问 题 集美中学数学组 刘 海 江 一、记一记,填一填,这些知识你掌握了吗? 1、两点间的距离:连接两点的线段的长。 求法:(1)纳入三角形,将其作为三角形的一边,通过解三角形求得 (2)用公式,),,(),,,(222111z y x B z y x A ,则|AB|= 。 (3)利用向量的模,|AB|=|AB … (4)两点间的球面距离 :A ,B 为半径是R 的球O 上的两点,若<,>=θ 则A ,B 两点间的球面距离为 。 2、点到直线的距离:从点向直线作(相交)垂线,该点与垂足间的线段长。 求法:(1)解三角形:所求距离是某直角三角形的直角边长,解此三角形即可。 (2)等积法:所求距离是某三角形的一高,利用面积相等可求此距离。 (3 ) 利用三垂线定理:所求距离视作某平面的斜线段长,先求出此平面的垂线段和射 影的长,再由勾股定理求出所求的距离。 (4)利用公式:A 0:),,(00=++C By Ax l y x 到直线的距离为 。 基本思想是将点线距转化为点点距。 3、点到平面的距离与直线到平面的距离(重点) (1)从平面外一点引平面的一条垂线,这个点和____________的距离,叫做这个点到这个平面的距离。 求法: ①利用定义、做出平面的垂线,将垂线段纳入某个三角形内,通过解三角形求出此 距离; ②利用等积法、将此距离看作某个三棱锥的高,利用体积相等求出此距离; ③利用向量、点A ,平面α,满足ααα⊥∈?O A ,,, 则点A 到平面α的距离||n d = ( 是平面α的法向量 ) (2)一条直线和一个平面平行时,这条直线上任意_________到这个平面的_________,叫做这条直线和这个平面的距离。 (一条直线和一个平面平行时,直线上任意两点到平面的距离相等) 求法:转化为点到平面的距离来求;(具体方法参照点到平面的距离的求法) 4、两个平行平面的距离 一条直线垂直于两个平行平面中的一个平面,那么它也_________另一个平面,这条直线叫做两个平面的__________,它夹在两个平行平面间的部分叫做这两个平面的_______,它的长度叫做两个平行平面的____________。 求法:转化为点到平面的距离来求;(具体方法参照点到平面的距离的求法)

2014高考理科立体几何难建系和动点问题(考前必做的立几大题)

学生姓名 年级 授课时间 教师姓名 课时 2 1.(2013年普通等学校招生统一试大纲版数学(理)WORD 版含答案(已校对))如图四棱锥P ABCD -902,ABC BAD BC AD PAB ∠=∠==?,与PAD ?都是等边三角形 (I)证明:; PB CD ⊥ (II)求二面角A PD C --的大小 (2012年高考(四川理))如图,在三棱锥P ABC -中,90APB ∠=,60PAB ∠=,AB BC CA ==,平面PAB ⊥平面ABC . (Ⅰ)求直线PC 与平面ABC 所成角的大小; (Ⅱ)求二面角B AP C --的大小. (2012年高考(辽宁理)) 如图,直三棱柱///ABC A B C -,90BAC ∠=, /,AB AC AA λ==点M ,N 分别为/A B 和//B C 的中点. (Ⅰ)证明:MN ∥平面//A ACC ; (Ⅱ)若二面角/A MN C --为直二面角,求λ的值 .

(2012年高考(北京理))如图1,在Rt△ABC 中,∠C=90°,BC=3,AC=6,D,E 分别是AC,AB 上的点, 且DE∥BC,DE=2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C⊥CD,如图2. (1)求证:A 1C⊥平面BCDE; (2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小; (3)线段BC 上是否存在点P,使平面A 1DP 与平面A 1BE 垂直?说明理由. (2012年高考(安徽理))平面图形111ABB AC C 如图4所示,其中11BB C C 是矩 形,12,4BC BB ==,AB AC ==1111A B AC ==现将该平面图形分别沿 BC 和11B C 折叠,使ABC ?与111A B C ?所在平面都与平面11BB C C 垂直,再分别连接111,,AA BA CA ,得到如图2所示的空间图形,对此空间图形解答下列问题 . (Ⅰ)证明:1AA BC ⊥; (Ⅱ)求1AA 的长; (Ⅲ)求二面角1A BC A --的余弦值.

高中数学立体几何空间距离问题

立体几何空间距离问题 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. ●难点磁场 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,P A⊥平面ABCD,P A=2c,Q 是P A的中点. 求:(1)Q到BD的距离; (2)P到平面BQD的距离. P为RT△ABC所在平面α外一点,∠ACB=90°(如图) (1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角 (2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角(3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离

●案例探究 [例1]把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求: (1)EF 的长; (2)折起后∠EOF 的大小. 命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目. 知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直. 技巧与方法:建系方式有多种,其中以O 点为 原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单. 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-4 2 a , a ),F ( 42a , 4 2 a ,0) 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=?>=<== - =?+-+?=?=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF ∴∠EOF =120° [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.

相关主题