搜档网
当前位置:搜档网 › 一种销毁哑弹的聚能射流设计

一种销毁哑弹的聚能射流设计

一种销毁哑弹的聚能射流设计
一种销毁哑弹的聚能射流设计

第25卷 第4期2008年12月

爆 破 BLASTI NG

V o.l 25 N o .4

D ec .2008

文章编号:1001-487X (2008)04-0082-03

一种销毁哑弹的聚能射流设计

任新见,李 林,汪剑辉

(总参科研三所,河南洛阳471023)

摘 要: 分析了哑弹销毁机理,探讨了聚能射流设计的核心因素。针对某型哑弹,采用经验公式和数值模拟相结合的方法设计了一种线型聚能射流切割器。实践证明,该切割器可以有效销毁哑弹,值得进一步推广。

关键词: 聚能射流; 哑弹; LS DYNA; 数值分析中图分类号: O 383 文献标识码: A

Desi gn of Cu m ul ative Jet to E li m inate Unexpl oded Bo mb

RE N X in jian,LI L in,WANG J ian hui

(Luoyang H ydrotechn ics Institute ,Luoyang 471023,Ch i n a)

A bstract : The t heory of e li m i nating unexpl oded bomb is analysed ,and the key factors are discussed for t he de si gn o f cu m ulative j et .N u m erical ana lysis and expe riential for m ula are used to desi gn a li near cu mu lati ve jet .Prac tices prove t hat cu m ulati v e jet can e li m i nate unexp l oded bomb e ffecti ve ly .

K ey words : cu mu l a ti ve jet ;unexploded bo m b ;LS DYNA;nume rical ana l y si s

收稿日期:2008-08-24.

作者简介:任新见(1979-),男;洛阳:总参科研三所助理研究员.

某型弹在研制过程中产生了部分哑弹,采用常

规方法难于销毁,某试验场采用捆绑TNT 药块二次起爆试图排除哑弹均未获成功。设计了一种线型聚能射流切割器,有效地解决了这一问题。

1 销毁机理

爆轰是炸药在瞬间发生分解反应的一种特定形式,其实质是爆轰波在炸药中的传播[1]

。爆轰过程

中,化学反应区很薄,凝聚相的化学反应区厚度在0.5 2.5mm 之间;化学反应区以常速传播,该速度大于炸药中的声速,在波阵面上产生很高的温度梯度和压力梯度。

爆轰产物在高温、高压下基本沿炸药表面的外法线方向飞散。因此,带凹槽的装药在引爆后,在凹槽轴线上会汇聚一股高速和高压的爆轰产物流,在一定范围内使炸药爆炸释放出的化学能集中起来。

为了提高聚能效应,须尽量避免高压膨胀引起能量分散而不利于能量集中的因素。聚能作用能量集中的程度可用单位体积能量即能量密度来作比较。爆轰波的能量中,位能占3/4,动能占1/4。聚能过程中动能是能够集中的,位能却起分散作用,所以,聚能气流的能量集中程度不是很高。

把能量尽可能转换成动能形式可大大提高能量的集中程度

[2]

,为此,在装药凹槽内表面衬上一个

金属药型罩。装药爆轰后,凹槽附近炸药爆炸的能量会传递给药型罩,使药型罩以很大的速度向轴线运动,药型罩在高温、高压的爆轰产物作用下形成金属杆,可以看作流体。其中,药型罩内表面形成细长的金属射流,药型罩外表面形成杵体。在药型罩压垮并产生射流的过程中,射流吸收的爆炸能量不会像爆炸产物那样再散失掉。

射流具有高温、高压、高速的特点,有极强的侵蚀能力

[3]

。当它作用于哑弹时,可以瞬间切割哑弹

的金属外壳,继而引爆哑弹内的装药,最终达到销毁

哑弹的目的。

2 核心因素

药型罩材料及其几何形状与尺寸、装药性能与质量、装药结构、起爆方式、炸高等对射流的形成和切割能力均有显著影响。另外,除去技术层面因素,实际操作中还必须符合经济原则,以及材料易于购置、便于加工、使用方便、安全等特点。

按照聚能爆破原理,为了得到稳定的射流,装药

的爆速越高越好[4]。但是,爆速越高的炸药敏感度越高,加工、保管、使用都不安全,且因其价格较高而提高了使用成本。综合考虑,采用黑索今(RDX)和梯恩梯(TNT)铸装混合炸药,其配比RDX/TNT为60/40。用蒸气锅将TNT熔化,然后加入RDX粉并搅拌均匀,可熔铸于加工好的装药壳体内,冷却凝固后即可使用。

药型罩的作用是将炸药的爆轰能量转换成罩的动能,从而提高聚能作用,所以对罩材料的要求为:可压缩性小、聚能过程中不气化、密度大、延性好。目前,钨合金、钽合金是药型罩材料研究的热点。根据定常理想不可压缩流体动力学理论,聚能罩材料的密度越大越好,但密度大的金属往往是贵金属,会提高其使用成本。经大量试验比较表明,采用紫铜既可满足切割要求,又可降低成本。

锥形罩、抛物线形罩、半球形罩均产生聚能作用,锥形罩又分圆锥形、喇叭形、双锥罩等多种形式,这些都属于轴对称聚能装药。图1为线型聚能切割器金属罩示意图。此处采用线型锥形罩聚能装药,药型罩较长,可以产生一条聚能射流起到切割作用。

圆柱形药柱爆轰后,爆轰产物沿近似垂直原药柱表面的方向向四周飞散,作用于钢板部分的仅仅是药柱端部的爆轰产物,作用面积等于药柱端面积。带锥孔的线型装药,锥孔部分爆轰产物飞散时,先向轴线集中,汇聚成一股速度和压力都很高的气流,称为聚能气流。爆轰产物的能量集中在较小的面积上,具有很强的侵蚀能力,即锥形孔能提高破坏作用。此处药柱形状选择带锥孔线型药柱。

锥孔处爆轰产物向轴线汇聚时,爆轰产物质点以一定速度沿近似垂直于药罩面的方向向轴线汇聚,使能量集中;但爆轰产物的压力本来就很高,汇聚在轴线处形成更高的压力区后,高压迫使爆轰产物向周围低压区膨胀,使能量分散。这2种因素的

综合作用使得气流不能无限集中,而在离药柱端面某一距离处集中程度达到最大,之后又迅速飞散开。这样就存在一个药罩面形状端的优化问题,尤其需要选择合适的药型罩顶角角度。在实际使用时,采用80,既充分利用了既有的铸装模具,又可保证较大的切割深度。

金属射流和爆轰产物聚能流都需要一定的作用距离,能量最集中的断面总是在药柱底部外的某点,断面至锥底的距离称为炸高。对于位于炸高处的目标,破甲、切割效果最好。

图1 线型聚能切割器金属罩

3 数值分析

基于ANSYS/LS DYNA对诸因素进行优选。线型聚能装药截面尺寸如图2所示。药型罩厚度为1.5mm,母线长为15mm,药型罩顶角为80,装药高度为16mm,起爆方式为炸药顶端棱上同时起爆,分析线型聚能射流的形成过程。

图2 聚能装药截面尺寸(单位:mm)

线型聚能装药结构具有平面对称的特点,在线起爆方式的前提下,问题可以转化为二维平面应变问题[5 6],计算模型中使用的起爆方式也就转化为点起爆方式,因此可以建立二维模型进行计算。

数值模型由炸药、药型罩、空气3部分组成,采用c m g s单位制,利用欧拉网格建模,单元使用多物质ALE算法。为方便网格制作,采用单层实体网格建模,这种简化既可以充分利用LS DYNA程序中的多物质ALE算法,又将模型尺寸大大减小。

83

第25卷 第4期 任新见 等 一种销毁哑弹的聚能射流设计

由于金属罩在形成射流的过程中,单元会产生大变形,因此要使用自适应网格技术。炸药和金属罩之间、金属罩各部分之间均定义接触。

线型罩聚能射流的形成过程如图3

所示。

图3 线型聚能射流

显示有关节点速度信息,如图4

所示。

图4 节点速度等值线

射流各部分速度不同,端部速度高,尾部速度低,因此射流在向前运动过程中将被拉长。但由于铜有良好的延性,射流可以比原长延伸好几倍而不断裂。金属射流在延伸过程中不像聚能气流那样膨胀分散,仍保持着原来的能量密度。

由于在药柱锥孔表面加了一个铜罩,爆轰产物在推动罩壁向轴线运动的过程中,将能量传递给铜

罩。由于铜的可压缩性很小,因此内能增加很少,能

量的增加部分表现为动能形式,避免了高压膨胀引起的能量分散而使能量更为集中。罩壁在轴线处汇聚碰撞时,发生能量重新分配,罩内表面铜层的速度比闭合时高1 2倍,使能量密度进一步提高,形成金属射流,罩的其余部分则形成速度较低的杵。锥形罩壁在向轴线运动的过程中,能量逐渐由外层向内层转移。

从以上分析可看出,聚能效应的主要特点是能量密度高和方向性强,使得在锥孔方向有极强的局部破坏作用

[7 8]

。因此,线型聚能装药切割哑弹外壳

的方法是可行的。

4 结 语

聚能射流切割器排除哑弹法已经在某试验场得到成功应用,仅2006年就成功销毁哑弹300余枚,安全无事故。图5为哑弹引爆瞬间。

图5 哑弹引爆瞬间

参考文献

[1] 沃尔特斯,朱卡斯.成型装药原理及其应用[M ].王树

魁,贝静芬,译.北京:兵器工业出版社,1992:234 240.[2] 时党勇,李裕春.基于AN S Y S /L S DYNA 进行显式动力

分析[M ].北京:清华大学出版社,2005:44 50.[3] 亨利奇J .爆炸动力学及其应用[M ].熊建国,译.北

京:科学出版社,1987:225 229.

[4] 俞儒一.防护结构计算原理[M ].南京:工程兵工程学

院,1989:92 96.

[5] 叶序双.爆炸作用基础[M ].南京:工程兵工程学院,

2001:104 108.

[6] 李裕春,时党勇.AN SYS11.0/LS DYNA 基础理论与工

程实践[M ].北京:水利水电出版社,2008:198 204.[7] 钱伟长.穿甲力学[M ].北京:国防工业出版社,1984:

87 94.

[8] 北京工业学院八系.爆炸及其作用[M ].北京:国防工

业出版社,1979:98 111.

84爆 破 2008年12月

搅拌器设计计算

搅拌器设计计算 令狐采学 (作者:纪学鑫) 一、设计数据: 1、混合池实际体积V=1.15m×1.15m×6.5m≈8.60m3 ∴设混合池有效容积V=8m3 2、混合池流量 Q=0.035m3/s 3、混合时间t=10s 4、混合池横截面尺寸 1.15m×1.15m ,当量直径D=πω4L =π 15.115.14??=1.30m 5、混合池液面高度H=24πD V =m ..π036301842 ≈?? ∴混合池高度H '=6.03m+(0.3~0.5)m=6.33~6.53 (m);取6.5m 6、挡板结构及装置尺寸()m 54.0036.0m 241361~)(~≈?? ? ??D ;数值根据《给水排水设计手册》表428查得,以下均已此手册作为查询依据。 7、取平均水温时,水的粘度值()s a ?P μ=1.14×103s a ?P 取水的密度3/kg 1000m =ρ 8、搅拌强度 1)搅拌速度梯度G ,一般取500~1000s1。 混合功率估算:NQ=KeQ(kw) Ke 单位流量需要的功率,Ke 一般=4.3~173/s kw m ? ∴混合功率估算:3/s kw 17~3.4m N Q ?=

取搅拌速度梯度1-s 740=G 2)体积循环次数'Z 搅拌器排液量'Q ,213.08.008.1385.0)/(333'=??==s m nd k Q q 折叶桨式,片,245=?=Z θ,流动准数385.0k q 取,见表427查取; n 搅拌器转速) (s /r ;d 搅拌器直径(m) 转速d 60n πν =;线速度v ,直径d ,根据表430查取。 3)混合均匀度 U ,一般为80%~90%。U 取80%。 9、搅拌机的安插形式、加药点设置。 1)立式搅拌机的安插:一般采取中央置入(或称顶部拔出)式。 2)搅拌器的位置及排泄标的目的:搅拌器的位置应避免水流直接影响正面冲击。搅拌器距液面的距离通常小于搅拌器直接的 1.5倍。 二、搅拌器的选用及主要参数 1. 选用折叶桨式 2. 桨叶数2=Z 3. 搅拌器直径0.8m d m 0.867~433.0m 32~31d ==??? ??=,取)()(D 4. 搅拌器螺距d s = 5. 搅拌器层数d H ,取7,(公司取层数4) 6. 搅拌器外缘线速度ν取(1.0~5.0)m/s 7. 搅拌器宽度:b=(0.1~0.25)d=(0.08~0.2)m,取0.11m 三、搅拌器转速及功率设计 1、根据要求的搅拌梯度G 值计算:

曝气器设计

XX建设标准化协会标准 鼓风曝气系统设计规程Design standard of aeration blowing system CECS 97 : 97 主编单位:XX建筑工程学院 审查单位:XX建设标准化协会工业给水排水委员会批准日期:1997年12月30日

前言 现标准《鼓风曝气系统设计规程》CECS 97 :97为XX建设标准化协会标准,推荐给有关单位使用。在使用过程中,请将意见及有关资料寄交XX和平街北口中国XX工程公司XX建设标准化协会工业给水排水委员会(邮编:100029),以便修订时参考。 本规程主编单位:XX建筑工程学院 主要起草人:XX、XX XX建设标准化协会 1997年12月30日

1 总则 1.0.1 为使生物处理曝气系统设计满足工程建设需要,特制定本规程。 1.0.2 本规程包括曝气器、供风管道、风机的选型及机房设计。 1.0.3 本规程适用于新建、扩建、改建的城市污水处理工程或工业污水处理工 程中的生物处理鼓风曝气系统的设计计算。 1.0.4 鼓风曝气系统设计除按本规程执行外,尚应符合现行有关的国家标准的规 定。 2 术语 2.0.1 曝气器aerator 用于水中充氧兼搅拌的基本器具或设备。 2.0.2 微孔曝气器fine bubble aerator 空气通过多孔介质,在水中产生气泡直径小于3mm的高效曝气器。 2.0.3 中大气泡曝气器middle and large air bubble aerator 空气通过曝气器在水中产生气泡直径大于3mm以上的曝气器。 2.0.4 可张中、微孔曝气器openable middle and fine bubble aerator 空气通过具有弹性材质的微孔曝气器或软管时,其上孔缝张开,停止供气时孔缝闭合的一种曝气器。 2.0.5 双环伞型曝气器double rings umbrella aerator 一种具有双环类似伞状的,在水中产生中大气泡的曝气器。 2.0.6 曝气器标准状态充氧性能oxygenc transfer performance 指单个曝气器在大气压力为0.1Mpa、水温为20℃时,对清水的充氧性能。 2.0.7 鼓风曝气系统aeration blowing system 指由风机、管路、曝气器、除尘器为主组成的系统。 3 鼓风曝气器 3.1 一般规定 3.1.1 根据污水性质、环境要求、管理水平、经济核算,工程设计中可选用鼓 风曝气、机械表面曝气、射流曝气等方式,一般宜选用鼓风曝气式。 3.1.2 选用鼓风曝气系统时曝气器应符合下列要求: 1、在某一特定曝气条件下,既能满足曝气池污水需氧要求,又能达到混 合搅拌,池内无沉淀的要求; 2、曝气器既要有较高充氧性能,又应有较强混合搅拌能力。同时还应有 不易堵塞、耐腐蚀、坚固、布气均匀、操作管理及维修简便,成本低、 阻力小和寿命长等性能; 3、选用曝气器所组成的鼓风曝气系统,从整体上应具有节约能量、组成 简单、安装及维修管理方便,易于排除故障等优点。 3.1.3 鼓风曝气器分为微孔曝气器及中大气泡曝气器。大、中型城市污水处理

污水处理厂的工艺流程设计

目录 设计任务书 2 第一章环境条件 4 第二章设计说明书 5 第三章污水厂工艺设计及计算 7 第一节格栅 7 第二节推流式曝气池 9 第三节沉淀池 11 第四节混凝絮凝池 14 第五节气浮池 15 第六节污泥浓缩池 17 第七节脱水机房 19 第八节其他 19 第四章水头损失 21 第五章总结与参考文献 22

设计任务书 1 设计任务: 某化工区2.5万m3/d污水处理厂设计 2 任务的提出及目的,要求: 2.1 任务的提出及目的: 随着经济飞速发展,人民生活水平的提高,对生态环境的要求日益提高,要求越来越多的污水处理后达标排放。在全国乃至世界范围内,正在兴建及待建的污水厂也日益增多。有学者曾根据日处理污水量将污水处理厂分为大、中、小三种规模:日处理量大于10万m3为大型处理厂,1-10m3万为中型污水处理厂,小于1万m3的为小型污水处理厂。近年来,大型污水处理厂建设数量相对减少,而中小型污水厂则越来越多。如何搞好中、小型污水处理厂,特别是小型污水厂,是近几年许多专家和工程技术人员比较关注的问题。 根据所确定的工艺和计算结果,绘制污水处理厂总平面布置图,高程图,工艺流程图。 2.2 要求: 2.2.1 方案选择合理,确保污水经处理后的排放水质达到国家排放标准 2.2.2 所选厂址必须符合当地的规划要求,参数选取与计算准确 2.2.3 全图布置分区合理,功能明确;厂前区,污水处理区污泥处理区条块分割清楚。延流程方向依次布置处理构筑物,水流创通。厂前区布置在上风向并用绿化隔离带与生产区隔离,以尽量减少对厂前区的影响,改善厂前区的工作环境。 2.2.4 构筑物的布置应给厂区工艺管线和其他管线设有余地,一般情况下,构筑物外墙距道路边不小于6米。 2.2.5 厂区设置地坪标高尽量考虑土方平衡,减少工程造价,同时满足防洪排涝要求。 2.2.6 水力高程设计一般考虑一次提升,利用重力依次流经各个构筑物,配水管的设计需优化,以尽量减少水头损失,节约运行费用, 2.2.7 设计中应该避免磷的再次产生,一般不主张采用重力浓缩池,而是采用机械浓缩脱水的方式,随时将排出的污泥进行处理。 2.2.8 所选设备质优、可靠、易于操作。并且设计必须考虑到方便以后厂区的改造。 2.2.7 附有平面图,高程图各一份。 3 设计基础资料: 该区为A市重要的工业及化工区,化工业门类比较齐全,主要为石油化工类,并规模较大,具有的化工厂目前为十多家,每天排出生活污水量8000m3左右,工业废水量为18000m3,污水BOD、COD、SS、酸、碱、硫化物、石油、苯等浓度较高,若未经处理处理直接排海,将会对生态环境造成重大影响,根据化工区规划,必须建设一座污水处理厂。 3.1 水量 最大时水量:1042m3/h 总设计规模为25000m3/d。(远期设计规模为:100000 m3/d)

射流曝气技术简介

射流曝气技术简介 1. 1射流器的结构 射流曝气系统的核心设备是射流器。射流器是利用射流紊动扩散作用来传递能量和质量的流体机械和混合反应设备, 它由喷嘴、吸气室、喉管及扩散管等部件构成[ 2 ] 。图1 是一个典型的单喷嘴射流器结构,也是废水生化处理中常用的曝气用射流器。 图1射流器结构 1. 喷嘴; 2. 吸气室; 3. 喉管; 4. 扩散管; 5. 尾管 1. 2射流曝气的基本原理 射流器采用文丘里喷嘴, 工作水泵出水通过射流器的喷嘴,随着喷嘴直径变小,液体以极高的速度从喷嘴喷射出来,高速流动的液体穿过吸气室进入喉管,在喉管形成局部真空,通过导气管吸入(或压入)的大量空气进入喉管后, 在喷水压力的作用下被分割成大量微小的气泡, 与水形成混合体。气液混合体通过扩散管向外排出, 其速度减慢, 压力增强,形成强力喷射流,对废水搅拌充氧。气泡经多次切割,喷射扰动后, 变成无数的细小气泡, 其表面积很大,使空气中的氧更易快速溶解于水中。由于气泡直径小,上升速度缓慢,从而延长了大气中氧气溶解于水的时间,促使废水和氧气充分混合接触,氧化废水中的还原性物质,杀灭大部分还原菌和其它一些厌氧菌,进而达到处理废水的目的[ 3 ] 。 1. 3废水生物处理中射流曝气的独特作用 射流曝气作为一种曝气充氧方法, 它的作用不仅仅是作为一种气泡扩散充氧装置(如鼓风曝气中的各种空气扩散装置) , 也不能单纯看作是一种机械曝气设备,而是介于两者之间,利用气泡扩散和水力剪切两个作用达到曝气和混合的目的[ 4 ] 。实际上,在活性污泥法废水处理系统中,由于通常采用废水与活性污泥的混合物作为工作介质, 当吸入(或压入)空气后在射流器的喉管内发生相当剧烈的混合作用。这一混合作用一方面进行着气- 液- 固(活性污泥) 之间的紊动扩散与能量交换及气-液- 固三相间的转移过程, 还有更加突出的是发生在被高速剧烈紊动“切割”得非常细微的气泡、活性污泥的微小颗粒以及废水(液相)中有机物这三者之间的生物学上的作用。因此, 要评价射流曝气用于活性污泥法的作用,如果仅仅作为曝气充氧装置来理解就没有充分反映这一综合过程的全部机理。 这一综合过程的机理应当理解为在活性污泥微生物存在的条件下,发生在射流器喉管部分的高速紊动过程中的生物学特性与三相间物理力学特性的综合过程。气体经高速水流吸入后经喉管压缩,气、液相剧烈混合,此时气泡刚形成, 吸氧率高; 气泡进一步在管道中受剧烈揽动,粉碎成细微气泡, 使气、液接触面积增大,也提高吸氧率。尤其是当工作介质为废水与活性污泥混合物时, 喉管的紊动搅拌作用不只限于微小气泡对废水的充氧作用, 同时还发生气- 固、液- 固间等多方面的作用,特别是当活性污泥被“切割”成非常细小的颗粒,无疑将大大增加活性污泥的表面更新率与吸附表面积,从而使活性污泥的细小絮状体能与气泡中的氧及废水中的有机物有充分的接触吸附作用, 使吸附能力大大提高。这是其它类型曝气设备所不能达到的[ 4 ] 。 1. 4射流曝气技术的主要性能特点

树脂塔设计计算

树脂塔设计计算 一、树脂用量的计算: 1. 罐体直径的确定 D=(4A/π)1/2 A=Q/v 式中: D——罐体直径,m; A——罐体截面面积,m2; Q——处理水量,m3/h; v——过流速度,一般取值:钠型树脂20-30m/h,磺化煤10-20m/h,混床40-60m/h; 2. 树脂装填量计算 V=1.2×1000QTc/(q/2) 式中: V——树脂装填体积,L; 1.2——安全系数 Q——处理水量,m3/h; T——树脂塔再生周期,h; c——需去除的硬度,mmol/L; q——树脂工作交换容量※,mmol/L; 3. 树脂填装高度计算 H=4V/(1000πD2) 式中: H——树脂装填高度,m; 二、再生剂耗量计算: 1. 再生水耗量 a 反洗用水量: V f=v f·T f·πD2/240 式中: V f——反洗用水量,m3; v f——反洗流速,m/h,阳离子交换树脂为10-15m/h,阴离子交换树脂为8-10m/h; T f——反洗时间,min,通常为20-30min; b 置换用水量: V H=v H·T H·πD2/240 式中: V H——置换用水量,m3; V H——置换流速,m/h,一般<5m/h; T H——置换时间,min,通常为20-30min; c 正洗水量: V Z=a·V 式中: V Z——正洗用水量,m3;

a ——正洗水耗,m3/ m3树脂,正洗流速一般为10-15m/h,正洗时间为5-15min; ※计算过程中需注意单位的统一。由于离子交换树脂自身所能交换的离子(Na+、H+、O H-)化合价通常为一价,而处理水中需要被交换的离子(Ca2+、Mg2+)通常为二价,即两个树脂单元方能交换掉一个二价离子。此处按照需要被交换的离子为二价离子计,这是在计算过程中需注意的地方。

搅拌反应釜计算设计说明书

课程设计 设计题目搅拌式反应釜设 学生姓名 学号 专业班级过程装备与控制工程 指导教师

“过程装备课程设计”任务书 设计者姓名:班级:学号: 指导老师:日期: 1.设计内容 设计一台夹套传热式带搅拌的反应釜 2.设计参数和技术特性指标 简图设计参数及要求 容器内夹套 内 工作压力, MPa 设计压力, MPa 工作温 度,℃ 设计温 <100<150 度,℃ 蒸汽 介质有机溶 剂 全容积,m3 操作容积, m3 传热面积, >3 m2 腐蚀情况微弱 推荐材料Q345R 搅拌器型 推进式 式 250 r/min 搅拌轴转 速 轴功率 3 kW 接管表

3.设计要求 (1)进行罐体和夹套设计计算;(2)选择接管、管法兰、设备法兰;(3)进行搅拌传动系统设计;(4)设计机架结构;(5)设计凸缘及选择轴封形式;(6)绘制配料反应釜的总装配图;(7)绘制皮带轮和传动轴的零件图 1罐体和夹套的设计 1.1 确定筒体内径 当反应釜容积V 小时,为使筒体内径不致太小,以便在顶盖上布置接管和传动装置,通常i 取小值,此次设计取i =1.1。 一般由工艺条件给定容积V 、筒体内径1D 按式4-1估算:得D=1084mm. 式中 V --工艺条件给定的容积,3m ;

i ――长径比,1 1 H i D = (按照物料类型选取,见表4-2) 由附表4-1可以圆整1D =1100,一米高的容积1V 米=0.953m 1.2确定封头尺寸 椭圆封头选取标准件,其形式选取《化工设备机械基础课程设计指导书》图4-3,它的内径与筒体内径相同,釜体椭圆封头的容积由附表4-2 V 封=0.1983m ,(直边高度取50mm )。 1.3确定筒体高度 反应釜容积V 按照下封头和筒体两部分之容积之和计算。筒体高度由计算 H1==(2.2-0.198)/0.95=0.949m ,圆整高度1H =1000mm 。按圆整后的1H 修正实际容积由式 V=V1m ×H1+V 封=0.95×1.000+0.198=1.1483m 式中 V 封m --3封头容积,; 1V 米――一米高的容积3m /m 1H ――圆整后的高度,m 。 1.4夹套几何尺寸计算 夹套的结构尺寸要根据安装和工艺两方面的要求。夹套的内径2D 可根据内径1D 由 选工艺装料系数η=0.6~0.85选取,设计选取η=0.80。 1.4.1夹套高度的计算H2=(ηV-V 封)/V1m=0.758m 1.4.2.夹套筒体高度圆整为2H =800mm 。 1.4.3罐体的封头的表面积由《化工设备机械基础》附表4-2查的F 封=1.398。 1.4.4一米高的筒体内表面由《化工设备机械基础》附表4-1查的。F1m=3.46 1.4.5实际的传热面积F=4.166>3,由《化工设备机械基础》式4-5校核4.166〉3所以传热面积合适。

射流曝气说明书

宜兴市荣盛达环保有限公司位于风景秀丽的太湖之滨、世界闻名的陶都——宜兴市。公司专业从事水处理环保设备的制造、安装、调试和运行管理,致力于环保领域新工艺、新产品、新材料的开发、设计与应用。公司创立于1995年05月,前身为宜兴市盛达环保成套设备厂(1979年)和宜兴市荣盛达环保成套设备有限公司(1987年) 。公司在天津、重庆、广州、南京、西安、厦门、九江、株州等地设立了11处办事机构,并于2002年在上海成立上海荣盛达环保工程有限公司,从而初步实现了公司的规模化经营和跳跃式发展。 公司占地约36000m2(总部20000m2),建筑面积4700m2(总部3000m2)。公司拥有标准化厂房3座,配套了先进、完善的加工、检测设备。目前在职员工123名,中专以上学历的占67.65%,本科以上学历的有27名。高级工程师3名(另有7名外聘),工程师19名,助工5名,管理人员34名,技术工人42名,销售人员27人。经过20多年的艰苦奋斗,公司总资产已从30万元积累至2004年的2886万。公司成立至今已累计上缴国家利税4500多万元,从而确立了在宜兴地区的明星企业地位。 在全体员工共同努力下,公司于1999年11月首次通过ISO9002质量体系认证,2002年4月通过ISO9001。公司产品函盖水处理各领域,主要有三十多个品种三百多种规格,TWZ综合污水处理装置、QF气浮净化设备、QCS上流式厌氧污泥床等设备和装置在1995年通过江苏省科委技术鉴定,1998年成为江苏省环境保护推荐产品,1999年获得国家环保认定证书,最新研制的具有国际领先水平的DJAM型碟式射流曝气器于2004年4月通过国家环保总局科技标准司的科技成果鉴定和新产品鉴定,2005年获得国家重点新产品称号。公司还于2001年获得江苏省环境保护设施运行资质证书。 公司的质量方针是:科学管理、优质高效、不断改进、满足顾客! 质量目标是:产品一次合格率大于95%,今后三年每年递增1%;顾客意见处理率100%,处理满意率力争100%! 公司一贯以高标准、严要求组织设计、生产、安装和服务,今后仍将严格按照ISO9001质量管理体系的要求进行设备的设计、制作和服务,为用户提供质量上乘、性能可靠、服务完善、价格便宜的产品。

臭氧技术及配套技术

臭氧技术及配套技术 臭氧用于水处理的浓度单位一般是按mg/L计算,这与空气型常用mg/m3差了一千倍,由此可知,水处理需要高浓度、大发生量的臭氧才能应用,臭氧发生量/小时,负载功率电耗,气源干燥度,产品寿命等是其主要指标。 气水混合装置是臭氧用于水处理必不可少的配套技术,虽然臭氧易溶于水,溶解度比氧气高十几倍,但必须采用一种技术手段使臭氧与水充分接触,接触面积、时间、臭氧浓度、压力等都是混合效率的决定因素。目前,臭氧与水的混合主要有以下几种: 气法:这是一种传统的简便方法,是靠臭氧气经压缩后利用某种泡化器件,让臭氧形成气泡与水充分接触,不难看出,气泡越小、越多、深度越大,效果越好。 射流法:也称文丘里法,是利用水在管道中流动时通过装置变径加快流速形成负压吸气,通入臭氧与水在管路中混合。这种装置在安装时,一是射流器须与管路配套(以管径为准),二是射流器中的水流向不能存在逆压,避免水进入臭氧发生罐,三是射流器延出管路必须在2.5m 以上,越长效率越高,四是流速要达到一定量,保证负吸形成,五是器件与管路必须用不锈钢或塑料材质,杜绝用钢、铁以免消耗臭氧与氧化腐蚀。射流法效率较高,但安装设计与要求应相当严格。 涡轮负吸法:这种方式是通过水泵吸程加装气路,在供水时形成负吸将臭氧带入水中,效率较高。

其原理与文丘里法基本相同,也广为采用。其安装要求与文丘里法也大致相同,需要特别注意的是,其气量控制,气量大时会影响水泵供水。 混合塔法:这种方法是通过一个较高的装置塔,将水由高处喷下形成雾状,将臭氧气自下方通入并使之与水流形成逆行,使臭氧气与水充分接触形成臭氧水。此方式有无填料和有填料两种,材质是十分讲究的,效果也很好,只是成本造价较高。 电控是水处理臭氧发生器必不可少的部分,直接关系到设备的开停及使用,一般分为、自动、数控三种模式,目前使用闭环控制的还较少,电控的设计是根据单机发生要求而定的,不一而足。 结构系统除将以上技术组装到一起外,还要考虑高浓度臭氧气的密封问题,避免泄漏伤及人体,必要时还要具备对剩余排除臭氧气的催化处理技术,要求都是很严格的。

搅拌桨叶的选型和设计计算

第二节搅拌桨叶的设计和选型一、搅拌机结构与组成 组成:搅拌器电动机 减速器容器 排料管挡板 适用物料:低粘度物料 二、混合机理 利用低粘度物料流动性好的特性实现混合 1、对流混合 在搅拌容器中,通过搅拌器的旋转把机械能传给液体物料造成液体的流动,属强制对流。包括两种形式: (1)主体对流:搅拌器带动物料大范围的循环流动 (2)涡流对流:旋涡的对流运动 液体层界面强烈剪切旋涡扩散 主体对流宏观混合 涡流对流 2、分子扩散混合 液体分子间的运动微观混合 作用:形成液体分子间的均匀分布 对流混合可提高分子扩散混合 3、剪切混合 剪切混合:搅拌桨直接与物料作用,把物料撕成越来越薄的薄层,达到混合的目的。 高粘度过物料混合过程,主要是剪切作用。 电 动 机 减速器 搅 拌 器 容 器 排料管

三、混合效果的度量 1、调匀度I 设A 、B 两种液体,各取体积vA 及vB 置于一容器中, A B A B a b 则容器内液体A 的平均体积浓度CA0为: (理论值) 经过搅拌后,在容器各处取样分析实际体积浓度CA ,比较CA0 、CA , 若各处 CA0=CA 则表明搅拌均匀 若各处 CA0=CA 则表明搅拌尚不均匀,偏离越大,均匀程度越差。 引入调匀度衡量样品与均匀状态的偏离程度 定义某液体的调匀度 I 为: (当样品中CA CA0时) 或 (当样品中CA CA0时) 显然 I ≤1 若取m 个样品,则该样品的平均调匀度为 当混合均匀时 2、混合尺度 设有A 、B 两种液体混合后达到微粒均布状态。 B A A A V V V C +=00A A C C I =0 11A A C C I --=m I I I I m +??++=- 211 =- I

装药爆炸过程中聚能射流行为模拟

ANSYS 软件及应用 装药爆炸过程中聚能射流行为模拟

装药爆炸过程中聚能射流行为模拟 1. 聚能效应简介 聚能效应(Gathering energy effect),通常称为“门罗效应”,即炸药爆炸后,爆炸产物在高温高压下基本是沿炸药表面的法线方向向外飞散的。因此,带有锥形凹槽的装药在引爆后,凹槽附近的爆轰产物飞散时将在装药轴线处汇聚,形成一股高速、高温、高密度的射流,这股射流在靶板较小的区域内形成较高的能量密度,致使炸坑较深。这种利用装药一端空穴以提高爆炸后局部破坏作用的效应称为聚能效应。 聚能效应的应用非常广泛,在军事上,可用来生产穿甲弹、碎甲弹、反坦克枪榴弹等,用于对付各种装甲目标;在工程爆破中,可在土层和岩石上打孔,其中在石油工程领域的应用最为典型;另外,聚能效应也可用于水下切割构件,在野外切割钢板、钢梁等。 图1显示了不同装药结构的穿孔能力。图1.a中爆轰产物向柱型装药四周均匀飞散,药柱底部爆轰产物作用于靶板;图1.b中装药锥孔部分的爆轰产物飞散时,向轴线集中会聚成速度和压力很高的气流,爆轰产物的能量集中在较小的面积上,在靶板上打出更深的孔;图1.c中装药锥孔部分加装金属药型罩,爆轰产物在推动罩壁向轴线运动的过程中,将能量传递给了金属罩,依靠罩的动能产生了更大的破坏作用;图1.d显示增大炸高可以使射流充分形成,提高侵彻能力。 图1. 不同装药结构的穿孔能力 图2为爆炸产物的飞散方向示意图。圆柱形的普通炸药柱爆轰时,爆轰产物以近似垂直药柱表面的方向朝四周飞散,如图2.a所示。而有锥孔的圆柱形药柱

爆炸后,锥孔部分的爆轰产物向轴线集中,汇聚成一股速度和密度都很高的气流,这时爆轰产物的能量集中在较小的范围内,即为聚能效应。爆轰产物向轴线汇聚过程中,一方面由于爆轰产物以一定速度沿垂直于锥孔表面的方向朝轴线汇聚;另一方面,由于稀疏波的作用,汇聚到轴线处的爆轰产物又会迅速地向周围低压区膨胀,使能量分散开。因此,爆轰产物只能在短时间内和距药柱端面某一近距离内保持高度集中,如图2.b所示。如果在成型装药的锥孔表面加上一个金属罩,则爆炸后的爆轰产物将推动罩壁向轴线运动,将能量传递给金属罩,这样就可以避免气体的高压膨胀引起能量再度分散。罩壁在轴线处碰撞时,罩内表面的速度比药型罩压垮闭合时的速度高出1~2倍,使金属中的动能进一步提高,形成高速的金属射流,如图2.c所示。 图2. 爆炸产物的飞散方向 图3显示了金属射流和杵的形成过程。由于金属罩体积基本不变,同样质量的金属收缩到较小的区域时,罩壁必然要增厚,即罩内壁的质点速度必然大于外表面速度,因此在轴线碰撞后,内壁成为射流,外壁成为杵,如图3所示。图中号码表示罩壁与射流和杵的对应位置。显然,药型罩外壁材料在杵上的排列位置与原排列顺序一致,而内壁材料在射流上的排列顺序则与原位置相反。 本文将采用ANSYS软件对聚能射流的形成过程进行模拟。

文丘里管射流器的主要性能

文丘里管射流器的主要性能参数研究

在研究文丘里管工作原理的基础上,提出了确定文丘里管射流器的主要性能参数:耗水量与吸风量的计算方法,并通过实验验证了该计算方法的正确性,有利于文丘里管射流器在煤矿降尘工作中的进一步推广。 关键词:引射;吸风量;水雾活塞 随着放顶煤工艺的逐渐推广,放煤口成为放顶煤综采工作面的最大产尘源之一。放煤时的瞬时粉尘浓度有时可高达万余mg/m3,对作业人员的身体健康危害性极大。喷雾方式控制煤矿粉尘是经济的,也是有效的。在适中的喷雾压力和较少耗水量的情况下,文丘里式喷雾降尘装置对煤矿粉尘,尤其是呼吸性粉尘的降尘效果非常明显[1]。

图1 文丘里管工作原理示意图 1 文丘里管射流器的工作原理 1.1 文丘里管的工作原理 如图1所示,高速水流经过文丘里管的变径后,速度急剧增大,压力减少,从喷嘴喷出的水雾锥体,在直径等于引射管内径后受管壁约束而变为圆柱体,此水雾圆柱称为水雾活塞,随着水雾从喷嘴喷出,水雾活塞沿引射管高速运动并从喷射出口高速射出,水雾锥的后部形成真空,外部空气源源不断地从吸气口吸入引射管,这些新吸进的气体在引射喷射管内与水雾锥碰撞混合,并随水雾从喷射口喷出,若吸入的是含尘气体,则粉尘被强制在水雾中运动湿润或粘结成较大颗粒被喷射出引射管后,很快失去在空气中的悬浮能力而降落下来,从而实现降尘的目的[2]。 1.2 文丘里管中流体流动特性分析 文丘里管是利用流体在变截面管道中流速、压

力和状态的变化来实现预期的能量转换的目的。因为高压喷雾并引射含尘空气,所以可根据稀颗粒群两相流动中的均相流动模型,可把流经文丘里管的雾流和含尘空气假定为均匀、理想的流体,流动过程也是可逆且绝热的[3]。 文丘里管中的混合流体经过管中变径后,马赫数会有突变,即速度会有很大的变化。在喷嘴结构参数确定的条件下,文丘里管中的水流速度直接影响整个装置的吸风能力,所以,有必要进一步研究文丘里管射流器在不同喷嘴开口条件下的吸风量与耗水量的大小。 2 耗水量及吸风量的理论计算 2.1 耗水量的计算[4] 根据薄壁孔口流量计算及管嘴流量计算公式:

聚能切割参数设计方案书

第二章 影响线型聚能装药侵彻能力的因素 爆炸切割是利用聚能原理来切割坚硬物质的爆炸新技术。由于切割都是沿着一个面切割出一条窄缝来,因此,多采用平面对称型药型罩。线型聚能装药是一种长条形带有空腔的装药,在空腔中嵌有金属药型罩。药型罩的形状可以是圆弧形或各种不同顶角的楔形,药型罩的材料可以是铜、钢、铝、铅等。利用这种装药可制成各种爆炸切割器,图2.1为线型聚能装药的基本构形。 2.1 线型聚能装药作用的基本原理 当炸药起爆后,爆轰波一方面沿着炸药的长度方向传播,另一方面沿着药型罩运动,聚能作用使爆炸能量向药型罩会聚,爆轰产物以高达几十万大气压的压 力作用于药型罩,并将其压垮,而后向对称轴闭合运动,并在对称平面内发生高速碰撞,药型罩内壁附近的金属在对称平面上挤出一块向着装药底部以高速运动的片状射 流,通常称之为“聚能刀”。它一般是呈融 熔状态(热塑状态)的高速金属射流,其头部速度大约3000~5000m/s ,集中了很高的能量。金属射流在飞行中不断拉长,当它与 金属靶板发生相互作用时,迫使靶板表面压力突然达到几百万大气压。在高压作用下,靶板表面金属被排开,向侧表面堆积,而飞溅和汽化的不多。随着射流和靶板的连续作用,金属射流不断损失能量并依附在金属断裂面上。爆炸切割器正是依靠这种片状的“聚能刀”,实现对金属的切割作用。图2.2 为线型聚能装药射流形成和拉伸断裂的示 意图,图中所采用的起爆方式为典型的端部点起爆方式。可以看出,药型罩的压 图2.1 线型聚能装药的基本构形 Fig.2.1 The basic figuration of 炸药 图2.2 LSC 药型罩压垮和射流形成特性 Fig.2.1 Liner collapse and jet formation 杵体 主射流 外壳 断裂射流 (a)起爆初时 (b)射流形成 (c)射流断裂

文丘里管射流器的主要性能参数研究

文丘里管射流器的主要性能参数研究 在研究文丘里管工作原理的基础上,提出了确定文丘里管射流器的主要性能参数:耗水量与吸风量的计算方法,并通过实验验证了该计算方法的正确性,有利于文丘里管射流器在煤矿降尘工作中的进一步推广。 随着放顶煤工艺的逐渐推广,放煤口成为放顶煤综采工作面的最大产尘源之一。放煤时的瞬时粉尘浓度有时可高达万余 mg/m 3 ,对作业人员的身体健康危害性极大。喷雾方式控制煤矿粉尘是经济的,也是有效的。在适中的喷雾压力和较少耗水量的情况下,文丘里式喷雾降尘装置对煤矿粉尘,尤其是呼吸性粉尘的降尘效果非常明显 [1] 。 图 1 文丘里管工作原理示意图

1 文丘里管射流器的工作原理 1.1 文丘里管的工作原理 如图 1 所示,高速水流经过文丘里管的变径后,速度急剧增大,压力减少,从喷嘴喷出的水雾锥体,在直径等于引射管内径后受管壁约束而变为圆柱体,此水雾圆柱称为水雾活塞,随着水雾从喷嘴喷出,水雾活塞沿引射管高速运动并从喷射出口高速射出,水雾锥的后部形成真空,外部空气源源不断地从吸气口吸入引射管,这些新吸进的气体在引射喷射管内与水雾锥碰撞混合,并随水雾从喷射口喷出,若吸入的是含尘气体,则粉尘被强制在水雾中运动湿润或粘结成较大颗粒被喷射出引射管后,很快失去在空气中的悬浮能力而降落下来,从而实现降尘的目的 [2] 。 1.2 文丘里管中流体流动特性分析 文丘里管是利用流体在变截面管道中流速、压力和状态的变化来实现预期的能量转换的目的。因为高压喷雾并引射含尘空气,所以可根据稀颗粒群两相流动中的均相流动模型,可把流经文丘里管的雾流和含尘空气假定为均匀、理想的流体,流动过程也是可逆且绝热的 [3] 。 文丘里管中的混合流体经过管中变径后,马赫数会有突变,即速度会有很大的变化。在喷嘴结构参数确定的条件下,文丘里管中的水流速度直接影响整个装置的吸风能力,所以,有必要进一步研究文丘里

搅拌桨叶的选型和设计计算

一、搅拌机结构与组成 组成:搅拌器 电动机 减速器 容器 排料管 挡板 适用物料:低粘度物料 二、混合机理 利用低粘度物料流动性好的特性实现混合 1、对流混合 在搅拌容器中.通过搅拌器的旋转把机械能传给液体物料造成液体的流动.属强制对流。包括两种形式: (1)主体对流:搅拌器带动物料大范围的循环流动 (2)涡流对流:旋涡的对流运动 液体层界面 强烈剪切 旋涡扩散 主体对流 宏观混合 涡流对流 2、分子扩散混合 液体分子间的运动 微观混合 作用:形成液体分子间的均匀分布 对流混合可提高分子扩散混合 3、剪切混合 剪切混合:搅拌桨直接与物料作用.把物料撕成越来越薄的薄层.达到混合的目的。 高粘度过物料混合过程.主要是剪切作用。

三、混合效果的度量 1、调匀度I 设A 、B 两种液体.各取体积vA 及vB 置于一容器中. 则容器内液体A 的平均体积浓度CA0为: (理论值) 经过搅拌后.在容器各处取样分析实际体积浓度CA.比较CA0 、CA . 若各处 CA0=CA 则表明搅拌均匀 若各处 CA0=CA 则表明搅拌尚不均匀.偏离越大.均匀程度越差。 引入调匀度衡量样品与均匀状态的偏离程度 定义某液体的调匀度 I 为: (当样品中CA CA0时) 或 (当样品中CA CA0时) 显然 I ≤1 若取m 个样品.则该样品的平均调匀度为 当混合均匀时 2、混合尺度 设有A 、B 两种液体混合后达到微粒均布状态。 混合尺度分 设备尺度 微团尺度 分子尺度 对上述两种状态: 在设备尺度上:两者都是均匀的(宏观均匀状态) 在微团尺度上:两者具有不同的均匀度。 在分子尺度上:两者都是不均匀的(当微团消失.称分子尺度的均匀或微观均 匀) 如取样尺寸远大于微团尺寸.则两种状态的平均调匀度接近于己于1。 如取样尺寸小到与b 中微团尺寸相近时.则b 状态调匀度下降.而a 状态调匀度不变。 即:同一个混合状态的调匀度随所取样品的尺寸而变化.说明单平调匀度不能反映混合物的均匀程度 四、搅拌机主要结构 1、搅拌器 搅拌器由电动机带动.物料按一定规律运动(主体对流).桨型不同.物料产生的流型不同。 桨作用于物料.物料产生三个方向的速度分量: 轴向分量 B A A A V V V C +=00A A C C I =0 11A A C C I --=m I I I I m +??++=- 211 =-I

文丘里管射流器的主要性能参数研究

在研究文丘里管工作原理的基础上,提出了确定文丘里管射流器的主要性能参数:耗水量与吸风量的计算方法,并通过实验验证了该计算方法的正确性,有利于文丘里管射流器在煤矿降尘工作中的进一步推广。 关键词:引射;吸风量;水雾活塞 随着放顶煤工艺的逐渐推广,放煤口成为放顶煤综采工作面的最大产尘源之一。放煤时的瞬时粉尘浓度有时可高达万余mg/m3,对作业人员的身体健康危害性极大。喷雾方式控制煤矿粉尘是经济的,也是有效的。在适中的喷雾压力和较少耗水量的情况下,文丘里式喷雾降尘装置对煤矿粉尘,尤其是呼吸性粉尘的降尘效果非常明显[1]。 图1 文丘里管工作原理示意图 1 文丘里管射流器的工作原理 1.1 文丘里管的工作原理 如图1所示,高速水流经过文丘里管的变径后,速度急剧增大,压力减少,从喷嘴喷出的水雾锥体,在直径等于引射管内径后受管壁约束而变为圆柱体,此水雾圆柱称为水雾活塞,随着水雾从喷嘴喷出,水雾活塞沿引射管高速运动并从喷射出口高速射出,水雾锥的后部形成真空,外部空气源源不断地从吸气口吸入引射管,这些新吸进的气体在引射喷射管内与水雾锥碰撞混合,并随水雾从喷射口喷出,若吸入的是含尘气体,则粉尘被强制在水雾中运动湿润或粘结成较大颗粒被喷射出引射管后,很快失去在空气中的悬浮能力而降落下来,从而实现降尘的目的[2]。 1.2 文丘里管中流体流动特性分析 文丘里管是利用流体在变截面管道中流速、压力和状态的变化来实现预期的能量转换的目的。因为高压喷雾并引射含尘空气,所以可根据稀颗粒群两相流动中的均相流动模型,可把流经文丘里管的雾流和含尘空气假定为均匀、理想的流体,流动过程也是可逆且绝热的[3]。 文丘里管中的混合流体经过管中变径后,马赫数会有突变,即速度会有很大的变化。在喷嘴结构参数确定的条件下,文丘里管中的水流速度直接影响整个装置的吸风能力,所以,有必要进一步研究文丘里管射流器在不同喷嘴开口条件下的吸风量与耗水量的大小。

聚能切割爆破在拆除特大型钢结构厂房中的施工技术研究

聚能切割爆破在拆除特大型钢结构厂房中的 施工技术研究 解放军理工大学工程兵工程学院 零零二年九月 控制爆破拆除多应用于混合结构、框架结构等建(构)筑物的拆除,而钢结构的

控制爆破拆除是一个全新的课题,目前国内还没有这方面成功实例及相关经验可供借鉴。 聚能装药做为一种特殊的装药形式,多应用于军事领域,它可以将炸药爆炸时的爆炸能聚集起来,达到对金属穿孔、切割、破坏等目的,如穿甲弹、破障弹、线型反坦克履带雷等。航天工业上利用聚能装药的特性,形成线型切割器,切割金属结构,实现运载火箭的各级脱离。采用线性聚能装药的爆炸来快速切割钢结构物,达到拆除钢结构物目的,这在理论上是成立的,实际上能否成立,还有许多问题有待解决。 上海宝钢集团第一钢厂,为建设国内最大的不锈钢基地,需将原第二炼钢车间厂房拆除,其拆除目标是在安全的前提下达到快速拆除整个车间,为不锈钢基地建筑节约宝贵的时间。 该车间主厂房总计占地32200M,东西长318M南北宽110M其中,钢砼框架结构厂房占地14560M,钢结构厂房占地17640M,整幢厂房总建筑面积69505M, 爆破目标南侧50M为上海市重点保护单位吴淞煤气厂制气车间,北侧100 M为厂内正在生产的高炉锅炉房及化学水处理站。 国内该类厂房拆除施工多采用“倒装法”拆除,“倒装法”拆除:一是安全性差,二是工期较长,三是成本较高,无法满足工程建设需要,迫切需要一种新的拆除施工方法。 结合上钢一厂二炼钢拆除的实际工程,对聚能切割爆破在拆除特大型钢结构厂房中的施工技术进行如下研究。 一、进行工程勘察 1.工程概况 1.1 概述:

工程地点:宝山区长江路 735号,拆除对象为上海一钢厂二炼钢厂房 及厂房内的大型基础。二炼钢厂房由钢结构主厂房和钢筋混凝土结构厂房 组成,其中:钢结构主厂房包括:加料跨、过渡跨、精炼跨,钢筋混凝土 结构的厂房包括过渡跨及出坯跨。 建、构筑物分布情况见附图1总平面图 图1、环境平面示意图 1.2拟拆除的建、构筑物结构简况: 1. 2.1钢结构主厂房 加料跨厂房 为大型钢结构厂房(钢结构梯型屋架)。长318m 跨度19.7m ,屋面标 咼最咼 +24.6m ,天窗屋面咼为▽ +29m 屋面为大型砼预制板,山墙为镀 锌瓦围护结构;加料 跨厂房与炉子跨厂房共用 G 列厂房柱,柱距18m 与过 渡跨厂房,共用F 列房柱。 过渡跨厂房 为单层钢结构厂房,屋面为钢结构梯型屋架,预制砼屋面板。长 240m 跨度6m 柱距6m 屋面高▽ +20.0m ;跨内搭设有各种操作室、仪表室、值 班室、调度室、分析室等建构筑物。 精炼跨 为单层钢结构厂房(屋面为钢结构梯型屋架,大型预制砼屋面)长306m , 跨距 29m 柱距一般为6m 最大为12m 屋面标高^ +18.8m ,天窗屋面标高 ▽ +22.13m ,山檣为镀锌瓦围护结构。 1.2.2 钢筋混凝土结构厂房 (该部分厂房为混凝土立柱结构,不是本篇的重点, 炉 南 炉 南 切割跨 岀坯跨待爆钢 岀坯跨 过 待爆钢结构厂房 炼 跨 勺砼结构厂房 切割跨 岀坯跨 F 50M 吴淞煤气厂制气车间 高炉锅炉房 转 100M 钢 北 路 炉子跨(倒装法拆除) 加 路

全自动固定床顺流再生钠离子交换器计算示例

全自动固定床顺流再生钠离子交换器计算示例 序号名称符号单位计算公式数值附注或控制要求原始参数 1产水量Q m3/h由用户提供60 2原水总硬度Hi mol/m3由用户提供4 3软化水硬度Ho mmol/L由用户提供0.03 4原水钾钠含量K+Na ppm由用户提供50 5工作温度T o C由用户提供10 6进水压力P MPa由用户提供0.42 7要求连续供水时间Sct hr由用户提供24 交换器计算 8离子交换树脂R 选用001*7型树脂(PUROLITE) 9单位树脂再生耗盐量 Spr g/L160查阅相关资料 10树脂工作交换容量Rc mol/L 1.1查资料考虑安全余量得 11运行流速Sv m/h25根据国家标准*确定 标准为20-30m/h 12所需交换面积F m2Q/Sv 2.4流量/运行流速,结果是总的面积 13交换器同时工作台数n台2 14交换器选用台数台n或n+13一台再生备用 15单台交换器流量Qe m3/h Q/n30总流量/交换器台数 16单台交换器直径De mm√(F/n/3.14)×20001236(总交换面积/台数/3.14)开方后*2*1000 17选用交换器直径Dt mm1250根据玻璃钢罐体资料 18实际交换器截面积Fe m2 3.14×(Dt/2)2 1.2 19单罐连续运行时间St hr8流量控制再生一般连续运行时间不少于6小时20要求的单罐交换容量Ce mol Qe×St×Hi960流量×运行时间×原水硬度 21最少树脂装载量R min L Ce/Rc873时间控制再生其树脂量必须满足一天的总产水要求22核算树脂层高度Hcr mm Rmin/Fe×1000712树脂层高度最低不低于762mm 23选用交换器高度H mm2000根据玻璃钢罐体资料 24反洗流速Bcv m/h1515根据国家标准*确定 标准为15m/h 25反洗膨胀率Bh%树脂粒径(0.45-1.25)50 查PUROLITE-C-100E型树脂资料得 26交换器折损高度h mm500查阅相关资料 27实际树脂层高度Hr mm(H-h)/(1+Bh)1000 28实际运行流速V m/h Qe/Fe24.46 29实际树脂装载量Rv L Fe×Hr1227 30实际单罐运行时间St hr(Rv×Rc)/(Qe×Hi)11.24 反洗计算 31反洗流量Bq m3/h Fe×Bcv181m3/h=4.4gpm 32反洗流量控制器 D.L.F.C gpm Bq×4.481查阅反洗流量控制器资料 80实际流量 33实际反洗流速Bv m/h DLFC×0.227/Fe14.98 34反洗时间Bt min15按国家标准*再生计算 35再生一次盐耗量Sd kg Rv×Spr/1000196当饱和盐液浓度为26.3%时,一加仑水溶解1.35kg盐36配制饱和盐液耗水量Sw gallon Sd/1.351451gallon=3.785L 37盐箱注水孔板流量 B.L.F.C.gpm Sw/159.69盐箱注水时间一般设定在 10-20 分钟;查资料确认 9.00注水实际流量 38盐箱注水时间Rt min Sw/BLFC15.0 39实际盐箱注水量Rw gallon BLFC×Rt135.00 L511 40实际再生一次盐耗量Spt kg Rw×1.35182.25 41饱和盐液量Dv gallon{(Rw×3.785+Spt)/1.2}/3.7851531gallon=3.785L;饱和盐液比重为1.2

搅拌器毕业设计--(很实用)

搅拌器毕业设计 第一章绪论 搅拌可以使两种或多种不同的物质在彼此之中互相分散,从而达到均匀混合;也可以加速传热和传质过程。在工业生产中,搅拌操作时从化学工业开始的,围绕食品、纤维、造纸、石油、水处理等,作为工艺过程的一部分而被广泛应用。 搅拌操作分为机械搅拌与气流搅拌。气流搅拌是利用气体鼓泡通过液体层,对液体产生搅拌作用,或使气泡群一密集状态上升借所谓上升作用促进液体产生对流循环。与机械搅拌相比,仅气泡的作用对液体进行的搅拌时比较弱的,对于几千毫帕·秒以上的高粘度液体是难于使用的。但气流搅拌无运动部件,所以在处理腐蚀性液体,高温高压条件下的反应液体的搅拌时比较便利的。在工业生产中,大多数的搅拌操作均系机械搅拌,以中、低压立式钢制容器的搅拌设备为主。搅拌设备主要由搅拌装置、轴封和搅拌罐三大部分组成。其结构形式如下:(结构图) 第一节搅拌设备在工业生产中的应用范围很广,尤其是化学工业中,很多的化工生产都或多或少地应用着搅拌操作。搅拌设备在许多场合时作为反应器来应用的。例如在三大合成材料的生产中,搅拌设备作为反应器约占反应器总数的99%。。搅拌设备的应用范围之所以这样广泛,还因搅拌设备操作条件(如浓度、温度、停留时间等)的可控范围较广,又能适应多样化的生产。 搅拌设备的作用如下:①使物料混合均匀;②使气体在液相中很好的

分散;③使固体粒子(如催化剂)在液相中均匀的悬浮;④使不相溶的另一液相均匀悬浮或充分乳化;⑤强化相间的传质(如吸收等); ⑥强化传热。 搅拌设备在石油化工生产中被用于物料混合、溶解、传热、植被悬浮液、聚合反应、制备催化剂等。例如石油工业中,异种原油的混合调整和精制,汽油中添加四乙基铅等添加物而进行混合使原料液或产品均匀化。化工生产中,制造苯乙烯、乙烯、高压聚乙烯、聚丙烯、合成橡胶、苯胺燃料和油漆颜料等工艺过程,都装备着各种型式的搅拌设备。 第二节搅拌物料的种类及特性 搅拌物料的种类主要是指流体。在流体力学中,把流体分为牛顿型和非牛顿型。非牛顿型流体又分为宾汉塑性流体、假塑性流体和胀塑性流体。在搅拌设备中由于搅拌器的作用,而使流体运动。 第三节搅拌装置的安装形式 搅拌设备可以从不同的角度进行分类,如按工艺用途分、搅拌器结构形式分或按搅拌装置的安装形式分等。一下仅就搅拌装置的各种安装形式进行分类说明。 一、立式容器中心搅拌 将搅拌装置安装在历史设备筒体的中心线上,驱动方式一般为皮带传动和齿轮传动,用普通电机直接联接。一般认为功率3.7kW一下为小型,5.5~22kW为中型。本次设计中所采用的电机功率为18.5kW,故为中型电机。

相关主题