搜档网
当前位置:搜档网 › Q67040-S4535中文资料

Q67040-S4535中文资料

Q67040-S4535中文资料
Q67040-S4535中文资料

High Speed IGBT in NPT-technology

? 30% lower E off compared to previous generation

? Short circuit withstand time – 10 μs

? Designed for operation above 30 kHz

? NPT-Technology for 600V applications offers:

- parallel switching capability

- moderate E off increase with temperature - very tight parameter distribution

? High ruggedness, temperature stable behaviour

? Qualified according to JEDEC 1 for target applications

? Complete product spectrum and PSpice Models : https://www.sodocs.net/doc/9e4774381.html,/igbt/

Type

V CE

I C

E off

T j

Marking Package Ordering Code

SGB15N60HS 600V 15A 200μJ 150°C G15N60HS P-TO-263-3-2 Q67040-S4535

Maximum Ratings

Parameter Symbol Value Unit Collector-emitter voltage V C E 600 V DC collector current T C = 25°C T C = 100°C

I C

27 15

Pulsed collector current, t p limited by T jmax I C p u l s 60

Turn off safe operating area V CE ≤ 600V, T j ≤ 150°C

-

60

A

Gate-emitter voltage static

transient (t p <1μs, D <0.05) V G E

±20

±30

V

Short circuit withstand time 2) V GE = 15V, V CC ≤ 400V, T j ≤ 150°C t S C 10 μs

Power dissipation T C = 25°C

P t o t 138 W Operating junction and storage temperature

T j ,T s t g -55...+150 Time limited operating junction temperature for t < 150h T j (t l ) 175 Soldering temperature (reflow soldering, MSL1)

-

220

°C

1

J-STD-020 and JESD-022

2)

Allowed number of short circuits: <1000; time between short circuits: >1s.

P-TO-263-3-2 (D2-PAK)

(TO-263AB)

Thermal Resistance

Parameter Symbol Conditions Max. Value Unit Characteristic

IGBT thermal resistance, junction – case R t h J C

0.9

Thermal resistance, junction – ambient

R t h J A 62

K/W

SMD version, device on PCB 1) R t h J A

40

Electrical Characteristic, at T j = 25 °C, unless otherwise specified

Value Parameter Symbol Conditions min. Typ. max. Unit

Static Characteristic

Collector-emitter breakdown voltage V (B R )C E S V G E =0V, I C =500μA 600 - - Collector-emitter saturation voltage

V C E (s a t )

V G E = 15V, I C =15A T j =25°C T j =150°C

2.8

3.5 3.15

4.00 Gate-emitter threshold voltage V G E (t h ) I C =400μA,V C E =V G E 3 4 5

V Zero gate voltage collector current

I C E S

V C E =600V,V G E =0V T j =25°C T j =150°C

- -

- -

40 2000

μA

Gate-emitter leakage current I G E S V C E =0V,V G E =20V - - 100 nA Transconductance g f s V C E =20V, I C =15A

- 10

S

Dynamic Characteristic Input capacitance C i s s - 810 Output capacitance

C o s s - 83

Reverse transfer capacitance C r s s V C E =25V, V G E =0V, f =1MHz - 51 pF

Gate charge

Q G a t e

V C C =480V, I C =15A V G E =15V

- 80 nC

Internal emitter inductance

measured 5mm (0.197 in.) from case L E

- 7 nH Short circuit collector current 2)

I C (S C )

V G E =15V,t S C ≤10μs V C C ≤ 400V, T j ≤ 150°C

- 135 A

1)

Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm 2 (one layer, 70μm thick) copper area for

collector connection. PCB is vertical without blown air. 2)

Allowed number of short circuits: <1000; time between short circuits: >1s.

Switching Characteristic, Inductive Load, at T j =25 °C

Value

Parameter Symbol Conditions min. typ. max. Unit

IGBT Characteristic Turn-on delay time t d (o n ) - 13 Rise time

t r - 14 Turn-off delay time t d (o f f ) - 209 Fall time t f - 15 ns Turn-on energy E o n - 0.32 Turn-off energy E o f f - 0.21 Total switching energy E t s T j =25°C,

V C C =400V,I C =15A,V G E =0/15V,

R G =23?

L σ1)

=60nH, C σ1)

=40pF Energy losses include

“tail” and diode

reverse recovery. - 0.53

mJ

Switching Characteristic, Inductive Load, at T j =150 °C

Value

Parameter Symbol Conditions min. typ. max. Unit

IGBT Characteristic Turn-on delay time t d (o n ) - 11 Rise time

t r - 6 Turn-off delay time t d (o f f ) - 72 Fall time t f - 26 ns Turn-on energy E o n - 0.38 Turn-off energy E o f f - 0.20 Total switching energy E t s

T j =150°C

V C C =400V,I C =15A,V G E =0/15V,

R G = 3.6?

L σ1) =60nH, C σ1)

=40pF Energy losses include

“tail” and diode

reverse recovery. - 0.58 mJ Turn-on delay time t d (o n ) - 12 Rise time

t r - 15 Turn-off delay time t d (o f f ) - 235 Fall time t f - 17 ns Turn-on energy E o n - 0.48 Turn-off energy E o f f - 0.30 Total switching energy E t s

T j =150°C

V C C =400V,I C =15A,V G E =0/15V,

R G = 23?

L σ1)

=60nH, C σ1)

=40pF Energy losses include

“tail” and diode

reverse recovery. - 0.78 mJ

1)

Leakage inductance L σ and Stray capacity C σ due to test circuit in Figure E.

I C , C O L L E C T O R C U R R E N T

10Hz

100Hz 1kHz 10kHz 100kHz 0A 10A 20A 30A 40A 50A 60A

I C , C O L L E C T O R C U R R E N T

1V

10V 100V 1000V

0,1A

1A

10A

f , SWITCHING FREQUENCY

V CE , COLLECTOR -EMITTER VOLTAGE

Figure 1. Collector current as a function of

switching frequency

(T j ≤ 150°C, D = 0.5, V CE = 400V, V GE = 0/+15V, R G = 23?) Figure 2. Safe operating area

(D = 0, T C = 25°C, T j ≤150°C;V GE =15V)

P t o t , P O W E R D I S S I P A T I O N

25°C

50°C

75°C

100°C

125°C

0W

20W 40W 60W 80W 100W 120W

140W I C , C O L L E C T O R C U R R E N T

25°C

75°C 125°C

0A

10A

20A

T C , CASE TEMPERATURE

T C , CASE TEMPERATURE

Figure 3. Power dissipation as a function of

case temperature (T j ≤ 150°C)

Figure 4. Collector current as a function of

case temperature

(V GE ≤ 15V, T j ≤ 150°C)

I C , C O L L E C T O R C U R R E N T

0V

2V

4V

6V

0A

10A

20A

30A

40A

I C , C O L L E C T O R C U R R E N T

0V

2V

4V

6V

0A 10A

20A

30A

40A

V CE , COLLECTOR -EMITTER VOLTAGE

V CE , COLLECTOR -EMITTER VOLTAGE

Figure 5. Typical output characteristic

(T j = 25°C)

Figure 6. Typical output characteristic

(T j = 150°C)

I C , C O L L E C T O R C U R R E N T

0V

2V

4V

6V

8V

0A

20A

40A

V C E (s a t ), C O L L E C T O R -E M I T T S A T U R A T I O N V O L T A G E

-50°C

0°C

50°C

100°C

150°C 1,0V

1,5V 2,0V 2,5V 3,0V 3,5V 4,0V 4,5V 5,0V 5,5V

V GE , GATE-EMITTER VOLTAGE

T J , JUNCTION TEMPERATURE

Figure 7. Typical transfer characteristic

(V CE =10V)

Figure 8.Typical collector-emitter

saturation voltage as a function of junction temperature (V GE = 15V)

t , S W I T C H I N G T I M E S

0A

10A

20A

1ns

10ns

100ns

t , S W I T C H I N G T I M E S

0?10?20?30?40?

1 ns

10 ns

100 ns

I C , COLLECTOR CURRENT

R G , GATE RESISTOR

Figure 9. Typical switching times as a

function of collector current (inductive load, T J =150°C,

V CE =400V, V GE =0/15V, R G =23?, Dynamic test circuit in Figure E) Figure 10.Typical switching times as a

function of gate resistor (inductive load, T J =150°C,

V CE =400V, V GE =0/15V, I C =15A, Dynamic test circuit in Figure E)

t , S W I T C H I N G T I M E S

0°C

50°C

100°C

150°C

10ns

100ns

V G E (t h ), G A T E -E M I T T T R S H O L D V O L T A G E

-50°C

0°C 50°C 100°C 150°C

1,5V

2,0V 2,5V 3,0V 3,5V 4,0V 4,5V

5,0V

T J , JUNCTION TEMPERATURE

T J , JUNCTION TEMPERATURE

Figure 11. Typical switching times as a

function of junction temperature (inductive load, V CE =400V, V GE =0/15V, I C =15A, R G =23?, Dynamic test circuit in Figure E)

Figure 12. Gate-emitter threshold voltage as

a function of junction temperature (I C = 0.5mA)

E , S W I T C H I N G E N E R G Y L O S S E S

0A 10A 20A 30A

0,0mJ

1,0mJ

2,0mJ

E , S W I T C H I N G E N E R G Y L O S S E S

0?10?20?30?40?

0,0 mJ

0,5 mJ

1,0 mJ

I C , COLLECTOR CURRENT

R G , GATE RESISTOR

Figure 13. Typical switching energy losses

as a function of collector current (inductive load, T J =150°C,

V CE =400V, V GE =0/15V, R G =23?, Dynamic test circuit in Figure E) Figure 14. Typical switching energy losses

as a function of gate resistor (inductive load, T J =150°C,

V CE =400V, V GE =0/15V, I C =15A, Dynamic test circuit in Figure E)

E , S W I T C H I N G E N E R G Y L O S S E S

0°C

50°C 100°C 150°C

0.00mJ

0.25mJ

0.50mJ

0.75mJ

Z t h J C , T R A N S I E N T T H E R M A L R E S I S T A N C E

1μs

10μs 100μs 1ms 10ms 100ms 1s

10-4

K/W

10-3

K/W

10-2

K/W

10-1

K/W

100

K/W

T J , JUNCTION TEMPERATURE

t P , PULSE WIDTH

Figure 15. Typical switching energy losses

as a function of junction temperature

(inductive load, V CE =400V, V GE =0/15V, I C =20A, R G =23?, Dynamic test circuit in Figure E)

Figure 16. IGBT transient thermal resistance

(D = t p / T )

V G E , G A T E -E M I T T E R V O L T A G E

0nC

20nC

40nC

60nC

80nC

0V

5V

10V

15V

c , C A P A C I T A N C E

0V 10V 20V

10pF

100pF

1nF

Q GE , GATE CHARGE

V CE , COLLECTOR -EMITTER VOLTAGE

Figure 17. Typical gate charge

(I C =15 A)

Figure 18. Typical capacitance as a function

of collector-emitter voltage (V GE =0V, f = 1 MHz)

t S C , S H O R T C I R C U I T W I T H S T A N D T I M E

10V

11V

12V

13V

14V

0μs 5μs

10μs 15μs

I C (s c ), s h o r t c i r c u i t C O L L E C T O R C U R R E N T

10V 12V 14V 16V

18V

0A

50A

100A

150A

200A

250A

V GE , GATE -EMITETR VOLTAGE

V GE , GATE -EMITETR VOLTAGE

Figure 19. Short circuit withstand time as a

function of gate-emitter voltage (V CE =600V , start at T J =25°C )

Figure 20.Typical short circuit collector

current as a function of gate-emitter voltage

(V CE ≤ 400V, T j ≤ 150°C)

SGB15N60HS

^

dimensions symbol

[mm] [inch]

min max min max A 9.80 10.20 0.3858 0.4016 B 0.70 1.30 0.0276 0.0512 C 1.00 1.60 0.0394 0.0630 D 1.03 1.07 0.0406 0.0421 E 2.54 typ. 0.1 typ. F 0.65 0.85 0.0256 0.0335 G

5.08 typ.

0.2 typ.

H 4.30 4.50 0.1693 0.1772 K 1.17 1.37 0.0461 0.0539 L 9.05 9.45 0.3563 0.3720 M 2.30 2.50 0.0906 0.0984 N

15 typ.

0.5906 typ.

P 0.00 0.20 0.0000 0.0079 Q 4.20 5.20 0.1654 0.2047 R

8° max

8° max

S 2.40 3.00 0.0945 0.1181

T 0.40 0.60 0.0157 0.0236 U 10.80 0.4252 V 1.15 0.0453 W 6.23 0.2453 X 4.60 0.1811 Y 9.40 0.3701 TO-263AB (D 2Pak)

Z 16.15

0.6358

P-TO263-3-2

Leakage inductance L σ =60nH and Stray capacity C σ =40pF.

Published by

Infineon Technologies AG,

Bereich Kommunikation

St.-Martin-Strasse 53,

D-81541 München

? Infineon Technologies AG 2002

All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect

human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

相关主题