搜档网
当前位置:搜档网 › SUSYNon-SUSY Duality in U(N) Gauge Model with Partially Broken N=2 Supersymmetry

SUSYNon-SUSY Duality in U(N) Gauge Model with Partially Broken N=2 Supersymmetry

SUSYNon-SUSY Duality in U(N) Gauge Model with Partially Broken N=2 Supersymmetry
SUSYNon-SUSY Duality in U(N) Gauge Model with Partially Broken N=2 Supersymmetry

a r

X

i

v

:08

8

.

2

5

2

v

1

[

h

e p

-

t

h

]

1

9

A u

g

2

8

August,2008OCU-PHYS 303SUSY/Non-SUSY Duality in U (N )Gauge Model with Partially Broken N =2Supersymmetry Kazunobu Maruyoshi 1Department of Mathematics and Physics,Graduate School of Science Osaka City University 3-3-138,Sugimoto,Sumiyoshi-ku,Osaka,558-8585,Japan We study the vacuum structure of the U (N )gauge model with partially broken N =2supersymmetry.From the analysis of the classical vacua of this model,we point out that in addition to the ordinary N =1supersymmetric vacua,there are vacua with negative gauge coupling constants,which preserve another N =1supersymmetry.These latter vacua can be analyzed by using SUSY/non-SUSY duality which is recently proposed by Aganagic,Beem,Seo and Vafa.A dual description of these in UV is U (N )gauge theory where the supersymmetry is broken by spurion super?elds.Following them,we see that

there are supersymmetry preserving vacua as well as supersymmetry breaking vacua of low energy e?ective theory.

1Introduction

The low energy behavior of N=1supersymmetric gauge theory has been studied in various contexts and a lot of exciting results have been found.In the last decade,various investigations have been made on the e?ective superpotential of U(N)super Yang-Mills theory with an adjoint chiral super?eld and a tree level superpotential,which is the single trace function of the adjoint chiral super?eld.It has been known that this can be computed by using gauge/gravity correspondence in superstring theory[1,2,3],by the bosonic one matrix model[4],more directly by its Riemann surface data[5]and also by purely?eld theoretical methods[6,7,8].

Recently,the study of the e?ective superpotential has entered a new phase.In[9, 10,11],it has been shown that,in the case where a gauge kinetic term depends on the adjoint chiral super?eld,the e?ective superpotential has been shown to contain a term which deforms the form of the e?ective superpotential[1,2,4].More precisely,the model analyzed in[10]has the following holomorphic terms in classical Lagrangian

d2θTr[α(Φ)WαWα+W(Φ)],α(Φ)=n?1 k=0t kΦk,W(Φ)=n+1 k=1a kΦk,(1.1) whereα(Φ)and a tree level superpotential are the quite generic polynomials of the chi-ral super?eld and are not related each other.We refer to this model as generic model. In contrast,the U(N)gauge model[12,13](FIS)whose gauge kinetic term and super-potential can be expressed by a bare prepotential has been analyzed in[9,11]and the deformed e?ective superpotential has been derived.While it may seem that this latter model is merely one case of the former generic model,it is a special case and has higher symmetry than that of the generic model:the model(FIS)has N=2supersymmetry which is spontaneously broken to N=1.This partial breaking model is the non-abelian generalization of the models considered in[14,15,16,17].(See also[18,19]for the cases with hypermultiplet and for quiver gauge theories,[20]for N=2supergravity and[21] for related discussions.)

One consequence which can be argued from the deformation of the e?ective superpo-tential is the existence of supersymmetry breaking vacua in such theories.The reason is as follows:in the case without deformation,the e?ective superpotential takes the same form as in[17,1,22].This e?ective theory has two types of vacua:the one preserves an original N=1supersymmetry and the other preserves another N=1supersymmetry which is a part of N=2supersymmetry in the low energy e?ective theory.If there is a deformation,the situation becomes quite di?erent.The e?ective superpotential is no

longer the form of[17,1,22]and the latter supersymmetric vacua become supersymmetry breaking vacua,like in[23,24].

These supersymmetric vacua and supersymmetry breaking vacua do not exist at the same time,however.To be accurate,for the choices of the parameters where the classical theory has positive kinetic energy:(1/g2)i~ Imα i?0for all i(index i labels the U(N i)gauge groups),only the supersymmetric vacua are in the region where the e?ective theory is valid and the supersymmetry breaking vacua are out of this region.On the other hand,for the parameters where the squared gauge coupling constants are negative, the supersymmetry breaking vacua are valid and the supersymmetric vacua are out of the region of validity of the e?ective theory.In these cases,the?eld theory description in UV is bad.

Based on these observations,an interesting duality has proposed[25]in the generic model:in the case when all the squared gauge coupling constants are negative,there exists a good?eld theory description in UV,which is U(N)gauge model where the squared gauge coupling constants are positive and has the following superpotential

W( Φ)=n+1 k=1(a k+2it k?θ2)Φk.(1.2)

This is the model with spurion?elds which has nonzero vevs in auxiliary?elds and they break the supersymmetry explicitly[26,27].Also,in[28],this duality has been analyzed from type IIA superstring and M-theory perspective.

The model we study in this paper is the U(N)gauge model(FIS)where N=2 supersymmetry is broken to N=1,which is the speci?c case of the generic model. Therefore,we have ordinary N=1supersymmetric vacua and,following the discussion of SUSY/non-SUSY duality,there exists the supersymmetry breaking vacua in the case where the squared gauge coupling constants are negative.

We notice that there are other supersymmetric vacua which preserve di?erent N=1 supersymmetry from the one preserved in the above vacua in the classical theory.This is due to the N=2structure of this model and what we focus on in this paper.We can see that in the cases where the squared gauge coupling constants are positive in the ordinary N=1supersymmetric vacua,they are negative in the second N=1supersymmetric vacua,and vice versa.We analyze the second N=1supersymmetric vacua where the squared gauge coupling constants are negative by applying the above duality and see that these lead to the supersymmetry breaking vacua at the low energy.By the existence of these second N=1supersymmetric vacua,we will see that there exists both the supersymmetric vacua and the supersymmetry breaking vacua in this model.From above

analysis,one may observe the similarity between N=2structure of the classical theory and that of the e?ective theory.However,we show that these are not exactly same,by considering the limit where the model reduces to N=1,U(N)super Yang-Mills theory with the superpotential.

The organization of this paper is as follows.We review SUSY/non-SUSY duality in the above generic model in section2.After that,we concentrate on the U(N)gauge model with partially broken N=2supersymmetry in the subsequent sections.In section 3,we extend the analysis of the classical vacua and its classi?cation of[13]in order to ?nd out the consequence from N=2supersymmetry in the original Lagrangian.We also see the unbroken supersymmetry in these vacua.In section4,the e?ective superpotential of this model will be considered and we will see that both the supersymmetric vacua and the supersymmetry breaking vacau can be analyzed by using SUSY/non-SUSY duality. Finally,we conclude in section5.

2SUSY/Non-SUSY Duality

In this section,we brie?y see the duality which was proposed in[25]in the generic model (1.1).First of all,let us consider the region of the parameters a k and t k,such that all the square inverses of the gauge coupling constants are positive:

+ iα( φi )S i+ k>0t k?F free

?S i

existence of this is the crucial point of this type of model,which has a gauge kinetic term depending on the adjoint chiral super?eld.

W e?=0.From this,we can deter-The supersymmetric condition is derived from?S

i

mine the vevs of the condensate?elds.But,these vevs should be in the range where the e?ective theory is valid,which is S i ?|mΛ20|1.In the case of(2.1),we can verify that the vevs of the condensate?elds are in the above range[25].Furthermore,as noticed in the introduction,we can also see the existence of non-supersymmetric vacua by consid-ering the extremal of the scalar potential.However,these non-supersymmetric vacua are not in the range of validity of the e?ective theory in these parameters region where(2.1) is satis?ed.Therefore,the meaningful vacua are only the supersymmetric vacua.

Then,we try to tune the parameters,in the e?ective superpotential,to the region where all the gauge couplings in the classical theory are negative:

1We have assumed that the masses of the adjoint chiral super?elds of U(N i)gauge groups are the same order and write them as m

(k=1,...,n+1),a real paramter e and a complex parameter m,we can obtain the following Lagrangian,

L=Im d4θTrˉΦe adV?F(Φ)2?2F(Φ)

?Φ,F(Φ)=

n+1

k=1g k

We can easily see supersymmetric vacua from the F-term condition?a W(Φ)=0. Of course,these correspond to the N=1supersymmetric vacua which discussed in the generic model.There are other vacua which preserve N=1supersymmetry in this model. In order to see this,we will analyze the scalar potential:

V=g ab 1?b W(Φ) ,(3.3) where D a=?ig ab f b cdˉφcφd.We are interested in the vacua where φr =0.(We have divided the gauge index a=(i,r)as i and r label the Cartan and non-Cartan parts respectively.)Extremizing the scalar potential,we obtain the following conditions

F ade g bd g ec(eδ0b+mˉF0b)(ˉeδ0c+mˉF0c) =0.(3.4) We have denoted the derivative of F with respect toφa,φb,...as F ab....

In order to analyze more the above conditions,let us change the basis for Cartan part such that the Cartan generators in the new basis are(t iδi=1,...,N)[13]. In this basis,the conditions of the vacua are written as

F i i i i i not summed,(3.5) for each i i(g i)2 =0corresponds to unstable vacua,the above condition reduces to (2e+mˉF i)(2ˉe+mˉF i) =0for each i

.In terms of the K¨a hler metric,these i

become the conditions

g i =?2Im e m,(3.6) for each i i

.Therefore,we should be careful when g i are negative for some i

so that g i =?2Im e/m.In the case with Im e/m<0,we can divide the vacua into the following3groups:

1.N+=N.In this case,we have g i =?2Im e/m for all i

2.N+=0.In this case, g i =2Im e/m<0for all i

are all negative in these vacua,it seems that

i

these vacua have no meaning.However,from the analysis of the last section,we can propose that there exists good descriptions of these.We will see this in the subsequent sections.

3.N+=N and N+=0.In these cases,we can set g i =?2Im e/m>0for

i i=N++1,...,N by appropriate Weyl

re?ection.These vacua break both N=1supersymmetries.We will check this below.So,we will not consider these vacua any more in this paper.

The most striking point of this model is that the vacua2preserve the second N=1 supersymmetry,though in these vacua the squared gauge coupling constants(1/g2)i

.Although these vacua

i

preserve the manifest N=1supersymmetry as well as the vacua1,the squared gauge coupling constants are negative.

5.N+=0. g i =2Im e/m>0for all i

di?erent values of the electric FI parameters when we?x them[14,29,19,23].Here we have?xed them such that the vacuum energy of the vacua which preserve the manifest N=1supersymmetry becomes zero.

3.2Partial supersymmetry breaking

We now examine supersymmetry preserved by the above vacua.As noted above,we can easily see that the vacua1and4are supersymmetric because g i =?2Im e/m are derived from the F-term condition?ΦW=0.We can also check this and,furthermore, consider the unbroken supersymmetry in the other vacua by observing the appearance of a Nambu-Goldstone fermion.

For this purpose,let us consider the supersymmetry transformation law of the fermions, which is written,in the eigenvalue basis,as

δ λi =?√i i

i

,the transformation law at

i

these vacua becomes

δλi2miη2, δψi.(3.8) If we change the basis into the original Cartan basis,we obtain

δλa =?4√

N comes from the convention t0=1N×N/

,the transformation law becomes in the

i

original basis as follows:

δλa =0, δψa =4√

above vacua preserve N=1supersymmetry can also be checked by examining the mass

spectrum and observing the massless Nambu-Goldstone fermion as in[13].In fact,we

can see that the fermionλ(orψ)which includes the Nambu-Goldstone fermion makes

N=1vector multiplet with the gauge?eld and the fermionψ(orλ)is combined with the scalar?eld to be N=1massive chiral multiplet.

In the other cases with N+=N and N+=0,we have

δλi2miη2, δψi=1,...,N+,

δλi =2√=N++1,...,N.(3.11) Thus,there are two Nambu-Goldstone fermions in the model and N=2supersymmetry is broken completely.We have,therefore,checked the unbroken supersymmetry which is preserved in various vacua.

3.3Large FI parameters limit

The models considered in this paper are the extensions of N=1,U(N)super Yang-

Mills theory with the tree level superpotential.As we can recover this from the generic

model considered in section2by taking the parameters t k(k>0)to zero,the model

considering in this section also reduces to N=1,U(N)super Yang-Mills theory with

the superpotential by the limit where e,m→∞with a k=mg k(k≥2)and e/m?xed

[12,29].We refer to this limit as large FI parameters limit.

In the large FI parameters limit where m→∞,the dominant part in the super-

symmetry transformation laws of the fermions is indeed the term in(3.9)(or(3.10)).

Therefore the broken supersymmetry leads to the fermionic symmetry which act the?eld

strength super?elds as W iα→W iα+η1N i×N i.Note that parameterηis related to the broken supersymmetry parameterη2(orη1)which appeared in(3.9)(or(3.10)).This is the fermionic shift symmetry which has been argued in[7].

One may consider that the vacua2and5which preserve the second N=1super-

symmetry are inconsistent with the vacuum structure of N=1,U(N)super Yang-Mills

theory with the superpotential.However,the vacua2(or5)are decoupled from the vacua

1(or4)in this limit.This can be seen from the vacuum condition(3.5).For example,

we?rst manage to keep the vev ofφin the vacua1(or4)at?nite value,by setting

2e+mg1=0.In this case of the parameters,the vev ofφin the vacua2(or5)becomes

in?nite in the limit and these vacua are decoupled each other.We can also observe this

from the simple analysis of the vacuum energy of each type of the vacua.As we saw

above,on the one hand,the vacuum energy of the vacua1(or4)is zero.On the other

hand,that of the vacua 2(or 5)is proportional to m Im e and this becomes in?nite in the limit.Therefore,in this limit,the vacua 1(or 4)are far away from the vacua 2(or 5)and we can only see either of them.This matches with the vacua of N =1,U (N )super Yang-Mills theory with the superpotential.

4Non-supersymmetric vacua

So far,we have analyzed the classical vacua.In this section,we will consider the mean-ing of the vacua 2and 4in the last section and we will see that these lead to non-supersymmetric vacua by using SUSY/non-SUSY duality.Therefore,we can see that there are supersymmetry breaking vacua in addition to the supersymmetric vacua of the e?ective theory.We will analyze these by using the di?erent gluino e?ective superpotential written in terms of θ1and θ2.(We will use θ1and θ2to denote the superspace coordinate of the manifest N =1supersymmetry and that of the second N =1supersymmetry respectively.)

First of all,let us consider the case with Im e/m <0and concentrate on the vacua 1in the classical theory.This vacua preserve manifest N =1supersymmetry and the gauge symmetry is broken to i U

(

N

i

).Supposing that each SU (N i )factor con?nes at the low energy,we can evaluate the e?ective superpotential in terms of the gluino condensate e?ective superpotential 2.This can be obtained by the supergraph technique and the diagrammatical computation [9]or by using the generalized Konishi anomaly equations and the chiral ring property [9,11]as follows:

d 2θ1W e?,W e?= i N i ?F fre

e m ?2e i S i +n +1 k =2g k ?F free

2We write down the e?ective superpotential in terms of S i ,where these are de?ned as the U (N i )traces of the squared ?eld strength super?elds.Thus,S i here are slightly di?erent from the gluino condensate ?elds which are the SU (N i )trace of them.

Now,let us?ip the sign of the FI parameter Im e and go to the region where the squared gauge coupling constants are negative in the classical theory.In this case,the structure of the classical vacua of the model becomes the latter pattern in section3.1,that is,the vacua4,5and6.The e?ective superpotential with this sign of Im e,which is written in terms of the superspaceθ1,should denote that of the vacua4in the classical theory where the squared gauge coupling constants are negative.According to the suggestion in section2,there is,however,a better description in UV of these,which is U(N)gauge theory with the following gauge kinetic term and a tree superpotential

d2?θ1Tr ?i m Wα Wα+W( Φ) g k→g k+16π2ig k+1?θ21/m ,(4.2) where?θ1is the di?erent superspace coordinate fromθ1of the manifest N=1super-symmetry preserved in the classical vacua4and the tilded super?elds are de?ned on?θ1 superspace.Also,the superpotential in(4.2)is the same one as the original superpoten-tial in(3.2).Note that the sign of Im e has been changed when we have gone to the dual description,in order for the squared gauge coupling constants to be positive in the dual theory.As we saw above,this is the supersymmetry breaking model by the spurion?elds which have the vev in the auxiliary components.

So far,we have only considered the e?ective theory in terms ofθ1coordinate and these analysis is the similar as that in section2.However,the most crucial point in this model is the existence of the second N=1supersymmetry in the classical theory,in other words,the existence of the vacua2or5as we saw in the last section.We cannot analyze these vacua from the above gluino e?ective superpotential which is written in terms ofθ1 coordinate,becauseθ1is the di?erent coordinate from that of the N=1supersymmetry which is preserved in the vacua2and5.Instead,we will analyze the gluino e?ective superpotential written in terms ofθ2.

In order to analyze the vacua2,we start from the vacua5by letting Im e/m be positive. Since these vacua has non-zero vacuum energy as we saw in section3.1,we rewrite the F-term part of the classical scalar potential(3.3)as

g ab?a W2(Φ)

.(4.4)

In this convention,we can manifestly see the second N=1supersymmetry,because the F-term condition?ΦW2(Φ)=0leads to g i =2Im e/m,the condition of the vacua which

preserve the second N=1supersymmetry.By using these,we can evaluate the e?ective superpotential in a similar way except that the gluino condensate?eld should be di?erent from S i in the above case.If we denote these as T i,the e?ective superpotential is d2θ2W e?(T),W e?= i N i?F free m ?2ˉe i T i+n+1 k=2g k?F free

4 ?2e

m i T i+N i?F free

from(4.7).Note that this is the case with Im e/m<0and there are the supersymmetric

vacua which derived from(4.1)in addition to these supersymmetry breaking vacua.

It should be noted that we have used various superspace coordinates:θ2(the super-

space coordinate of the second supersymmetry),?θ1(the coordinate where the Lagrangian

(4.2)of the dual description is de?ned)and?θ2(which is the coordinate where the La-

grangian(4.6)is de?ned).Since the origins of the dual coordinates?θ1and?θ2are in

N=2structures of the e?ective theories,so it seems that some of them are related. For example,one may consider that?θ2andθ1are the same coordinates.However,it is

di?cult to verify this,because the e?ective theories are written in terms of the di?erent

gluino condensate?elds.Instead,we can see that at least,in the large FI parameters

limit,they are quite di?erent coordinates.Let us see this here,concentrating on?θ2and

θ1.Although it seems that the holomorphic part of the original Lagrangian written in

terms ofθ1and dual description(4.6)written in terms of?θ2becomes the similar form in

this limit,the signs of Im e in the superpotential are di?erent.Thus,they describe the

di?erent theories.This can be also seen from the vacuum energy:the vacuum energy of

the vacua1is exactly zero.On the other hand,as we have seen above,that of the theory

(4.6)is not zero even in the limit.Actually,it is natural to consider that these vacua are

decoupled each other and in N=1,U(N)super Yang-Mills theory with superpotential,

we can observe only either of them,as we have seen in section3.1.Also,we can see that

θ2and?θ1are quite di?erent in the limit as well.

We can say that the e?ective theory has the supersymmetric vacua and also the su-

persymmetry breaking vacua.Note that this does not mean that,in the generic model,

there are either of the supersymmetric vacua and the supersymmetry breaking vacua.

The generic model may have the similar vacua as above.However,we do not have the

way to analyze both in the generic model because it has only N=1supersymmetry at

the classical level.

5Summary and discussion

We have analyzed the vacua of the U(N)gauge model with partially broken N=2

supersymmetry.We here summarize the results,according to the classi?cation in section

3.1.In the case with Im e/m<0,we have seen that the classical vacua are divided into

the three types(we have not consider the third type vacua):

1.In these vacua,the manifest N=1supersymmetry is preserved classically.(We

have denoted the superspace coordinate of this asθ1.)We have analyzed the e?ec-

tive theory from the e?ective superpotential and have seen the(manifest)N=1 supersymmetric vacua at low energy.

2.In this case,the classical vacua preserve the second N=1supersymmetry,but

all the squared gauge coupling constants are negative.Based on the proposal in

[25],we have proposed a dual description of these in UV,which is the di?erent

U(N)gauge model with(4.6),written in terms of superspace?θ2.We have seen the e?ective superpotential of such a theory and the existence of supersymmetry breaking vacua.The existence of the classical vacua2which preserve the second N=1supersymmetry is the crucial point of this model and this have made the above analysis possible.

We have also seen that these superspace coordinatesθ1and?θ2are di?erent each other. In the case with Im e/m>0,we can do the same analysis:

4.In this case,the squared gauge coupling constants are negative classically.We can

analyze these cases by SUSY/non-SUSY duality as in[25]and the dual description in UV is the explicit supersymmetry breaking model as above.

5.As the vacua2,these vacua preserve the second N=1supersymmetry classically.

We have analyzed the e?ective superpotential and we have seen the second N=1 supersymmetric vacua at low energy.These supersymmetric vacua do not exist in the generic model and the existence of these is also the remarkable property of this model.

It is interesting to consider this model from the string theory perspective.The generic model has already been studied in type IIB superstring theory[25]and in type IIA and M-theory[28].However,it is not so clear why the symmetry becomes higher in this speci?c choice of the parameters from the IIB superstring theory point of view.

Acknowledgements

The author thanks Kazuo Hosomichi,Hironobu Kihara,Sungjay Lee,Alberto Mariotti, Kazutoshi Ohta,Yutaka Ookouchi,Takao Suyama,Yuji Tachikawa,Masato Taki,Futoshi Yagi and especially Hiroshi Itoyama for useful discussions and comments.The author also thanks Korea Institute for Advanced Study for the hospitality during part of this project. The research of the author is supported in part by JSPS Research Fellowships for Young Scientists.

References

[1]C.Vafa,J.Math.Phys.42(2001)2798[arXiv:hep-th/0008142].

[2]F.Cachazo,K. A.Intriligator and C.Vafa,Nucl.Phys.B603(2001)3

[arXiv:hep-th/0103067].

[3]F.Cachazo and C.Vafa,[arXiv:hep-th/0206017].

[4]R.Dijkgraaf and C.Vafa,Nucl.Phys.B644(2002)3[arXiv:hep-th/0206255];Nucl.

Phys.B644(2002)21[arXiv:hep-th/0207106];[arXiv:hep-th/0208048].

[5]H.Itoyama and A.Morozov,Nucl.Phys.B657(2003)53[arXiv:hep-th/0211245];

Prog.Theor.Phys.109(2003)433[arXiv:hep-th/0212032].

[6]R.Dijkgraaf,M.T.Grisaru,https://www.sodocs.net/doc/924073485.html,m,C.Vafa and D.Zanon,Phys.Lett.B573

(2003)138[arXiv:hep-th/0211017].

[7]F.Cachazo,M.R.Douglas,N.Seiberg and E.Witten,JHEP0212(2002)071

[arXiv:hep-th/0211170].

[8]F.Cachazo,N.Seiberg and E.Witten,JHEP0302(2003)042

[arXiv:hep-th/0301006].F.Ferrari,JHEP0606(2006)039[arXiv:hep-th/0602249];

Nucl.Phys.B770(2007)371[arXiv:hep-th/0701220]; F.Ferrari and V.Wens, Nucl.Phys.B798(2008)470[arXiv:0710.2978[hep-th]].

[9]H.Itoyama and K.Maruyoshi,Phys.Lett.B650(2007)298[arXiv:0704.1060[hep-

th]];K.Maruyoshi,arXiv:0710.2154[hep-th].

[10]F.Ferrari,JHEP0711(2007)001[arXiv:0709.0472[hep-th]]; F.Ferrari,

arXiv:0804.0244[hep-th].

[11]H.Itoyama and K.Maruyoshi,Nucl.Phys.B796(2008)246[arXiv:0710.4377[hep-

th]].

[12]K.Fujiwara,H.Itoyama and M.Sakaguchi,Prog.Theor.Phys.113(2005)429

[arXiv:hep-th/0409060];

[13]K.Fujiwara,H.Itoyama and M.Sakaguchi,Nucl.Phys.B723(2005)33

[arXiv:hep-th/0503113].

[14]I.Antoniadis,H.Partouche and T.R.Taylor,Phys.Lett.B372(1996)83

[arXiv:hep-th/9512006];H.Partouche and B.Pioline,Nucl.Phys.Proc.Suppl.56B (1997)322[arXiv:hep-th/9702115].

[15]S.Ferrara,L.Girardello and M.Porrati,Phys.Lett.B376(1996)275

[arXiv:hep-th/9512180].

[16]E.A.Ivanov and B.M.Zupnik,Phys.Atom.Nucl.62(1999)1043[Yad.Fiz.62

(1999)1110][arXiv:hep-th/9710236].

[17]T.R.Taylor and C.Vafa,Phys.Lett.B474(2000)130[arXiv:hep-th/9912152].

[18]K.Fujiwara,H.Itoyama and M.Sakaguchi,Nucl.Phys.B740(2006)58

[arXiv:hep-th/0510255].

[19]H.Itoyama,K.Maruyoshi and M.Sakaguchi,Nucl.Phys.B794(2008)216

[arXiv:0709.3166[hep-th]].

[20]S.Ferrara,L.Girardello and M.Porrati,Phys.Lett.B366(1996)155

[arXiv:hep-th/9510074];P.Fre,L.Girardello,I.Pesando and M.Trigiante,Nucl.

Phys.B493(1997)231[arXiv:hep-th/9607032];J.Louis,arXiv:hep-th/0203138;

H.Itoyama and K.Maruyoshi,Int.J.Mod.Phys.A21(2006)6191

[arXiv:hep-th/0603180];K.Maruyoshi,arXiv:hep-th/0607047.

[21]P.Kaste and H.Partouche,JHEP0411(2004)033[arXiv:hep-th/0409303];

P.Merlatti,Nucl.Phys.B744(2006)207[arXiv:hep-th/0511280];I.Antoniadis, J.P.Derendinger and T.Maillard,arXiv:0804.1738[hep-th].

[22]M.Aganagic, C.Beem,J.Seo and C.Vafa,Nucl.Phys.B789(2008)382

[arXiv:hep-th/0610249].

[23]H.Ooguri,Y.Ookouchi and C.S.Park,arXiv:0704.3613[hep-th];J.Marsano,

H.Ooguri,Y.Ookouchi and C.S.Park,Nucl.Phys.B798(2008)17[arXiv:0712.3305

[hep-th]].

[24]L.Hollands,J.Marsano,K.Papadodimas and M.Shigemori,arXiv:0804.4006[hep-

th].

[25]M.Aganagic,C.Beem,J.Seo and C.Vafa,arXiv:0804.2489[hep-th].

[26]https://www.sodocs.net/doc/924073485.html,wrence and J.McGreevy,JHEP0406(2004)007[arXiv:hep-th/0401034].

[27]L.Girardello,A.Mariotti and G.Tartaglino-Mazzucchelli,JHEP0603(2006)104

[arXiv:hep-th/0601078].

[28]K.Ohta and T.S.Tai,arXiv:0806.2705[hep-th].

[29]K.Fujiwara,Nucl.Phys.B770(2007)145[arXiv:hep-th/0609039].

美标 板材厚度对照

Sheet Metal Thickness Gauges Steel data from Caloritech, for heavier gauges also from Engineer's Edge. Aluminum data from Festiva Tech. Gauge (ga)Standard Steel Thickness (inches) Galvanized Steel Thickness (inches) Aluminum Thickness (inches) 3 0.2391 0.2294 4 0.2242 0.2043 5 0.2092 0.1819 6 0.1943 0.1620 7 0.1793 0.1443 8 0.1644 0.1285 9 0.1495 0.1532 0.1144 10 0.1345 0.1382 0.1019 11 0.1196 0.1233 0.0907 12 0.1046 0.1084 0.0808 13 0.0897 0.0934 0.0720 14 0.0747 0.0785 0.0641 15 0.0673 0.0710 0.0571 16 0.0598 0.0635 0.0508 17 0.0538 0.0575 0.0453 18 0.0478 0.0516 0.0403 19 0.0418 0.0456 0.0359 20 0.0359 0.0396 0.0320 21 0.0329 0.0366 0.0285 22 0.0299 0.0336 0.0253 23 0.0269 0.0306 0.0226 24 0.0239 0.0276 0.0201 25 0.0209 0.0247 0.0179 26 0.0179 0.0217 0.0159 27 0.0164 0.0202 0.0142 28 0.0149 0.0187 0.0126 29 0.0135 0.0172 0.0113

各种单位换算及公式

各种单位换算及公式 长度单位面积单位 1 in = 25.4 mm 1 in 2 = 6.45 cm2 1 ft = 0.3048 m 1 ft2 = 0.09 3 m2 1 micron = 0.001 mm 体积单位 1 litre = 0.001 m3 1 cu.ft. = 0.0283 m3 1 cu.in. = 16.39 cm3 1 fluid oz.(imp) = 28.41 mL 1 fluid oz.(us) = 29.57 mL 1 gal(imp) = 4.546 L 1 gal(us) = 3.79 L 温度单位 (°F-32)X5/9=℃K-273.15 = ℃ 功及能量单位 1 Nm = 1 J 1 kgm = 9.807 J 1 kW/hr = 3.6 MJ 1 lbft = 1.356 J 功率单位 1 Nm/sec = 1 W 1 lbft/sec = 1.356 W 1 kgm/sec = 9.807 W 1 Joule/sec = 1 W 1 H.P.(imp) = 745.7 W 质量单位 1 lb = 453.6 g 1 tonne = 1000 kg 1 ton(imp) = 1016 kg 1 ton(us) = 907. 2 kg

流量计算公式 Q = Cv值X 984 = Kv值X 1100 Cv = So ÷ 18 力单位 1 kgf = 9.81 N 1 lbf = 4.45 N 1 kp(kilopound) = 9.81 N 1 poundal = 138.3 mN 1 ton force = 9.964 kM 力矩单位 1 kgm = 9.807 Nm 1 ft. poundal = 0.0421 Nm 1 in lb = 0.113 Nm 1 ft lb = 1.356 Nm 压力单位 1 psi = 6.89 kPa 1 kgf/cm 2 = 98.07 kPa 1 bar = 100 kPa 1 bar = 14.5 psi 1 mm mercury = 133.3 Pa 1 in mercury = 3.39 kPa 1 Torr = 133.3 Pa 1 ft water = 0.0298 bar 1 bar = 3.33 ft water 1 atmosphere = 101.3 kPa 1 cm water = 97.89 Pa 1 in water = 248.64 Pa 换算表 1psi=6.895kPa=0.07kg/cm2=0.06895bar=0.0703atm 1standard atmosphere=14.7psi=101.3kPa=1.01325bar 1kgf/cm2 = 98.07kPa=14.22psi = 28.96ins mercury 1m3 = 1000000cm3 1cu ft/min = 28.3 l/min

压力单位换算方法

工程上常用的是兆帕(MPa):1MPa=1000000Pa。 1个标准大气压力=1.00336×0.098MPa=0.10108MPa≈0.1Mpa。 1bar=0.1MPa 压力的法定单位是帕斯卡(Pa):1Pa=1N/㎡(牛顿/平方米)。 压力单位换算: 1MPa=1000kPa 1kPa=10mbar=101.9716 mmH2O = 4.01463imH2O 10mWC=1bar=100kPa bar 巴= 0.987 大气压= 1.02 千克/平方厘米= 100 千帕= 14.5 磅/平方英寸 PSI英文全称为Pounds per square inch。P是磅pound,S是平方square,I是英寸inch。把所有的单位换成公制单位就可以算出:1bar≈14.5psi 1psi=6.895kPa=0.06895bar

1兆帕(MPa)=145磅/英寸2(psi)=10.2千克/厘米2(kg/cm2)=10巴(bar)=9.8大气压(atm) 1磅/英寸2(psi)=0.006895兆帕(MPa)=0.0703千克/厘米2(kg/cm2)=0.0689巴(bar)=0.068大气压(atm) 1巴(bar)=0.1兆帕(MPa)=14.503磅/英寸2(psi)=1.0197千克/厘米 2(kg/cm2)=0.987大气压(atm) 1大气压(atm)=0.101325兆帕(MPa)=14.696磅/英寸2(psi)=1.0333千克/厘米2(kg/cm2)=1.0133巴(bar) ------------------------------------------------------------------------------------- 压力单位换算方法 1. 1atm=0.1MPa=100KPa=1公斤=1bar=10米水柱=14.5PSI 2.1KPa=0.01公斤 =0.01bar=10mbar=7.5mmHg=0.3inHg=7.5torr=100mmH2O=4inH2O 3. 1MPa=1N/mm2 14.5psi=0.1Mpa 1bar=0.1Mpa 30psi=0.21mpa,7bar=0.7mpa 现将单位的换算转摘如下: Bar---国际标准组织定义的压力单位。 1 bar=100,000Pa 1Pa=F/A, Pa: 压力单位, 1Pa=1 N/㎡ F : 力, 单位为牛顿(N) A: 面积, 单位为㎡ 1bar=100,000Pa=100Kpa 1 atm=101,325N/㎡=101,325Pa 所以,bar是一种表压力(gauge pressure)的称呼。

AWG-标准线径对照表

AWG 标准线径对照表 线径的粗细是以号数(xxAWG)来表示的,数目越小表示线径愈粗,所能承载的电流就越大,反之则线径越细,耐电流量越小。例如说:12号的耐电流量是20安培,最大承受功率是2200瓦,而18号线的耐电流量则是7安培,最大承受功率是770瓦。 为什么AWG号数越小直径反而越大?如这么解释你就会明白,固定的截面积下能塞相同的AWG线的数量,如11#AWG号数可塞11根而15#AWG号数可塞15根,自然的15#AWG的单位线径就较小。 美规线径值单一导体或群导体【各正值或负值】的线径值(Gauge)是以圆或平方厘米(mm2) 量测而得,平方厘米不常用在量测线径值,由于牵涉到不正确,因一般大部份的导体形体,包含长方形及其他怪异形状。因此我们拿全部的量测以圆平方厘米(c/m)为参考值 群导体计算的方法或公式: 加上单一导体的线径值总和,并比较上表求得。如果值落入两者之间,取比较少的值。 40股群导体线的线径值为,如每一芯为24 Guage = 40 x 405 c/m = 16,200 c/m = 9 AWG(得出值落入12960c/m和16440c/m之间) 快速求得线径值的方法: 两条(AWG)相加时,该单一线径值减3. ex. 2 x 18 AWG = (18-3=) 15 AWG 三条(AWG)相加时,该单一线径值减5. ex. 3 x 24 AWG = (24-5=) 19 AWG 四条(AWG)相加时,该单一线径值减6. ex. 4 x 10 AWG = (10-6=) 04 AWG 请记得“快速求得线径值的方法”一些案例也许边际会不正确,只采用此方式为大原则 AWG 标准线径规格对照表

常用钢板厚度规格大全

常用钢板厚度规格大全: 0.2;0.25;0.3;0.35;0.4;0.45;0.5;0.55;0.6;0.7; 0.75;0.8;0.9;1.0;1.1;1.2;1.25;1.4;1.5;1.6;1.8; 2.0;2.2;2.5;2.8; 3.0;3.2;3.5;3.8; 4.0;4.5; 5.0; 5.5; 6.0; 7.0; 8.0; 9.0;10;11;12;13;14;15;16;17;18;19;20;21;22;23;24;25;26;27;28;29;30;32;34;36;38;40;42;44;46;48;50;52;54;56;58;60 无缝钢管的规格尺寸 1寸钢管公称口径是25mm.;外径33.70mm;壁厚3.2mm 4分、6分、1寸是英制说法。是按1英寸=25.4mm来算的,取近似数。 4分管1\2"---公称口径15mm ;外径(公称尺寸)21.30mm;壁厚2.80mm. 6分管3\4"---公称口径20mm ; 外径(公称尺寸)26.90mm; 壁厚2.80mm. 5/4’’--公称口径32mm; 外径(公称尺寸)42.40mm; 壁厚3.50mm. 1吋管1"---公称口径25mm ; 外径(公称尺寸)33.70mm; 壁厚3.20mm. 2吋管2’’---公称口径50mm; 外径(公称尺寸)60.3mm; 壁厚3.80mm. 3吋管3’’----公称口径80mm; 外径(公称尺寸)88.90mm; 壁厚4.0mm 4吋管4’’----公称口径100mm; 外径(公称尺寸)114.30mm; 壁厚4.0mm. 也就是说平时家用的是4分管直径是15,或者2寸管直径就是50 最新圆管理论重量表大全|常用圆管理论重量价格表|圆钢尺寸规格 表 最新圆管理论重量表大全|常用圆管理论重量价格表|圆钢尺寸规格表 圆钢材质:10#、20#、35#、45#、Q215-235、20Cr、40Cr、20CrMo、35CrMo、42CrMo、40CrNiMo、GCr15、65Mn、50Mn、50Cr、3Cr2W8V、

[修订]钢板规格型号、厚度尺寸大全

[修订]钢板规格型号、厚度尺寸大全钢板规格型号、厚度尺寸大全 钢板是钢材四大品种(板、管、型、丝)之一,在发达国家,钢板产量占钢材生产总量50,以上,随着我国国民经济的发展,钢板生产量逐渐增长。 钢板是一种宽厚比和表面积都很大的扁平钢材。钢板按厚琊分为薄板和厚板两大规格。薄钢板是用热轧或冷轧方法生产的厚度在0.2-4mm之间的钢板。薄钢板宽度在500-1400mm之间。根据不同的用途,薄钢板采用不同材质钢坯轧制而成。通常采用材质有普碳钢、优碳钢、合金结构钢、碳素工具钢、不锈钢、弹簧钢和电工用硅钢等。它们主要用于汽车工业、航空工业、搪瓷工业、电气工业、机械工业等部门。薄钢板除轧制后直接交货之外,还有经过酸洗的、镀锌和镀锡等种、类。 厚钢板是厚度在4mm以上的钢板的统称,在实际工作中,常将厚度小于20mm 的钢板称为中板,厚度,20mm至60mm的钢板称为厚板,厚度, 60mm的钢板则需在专门的特厚板轧机上轧制,故称特厚板。厚钢板的宽度从0.6mm-3.0mm。厚板按用途又分造船钢板、桥梁钢板、锅炉钢板、高压容器钢板、花纹钢板、汽车钢板、装甲钢板和复合钢板等。钢板的一个分支是钢带,钢带实际上是很长的薄板,宽度比较小,常成卷供应,也称为带钢。钢带常在多机架连续式轧机上生产,切成定尺长度后就是钢带,因此生产率比单张机制时高。一、中、厚板 (一)普通中、厚钢板 1、普碳钢沸腾钢板(GB3274-88) 普碳钢沸腾钢板顾名思义是由普通碳素结构钢的沸腾钢热轧制成的钢板。沸腾钢是一种脱氧不完全的钢材,钢液含氧量较高,当钢水注入钢锭模后,碳氧反应产生大量气体,造成钢液呈沸腾状态而得名。

各种单位换算及公式

各种单位换算及公式

各种单位换算及公式 长度单位面积单位 1 in = 25.4 mm 1 in 2 = 6.45 cm2 1 ft = 0.3048 m 1 ft 2 = 0.09 3 m2 1 micro n = 0.001 mm 体积单位 1 litre = 0.001 m3 1 cu.ft. = 0.0283 m3 1 cu.i n. = 16.39 cm3 1 fluid oz. (imp) = 28.41 mL 1 fluid oz. (us) = 29.57 mL 1 gal(imp) = 4.546 L 1 gal(us) = 3.79 L 温度单位 (°-32)X5/9= C K-273.15 = C 功及能量单位 1 Nm = 1 J 1 kgm = 9.807 J 1 kW/hr = 3.6 MJ 1 Ibft = 1.356 J 功率单位 1 Nm/sec = 1 W 1 lbft/sec = 1.356 W 1 kgm/sec = 9.807 W 1 Joule/sec = 1 W 1 H.P.(imp) = 745.7 W

质量单位 1 to nne = 1000 kg 1 lb = 453.6 g

流量计算公式 Q = Cv 值X 984 = Kv 值X 1100 Cv = So 48 力单位 1 kgf = 9.81 N 1 Ibf = 4.45 N 1 kp(kilopou nd) = 9.81 N 1 pou ndal = 138.3 mN 1 ton force = 9.964 kM 力矩单位 1 kgm = 9.807 Nm 1 ft. poun dal = 0.0421 Nm 1 in lb = 0.113 Nm 1 ft lb = 1.356 Nm 压力单位 1 psi = 6.89 kPa 1 kgf/cm 2 = 98.07 kPa 1 bar = 100 kPa 1 bar = 14.5 psi 1 mm mercury =133.3 Pa 1 in mercury =3.39 kPa 1 Torr = 133.3 Pa 1 ft water = 0.0298 bar 1 bar = 3.33 ft water 1 atmosphere = 101.3 kPa 1 cm water = 97.89 Pa 1 in water = 248.64 Pa 换算表 1psi=6.895kPa=0.07kg/cm2=0.06895bar=0.0703atm 1sta ndard atmosphere=14.7psi=101.3kPa=1.01325bar 1kgf/cm2 = 98.07kPa=14.22psi = 28.96i ns mercury 1m3 = 1000000cm3

常用钢板厚度规格大全

钢板是钢材四大品种(板、管、型、丝)之一,在发达国家,钢板产量占钢材生产总量50%以上,随着我国国民经济的发展,钢板生产量逐渐增长。钢板是一种宽厚比和表面积都很大的扁平钢材。钢板按厚度分为薄板和厚板两大规格。薄钢板是用热轧或冷轧方法生产的厚度在0.2-4mm之间的钢板。薄钢板宽度在500-1400mm之间。根据不同的用途,薄钢板采用不同材质钢坯轧制而成。通常采用材质有普碳钢、优碳钢、合金结构钢、碳素工具钢、不锈钢、弹簧钢和电工用硅钢等。它们主要用于汽车工业、航空工业、搪瓷工业、电气工业、机械工业等部门。薄钢板除轧制后直接交货之外,还有经过酸洗的、镀锌和镀锡等种类。厚钢板是厚度在4mm以上的钢板的统称,在实际工作中,常将厚度小于20mm的钢板称为中板,厚度>20mm至60mm 的钢板称为厚板,厚度> 60mm的钢板则需在专门的特厚板轧机上轧制,故称特厚板。厚钢板的宽度从0.6mm-3.0mm。厚板按用途又分造船钢板、桥梁钢板、锅炉钢板、高压容器钢板、花纹钢板、汽车钢板、装甲钢板和复合钢板等。钢板的一个分支是钢带,钢带实际上是很长的薄板,宽度比较小,常成卷供应,也称为带钢。钢带常在多机架连续式轧机上生产,切成定尺长度后就是钢带,因此生产率比单张机制时高。一、中、厚板(一)普通中、厚钢板 1、普碳钢沸腾钢板(GB3274-88)普碳钢沸腾钢板顾名思义是由普通碳素结构钢的沸腾钢热轧制成的钢板。沸腾钢是一种脱氧不完全的钢材,钢液含氧量较高,当钢水注入钢锭模后,碳氧反应产生大量气体,造成钢液呈沸腾状态而得名。沸腾钢含碳量低,且由于不用硅铁脱氧,故钢中含硅

量常<0.07%。沸腾钢的外层是在沸腾状态下结晶的,所以表层纯净、致密,表面质量好,加工性能良好。沸腾钢没有大的集中缩孔,用脱氧剂少,钢材成本低。沸腾钢心部杂质多,偏析较严重,力学性能不均匀,钢中气体含量较多,韧性低、冷脆和时效敏感性较大,焊接性能较差,故不适用于制造承受冲击截荷,在低温下工作的焊接结构件和其他重要结构件。(1)主要用途沸腾钢板大量用制造各种冲压件、建筑及工程结构和一些不太重要的机器结构和零件。(2)材质的牌号、化学成分和力学性能符合GB700-79(88)(普通碳素结构钢技术条件)中沸腾钢的规定。参阅(型钢)等部分。(3)钢板规格尺寸热轧厚钢板厚度为4.5-200mm。(4)生产单位普碳沸腾钢板由鞍钢、武钢、马钢、太钢、重庆钢厂、邯郸钢铁总厂、新余钢厂、柳州钢厂、安阳钢钢公司、营口中板厂和天津钢厂等生产。 2、普碳钢镇静钢板(GB3274-88)普碳镇静钢钢板是由普通碳素结构钢镇静钢坯热轧制成的钢板。镇静钢是脱氧完全的钢,钢液在注锭前用锰铁、硅铁和铝等进行充分脱氧,钢液在钢锭模中较平静,不产生沸腾状态,故得名为镇静钢。镇静钢的优点是化学成分均匀,所以各部分的机械性能也均匀,焊接性能和塑性良好、抗腐蚀性较强。但表面质量较差,有集中缩孔,成本也较高。(1)主要用途普通镇静钢板主要用于生产在低温下承受冲击的构件、焊接结构及其他要求较高强度的结构件。(2)材质的牌号、化学成分和力学性能符合GB700-79(88)(普通碳素结构钢技术条件)中镇静钢的规定。参阅型钢等部分。(3)钢板规格尺寸热轧厚板厚度4.5-200mm。(4)生产单位普碳镇静

常用线规号码与线径对照表

常用线规号码与线径对照表

线规SWG BWG BG AWG 号码英寸毫米英寸毫米英寸毫米英寸毫米 7/0 6/0 5/0 4/0 3/0 2/0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 0.500 0.464 0.432 0.400 0.372 0.348 0.324 0.300 0.276 0.252 0.232 0.212 0.192 0.176 0.160 0.144 0.128 0.116 0.104 0.092 0.080 0.072 0.064 0.056 0.048 0.040 0.036 0.032 0.0280 0.0240 0.0220 0.0200 0.0180 12.700 11.786 10.973 10.160 9.449 8.839 8.230 7.620 7.010 6.401 5.893 5.385 4.877 4.470 4.046 3.658 3.251 2.946 2.642 2.337 2.032 1.829 1.626 1.422 1.219 1.016 0.914 0.813 0.711 0.610 0.559 0.508 0.457 -- -- 0.500 0.454 0.425 0.330 0.340 0.300 0.284 0.259 0.238 0.220 0.203 0.180 0.165 0.148 0.134 0.120 0.109 0.095 0.083 0.072 0.065 0.058 0.049 0.042 0.035 0.032 0.028 0.025 0.022 0.020 0.018 -- -- 12.700 11.532 10.795 9.652 8.639 7.620 7.214 6.579 6.045 5.588 5.156 4.572 4.191 3.759 3.404 3.048 2.769 2.413 2.108 1.829 1.651 1.473 1.245 1.067 0.839 0.813 0.711 0.635 0.559 0.508 0.457 0.6666 0.6250 0.5883 0.5416 0.5000 0.1152 0.3954 0.3532 0.3147 0.2804 0.2500 0.2225 0.1981 0.1764 0.1570 0.1398 0.1250 0.1313 0.0991 0.0882 0.0785 0.0699 0.0625 0.0556 0.0495 0.0440 0.0392 0.0349 0.03125 0.02782 0.02476 0.02204 0.01961 16.932 15.875 14.943 13.757 12.700 11.308 10.069 8.971 7.993 7.122 6.350 5.652 5.032 4.481 3.988 3.551 3.175 2.827 2.517 2.240 1.994 1.775 1.588 1.412 1.257 1.118 0.996 0.887 0.794 0.707 0.629 0.560 0.498 -- 0.5800 0.5165 0.4600 0.4096 0.3648 0.3249 0.2893 0.2576 0.2294 0.2043 0.1819 0.1620 0.1443 0.1285 0.1144 0.1019 0.0907 0。0808 0.0720 0.0648 0.0571 0.0508 0.0453 0.0403 0.0359 0.0320 0.0285 0.02535 0.02010 0.01790 0.01594 0.01420 -- 14.732 13.119 11.684 10.404 9.266 8.252 7.348 6.544 5.827 5.189 4.621 4.115 3.665 3.264 2.906 2.588 2.305 2.053 1.828 1.628 1.450 1.291 1.150 1.024 0.912 0.812 0.723 0.644 0.573 0.511 0.455 0.405 常用线规号码与线径对照表

线材线号AWG与导线截面积对照表 芯线

American Wire Gauge AWG mm2 42 0.003 1/0.06 41 0.004 1/0.07 40 0.005 1/0.08 38 0.008 1/0.10 36 0.013 1/0.127 34 0.020 1/0.16 7/0.06 32 0.032 1/0.203 7/0.08 8/0.07 11/0.06 30 0.051 1/0.26 7/0.10 11/0.08 14/0.07 19/0.06 28 0.081 1/0.32 7/0.12 11/0.10 16/0.08 21/0.07 28/0.06 26 0.129 1/0.40 7/0.16 9/0.14 11/0.12 16/0.10 25/0.08 33/0.07 45/0.06 24 0.205 1/0.50 7/0.20 14/0.14 19/0.12 26/0.10 41/0.08 53/0.07 73/0.06 22 0.326 1/0.65 7/0.26 11/0.203 13/0.18 17/0.16 22/0.14 29/0.12 42/0.10 65/0.08 20 0.518 1/0.80 7/0.30 10/0.26 12/0.23 16/0.203 20/0.18 26/0.16 34/0.14 46/0.12 66/0.10 18 0.823 1/1.02 7/0.40 10/0.32 16/0.26 20/0.23 26/0.203 33/0.18 41/0.16 54/0.14 73/0.12 65/0.127 104/0.10 16 1.309 1/1.29 7/0.50 11/0.40 17/0.32 25/0.26 32/0.23 41/0.203 52/0.18 65/0.16 85/0.14 119/0.12 165/0.10 14 2.081 1/1.63 11/0.50 17/0.40 26/0.32 40/0.26 50/0.23 65/0.203 82/0.18 103/0.16 135/0.14 183/0.12 264/0.10 12 3.309 1/2.05 17/0.50 27/0.40 41/0.32 54/0.28 80/0.23 102/0.203 130/0.18 164/0.16 10 5.261 1/2.60 27/0.50 42/0.40 65/0.32 99/0.26 126/0.23 162/0.203 206/0.18 261/0.16 8 8.366 1/3.26 26/0.65 67/0.40 104/0.32 157/0.26 6 13.30 1/4.12 27/0.80 40/0.65 68/0.50 105/0.40 165/0.32 4 21.1 5 1/5.20 26/1.02 42/0.80 64/0.65 107/0.50 168/0.40 2 33.6 3 1/6.54 4 26/1.29 42/1.02 67/0.80 101/0.6 5 171/0.50 0 53.48 1/8.254 26/1.63 41/1.29 66/1.02 106/0.80 161/0.65 1. 基准线规直径:直径5 mil(0.005 inch)为36 AWG: 2. 相邻线号之间以几何级数计算:见右框图中公式。 例如:d18 = d36 × r (36-18) = 5 × 8.06053 = 40.3mils = 1.024mm d n = d 36× r (36 - n)( mil ) = 0.127 r(36 - n)( mm ) 其中,r = (460/5) 1/39 = 1.1229322

Gauge 板材 换算

Gauge 板材換算

钢材理论重量计算 钢材理论重量计算的计量单位为公斤(kg )。其基本公式为: 钢的密度为:7.85g/cm3 ,各种钢材理论重量计算公式如下: 圆钢盘条(kg/m)W= 0.006165 ×d×d d = 直径mm 直径100 mm 的圆钢,求每m 重量。每m 重量= 0.006165 ×1002=61.65kg 螺纹钢(kg/m)W= 0.00617 ×d×d d= 断面直径mm 断面直径为12 mm 的螺纹钢,求每m 重量。每m 重量=0.00617 ×12 2=0.89kg 等边角钢(kg/m)= 0.00785 ×[d (2b – d )+0.215 (R2 –2r 2 )] b= 边宽 d= 边厚R= 内弧半径r= 端弧半径求20 mm ×4mm 等边角钢的每m 重量。从冶金产品目录中查出4mm ×20 mm 等边角钢的R 为3.5 ,r 为1.2 ,则每m 重量= 0.00785 ×[4 ×(2 ×20 – 4 )+0.215 ×(3.52 – 2 ×1.2 2 )]=1.15kg 不等边角钢(kg/m)W= 0.00785 ×[d (B+b –d )+0.215 (R2 – 2 r 2 )] B= 长边宽 b= 短边宽d= 边厚R= 内弧半径r= 端弧半径求30 mm ×20mm ×4mm 不等边角钢的每m 重量。从冶金产品目录中查出30 ×20 ×4 不等边角钢的R 为3.5 ,r 为1.2 ,则每m 重量= 0.00785 ×[4 ×(30+20 –4 )+0.215 ×(3.52 –2 ×1.2 2 )]=1.46kg 钢板(kg/m2)W= 7.85 ×d d= 厚厚度4mm 的钢板,求每m2 重量。每m2 重量=7.85 ×4=31.4kg 钢管(包括无缝钢管及焊接钢管(kg/m)W= 0.02466 ×S (D –S )D= 外径 S= 壁厚外径为60 mm 壁厚4mm 的无缝钢管,求每m 重量。每m 重量= 0.02466 ×4 ×(60 –4 )=5.52kg

常用线规号码与线径对照表[1]

线规SWG BWG BG AWG 号码英寸毫米英寸毫米英寸毫米英寸毫米 7/0 6/0 5/0 4/0 3/0 2/0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 0.500 0.464 0.432 0.400 0.372 0.348 0.324 0.300 0.276 0.252 0.232 0.212 0.192 0.176 0.160 0.144 0.128 0.116 0.104 0.092 0.080 0.072 0.064 0.056 0.048 0.040 0.036 0.032 0.0280 0.0240 0.0220 0.0200 0.0180 12.700 11.786 10.973 10.160 9.449 8.839 8.230 7.620 7.010 6.401 5.893 5.385 4.877 4.470 4.046 3.658 3.251 2.946 2.642 2.337 2.032 1.829 1.626 1.422 1.219 1.016 0.914 0.813 0.711 0.610 0.559 0.508 0.457 -- -- 0.500 0.454 0.425 0.330 0.340 0.300 0.284 0.259 0.238 0.220 0.203 0.180 0.165 0.148 0.134 0.120 0.109 0.095 0.083 0.072 0.065 0.058 0.049 0.042 0.035 0.032 0.028 0.025 0.022 0.020 0.018 -- -- 12.700 11.532 10.795 9.652 8.639 7.620 7.214 6.579 6.045 5.588 5.156 4.572 4.191 3.759 3.404 3.048 2.769 2.413 2.108 1.829 1.651 1.473 1.245 1.067 0.839 0.813 0.711 0.635 0.559 0.508 0.457 0.6666 0.6250 0.5883 0.5416 0.5000 0.1152 0.3954 0.3532 0.3147 0.2804 0.2500 0.2225 0.1981 0.1764 0.1570 0.1398 0.1250 0.1313 0.0991 0.0882 0.0785 0.0699 0.0625 0.0556 0.0495 0.0440 0.0392 0.0349 0.03125 0.02782 0.02476 0.02204 0.01961 16.932 15.875 14.943 13.757 12.700 11.308 10.069 8.971 7.993 7.122 6.350 5.652 5.032 4.481 3.988 3.551 3.175 2.827 2.517 2.240 1.994 1.775 1.588 1.412 1.257 1.118 0.996 0.887 0.794 0.707 0.629 0.560 0.498 -- 0.5800 0.5165 0.4600 0.4096 0.3648 0.3249 0.2893 0.2576 0.2294 0.2043 0.1819 0.1620 0.1443 0.1285 0.1144 0.1019 0.0907 0。0808 0.0720 0.0648 0.0571 0.0508 0.0453 0.0403 0.0359 0.0320 0.0285 0.02535 0.02010 0.01790 0.01594 0.01420 -- 14.732 13.119 11.684 10.404 9.266 8.252 7.348 6.544 5.827 5.189 4.621 4.115 3.665 3.264 2.906 2.588 2.305 2.053 1.828 1.628 1.450 1.291 1.150 1.024 0.912 0.812 0.723 0.644 0.573 0.511 0.455 0.405 常用线规号码与线径对照表

GA板厚对照表

Gauge Tolerance Tolerance Tolerance Number + or + or + or Inches M/M Hot Cold Inches M/M Inches M/M Inches M/M Inches M/M 30.2391 6.0730.1*********************0.2294 5.8270.0120.259 6.57940.2242 5.6940.1*********************0.2043 5.1890.0120.238 6.04550.2092 5.3130.1*********************0.1819 4.620.0070.22 5.58860.1943 4.9350.1*********************0.162 4.1150.0070.203 5.15670.1793 4.5540.008*********************0.1443 3.6650.0040.18 4.57280.1644 4.1750.008***0.1681 4.26900.00900.17187 4.3650.0070.1285 3.2640.0040.165 4.19190.1495 3.7970.008***0.1532 3.89100.00900.15625 3.9680.0070.1144 2.9060.0035 0.148 3.759100.1345 3.4160.0080.0060.1328 3.37300.00900.14062 3.5710.0060.1019 2.5880.00350.134 3.404110.1196 3.0380.0080.0060.1233 3.13180.00900.125 3.1750.0050.09074 2.3050.0020.12 3.048120.1046 2.6560.0080.0060.1084 2.75300.00900.10937 2.7780.0050.08081 2.0530.0020.109 2.769130.0897 2.2780.0070.0050.0934 2.37200.00800.09375 2.3810.0040.07196 1.8280.0020.095 2.413140.0747 1.8970.0070.0050.0785 1.99390.00800.07812 1.9840.0040.06408 1.6280.0020.083 2.108150.0673 1.7090.0070.0050.0710 1.80300.00600.07031 1.7850.0040.05707 1.450.0020.072 1.829160.0598 1.580.0070.0050.0635 1.61290.00600.0625 1.5870.0030.050820.2910.0020.065 1.651170.0538 1.366***0.0040.0575 1.46000.00500.05625 1.42870.0030.04526 1.150.0020.058 1.473180.0478 1.214***0.0040.0516 1.31000.00500.0500 1.27000.00300.0403 1.02400.00200.049 1.245190.0418 1.061***0.0040.0456 1.15800.00500.04375 1.111000.003000.035980.912000.001500.042 1.067200.03590.911***0.0030.0396 1.00500.00400.037500.952500.002000.031960.812000.001500.0350.889210.03290.835***0.0030.03660.92900.00400.034370.873000.002000.028460.723000.001500.0320.813220.02990.759***0.0030.03360.85300.00400.031250.793700.002000.025350.644000.002500.0280.711230.02690.683***0.0030.03060.77700.00400.028120.714000.002000.022570.573000.002500.0250.635240.02390.607***0.0030.02760.70100.00400.250000.635000.001500.020100.511000.002500.0220.559250.02090.531***0.0030.02470.62700.00400.021870.555000.001500.017900.455000.002500.020.508260.01790.454***0.0020.02170.55100.00300.018750.476000.001500.015940.405000.002500.0180.457270.01640.416***0.0020.02020.51300.00300.017180.436000.001500.014200.361000.002500.0160.406280.01490.378******0.01870.47400.00300.015260.396000.001500.012640.321000.002500.0140.356290.01350.343******0.01720.43600.00300.014060.357000.001500.011260.286000.002500.0130.3330 0.0120 0.305 *** *** 0.0157 0.3980 0.0030 0.01250 0.31750 0.00150 0.01003 0.25500 0.00250 0.012 0.305 GAUGE CHART Manufacturers Tolerance + or 冷(热)扎板 cold and hot Rolled Steel United States Standard Sheets 镀锌板Galvanized Steel Sheets Standard 管Aluminum Brass Copper Steel Tubes Copper Sheets Galvanized Sheet Gauge Sheets 不锈钢Stainless Steel Sheets 铝+铜板Brass and Aluminum United States Standard Amited Or Browne & Sharpe Hoop Steel

压力单位换算方法

压力单位换算方法 1. 1atm=0.1MPa=100KPa=1公斤=1bar=10米水柱=14.5PSI 2.1KPa=0.01公=0.01bar=10mbar=7.5mmHg=0.3inHg=7.5torr=100mmH2O=4inH2O 3. 1MPa=1N/mm2 14.5psi=0.1Mpa 1bar=0.1Mpa 30psi=0.21mpa,7bar=0.7mpa 现将单位的换算转摘如下: Bar---国际标准组织定义的压力单位。 1 bar=100,000Pa 1Pa=F/A, Pa: 压力单位, 1Pa=1 N/㎡ F : 力 , 单位为牛顿(N) A: 面积 , 单位为㎡ 1bar=100,000Pa=100Kpa 1 atm=101,325N/㎡=101,325Pa 所以,bar是一种表压力(gauge pressure)的称呼。 1Kg/c㎡=98.067KPa =0.9806bar 1bar=1.02Kg/ c㎡ 压力单位: 英制(IP) psi ,psf ,in.Hg ,inH2O 公制(metric) Kg/㎡, Kg/ c㎡ ,mH2O ISO公制(ISO metric) Pa , bar , 、兆帕(MPa); 千帕(kPa); 帕(Pa) 压力单位的兆帕符号为MPa,不要书写为Mpa、mpa ; 千帕符号kPa 不要书写为KPa、Kpa或kpa; 帕的符号Pa不要书写为pa; 1MPa=1000kPa=1000000Pa 2、磅力/英寸2(lbf/in2, psi) 压力单位的磅力/英寸2符号为lbf/in2, psi,不要书写为Ibf/ln2 Psi ; 1psi=0.00689474482MPa 3、毫米汞柱(mmHg) 压力单位的毫米汞柱符号为mmHg,不要书写为mmhg; 1mmHg=0.00013332231MPa 4、英寸汞柱(inHg) 压力单位的英寸汞柱符号为inHg,不要书写为 inhg; 1inHg=0.00338638672MPa 5、毫米水柱(mmH2O)

PCB 板各种厚度规格汇总

PCB板材厚度规格: 0.5mm,0.7mm,0.8mm,1.0mm,1.2mm,1.5mm,1.6mm,2.0mm,2.4mm,3.2mm,6.4mm PCB板上铜箔的厚度规格: 18um, 25um, 35um, 70um和105um 板厚一般分为含铜和不含铜两种厚度 一.含铜厚度:

二.不含铜厚度 1 foot = 1 2 inch = 304.8 mm 1inch = 25.4 mm 1 mil=0.0254 mm 1 inch=1000 mil 1OZ=28.375g 1 OZ铜箔其真正厚度为1.38mil或35μm

一、芯板、半固化片规格: 1.生益芯板常见规格: 0.1mm(含铜厚) 0.2mm~5.12 0.3mm~9.06 0.4mm~12.99 0.5mm~16.93 0.6mm~20.87 0.7mm~24.8 0.8mm~28.74 0.9mm~36.61 1mm~44.49 1.2mm~5 2.36 1.5mm~56.3 1.6mm~60.24 2mm~75.98 2.4mm~91.73 2.半固化片: 1080~3.0mil 2116~4.2mil 7628~7.0mil 3.流胶厚: 1080~2.5mil 7628~6.5mil 0.14mm=2*1080 0.21mm=2*2116 0.24mm=7628+1080 0.36mm=2*7628 0.4mm=2*7628+1080 二、常用半固化片在不同铜厚、不同图形厚度变化:1.

2. 3. 4. 注:Gnd为65%以上的大铜箔,H为高树脂含量,C为低树脂含量。

相关主题