搜档网
当前位置:搜档网 › 最优路径算法

最优路径算法

最优路径算法
最优路径算法

9.4.3 寻路算法

路径选择问题是游戏开发中经常遇到的问题,比如热门的Android游戏《crystallight》,游戏中的敌人需要寻找到一条路径前进,直到被杀死或者是到达终点;又如,棋类游戏中,需要为棋子选择最"理智"的行进路径,以达到最佳棋面;再如,9.3.5节中提到的复杂游戏AI,其核心就是为"飞机"寻找一条最理想的逃生路线。此外,在非规则实体的碰撞检测中,也需要选择较优的路径到达碰撞边缘。类似的路径选择问题经常出现,但是如何合理地实现寻路算法,是很多程序员需要解决的难题。

1. A*算法知多少

很多游戏开发者一提到寻路算法,就想到A*算法;一提到A*算法,就望而却步。下面将揭开A*算法的神秘面纱。

A*算法确实是最高效、最流行的寻路算法,是搜索算法最深层的延伸。A*算法由4个要素组成:A*=估价函数+并查集+堆+广搜。A*算法必须有强大的算法功底和长年累月的实战积累方能实现。另外,A*也并非总是最适合的算法,它仅仅是在不同运用领域表现出更强的通用性,仅仅是在数据统计范畴内性能期望值最高。

那么,A*是否适合移植到Android平台呢?我们需要进一步分析它的特点与专长。A*算法的精髓是以空间换取时间,它的运用前提是:解空间充分大,运算时间受到刚性限制,而存储空间(一般是内存)相对充足。如果将它移植到Android平台上,其一,手机系统的内存资源弥足珍贵,A*算法将完全失去用武之地;其二,手机游戏的寻路空间相对较小,解空间相对狭隘。因而,搜索算法的瓶颈不再是冗余的搜索尝试,而估价函数的开销以及冗长的代码将成为新的瓶颈。因此,A*算法并不是Android手机游戏的唯一选择,针对不同的路径选择需要,应该定制不同的搜索算法。

2. 量身定制寻路算法

设计寻路算法应该基于两个原则:开发者力所能及、算法力所能及。

算法功底不是很雄厚的开发者,不必追求华丽的A*算法,可根据实际需要写一个普通的宽搜或者广搜算法。毕竟手机游戏的解空间与PC游戏差了不止一个数量级,常规搜索的时间开销也不会庞大。游戏开发者需要认真做好的是优化。其实,开发寻路算法的大门一直都敞开着,只要开发者能够找准游戏的定位,选准突破的方向。例如,热门塔防游戏--《Robo Defense》,它的搜索空间很小,对常规的搜索算法做一些优化,即能实现即时寻路。

具备深厚算法功底的开发者可以根据不同的路径选择需求,选择最恰当的寻路算法。对于解空间较小、实时性较高的游戏,A*算法将是最恰当的选择,设计高效的估计函数将成为算法性能的关键;如果解空间较大,内存空间紧缺,那么采用迭代加深搜索算法效果更佳,

此算法的内存消耗微乎其微,而且能够保证最先搜到最短路径;如果游戏中的精灵需要持续寻路(比如NPC每走一步,都要寻找一次最优路径),那么遗传算法将是再适合不过的选择了,每执行一轮遗传算法得到的最终种群、经过移位和补位处理可以用来优化下一轮的初始种群,这将极其显著地消除重复性搜索尝试。需要特别注意的是,使用人工智能算法实现寻路,虽然不能总是获得最优路线,但是量身定做的智能算法能够进一步节约内存消耗,能够让游戏在Android手机上面更加流畅地运行,同时,智能算法求解出的"智能"路线往往也会给玩家带来意外的惊喜与趣味。比如,《蚂蚁吃蛋糕》游戏应用了人工智能算法实现路径选择,蚂蚁的前进路线是不确定的,但它是"理智"的,正是这种不完美的寻路机制,成为了游戏最大的亮点,使这款游戏获得了巨大的成功。

第4章续 多变量寻优方法

4.4:梯度法 解析法(间接法):在确定搜索方向时,需要计算目标函数导数的方法。 梯度法,共轭梯度法,变尺度法,牛顿法。 ● 方法 又称最速下降法,它是在n X 点附近沿负梯度方向一维搜索,并按负梯度方向逐步进行寻优的方法。最简单最基本的无约束优化问题方法 ● 收敛性判别准则 给定允许误差0>ε,如果)(k x k X f p -=满足 ε≤k p 则搜索停止,从而得到问题的近似解。 ● 迭代步骤 1:取初始点0 X ,梯度模的允许误差ε,最大迭代次数MAXI ,令k =0; 2:计算梯度 )(k x k X f p -= 3:检验是否满足收敛性判别准则 ε≤k p 若满足,则迭代停止,得到k X X ≈min ;否则进行4 4:求单变量极值问题的最优解k λ )()(0 k k k k k p X f p X f Min λλλ+=+> 5:令k k k k p X X λ+=+1 6:判断是否满足 ε? ≤-+) ()(1k k X f X f ) (0.1)(0.10.1)(k k k X f X f X f =≥=

若满足,则迭代停止(非正常),取k X X ≈min ,否则转向2 ● 迭代框图 ● 优点 程序简单,计算机实现起来容易。对起始点要求也不甚严格,即使从一个较差的初始点出发,一般也能收敛到极小点。 ● 缺点

在极小点附近收敛得很慢,对于目标函数而言,在起始点远离极小点时,开头几步下降较快,到了极值点时,下降便开始变缓慢,甚至在极小点附近出现来回摆动的情况。 它的收敛快慢与变量尺度关系很大。 2221)(x x X f += 一次迭代 [0,0] 22 219)(x x X f += 十次迭代 ]10165.6,10276.5[66--?? 对于小扰动会出现不稳定。舍入误差或者一维搜索步长的确定不准确,带来小扰动,这 些小扰动在个别情况下甚至可能使实际下降方向与理论下降方向成正交的荒谬结论,破坏了方法的收敛性。 4.5:共轭梯度法(FR 法) 找到某一个方向的共轭方向,可以一步直接达极值点。 ● 计算方法 正定二次函数X Z CX X X f T T += 2 1)(,C 为n n ?对称正定阵。 若n p p ,,1 为任意一组C 的共轭向量,则由任意初始点1 X 出发,按如下格式迭代 )()(k k k k k p X f p X f Min λλλ +=+ n k p X X k k k k ,,11 =+=+λ 则至多迭代n 步即收敛。 ● 找共轭方向 取1 X 处的目标函数负梯度方向作为第一个搜索方向 )(1)1(1X f g p x -=-= 然后沿着1p 方向作一维搜索 )()(11111p X f p X f Min λλ+=+ 由此得到一个新的点2 X ,并计算出相应的梯度方向 1112p X X λ+= )(2)2(X f g x = 因为梯度方向和前一搜索方向在1λ处正交 0)()()()2()1(21=-=-g g X f X f T x T x 为了在) 1(g 和) 2(g 构成的正交系中寻求共轭方向2 p ,令

最短路径规划实验报告

电子科技大学计算机学院标准实验报告 (实验)课程名称最短路径规划 电子科技大学教务处制表

实验报告 学生姓名:李彦博学号:2902107035 指导教师:陈昆 一、实验项目名称:最短路径规划 二、实验学时:32学时 三、实验原理:Dijkstra算法思想。 四、实验目的:实现最短路径的寻找。 五、实验内容: 1、图的基本概念及实现。 一、图的定义和术语 图是一种数据结构。 ADT Graph{ 数据对象V :V是据有相同特性的数据元素的集合,称为顶点集。 数据关系R : R={VR} VR={|v,w∈V且P(v,w), 表示从v到w的弧,P(v,w)定义了弧的意义或信息} 图中的数据元素通常称为顶点,V是顶点的有穷非空集合;VR是两个顶点之间的关系的集合,若顶点间是以有向的弧连接的,则该图称为有向图,若是以无向的边连接的则称为无向图。弧或边有权值的称为网,无权值的称为图。 二、图的存储结构 邻接表、邻接多重表、十字链表和数组。这里我们只介绍数组表示法。 图的数组表示法: 用两个数组分别存储数据元素(顶点)的信息和数据元素之间的关系(边或弧)的信息。其形式描述如下: //---------图的数组(邻接矩阵)存储表示---------- #define INFINITY INT_MAX //最大值 #define MAX_VERTEX_NUM 20 //最大顶点个数 Typedef enum{DG,DN,UDG,UDN} GraphKind; //有向图,有向网,无向图,无向网Typedef struct ArcCell{ VRType adj; //顶点关系类型,对无权图,有1或0表示是否相邻; //对带权图,则为权值类型。 InfoType *info; //弧相关信息的指针

动态路径优化算法及相关技术

》本文对在GIS(地理信息系统)环境下求解动态路径优化算法及相关技术 进行了研究。最短路径问题是网络分析中的基本的问题,它作为许多领域中选择 最优值的一个基本却又是一个十分重要的问题。特别是在交通诱导系统中占有重 要地位。本文分析了GIS环境下动态路径优化算法的特点,对GIS环境下城市 路网的最优路径选择问题的关键技术进行了研究和验证。 》考虑现实世界中随着城市路网规模的日益增大和复杂程度不断增加的情况,充分利用GIS 的特点,探讨了通过限制搜索区域求解最短路径的策略,大大减少了搜索的时间。 》另一方面,计算机技术的进步,地理信息系统(GIS)得到了飞速的发展。地理信息系统是采集、存储、管理、检索、分析和描述整个或部分地球表面与空间地理分布数据的空间信息系统。它是一种能把图形管理系统和数据管理系统有机地结合起来的信息技术,既管理对象的位置又管理对象的其它属性,而且位置和其它属性是自动关联的。它最基本的功能是将分散收集到的各种空间、非空间信息输入到计算机中,建立起有相互联系的数据库。当外界情况发生变化时,只要更改局部的数据,就可维持数据库的有效性和现实性[3][4],GIS为动态路径优化问题的研究提供了良好的环境。目前GIS带动的产业急剧膨胀,已经应用到各个方面。网络分析作为地理信息系统最主要的功能之一,在电子导航、交通旅游、城市规划以及电力、通讯等各种管网、管线的布局设计中发挥了重要的作用[5]。文献[6][7]说明了GIS 在城市道路网中的应用情况。而路网分析中基本问题之一是动态路径优化问题。所谓动态路径,不仅仅指一般地理意义上的距离最短,还可以应用到其他的参数,如时间、费用、流量等。相应的,动态路径问题就成为最快路径问题、最低费用问题等。 》GIS因为其强大的数据分析功能、空间分析功能,已被广泛应用于各种系统中与空间信息有密切关系的各个方面.各种在实际中的系统如电力系统,光缆系统涉及到最佳、最短抢修等问题都可以折合到交通网络中来进行分析,故而交通网络中最短路径算法就可以广泛的应用于其它很多的最佳、最短抢修或者报警系统中去[5]。最短路径问题是GIS网络分析功能的应用。最短路径问题可分为单源最短路径问题及所有节点间最短路径问题,其中单源最短路径更具有普遍意义[9]。 》2.1地理信息系统的概念 地理信息系统(Geographical Information System,简称GIS)是一种将空间位置信息和属性数据结合在一起的系统,是一种为了获取、存储、检索、分析和显示空间定位数据而建立的计算机化的数据库管理系统(1998年,美国国家地理信息与分析中心定义)[4]。这里的空间定位数据是指采用不同方式的遥感和非遥感手段所获得的数据,它有多种数据类型,包括地图、遥感、统计数据等,它们的共同特点都有确定的空间位置。地理信息系统的处理对象是空间实体,其处理过程正是依据空间实体的空间位置和空间关系进行的[25]。地理信息系统的外在表现为计算机软硬件系统,其内涵却是由计算机程序和地理数据组织而成的地理空间信息模型。当具有一定地理学知识的用户使用地理空间分析非空间分析等处理工具输入输出GIS数据库信息系统时,他所面对的数据不再是毫无意义的,而是把客观世界抽象为模型化的空间数据。用户可以按照应用的目的观测这个现实世界模型的各个方面的内容,取得自然过程的分析和预测的信息,用于管理和决策,这就是地理信息系统的意义。一个逻辑缩小的、高度信息化的地理系统,从视觉、计量和逻辑上对地理系统在功能上进行模拟,信息流动以及信息流动的结果,完全由计算机程序的运行和数据的变换来仿真。地理学家可以在地理信息系统支持下提取地理系统各个不同侧面、不同层次的空间和时间特征,也可以快速地模拟自然过程演变成思维过程的结果,取得地理预测或“实验”的结果,选择优化方案,用于管理与决策[26]。 一个完整的GIS主要有四个部分构成,即计算机硬件系统、计算机软件系统、地理数据(或空间数据)和系统管理操作人员。其核心部分是计算机系统(硬件和软件),地理数据反映

一种快速神经网络路径规划算法概要

文章编号 2 2 2 一种快速神经网络路径规划算法α 禹建丽? ∏ √ 孙增圻成久洋之 洛阳工学院应用数学系日本冈山理科大学工学部电子工学科 2 清华大学计算机系国家智能技术与系统重点实验室日本冈山理科大学工学部信息工学科 2 摘要本文研究已知障碍物形状和位置环境下的全局路径规划问题给出了一个路径规划算法其能量函数 利用神经网络结构定义根据路径点位于障碍物内外的不同位置选取不同的动态运动方程并针对障碍物的形状设 定各条边的模拟退火初始温度仿真研究表明本文提出的算法计算简单收敛速度快能够避免某些局部极值情 况规划的无碰路径达到了最短无碰路径 关键词全局路径规划能量函数神经网络模拟退火 中图分类号 ×°文献标识码 ΦΑΣΤΑΛΓΟΡΙΤΗΜΦΟΡΠΑΤΗΠΛΑΝΝΙΝΓ ΒΑΣΕΔΟΝΝΕΥΡΑΛΝΕΤ? ΟΡΚ ≠ 2 ? ? ≥ 2 ≥ ∏ ΔεπαρτμεντοφΜατηεματιχσ ΛυοψανγΙνστιτυτεοφΤεχηνολογψ Λυοψανγ

ΔεπαρτμεντοφΕλεχτρονιχΕνγινεερινγ ΦαχυλτψοφΕνγινεερινγ ΟκαψαμαΥνι?ερσιτψοφΣχιενχε 2 Ριδαι2χηο 2 ?απαν ΔεπαρτμεντοφΧομπυτερΣχιενχε Τεχηνολογψ ΣτατεΚεψΛαβοφΙντελλιγεντΤεχηνολογψ Σψστεμσ ΤσινγηυαΥνι?ερσιτψ Βει?ινγ ΔεπαρτμεντοφΙνφορματιον ΧομπυτερΕνγινεερινγ ΦαχυλτψοφΕνγινεερινγ ΟκαψαμαΥνι?ερσιτψοφΣχιενχε 2 Ριδαι2χηο 2 ?απαν Αβστραχτ ∏ √ √ √ × ∏ ∏ ∏ ∏ ∏ ∏ 2 ∏ √ × ∏ ∏ ∏ ∏ √ ∏ Κεψωορδσ ∏ ∏ ∏ 1引言Ιντροδυχτιον 机器人路径规划问题可以分为两种一种是基于环境先验完全信息的全局路径规划≈ 另一种是基于传感器信息的局部路径规划≈ ?后者环境是未知或者部分未知的全局路径规划已提出的典型方法有可视图法 ! 图搜索法≈ ! 人工势场法等可视图法的优点是可以求得最短路径但缺乏灵活性并且存在组合爆炸问题图搜索法比较灵活机器人的起始点和目标点的改变不会造成连通图的重新构造但不是任何时候都可以获得最短路径可视图法和图搜索法适用于多边形障碍物的避障路径规划问题但不适用解决圆形障碍物的避障路径规划问题人工势场法的基本思想是通过寻找路径点的能量函数的极小值点而使路径避开障碍物但存在局部极小值问题且不适于寻求最短路径≈ 文献≈ 给出的神经网络路径规划算法我们称为原算法引入网络结构和模拟退火等方法计算简单能避免某些局部极值情况且具有并行性及易于从二维空间推广到三维空间等优点对人工势场法给予了较大的改进但在此算法中由于路径点的总能量函数是由碰撞罚函数和距离函数两部分的和构成的而路径点 第卷第期年月机器人ΡΟΒΟΤ? α收稿日期

路径优化的算法

摘要 供货小车的路径优化是企业降低成本,提高经济效益的有效手段,供货小车路径优化问题可以看成是一类车辆路径优化问题。 本文对供货小车路径优化问题进行研究,提出了一种解决带单行道约束的车辆路径优化问题的方法。首先,建立了供货小车路径优化问题的数学模型,介绍了图论中最短路径的算法—Floyd算法,并考虑单行道的约束,利用该算法求得任意两点间最短距离以及到达路径,从而将问题转化为TSP问题,利用遗传算法得到带单行道约束下的优化送货路线,并且以柳州市某区域道路为实验,然后仿真,结果表明该方法能得到较好的优化效果。最后对基本遗传算法采用优先策略进行改进,再对同一个供货小车路径网进行实验仿真,分析仿真结果,表明改进遗传算法比基本遗传算法能比较快地得到令人满意的优化效果。 关键字:路径优化遗传算法 Floyd算法

Abstract The Path Optimization of Goods Supply Car is the effective way to reduce business costs and enhance economic efficiency.The problem of the Path Optimization of Goods Supply Car can be seen as Vehicle routing proble. This paper presents a solution to Vehicle routing proble with Single direction road by Researching the Way of Path Optimization of Goods Supply Car. First, This paper Establish the mathematics model of Vehicle routing proble and introduced the shortest path algorithm-Floyd algorithm, then taking the Single direction road into account at the same time. Seeking the shortest distance between any two points and landing path by this algorithm,then turn this problem in to TSP. Solving this problem can get the Optimize delivery routes which with Single direction road by GA,then take some district in the state City of LiuZhou road as an example start experiment.The Imitate the true result showed that this method can be better optimize results. Finally improving the basic GA with a priority strategy,then proceed to imitate the true experiment to the same Path diagram. The result expresses the improvement the heredity calculate way ratio the basic heredity calculate way can get quickly give satisfaction of excellent turn the result. Keyword: Path Optimization genetic algorithm Floyd algorithm

遗传算法与机器人路径规划

遗传算法与机器人路径规划 摘要:机器人的路径规划是机器人学的一个重要研究领域,是人工智能和机器人学的一个结合点。对于移动机器人而言,在其工作时要求按一定的规则,例如时间最优,在工作空间中寻找到一条最优的路径运动。机器人路径规划可以建模成在一定的约束条件下,机器人在工作过程中能够避开障碍物从初始位置行走到目标位置的路径优化过程。遗传算法是一种应用较多的路径规划方法,利用地图中的信息进行路径规划,实际应用中效率比较高。 关键词:路径规划;移动机器人;避障;遗传算法 Genetic Algorithm and Robot Path Planning Abstract: Robot path planning research is a very important area of robotics, it is also a combine point of artificial intelligence and robotics. For the mobile robot, it need to be worked by certain rulers(e.g time optimal),and find a best movement path in work space. Robot path planning can be modeled that in the course of robots able to avoid the obstacles from the initial position to the target location,and it ruquire to work under ertain constraints. Genetic algorithm used in path planning is very common, when planning the path ,it use the information of map ,and have high eficient in actual. Key words: Path planning,mobile robot, avoid the obstacles, genetic algorithm 1路径规划 1.1机器人路径规划分类 (1)根据机器人对环境信息掌握的程度和障碍物的不同,移动机器人的路径规划基本上可分为以下几类: 1,已知环境下的对静态障碍物的路径规划; 2,未知环境下的对静态障碍物的路径规划; 3,已知环境下对动态障碍物的路径规划; 4,未知环境下的对动态障碍物的路径规划。 (2)也可根据对环境信息掌握的程度不同将移动机器人路径规划分为两种类型: 1,基于环境先验完全信息的全局路径规划; 2,基于传感器信息的局部路径规划。 (第二种中的环境是未知或部分未知的,即障碍物的尺寸、形状和位置等信息必须通过传感器获取。) 1.2路径规划步骤 无论机器人路径规划属于哪种类别,采用何种规划算法,基本上都要遵循以下步骤: 1, 建立环境模型,即将现实世界的问题进行抽象后建立相关的模型; 2, 路径搜索方法,即寻找合乎条件的路径的算法。 1.3路径规划方法

粒子群寻优算法及案例说明

《智能优化算法》作业之粒子群算法寻优 PSO 算法首先在可行解空间中初始化一群粒子,每个粒子都代表极值优化问题的一个潜在最优解,用位置、速度和适应度值三项指标表示该粒子特征,适应度值由适应度函数计算得到,其值的好坏表示粒子的优劣。PSO 算法初始化为一群随机粒子后,会得到相应的随机解,然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个极值来更新自己:第一个就是粒子本身所找到的最优解,这个解称为个体极值;另一个就是整个种群目前找到的最优解,这个极值是全局极值。 在每次迭代过程中,粒子通过个体极值和群体极值更新自身的速度和位置,即 111()()k k k k k k id id id id gd id V wV c r P X cr P X +=+-+- (1) 11k k k id id id X X V ++=+ (2) 其中,w 为惯性权重,d 为空间维数,1,2,,;1,2,,;d D i n == k 为当前迭代次数;id V 为粒子的速度;1c 和2c 是非负的常数,称为加速度因子;1r 和2r 是分布于[0,1] 区间的随机数。为防止粒子的盲目搜索,一般建议将其位置和速度限制在一定的区间max max [,]X X - , max max [,]V V -。 在速度更新的公式(1)中有三部分组成:第一部分为惯性或动量部分,反映了粒子运动习惯,代表粒子有维持自己先前速度的趋势;第二部分为认知部分,反映了粒子对自身历史经验的记忆或回忆,代表粒子有向自身历史最佳位置逼近的趋势;第三部分为社会部分,反映了粒子间协同合作与知识共享的群体历史经验,代表粒子有向群体或邻域历史最佳位置逼近的趋势 。 惯性权重,它使粒子保持运动惯性,使其扩展搜索空间的趋势,有能力搜索新的区域。它可以取一常数作为固定的权重值,也可以取一个函数作为在迭代过程中改变的权重值,通常用线性递减的惯性权重。在算法初期,全局搜索能力较强,如果找不到最优值的位置,随着权重值的减少,局部搜索能力加强,容易陷入局部极值,然而选取步长较小的线性递减惯性权重,权重的变化幅度较小,不易陷入局部最优。关于步长的大小变化对结果的影响可以在后面的程序结果中比较得到 PSO 算法的优势是采用实数编码,不需要像遗传算法一样采用二进制编码。 下面用PSO 算法来寻找非线性函数 22()10cos(2)10cos(2)20f x x y x y ππ=+--+ 的极小值 一、适应度函数代码如下: function y = fun(x) %函数用于计算粒子适应度值 %x input 输入粒子 %y output 粒子适应度值 y=x(1).^2+x(2).^2-10*cos(2*pi*x(1))-10*cos(2*pi*x(2))+20; %适应度函数取的是函数本身。 二、画出所求函数图像,估计最优极值及其位置,以此来验证所求结果的准确性 clear,clc,close all; %% rastrigrin function [x,y]=meshgrid(-5:0.1:5,-5:0.1:5); z=x.^2+y.^2-10*cos(2*pi*x)-10*cos(2*pi*y)+20; mesh(x,y,z)

约束条件下多变量函数的寻优方法

第十章约束条件下多变量函数 的寻优方法 ●将非线性规划→线性规划 ●将约束问题→无约束问题 ●将复杂问题→较简单问题 10.1约束极值问题的最优性条件 非线性规划:min f(X) h i(X)=0 (i=1,2,…,m) (10.1.1) g j(X)≥0 (j=1,2,…,l) 一、基本概念 1.起作用约束 设X(1)是问题(10.1.1)的可行点。对某g j(X)≥0而言: 或g j(X(1))=0:X(1)在该约束形成的可行域边界上。 该约束称为X(1)点的起作用约束。 或g j(X(1))>0:X(1)不在该约束形成的可行域边界上。 该约束称为X(1)点的不起作用约束。 X(1)点的起作用约束对X(1)点的微小摄动有某种限制作用。等式约束对所有可行点都是起作用约束。

() θcos ab b a =? 2.正则点 对问题(10.1.1),若可行点X (1)处,各起作用约束的梯度线性无关,则X (1)是约束条件的一个正则点。 3.可行方向(对约束函数而言) 用R 表示问题(10.1.1)的可行域。设X (1)是一个可行点。对某方向D 来说,若存在实数λ1>0,使对于任意λ(0<λ<λ1)均有X (1)+λD ∈R ,则称D 是点X (1)处的一个可行方向。 经推导可知,只要方向D 满足: ▽g j (X (1))T D>0 (j ∈J ) (10.1.3) 即可保证它是点X (1)的可行方向。J 是X (1)点起作用约束下标的集合。 在X (1)点,可行方向D 与各起作用约束的梯度方向的夹角为锐角 。 4.下降方向(对目标函数而言) 设X (1)是问题(10.1.1)的一个可行点。对X (1)的任一方向D 来说,若存在实数λ1>0,使对于任意λ(0<λ<λ1)均有f(X (1)+λD)

基于蚁群算法的路径规划

MATLAB实现基于蚁群算法的机器人路径规划 1、问题描述 移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。 2 算法理论 蚁群算法(Ant Colony Algorithm,ACA),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。 Dorigo 提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。次年Dorigo 博士给出改进模型(ACS),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。Stützle 与Hoos给出了最大-最小蚂蚁系统(MAX-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。 下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。如图2-1 所示,AE 之间有两条路ABCDE 与ABHDE,其中AB,DE,HD,HB 的长度为1,BC,CD 长度为0.5,并且,假设路上信息素浓度为0,且各个蚂蚁行进速度相同,单位时间所走的长度为1,每个单位时间内在走过路径上留下的信息素的量也相同。当t=0时,从A 点,E 点同时各有30 只蚂蚁从该点出发。当t=1,从A 点出发的蚂蚁走到B 点时,由于两条路BH 与BC 上的信息素浓度相同,所以蚂蚁以相同的概率选择BH 与BC,这样就有15 只蚂蚁选择走BH,有15 只蚂蚁选择走BC。同样的从E 点出发的蚂蚁走到D 点,分别有15 只蚂蚁选择DH 和DC。当t=2 时,选择BC 与DC的蚂蚁分别走过了BCD 和DCB,而选择BH 与DH 的蚂蚁都走到了H 点。所有的蚂蚁都在所走过的路上留下了相同浓度的信息素,那么路径BCD 上的信息素的浓度是路径BHD 上信息素浓度的两倍,这样若再次有蚂蚁选择走BC 和BH 时,或选择走DC 与DH 时,都会以较大的概率选择信息素浓度高的一边。这样的过程反复进行下去,最短的路径上走过的蚂蚁较多,留下的信息素也越多,蚁群这样就可以找到一条较短的路。这就是它们群体智能的体现。 蚁群算法就是模拟蚂蚁觅食过程中可以找到最短的路的行为过程设计的一种仿生算法。在用蚁群算法求解组合优化问题时,首先要将组合优化问题表达成与信息素相关的规范形式,然后各个蚂蚁独立地根据局部的信息素进行决策构造解,并根据解的优劣更新周围的信息素,这样的过程反复的进行即可求出组合优化问题的优化解。 归结蚁群算法有如下特点: (1)分布式计算:各个蚂蚁独立地构造解,当有蚂蚁个体构造的解较差时,并不会影响整体的求解结果。这使得算法具有较强的适应性; (2)自组织性:系统学中自组织性就是系统的组织指令是来自系统的内部。同样的蚁

毕业设计--基于量子遗传算法的函数寻优算法设计

毕业论文(设计) 题目:基于量子遗传算法的函数寻优算法设计学院:数理与信息学院 学生姓名: 专业:计算机科学与技术 班级: 指导教师: 起止日期: 2014年11月16日至2015年6月12日 2015 年5 月13日

基于量子遗传算法的函数寻优算法设计 摘要 量子遗传算法(QGA)是20世纪90年代后期兴起的一种崭新的遗传进化算法。该算法主要是将量子计算的概念引入其中,将量子的态矢量表达引入了遗传编码,使一条染色体可以表达多个信息态的叠加,同时利用量子旋转门实现染色体的演化,实现了目标解的进化。相比传统遗传算法,量子遗传算法能够在较小的种群规模下,快速的收敛到全局最优解。 本文首先介绍了量子遗传算法的基本原理与算法结构,然后对量子遗传算法提出疑问。虽然量子遗传算法的优化性能大大优于传统遗传算法,但是,对于一些多峰函数的优化问题,该类算法依旧容易陷入“局部最优”。在实际的应用中有很多优化问题都是多变量的连续优化问题,现有的量子遗传算法不能有效的解决这些问题。针对量子遗传算法容易陷入局部最优和未成熟收敛的缺陷,我们提出了一种新的优化算法——含有退火操作的量子遗传算法,该优化算法能够以可变的概率选择性地接受恶化的优化函数解,使种群解集的进化方向改变,不在依靠当前解进行遗传演化。从而使算法不易“早熟收敛”。而且在该算法中加入了全干扰的量子交叉操作,使各染色体能进行遗传信息的交换,使种群染色体更具有代表性。最后根据改进后的方案,对改进的量子遗传算法进行了数值仿真。有效地证明了改进算法在函数寻优方面的优越性。 【关键词】量子遗传算法,量子编码,退火思想,量子交叉,函数寻优

粒子群优化算法车辆路径问题

粒子群优化算法 计算车辆路径问题 摘要 粒子群优化算法中,粒子群由多个粒子组成,每个粒子的位置代表优化问题在D 维搜索空间中潜在的解。根据各自的位置,每个粒子用一个速度来决定其飞行的方向和距离,然后通过优化函数计算出一个适应度函数值(fitness)。粒子是根据如下三条原则来更新自身的状态:(1)在飞行过程中始终保持自身的惯性;(2)按自身的最优位置来改变状态;(3)按群体的最优位置来改变状态。本文主要运用运筹学中粒子群优化算法解决车辆路径问题。车辆路径问题 由Dan tzig 和Ram ser 于1959年首次提出的, 它是指对一系列发货点(或收货点) , 组成适当的行车路径, 使车辆有序地通过它们, 在满足一定约束条件的情况下, 达到一定的目标(诸如路程最短、费用最小, 耗费时间尽量少等) , 属于完全N P 问题, 在运筹、计算机、物流、管理等学科均有重要意义。粒子群算法是最近出现的一种模拟鸟群飞行的仿生算法, 有着个体数目少、计算简单、鲁棒性好等优点, 在各类多维连续空间优化问题上均取得非常好的效果。本文将PSO 应用于车辆路径问题求解中, 取得了很好的效果。 针对本题,一个中心仓库、7个需求点、中心有3辆车,容量均为1,由这三辆车向7个需求点配送货物,出发点和收车点都是中心仓库。 1233,1,7. k q q q l =====货物需求 量12345670.89,0.14,0.28,0.33,0.21,0.41,0.57g g g g g g g =======, 且 m a x i k g q ≤。利用matlab 编程,求出需求点和中心仓库、需求点之间的各 个距离,用ij c 表示。求满足需求的最小的车辆行驶路径,就是求m i n i j i j k i j k Z c x =∑∑∑。经过初始化粒子群,将初始的适应值作为每个粒子的个

移动机器人路径规划技术综述

第25卷第7期V ol.25No.7 控制与决策 Control and Decision 2010年7月 Jul.2010移动机器人路径规划技术综述 文章编号:1001-0920(2010)07-0961-07 朱大奇,颜明重 (上海海事大学水下机器人与智能系统实验室,上海201306) 摘要:智能移动机器人路径规划问题一直是机器人研究的核心内容之一.将移动机器人路径规划方法概括为:基于模版匹配路径规划技术、基于人工势场路径规划技术、基于地图构建路径规划技术和基于人工智能的路径规划技术.分别对这几种方法进行总结与评价,最后展望了移动机器人路径规划的未来研究方向. 关键词:移动机器人;路径规划;人工势场;模板匹配;地图构建;神经网络;智能计算 中图分类号:TP18;TP273文献标识码:A Survey on technology of mobile robot path planning ZHU Da-qi,YAN Ming-zhong (Laboratory of Underwater Vehicles and Intelligent Systems,Shanghai Maritime University,Shanghai201306, China.Correspondent:ZHU Da-qi,E-mail:zdq367@https://www.sodocs.net/doc/9318453103.html,) Abstract:The technology of intelligent mobile robot path planning is one of the most important robot research areas.In this paper the methods of path planning are classi?ed into four classes:Template based,arti?cial potential?eld based,map building based and arti?cial intelligent based approaches.First,the basic theories of the path planning methods are introduced brie?y.Then,the advantages and limitations of the methods are pointed out.Finally,the technology development trends of intelligent mobile robot path planning are given. Key words:Mobile robot;Path planning;Arti?cial potential?eld;Template approach;Map building;Neural network; Intelligent computation 1引言 所谓移动机器人路径规划技术,就是机器人根据自身传感器对环境的感知,自行规划出一条安全的运行路线,同时高效完成作业任务.移动机器人路径规划主要解决3个问题:1)使机器人能从初始点运动到目标点;2)用一定的算法使机器人能绕开障碍物,并且经过某些必须经过的点完成相应的作业任务;3)在完成以上任务的前提下,尽量优化机器人运行轨迹.机器人路径规划技术是智能移动机器人研究的核心内容之一,它起始于20世纪70年代,迄今为止,己有大量的研究成果报道.部分学者从机器人对环境感知的角度,将移动机器人路径规划方法分为3种类型[1]:基于环境模型的规划方法、基于事例学习的规划方法和基于行为的路径规划方法;从机器人路径规划的目标范围看,又可分为全局路径规划和局部路径规划;从规划环境是否随时间变化方面看,还可分为静态路径规划和动态路径规划. 本文从移动机器人路径规划的具体算法与策略上,将移动机器人路径规划技术概括为以下4类:模版匹配路径规划技术、人工势场路径规划技术、地图构建路径规划技术和人工智能路径规划技术.分别对这几种方法进行总结与评价,展望了移动机器人路径规划的未来发展方向. 2模版匹配路径规划技术 模版匹配方法是将机器人当前状态与过去经历相比较,找到最接近的状态,修改这一状态下的路径,便可得到一条新的路径[2,3].即首先利用路径规划所用到的或已产生的信息建立一个模版库,库中的任一模版包含每一次规划的环境信息和路径信息,这些模版可通过特定的索引取得;随后将当前规划任务和环境信息与模版库中的模版进行匹配,以寻找出一 收稿日期:2009-08-30;修回日期:2009-11-18. 基金项目:国家自然科学基金项目(50775136);高校博士点基金项目(20093121110001);上海市教委科研创新项目(10ZZ97). 作者简介:朱大奇(1964?),男,安徽安庆人,教授,博士生导师,从事水下机器人可靠性与路径规划等研究;颜明重(1977?),男,福建泉州人,博士生,从事水下机器人路径规划的研究.

GIS环境下的最短路径规划算法

GIS 环境下的最短路径规划算法 ―――此处最短路理解为路径长度最小的路径 02计算机1班刘继忠 学号:2002374117 1.整体算法说明: 将图的信息用一个邻接矩阵来表达,通过对邻接矩阵的操作来查找最短路进,最短路径的查找采用迪杰斯特拉算法,根据用户给出的必经结点序列、起点、终点进行分段查找。 2.各函数功能及函数调用说明。 1).void Welcome() 程序初始化界面,介绍程序的功能、特点及相关提示 2) void CreatGraph(MGraph *G,char buf[]) 把图用邻接矩阵的形式表示,并进行 初始化。 3).int ShortestPath(MGraph *G,int jump,int end,int avoid[],int P[MAXSIZE][MAXSIZE],int Dist[],int ShPath[])根据用户给出的起点、终点、必经结点、避开结点进行最短路径的分段查找。 4).void Print(int jump,int end,int Dist[],int ShPath[]) 输出找到的最短路径所经的 结点和路径长度。 函数调用图: 3.各函数传入参数及返回值说明: 1).void Welcome() 无传入和返回值 2) void CreatGraph(MGraph *G,char buf[ ]) MGraph *G为主函数中定义的指向存放图的信息的指针变量。 char buf[ ]为主函数中定义的用来存放在图的相关信息录入时的界面信息的数组,以便以后调用查看各结点的信息。

无返回值。 3).int ShortestPath(MGraph *G,int jump,int end,int avoid[],int P[MAXSIZE][MAXSIZE],int Dist[ ],int ShPath[ ]) MGraph *G指向存放图的信息的指针变量。 int jump起点,int end终点,int avoid[ ] 避开结点序列。 int P[MAXSIZE][MAXSIZE]用来记录各点当前找到的最短路径所经过 的结点。 int Dist[ ] 记录各结点的当前找到的最短路径的长度。 int ShPath[ ]用来存放用户需要的最短路径所经的各结点。 返回最短路径查找是否成功的信息。(return SUCCEED;return ERROR)4).void Print(int jump,int end,int Dist[],int ShPath[]) int jump起点,int end终点。 int Dist[ ] 记录各结点的当前找到的最短路径的长度。 int ShPath[ ]用来存放用户需要的最短路径所经的各结点。 无返回值。 4.用户说明: ①源程序经编译连接后运行,出现程序的初始化界面,其内容为介绍程序的 功能、特点及相关提示。如下: Welcome to shortest path searching system. Instructions Function: 1. Personal travelling route choosing. 2. Assistan helper in city's traffic design. 3. Shortes path choose in the comlicated traffic net of the city. Characteristic: It is convient,you could set vital point you must travel,and the point you must avoid. Prompt: If the condition is too secret ,maybe there will have no path available. Designer: Liu jizhong. Complate-data: 2004. 3. 21 CopyRight: Shared program,welcome to improve it. Press anykey to enter the program... ②按任意键进入图的信息录入界面根据提示即可完成图的信息的录入。

(完整word版)基于蚁群算法的路径规划

MATLAB 实现基于蚁群算法的机器人路径规划 1、问题描述 移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起 始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。 2 算法理论 蚁群算法(Ant Colony Algorithm ,ACA ),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。 Dorigo 提出了精英蚁群模型(EAS ),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。次年Dorigo 博士给出改进模型(ACS ),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。 Stützle 与Hoos 给出了最大-最小蚂蚁系统(MAX-MINAS ),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。 下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。如图2-1 所示,AE 之间有两条路ABCDE 与ABHDE ,其中AB ,DE,HD,HB 的长度为1,BC,CD 长度为0.5,并且,假设路上信息素浓度为0,且各个蚂蚁行进速度相同,单位时间所走的长度为1,每个单位时间内在走过路径上留下的信息素的量也相同。当t=0 时,从A 点,E 点同时各有30 只蚂蚁从该点出发。当t=1,从A 点出发的蚂蚁走到B 点时,由于两条路BH 与BC 上的信息素浓度相同,所以蚂蚁以相同的概率选择BH 与BC ,这样就有15 只蚂蚁选择走BH,有15 只蚂蚁选择走BC 。同样的从E 点出发的蚂蚁走到D 点,分别有15 只蚂蚁选择DH 和DC。当t=2 时,选择BC 与DC 的蚂蚁分别走过了BCD 和DCB ,而选择BH 与DH 的蚂蚁都走到了H 点。所有的蚂蚁都在所走过的路上留下了相同浓度的信息素,那么路径BCD 上的信息素的浓度是路径BHD 上信息素浓度的两倍,这样若再次有蚂蚁选择走BC 和BH 时,或选择走DC 与DH 时,都会以较大的概率选择信息素浓度高的一边。这样的过程反复进行下去,最短的路径上走过的蚂蚁较多,留下的信息素也越多,蚁群这样就可以找到一条较短的路。这就是它们群体智能的体现。 蚁群算法就是模拟蚂蚁觅食过程中可以找到最短的路的行为过程设计的一种仿生算法。在用蚁群算法求解组合优化问题时,首先要将组合优化问题表达成与信息素相关的规范形式,然后各个蚂蚁独立地根据局部的信息素进行决策构造解,并根据解的优劣更新周围的信息素,这样的过程反复的进行即可求出组合优化问题的优化解。 归结蚁群算法有如下特点: (1)分布式计算:各个蚂蚁独立地构造解,当有蚂蚁个体构造的解较差时,并不会影响整体的求解结果。这使得算法具有较强的适应性; (2)自组织性:系统学中自组织性就是系统的组织指令是来自系统的内部。同样的蚁群算法中的各个蚂蚁的决策是根据系统内部信息素的分布进行的。这使得算法具有较强的鲁棒性; (3)正反馈机制与负反馈机制结合:若某部分空间上分布的信息素越多,那么在这个空间上走过的蚂蚁也就越多;走过的蚂蚁越多,在那个空间上留下的信息素也就越多,这就是存在的正反馈机制。但蚁群算法中解的构造是通过计算转移概率实现的,也就是说构造解的时候可以接受退化解,这限制了正反馈机制,

相关主题