搜档网
当前位置:搜档网 › (物理)物理动量定理练习题20篇

(物理)物理动量定理练习题20篇

(物理)物理动量定理练习题20篇
(物理)物理动量定理练习题20篇

(物理)物理动量定理练习题20篇

一、高考物理精讲专题动量定理

1.一质量为0.5kg的小物块放在水平地面上的A点,距离A点5m的位置B处是一面墙,如图所示,物块以v0=9m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.

(1)求物块与地面间的动摩擦因数μ;

(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F.

【答案】(1)0.32

μ=(2)F=130N

【解析】

试题分析:(1)对A到墙壁过程,运用动能定理得:

代入数据解得:μ=0.32.

(2)规定向左为正方向,对碰墙的过程运用动量定理得:F△t=mv′﹣mv,

代入数据解得:F=130N.

2.2019年 1月 3日,嫦娥四号探测器成功着陆在月球背面,并通过“鹊桥”中继卫星传回了世界上第一张近距离拍摄月球背面的图片。此次任务实现了人类探测器首次在月球背面软着陆、首次在月球背面通过中继卫星与地球通讯,因而开启了人类探索月球的新篇章。嫦娥四号探测器在靠近月球表面时先做圆周运动进行充分调整,最终到达离月球表面很近的着陆点。为了尽可能减小着陆过程中月球对飞船的冲击力,探测器在距月面非常近的距离处进行多次调整减速,离月面高h处开始悬停(相对月球速度为零),对障碍物和坡度进行识别,并自主避障。然后关闭发动机,仅在月球重力作用下竖直下落,探测器与月面接触前瞬间相对月球表面的速度为v,接触月面时通过其上的“四条腿”缓冲,平稳地停在月面,缓冲时间为t,如图所示。已知月球的半径R,探测器质量为m0,引力常量为G。(1)求月球表面的重力加速度;

(2)求月球的第一宇宙速度;

(3)求月球对探测器的平均冲击力F的大小。

【答案】(1)

2

2

v

g

h

=(2)

2

R

v

h

'=(3)0

m v

F m g

t

=+

【解析】【详解】

(1)由自由落体规律可知:

22v gh =

解得月球表面的重力加速度:

2

2v g h

= (2)做圆周运动向心力由月表重力提供,则有:

2

mv mg R

'= 解得月球的第一宇宙速度:

2R v v

h

'= (3)由动量定理可得:

00()0()F m g t m v -=--

解得月球对探测器的平均冲击力的大小:

00m v

F m g t

=

+

3.如图所示,质量

的小车A 静止在光滑水平地面上,其上表面光滑,左端有一

固定挡板。可视为质点的小物块B 置于A 的最右端,B 的质量。现对小车A 施加

一个水平向右的恒力F =20N ,作用0.5s 后撤去外力,随后固定挡板与小物块B 发生碰撞。

假设碰撞时间极短,碰后A 、B 粘在一起,继续运动。求:

(1)碰撞前小车A 的速度;

(2)碰撞过程中小车A 损失的机械能。 【答案】(1)1m/s (2)25/9J 【解析】 【详解】

(1)A 上表面光滑,在外力作用下,A 运动,B 静止, 对A ,由动量定理得:,

代入数据解得:m/s ;

(2)A 、B 碰撞过程系统动量守恒,以向右为正方向,

由动量守恒定律得:,

代入数据解得:

碰撞过程,A 损失的机械能:

代入数据解得:;

4.如图,有一个光滑轨道,其水平部分MN 段和圆形部分NPQ 平滑连接,圆形轨道的半径R =0.5m ;质量为m 1=5kg 的A 球以v 0=6m/s 的速度沿轨道向右运动,与静止在水平轨道上质量为m 2=4kg 的B 球发生碰撞,两小球碰撞过程相互作用的时为t 0=0.02s ,碰撞后B 小球恰好越过圆形轨道最高点。两球可视为质点,g =10m/s 2。求:

(1)碰撞后A 小球的速度大小。

(2)碰撞过程两小球间的平均作用力大小。 【答案】(1)2m/s (2)1000N 【解析】 【详解】

(1)B 小球刚好能运动到圆形轨道的最高点:2

22v m g m R

=

设B 球碰后速度为2v ,由机械能守恒可知:

22222211222

m v m gR m v =+ A 、B 碰撞过程系统动量守恒:101122m v m v m v =+ 碰后A 速度12/v m s =

(2)A 、B 碰撞过程,对B 球:022Ft m v =

得碰撞过程两小球间的平均作用力大小 1000F N =

5.质量为2kg 的球,从4.05m 高处自由下落到水平钢板上又被竖直弹起,弹起后能达到的最大高度为3.2m ,如果球从开始下落到弹起并达到最大高度所用时间为1.75s ,不考虑空气阻力(g 取10m/s 2),求小球对钢板的作用力的大小和方向. 【答案】700N 【解析】 【详解】

物体从下落到落地过程中经历的时间为1t ,从弹起到达到最高点经历的时间为2t ,则有:

21112h gt =

,2

2212

h gt = 可得:1122 4.05

s 0.9s 10

h t g ?=

==,

2222 3.2

s 0.8s 10

h t g ?=

== 球与钢板作用的时间:12 1.750.90.8s 0.05s t t t t ?=--=--=总 由动量定理对全过程可列方程:00mgt F t -?=-总

可得钢板对小球的作用力210 1.75N 700N 0.05

mgt F t ??===?总,方向竖直向上.

6.如图甲所示,蹦床是常见的儿童游乐项目之一,儿童从一定高度落到蹦床上,将蹦床压下后,又被弹回到空中,如此反复,达到锻炼和玩耍的目的.如图乙所示,蹦床可以简化为一个竖直放置的轻弹簧,弹力的大小为kx (x 为床面下沉的距离,也叫形变量;k 为常量),蹦床的初始形变量可视为0,忽略空气阻力的影响.

(1)在一次玩耍中,某质量为m 的小孩,从距离蹦床床面高H 处由静止下落,将蹦床下压到最低点后,再被弹回至空中.

a .请在图丙中画出小孩接触蹦床后,所受蹦床的弹力F 随形变量x 变化的图线;

b .求出小孩刚接触蹦床时的速度大小v ;

c .若已知该小孩与蹦床接触的时间为t ,求接触蹦床过程中,蹦床对该小孩的冲量大小I . (2)借助F -x 图,可确定弹力做功的规律.在某次玩耍中,质量不同的两个小孩(均可视为质点),分别在两张相同的蹦床上弹跳,请判断:这两个小孩,在蹦床上以相同形变量由静止开始,上升的最大高度是否相同?并论证你的观点.

【答案】(1)a. b. 2v gH =I 22mgt m gH =+(2)上升高度与

质量m 有关,质量大的上升高度小 【解析】 【分析】

(1)a 、根据胡克定律求出劲度系数,抓住弹力与形变量成正比,作出弹力F 随x 变化的示意图.

b 、根据机械能守恒求出小孩刚接触蹦床时的速度大小;

c 、根据动量定理求出蹦床对该小孩的冲量大小.

(2)根据图线围成的面积表示弹力做功,得出弹力做功的表达式,根据动能定理求出弹力做功,从而求出x 1的值. 【详解】

(1)a.根据胡克定律得:F kx =,所以F 随x 的变化示意图如图所示

b.小孩子有高度H 下落过程,由机械能守恒定律:212

mgH mv = 得到速度大小:2v gH =

c.以竖直向下为正方向,接触蹦床的过程中,根据动量守恒:mgt I mv mv +=-- 其中2v gH =

可得蹦床对小孩的冲量大小为:22I mgt m gH =+(2)设蹦床的压缩量为x ,小孩离开蹦床后上升了H .从最低点处到最高点,重力做功

()mg x H -+,根据F-x 图象的面积可求出弹力做功:2

2kx W =-弹

从最低点处到最高点,根据动能定理:()2

02

kx mg H x -++=

可得:2

2kx H x mg

=

-,可以判断上升高度与质量m 有关,质量大的上升高度小. 【点睛】

解决本题的关键知道运动员在整个过程中的运动情况,结合运动学公式、动能定理等知识进行求解.

7.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.在正方体密闭容器中有大量某种气体的分子,每个分子质量为m ,单位体积内分子数量n 为恒量.为简化问题,我们假定:分子大小可以忽略;分子速率均为v ,且与器壁各面碰撞的机会均等;分子与器壁碰撞前后瞬间,速度方向都与器壁垂直,且速率不变.

(1)求一个气体分子与器壁碰撞一次给器壁的冲量I 的大小;

(2)每个分子与器壁各面碰撞的机会均等,则正方体的每个面有六分之一的几率.请计算在Δt 时间内,与面积为S 的器壁发生碰撞的分子个数N ;

(3)大量气体分子对容器壁持续频繁地撞击就形成了气体的压强.对在Δt 时间内,与面积为S 的器壁发生碰撞的分子进行分析,结合第(1)(2)两问的结论,推导出气体分子对器壁的压强p 与m 、n 和v 的关系式. 【答案】(1)2I mv =(2) 1.6N n Sv t =? (3)21

3

nmv 【解析】

(1)以气体分子为研究对象,以分子碰撞器壁时的速度方向为正方向 根据动量定理 2I mv mv mv -=--=-'

由牛顿第三定律可知,分子受到的冲量与分子给器壁的冲量大小相等方向相反 所以,一个分子与器壁碰撞一次给器壁的冲量为 2I mv =;

(2)如图所示,以器壁的面积S 为底,以vΔt 为高构成柱体,由题设条件可知,柱体内的分子在Δt 时间内有1/6与器壁S 发生碰撞,碰撞分子总数为

1

6

N n Sv t =??

(3)在Δt 时间内,设N 个分子对面积为S 的器壁产生的作用力为F N 个分子对器壁产生的冲量 F t NI ?= 根据压强的定义 F p S

=

解得气体分子对器壁的压强 2

13

p nmv =

点睛:根据动量定理和牛顿第三定律求解一个分子与器壁碰撞一次给器壁的冲量;以Δt 时间内分子前进的距离为高构成柱体,柱体内1/6的分子撞击柱体的一个面,求出碰撞分子总数;根据动量定理求出对面积为S 的器壁产生的撞击力,根据压强的定义求出压强;

8.质量m=6Kg 的物体静止在水平面上,在水平力F=40N 的作用下,沿直线运动,已经物体与水平面间的动摩擦因数μ=0.3,若F 作用8S 后撤去F 后物体还能向前运动多长时间才能停止?(g=10m/s 2) 【答案】9.78s 【解析】 【分析】 【详解】

全过程应用动量定理有:

()()120F mg t mg t μμ-+-=

解得:

()2

1

400.361089.780.3610

F mg t t s s mg

μμ--??=

=?=??.

9.如图所示,小球A 系在细线的一端,细线的另一端固定在0点,0点到水平面的距离为h.物块B 的质量是小球A 的2倍,置于粗糙的水平面上且位于0点的正下方,物块与水平面之间的动摩擦因数为μ.现拉动小球使细线水平伸直,小球由静止开始释放,运动到最低

点时与物块发生弹性正碰.小球与物块均视为质点,不计空气阻力,重力加速度为g.求:

(1)碰撞后,小球A 反弹瞬间的速度大小; (2)物块B 在水平面上滑行的时间t. 【答案】(18gh

(22gh 【解析】

(1)设小球的质量为m ,运动到最低点与物块碰撞前的速度大小为1v ,碰后A 、B 速度分别为1v '和2v ',碰撞前后的动量和机械都守恒,则有:

2

112

mgh mv =

1122mv mv mv ''=+

222112111

2222

mv mv mv ''=+? 解得:12gh v '=222gh

v '=, 所以碰后A 2gh

; (2)物块在水平面上滑行所受摩擦力的大小2F mg μ=, 设物块在水平面上滑行的时间为t ,根据动量定量,有:

202Ft mv '-=-

解得:22gh

t =

. 点睛:本题综合考查动量守恒定律、机械能守恒定律及动量定理,要注意正确分析物理过程,选择合适的物理规律求解,要明确碰撞的基本规律是系统的动量守恒.

10.某汽车制造商研制开发了发动机额定功率P=30 kW 的一款经济实用型汽车,在某次性能测试中,汽车连同驾乘人员的总质量m=2000kg ,在平直路面上以额定功率由静止启动,行驶过程中受到大小f=600 N 的恒定阻力. (1)求汽车的最大速度v ;

(2)若达到最大速度v 后,汽车发动机的功率立即改为P′=18 kW ,经过一段时间后汽车开始以不变的速度行驶,求这段时间内汽车所受合力的冲量I.

【答案】(1)50/m s (2)4

4.010/kg m s -?? 方向与初速度的方向相反 【解析】

【详解】

(1)汽车匀速运动时,牵引力等于阻力,有:F=f=600N 根据 P=Fv 代入数据解得:v=50m/s (2)设功率改为 P′=18kW 时,则有:P v F

'='

=30m/s 根据动量定理得:I=mv′?mv

代入数据得:I=?4.0×104kg·m/s,负号表示方向与初速度的方向相反 【点睛】

(1)汽车匀速运动时,牵引力等于阻力,根据P=Fv 求解速度;

(2)根据P=Fv 求出功率改为P′=18kW 的速度,然后根据动量定理求出合外力的冲量.

11.飞机场有一架战斗机,质量3510m =?Kg ,发动机的额定功率900P =kW .在战备状态下,一开始启动,发动机就处于额定功率状态,在跑道上经过时间t =15s 运动,速度恰好达到最大速度m 60v =m/s 离开跑道.飞机在跑道上运动过程中,受到的阻力不断增大.求:

(1)飞机速度达到最大时,所受到的阻力大小;

(2)飞机从启动到最大速度的过程中,飞机所受合外力的冲量的大小; (3)飞机从启动到离开跑道,飞机克服阻力所做的功.

【答案】(1)1.5×104N (2)5

310I N s =??合(3)4.5×106J

【解析】

(1)飞机速度达到最大时,设飞机的牵引力为F ,受到的阻力是f ,则 F f =

P Fv =

解得f =1.5×104 N

(2)对飞机由动量定理有 0I mv =-合

解得5

310I =?合N.s

(3)从开始到离开跑道,设克服阻力做功是W ,则

212

Pt W mv -=

解得W =4.5×106 J

【点睛】本题考查功及冲量的计算,要注意明确当飞机达最大速度时,牵引力等于阻力.

12.有一水龙头以每秒800g 水的流量竖直注入盆中,盆放在磅秤上,如图所示.盆中原来无水,盆的质量500g ,注至5s 末时,磅秤的读数为57N ,重力加速度g 取10m/s 2,则此时注入盆中的水流的速度约为多大?

【答案】15m/s

【解析】

5s时,杯子及水的总质量m=0.5+0.8×5=4.5kg;

设注入水流的速度为t,取竖直向下为正方向,△t时间内注入杯中的水的质量△m=0.8△t 对杯子和杯子中的水进行分析,根据动量定理可知:

(mg+△mg?F)△t=0?△mv

由题意可知,F=57N;而△mg<

所以上式可变式为:

mg?F=?0.7v

代入数据,解得v=15m/s.

点睛:取极短时间内注入杯中的水为研究对象,根据动量定理列式,可求得注入水流的速度.

高中物理动量定理解题技巧讲解及练习题(含答案)及解析

高中物理动量定理解题技巧讲解及练习题(含答案)及解析 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 2202v v aL -= 可解得:2201002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv =-

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求: (i )C 与A 碰撞前的速度大小 (ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是 32 mv 0. 【解析】 【分析】 【详解】 试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3? 0m m v mv -+= 解得:10 v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得: 012 3(3)mv mv m m v =+- 在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032 CA I mv =- 即A 、C 碰过程中C 对A 的冲量大小为032 mv . 方向为负. 考点:动量守恒定律 【名师点睛】 本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择. 3.如图所示,一光滑水平轨道上静止一质量为M =3kg 的小球B .一质量为m =1kg 的小

高中物理动量定理动量守恒定律习题带答案

动量练习 ;类型一:弹簧问题 1、一轻质弹簧,两端连接两滑块A和B,已知m A=0.99kg ,m B=3kg,放在光滑水平桌面上,开始时弹簧处于原长。现滑块A被水平飞来的质量为m c=10g,速度为400m/s的子弹击中,且没有穿出,如图所示,试求: (1)子弹击中A的瞬间A和B的速度 (2)以后运动过程中弹簧的最大弹性势能 类型二:板块问题 2. (18分) 如图所示,质量为20kg的平板小车的左端 放有质量为10kg的小铁块,它与车之间的动摩擦因数 为0.5。开始时,车以速度6m/s向左在光滑的水平面上运动,铁块以速度6m/s向右运动,小车足够长。(g=10m/s2)求: (1) 小车与铁块共同运动的速度大小和方向。 (2)系统产生的内能是多少? (3)小铁块在小车上滑动的时间 3矩形滑块由不同材料的上下两层粘合在一起组成,将其放在光滑 的水平面上,如图所示,质量为m的子弹以速度v水平射向滑块.若射向上层滑块,子弹刚好不射出;若射向下层滑块,则子弹整个儿刚好嵌入滑块,由上述两种情况相比较()A A.子弹嵌入两滑块的过程中对滑块的冲量一样多 B.子弹嵌入上层滑块的过程中对滑块做的功较多 C.子弹嵌入下层滑块的过程中对滑块做的功较多 D.子弹嵌入上层滑块的过程中系统产生的热量较多 类型三:圆周运动 4.(18分)质量为m的A球和质量为3m的B球分别用长为L的细线a和b悬挂在天花板下方,两球恰好相互接触,.用细线c水平拉起A,使a偏离竖直方向θ= 60°,静止在如图8所示的位置.b能承受的最大拉力F m=3.5mg,剪断c,让A自由摆动下落,重力加速度为g. ①求A与B发生碰撞前瞬间的速度大小. ②若A与B发生弹性碰撞,求碰后瞬间B的速度大小. ③A与B发生弹性碰撞后,分析判断b是否会被拉断? 5、半径为R的圆桶固定在小车上,有一光滑小球静止在圆桶的最 低点,如图38所示,小车以速度v向右匀速运动,当小车遇到障 碍物突然停止时,小球在圆桶中上升的高度可能是()ACD A.等于v2/2g B.大于 B A b a c h θ 图8

高中物理动量定理解题技巧(超强)及练习题(含答案)

高中物理动量定理解题技巧(超强)及练习题(含答案) 一、高考物理精讲专题动量定理 1.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求: (1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小. (2)小车的长度. 【答案】(1)4.5N s ? (2)5.5m 【解析】 ①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有: 0011()o m v m m v =+,可解得110/v m s =; 对子弹由动量定理有:10I mv mv -=-, 4.5I N s =? (或kgm/s); ②三物体组成的系统动量守恒,由动量守恒定律有: 0110122()()m m v m m v m v +=++; 设小车长为L ,由能量守恒有:22220110122111()()222 m gL m m v m m v m v μ= +-+- 联立并代入数值得L =5.5m ; 点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度. 2.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。已知sin37o=0.60,cos37o=0.80,重力加速度g 取10m/s 2,不计空气阻力。求: (1)物体沿斜面向上运动的加速度大小; (2)物体在沿斜面运动的过程中,物体克服重力所做功的最大值; (3)物体在沿斜面向上运动至返回到斜面底端的过程中,重力的冲量。 【答案】(1)6.0m/s 2(2)18J (3)20N· s ,方向竖直向下。 【解析】 【详解】

高中物理专题汇编动量定理(一)

高中物理专题汇编动量定理(一) 一、高考物理精讲专题动量定理 1.北京将在2022年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深受广大观众的欢迎。一质量为60kg 的运动员在高度为80h m =,倾角为30θ=?的斜坡顶端,从静止开始沿直线滑到斜面底端。下滑过程运动员可以看作质点,收起滑雪杖,忽略摩擦阻力和空气阻力,g 取210/m s ,问: (1)运动员到达斜坡底端时的速率v ; (2)运动员刚到斜面底端时,重力的瞬时功率; (3)从坡顶滑到坡底的过程中,运动员受到的重力的沖量。 【答案】(1)40/m s (2)41.210W ?(3)34.810N s ?? 方向为竖直向下 【解析】 【分析】 (1)根据牛顿第二定律或机械能守恒定律都可以求出到达底端的速度的大小; (2)根据功率公式进行求解即可; (3)根据速度与时间关系求出时间,然后根据冲量公式进行求解即可; 【详解】 (1)滑雪者由斜面顶端滑到底端过程中,系统机械能守恒:212 mgh mv = 到达底端时的速率为:40/v m s =; (2)滑雪者由滑到斜面底端时重力的瞬时功率为:4 sin 30 1.210G P mg v W =???=?; (3)滑雪者由斜面顶端滑到底端过程中,做匀加速直线运动 根据牛顿第二定律0sin 30mg ma =,可以得到:2 sin 305/a g m s =?= 根据速度与时间关系可以得到:0 8v t s a -= = 则重力的冲量为:3 4.810G I mgt N s ==??,方向为竖直向下。 【点睛】 本题关键根据牛顿第二定律求解加速度,然后根据运动学公式求解末速度,注意瞬时功率的求法。 2.如图所示,用0.5kg 的铁睡把钉子钉进木头里去,打击时铁锤的速度v =4.0m/s ,如果打击后铁锤的速度变为0,打击的作用时间是0.01s (取g =10m/s 2),那么:

最新高中物理动量定理专题训练答案

最新高中物理动量定理专题训练答案 一、高考物理精讲专题动量定理 1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求: (1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小; (3)小球B 运动到最高点C 时对轨道的压力; 【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】 (1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s (2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒: A B Mv Mv mv =+ 222111222 A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s (3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒: 2211 222 B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R '+= 解得:F N =4N 由牛顿第三定律知,F N '=F N =4N 小球对轨道的压力的大小为3N ,方向竖直向上. 2.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停

高中物理动量定理试题经典及解析

高中物理动量定理试题经典及解析 一、高考物理精讲专题动量定理 1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。 【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】 (1)设运动过程中摩擦阻力做的总功为W ,则 W =-kmgL -2kmgL =-3kmgL 即整个过程中摩擦阻力所做的总功为-3kmgL 。 (2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得 mv 1=2mv 2 22101122 kmgL mv mv -= - 2 21(2)0(2)2 k m gL m v -=- 由以上各式得 010v kgL = 所以人给第一辆车水平冲量的大小 010I mv m kgL == 2.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略

高中物理动量定理和动量守恒

暑期生活第六篇:动量定理和动量守恒 复习目标 1.进一步深化对动量、冲量、动量变化、动量变化率等概念的理解。 2.能灵活熟练地应用动量定理解决有关问题。 3.能灵活熟练地应用动量守恒定律解决碰撞、反冲和各种相互作用的问题。 专题训练 1、两辆质量相同的小车A和B,置于光滑水平面上,一人站在A车上,两车均静止。若这个人从A车跳到B 车,接着又跳回A车,仍与A车保持相对静止,则此时A车的速率() A、等于零 B、小于B车的速率 C、大于B车的速率 D、等于B车的速率 2、在空间某一点以大小相等的速度分别竖直上抛、竖直下抛、水平抛出质量相等的小球,不计空气阻力, 经过t秒(设小球均未落地)() A.做上抛运动的小球动量变化最大 B.做下抛运动的小球动量变化最小 C.三个小球动量变化大小相等 D.做平抛运动的小球动量变化最小 3、质量相同的两木块从同一高度同时开始自由下落,至某一位置时A被水平飞来的子弹击中(未穿出),则 A、B两木块的落地时间t A、t B相比较,下列现象可能的是() A.t A= t B B.t A >t B C.t A< t B D.无法判断 4、放在光滑水平面上的A、B两小车中间夹了一压缩轻质弹簧,用两手分别控制小车处于静止状态,下面说 法中正确的是() A.两手同时放开后,两车的总动量为零 B.先放开右手,后放开左手,两车的总动量向右 C.先放开左手,后放开右手,两车的总动量向右 D.两手同时放开,两车总动量守恒;两手放开有先后,两车总动量不守恒 5、某物体沿粗糙斜面上滑,达到最高点后又返回原处,下列分析正确的是() A.上滑、下滑两过程中摩擦力的冲量大小相等 B.上滑、下滑两过程中合外力的冲量相等 C.上滑、下滑两过程中动量变化的方向相同 D.整个运动过程中动量变化的方向沿斜面向下 6、水平推力F1和F2分别作用于水平面上的同一物体,分别作用一段时间后撤去,使物体都从静止开始运动 到最后停下,如果物体在两种情况下的总位移相等,且F1>F2,则() A、F2的冲量大 B、F1的冲量大 C、F1和F2的冲量相等 D、无法比较F1和F2的冲量大小 7、质量为1kg的炮弹,以800J的动能沿水平方向飞行时,突然爆炸分裂为质量相等的两块,前一块仍沿水 平方向飞行,动能为625J,则后一块的动能为() A.175J B.225J C.125J A.275J 8、两小船静止在水面,一人在甲船的船头用绳水平拉乙船,则在两船靠拢的过程中,它们一定相同的物理量是() A、动量的大小 B、动量变化率的大小 C、动能 D、位移的大小 9、质量为m的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿 着完全相同步枪和子弹的射击手。左侧射手首先开枪,子弹水平射入木块的最大深度为d1,然后右侧射手开枪,子弹水平射入木块的最大深度为d2,如图所示。设子弹均未射穿木块,且两颗子弹与木块之间

大学物理动量与角动量练习题与答案

一、选择题 [ A ] 1.(基础训练2)一质量为m 0的斜面原来静止于水平光滑平面上,将一质量为m 的木块轻轻放于斜面上,如图3-11.如果此后木块能静止于斜面上,则斜面将 (A) 保持静止. (B) 向右加速运动. (C) 向右匀速运动. (D) 向左加速运动. 提示:假设斜面以V 向右运动。由水平方向动量守恒得 0(cos )0m V m V v θ+-= ,而0v =,得0V = [C ]2.(基础训练3)如图3-12所示,圆锥摆的摆球质量为m ,速率为v ,圆半径为R ,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为 (A) 2m v . (B) 2 2)/()2(v v R mg m π+ (C) v /Rmg π. (D) 0. [ B ]3. (自测提高2)质量为20 g 的子弹,以400 m/s 的速率沿图3-15入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与 摆球一起运动的速率为 (A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s . 提示:对摆线顶部所在点角动量守恒。 2sin 30()mv l M m lV ?=+;其中m 为子弹质量,M 为摆球质量,l 为 摆线长度。 [D ]4.(自测提高4)用一根细线吊一重物,重物质量为5 kg ,重物下面再系一根同样的细线,细线只能经受70 N 的拉力.现在突然向下拉一下下面的线.设力最大值为50 N ,则 (A)下面的线先断. (B)上面的线先断. (C)两根线一起断. (D)两根线都不断. 提示:下面的细线能承受的拉力大于所施加的最大力,所以下面的细线不断。 对重物用动量定理: 0' ' ' =--? ?? ++dt T mgdt dt T t t t t t 下上 ' t 为下拉力作用时间,由于' t t >>,因此,上面的细线也不断。 二、填空题 5.(基础训练8)静水中停泊着两只质量皆为0m 的小船.第一只船在左边,其上站一质量为m 的人,该人以水平向右速度v 从第一只船上跳到其右边的第二只船上,然后又以 同样的速率v 水平向左地跳回到第一只船上.此后 (1) 第一只船运动的速度为v 1= 图3-11 图3-15

高中物理动量定理试题经典及解析(1)

高中物理动量定理试题经典及解析(1) 一、高考物理精讲专题动量定理 1.北京将在2022年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深受广大观众的欢迎。一质量为60kg 的运动员在高度为80h m =,倾角为30θ=?的斜坡顶端,从静止开始沿直线滑到斜面底端。下滑过程运动员可以看作质点,收起滑雪杖,忽略摩擦阻力和空气阻力,g 取210/m s ,问: (1)运动员到达斜坡底端时的速率v ; (2)运动员刚到斜面底端时,重力的瞬时功率; (3)从坡顶滑到坡底的过程中,运动员受到的重力的沖量。 【答案】(1)40/m s (2)41.210W ?(3)34.810N s ?? 方向为竖直向下 【解析】 【分析】 (1)根据牛顿第二定律或机械能守恒定律都可以求出到达底端的速度的大小; (2)根据功率公式进行求解即可; (3)根据速度与时间关系求出时间,然后根据冲量公式进行求解即可; 【详解】 (1)滑雪者由斜面顶端滑到底端过程中,系统机械能守恒:212 mgh mv = 到达底端时的速率为:40/v m s =; (2)滑雪者由滑到斜面底端时重力的瞬时功率为:4 sin 30 1.210G P mg v W =???=?; (3)滑雪者由斜面顶端滑到底端过程中,做匀加速直线运动 根据牛顿第二定律0sin 30mg ma =,可以得到:2 sin 305/a g m s =?= 根据速度与时间关系可以得到:0 8v t s a -= = 则重力的冲量为:3 4.810G I mgt N s ==??,方向为竖直向下。 【点睛】 本题关键根据牛顿第二定律求解加速度,然后根据运动学公式求解末速度,注意瞬时功率的求法。 2.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图所示.物块以v 0=8m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以5m/s 的速度反向运动直至静止.g 取10 m/s 2.

高中物理之动量和动量定理知识点

高中物理之动量和动量定理知识点 动量、冲量 动量变化量和动量变化率 (1)物体末态动量和初态动量的矢量差叫物体的动量变化量。△P=mv'-mv,其方向与速度变化量的方向相同。 (2)物体的动量变化率等于它所受的合力。 动量定理 (1)物体在一个过程中的动量变化量等于它在这个过程中的所受理的合冲量。 (2)△P=I合或mv'-mv=F合t 应用动量定理解题的一般步骤 (1)选定研究对象,明确运动过程

(2)受力分析和运动的初、末状态分析 (3)选正方向,根据动量定理列方程求解 应用 动量定理揭示了冲量和动量变化量之间的关系. 1.应用动量定理的两类简单问题 (1)应用I=ΔP求变力的冲量和平均作用力. 物体受到变力作用,不能直接用I=Ft求变力的冲量。(2)应用ΔP=Ft求恒力作用下的曲线运动中物体动量的变化。 曲线运动中,作用力是恒力,可求恒力的冲量,等效代换动量的变化量。 2.动量定理使用的注意事项 (1)用牛顿第二定律能解决的问题,用动量定理也能解决,题目不涉及加速度和位移,用动量定理求解更简便。 (2)动量定理的表达式是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力。 3.动量定理在电磁感应现象中的应用 在电磁感应现象中,安培力往往是变力,可用动量定理求解有关运动过程中的时间、位移、速度等物理量。

习题演练 1. 关于动量和冲量,下列说法中正确的是() A 动量和冲量都是标量 B 动量和冲量都是过程量 C 动量和冲量都是过程量 D 动量和冲量都是矢量 2. 某物体受到一个-6N*s的冲量作用,则下列说法正确的是() A 物体的动量一定减小 B 物体的末动量一定是负值 C 物体动量增量的方向一定与规定的正方向相反 D 物体原来动量的方向一定与这个冲量的方向相反 习题解析 1. D 动量是状态量,冲量是过程量。 2. B 冲量和动量都是方向,矢量的正负号仅表示方向。

高中物理动量定理解题技巧讲解及练习题(含答案)

高中物理动量定理解题技巧讲解及练习题(含答案) 一、高考物理精讲专题动量定理 1.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得前后两块质量之比为1:4,且炸裂时有大小为E =9000J 的化学能全部转化为了动能,则两块落地点间的距离是多少? 【答案】(1)1550N ;(2)900m 【解析】 【分析】 【详解】 (1)设发射时燃烧的火药对礼花弹的平均作用力为F ,设礼花弹上升时间为t ,则: 212 h gt = 解得 6s t = 对礼花弹从发射到抛到最高点,由动量定理 00()0Ft mg t t -+= 其中 00.2s t = 解得 1550N F = (2)设在最高点爆炸后两块质量分别为m 1、m 2,对应的水平速度大小分别为v 1、v 2,则: 在最高点爆炸,由动量守恒定律得 1122m v m v = 由能量守恒定律得 2211221122E m v m v = + 其中 121 4m m = 12m m m =+ 联立解得 1120m/s v =

230m/s v = 之后两物块做平抛运动,则 竖直方向有 212 h gt = 水平方向有 12s v t v t =+ 由以上各式联立解得 s=900m 2.在距地面20m 高处,某人以20m/s 的速度水平抛出一质量为1kg 的物体,不计空气阻力(g 取10m /s 2)。求 (1)物体从抛出到落到地面过程重力的冲量; (2)落地时物体的动量。 【答案】(1)20N ?s ,方向竖直向下(2 )m/s ?, 与水平方向的夹角为45° 【解析】 【详解】 (1)物体做平抛运动,则有: 212 h gt = 解得: t =2s 则物体从抛出到落到地面过程重力的冲量 I=mgt =1×10×2=20N?s 方向竖直向下。 (2)在竖直方向,根据动量定理得 I=p y -0。 可得,物体落地时竖直方向的分动量 p y =20kg?m/s 物体落地时水平方向的分动量 p x =mv 0=1×20=20kg?m/s 故落地时物体的动量 m/s p = =? 设落地时动量与水平方向的夹角为θ,则 1y x p tan p θ= = θ=45°

高中物理二轮复习 专项训练 物理动量定理

高中物理二轮复习 专项训练 物理动量定理 一、高考物理精讲专题动量定理 1.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5m 的位置B 处是一面墙,如图所示,物块以v 0=9m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以6m/s 的速度反向运动直至静止.g 取10m/s 2. (1)求物块与地面间的动摩擦因数μ; (2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F . 【答案】(1)0.32μ= (2)F =130N 【解析】 试题分析:(1)对A 到墙壁过程,运用动能定理得: , 代入数据解得:μ=0.32. (2)规定向左为正方向,对碰墙的过程运用动量定理得:F △t=mv′﹣mv , 代入数据解得:F=130N . 2.如图所示,一个质量为m 的物体,初速度为v 0,在水平合外力F (恒力)的作用下,经过一段时间t 后,速度变为v t 。 (1)请根据上述情境,利用牛顿第二定律推导动量定理,并写出动量定理表达式中等号两边物理量的物理意义。 (2)快递公司用密封性好、充满气体的塑料袋包裹易碎品,如图所示。请运用所学物理知识分析说明这样做的道理。 【答案】详情见解析 【解析】 【详解】 (1)根据牛顿第二定律F ma =,加速度定义0i v v a t -=解得 0=-i Ft mv mv 即动量定理, Ft 表示物体所受合力的冲量,mv t -mv 0表示物体动量的变化 (2)快递物品在运送途中难免出现磕碰现象,根据动量定理 0=-i Ft mv mv 在动量变化相等的情况下,作用时间越长,作用力越小。充满气体的塑料袋富有弹性,在

高中物理动量定理专题(问题详解)-word

动量和动量定理的应用 知识点一——冲量(I) 要点诠释: 1.定义:力F和作用时间的乘积,叫做力的冲量。 2.公式: 3.单位: 4.方向:冲量是矢量,方向是由力F的方向决定。 5.注意: ①冲量是过程量,求冲量时一定要明确是哪一个力在哪一段时间内的冲量。 ②用公式求冲量,该力只能是恒力,无论是力的方向还是大小发生变化时,都不能用直接求出 1.推导: 设一个质量为的物体,初速度为,在合力F的作用下,经过一段时间,速度变为 则物体的加速度 由牛顿第二定律 可得, 即 (为末动量,P为初动量) 2.动量定理:物体所受合外力的冲量等于物体的动量变化。 3.公式: 或 4.注意事项: ①动量定理的表达式是矢量式,在应用时要注意规定正方向; ②式中F是指包含重力在内的合外力,可以是恒力也可以是变力。当合外力是变力时,F应该是合外力在这段时间内的平均值; ③研究对象是单个物体或者系统; ④不仅适用于宏观物体的低速运动,也适用与微观物体的高速运动。 5.应用: 在动量变化一定的条件下,力的作用时间越短,得到的作用力就越大,因此在需要增 大作用力时,可尽量缩短作用时间,如打击、碰撞等由于作用时间短,作用力都较大,如冲压工件; 在动量变化一定的条件下,力的作用时间越长,得到的作用力就越小,因此在需要减 小作用力时,可尽量延长作用时间,如利用海绵或弹簧的缓冲作用来延长作用时间,从而减小作用力,再如安全气囊等。 规律方法指导 1.动量定理和牛顿第二定律的比较 (1)动量定理反映的是力在时间上的积累效应的规律,而牛顿第二定律反映的是力的瞬时效应的规律 (2)由动量定理得到的,可以理解为牛顿第二定律的另一种表达形式, 即:物体所受的合外力等于物体动量的变化率。 (3)在解决碰撞、打击类问题时,由于力的变化规律较复杂,用动量定理处理这类问题更有其优越性。 4.应用动量定理解题的步骤 ①选取研究对象; ②确定所研究的物理过程及其始末状态; ③分析研究对象在所研究的物理过程中的受力情况; ④规定正方向,根据动量定理列式; ⑤解方程,统一单位,求得结果。 经典例题透析 类型一——对基本概念的理解 1.关于冲量,下列说法中正确的是() A.冲量是物体动量变化的原因 B.作用在静止的物体上力的冲量一定为零 C.动量越大的物体受到的冲量越大 D.冲量的方向就是物体合力的方向 思路点拨:此题考察的主要是对概念的理解 解析:力作用一段时间便有了冲量,而力作用一段时间后物体的运动状态发生了变化,物体的动量也发生了变化,因此说冲量使物体的动量发生了变化,A对;只要有力作用在物体上,

高中物理动量定理专题训练答案(1)

高中物理动量定理专题训练答案(1) 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 2202v v aL -= 可解得:2201002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv =-

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰 撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求: (1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小; (3)小球B 运动到最高点C 时对轨道的压力; 【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】 (1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s (2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒: A B Mv Mv mv =+ 222111222 A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s (3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒: 2211222 B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R '+= 解得:F N =4N 由牛顿第三定律知,F N '=F N =4N 小球对轨道的压力的大小为3N ,方向竖直向上.

高一物理动量定理教案

第二节:动量定理 一.知识目标 1.理解动量定理的确切含义和表达式 2.知道动量定理适用于变力 3.能从牛顿运动定律和运动学公式推导出动量表达式 4.会用动量定理解释现象和处理有关的问题 二.能力目标 1. 从牛顿运动定律和运动学公式推导出动量表达式 2. 能运用动量守恒定律解释现象 3. 用动量定理解释现象和处理有关的问题 三.德育目标 渗透物理学研究方法的教育,培养学生的推理能力的理论联系实际的能力 四.教学重点 利用动量定理定性地解释有关问题 五.教学难点 用动量定理进行计算 六.教学过程 动量定理 引入:鸡蛋从一米多高的地方落到海绵垫上,鸡蛋没有打破,为什么呢?学了这一节课我们就知道了。力是物体运动状态发生改变即产生加速度的原因,力在作用的时间过程中积累了一定的冲量,物体受到冲量作用时,其动量要发生变化,那么物体的动量的变化与它受到的冲量有何关系呢?下面我们来寻找它们间的关系,以展现给我们一个全新的力学规律,开辟一条新的解题途径。 推导 可以从牛顿第二定律导出: 设质量为m 的物体在恒力F 的作用下沿直线运动,经过时间t ,物体的速度由v 0变为v ,则物体的加速度t a 0 υυ-=,由牛顿第二定律得 t m F 0υυ-=得: 0υυm m Ft -= 即:P I ?= [要学生理解公式的物理意义:即合外力的冲量等于物体动量的改变] 公式左端是力F 在时间t 内的冲量,右端mv 是物体的末动量,mv 0 是物体的初动量,mv-mv 0是物体动量的改变量。这就是说,物体所受合外力的冲量,等于它的动量的变化。这个结论叫做动量定理。 数学表达式为0υυm m Ft -=或P I ?= 对动量定理的理解 1. 定理反映了合外力的冲量是物体动量变化的原因 2. 动量定理公式中的力是研究对象所受的包括重力在内的所有外力的合力,它呆以是恒力,也可以是变力,如果是变力,此时所得的力是平均合外力 3. 动量定理是矢量式,合外力的冲量方向与物体动量变化的方向相同。 合外力冲量的方向可以跟初动量方向相同,也可以相反,例如,匀加速直线运动合外力冲量方向与初动量方向相同,匀减速直线运动合外力冲量方向与初动量方向相反。 4. 动量定理说明合外力的冲量与研究对象的动量增量的数值相同,方向一致,单位等效,合外力的冲量是物体动量变化的原因,但不能认为合外力的冲量就是动量的增量。 动量定理的适用范围 (1)成立条件:动量定理在惯性参考系中成立。 因为动量定理由牛顿第二定律和运动学公式推导而得,而牛顿运动定律仅在惯性参考系中成立,一般在没有特

高中物理动量定理解题技巧及练习题及解析

高中物理动量定理解题技巧及练习题及解析 一、高考物理精讲专题动量定理 1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。 【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】 (1)设运动过程中摩擦阻力做的总功为W ,则 W =-kmgL -2kmgL =-3kmgL 即整个过程中摩擦阻力所做的总功为-3kmgL 。 (2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得 mv 1=2mv 2 22101122 kmgL mv mv -= - 2 21(2)0(2)2 k m gL m v -=- 由以上各式得 010v kgL = 所以人给第一辆车水平冲量的大小 010I mv m kgL == 2.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略

高中物理专题汇编物理动量定理(一)

高中物理专题汇编物理动量定理(一) 一、高考物理精讲专题动量定理 1.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求: (1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小. (2)小车的长度. 【答案】(1)4.5N s ? (2)5.5m 【解析】 ①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有: 0011()o m v m m v =+,可解得110/v m s =; 对子弹由动量定理有:10I mv mv -=-, 4.5I N s =? (或kgm/s); ②三物体组成的系统动量守恒,由动量守恒定律有: 0110122()()m m v m m v m v +=++; 设小车长为L ,由能量守恒有:22220110122111()()222 m gL m m v m m v m v μ=+-+- 联立并代入数值得L =5.5m ; 点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度. 2.质量0.2kg 的球,从5.0m 高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g 取10m/s 2.求小球对钢板的作用力. 【答案】78N 【解析】 【详解】 自由落体过程 v 12=2gh 1,得v 1=10m/s ; v 1=gt 1 得t 1=1s 小球弹起后达到最大高度过程0? v 22=?2gh 2,得v 2=9m/s 0-v 2=-gt 2 得t 2=0.9s 小球与钢板作用过程设向上为正方向,由动量定理:Ft ′-mg t ′=mv 2-(-mv 1) 其中t ′=t -t 1-t 2=0.05s

高中物理动量定理解析版汇编

高中物理动量定理解析版汇编 一、高考物理精讲专题动量定理 1.如图所示,一光滑水平轨道上静止一质量为M =3kg 的小球B .一质量为m =1kg 的小球A 以速度v 0=2m/s 向右运动与B 球发生弹性正碰,取重力加速度g =10m/s 2.求: (1)碰撞结束时A 球的速度大小及方向; (2)碰撞过程A 对B 的冲量大小及方向. 【答案】(1)-1m/s ,方向水平向左(2)3N·s ,方向水平向右 【解析】 【分析】A 与B 球发生弹性正碰,根据动量守恒及能量守恒求出碰撞结束时A 球的速度大小及方向;碰撞过程对B 应用动量定理求出碰撞过程A 对B 的冲量; 解:(1)碰撞过程根据动量守恒及能量守恒得:0A B mv mv Mv =+ 222 0111222 A B mv mv Mv =+ 联立可解得:1m/s B v =,1m/s A v =- 负号表示方向水平向左 (2)碰撞过程对B 应用动量定理可得:0B I Mv =- 可解得:3I N s =? 方向水平向右 2.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求: (1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小. (2)小车的长度. 【答案】(1)4.5N s ? (2)5.5m 【解析】 ①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有: 0011()o m v m m v =+,可解得110/v m s =; 对子弹由动量定理有:10I mv mv -=-, 4.5I N s =? (或kgm/s); ②三物体组成的系统动量守恒,由动量守恒定律有: 0110122()()m m v m m v m v +=++; 设小车长为L ,由能量守恒有:22 220110122111()()222 m gL m m v m m v m v μ= +-+-

大学物理动量与角动量练习题与答案

第三章 动量与角动量 一、选择题 [ A ] 1.(基础训练2)一质量为m 0的斜面原来静止于水平光滑平面上,将一质量为m 的木块轻轻放于斜面上,如图3-11.如果此后木块能静止于斜面上,则斜面将 (A) 保持静止. (B) 向右加速运动. (C) 向右匀速运动. (D) 向左加速运动. 提示:假设斜面以V 向右运动。由水平方向动量守恒得 0(cos )0m V m V v θ+-= ,而0v =,得0V = [C ]2.(基础训练3)如图3-12所示,圆锥摆的摆球质量为m ,速率为v ,圆半径为R ,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为 (A) 2mv . (B) 22)/()2(v v R mg m π+ (C) v /Rmg π. (D) 0. 提示:2T mg I G ?=? , v R T π2= [ B ]3. (自测提高2)质量为20 g 的子弹,以400 m/s 的速率沿图3-15入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开 始与摆球一起运动的速率为 (A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s . 提示:对摆线顶部所在点角动量守恒。 2sin 30()mv l M m lV ?=+;其中m 为子弹质量,M 为摆球质量,l 为 摆线长度。 [D ]4.(自测提高4)用一根细线吊一重物,重物质量为5 kg ,重物下面再系一根同样的细线,细线只能经受70 N 的拉力.现在突然向下拉一下下面的线.设力最大值为50 N ,则 (A)下面的线先断. (B)上面的线先断. (C)两根线一起断. (D)两根线都不断. 提示:下面的细线能承受的拉力大于所施加的最大力,所以下面的细线不断。 对重物用动量定理: 0' ' ' =--? ?? ++dt T mgdt dt T t t t t t 下上 ' t 为下拉力作用时间,由于' t t >>,因此,上面的细线也不断。 二、填空题 5.(基础训练8)静水中停泊着两只质量皆为0m 的小船.第一只船在左边,其上站一质量为m 的人,该人以水平向右速度v ? 从第一只船上跳到其右边的第二只船上,然后又以同 样的速率v 水平向左地跳回到第一只船上.此后 (1) 第一只船运动的速度为v ? 1= 02m v m m - +v 。 (2) 第二只船运动的速度为v ? 2=0 2m v m v 。(水的阻力不计,所有速度都 m m 0 图3-11 ?30v ?2 图3-15 θ m v ? R

相关主题