搜档网
当前位置:搜档网 › (完整版)二次函数与三角形面积最大值专题(4).doc

(完整版)二次函数与三角形面积最大值专题(4).doc

(完整版)二次函数与三角形面积最大值专题(4).doc
(完整版)二次函数与三角形面积最大值专题(4).doc

二次函数与三角形最大面积

1、在坐标系中求三角形的面积有 3 种方法:

( 1)割法:(和、差)的相互转化

三角形的面积一般都是通过分割成几个三角形然后计算几个三角形的面积和, 然后利用坐标来表示三角形

的面积,这样三角形的面积即为一个二次函数,下面求解二次函数的最值即可。 公式法:

1

铅垂高 * 水平宽

2

( 2)补法:用大图形的面积

– 其他图形的面积(大三角形的面积

– 小三角形的积)

1、直线 AB 经过 x 轴上的一点 A (2,0),且与抛物线 y=ax 2 相交于 B , C 两点,已知点 B 坐标为( 1, 1)

( 1)求直线和抛物线的解析式;

( 2)如果 D 为抛物线上的一点,使得△ AOD 与△ OBC 的面积相等,求点 D 坐标.

2、如图:如图,直线 y

1 x 与抛物线 y 1 x 2

6 交于 A 、 B 两点,

2

4

( 1)求 A 、 B 两点的坐标。( 2)点 Q 在 X 轴上方的抛物线上,当 Q 点的坐标为多少时,

△ ABQ 的面

积最大?最大面积有为多少?

Y

A

X

B

3、、在平面直角坐标系中,已知抛物线经过 A(-4,0) 、 B(0 , -4) 、 C(2,0) 三点,

( 1)求抛物线的解析式,

( 2)若点 M 为第三象限内抛物线上一动点,点 M 的横坐标为 m, △ AMB 的面积为 S,求 S 关于 m 的函

数关系式,并求出

S 的最大值。

( 3)若点 P 为抛物线上的动点,点

Q 是直线 y= - x 上的动点,判断有几个位置能使以点

P 、Q 、B 、O 为

顶点的四边形为平行四边形,直接写出相应的点

Q 的坐标

y

A O

x

C M

B

2

4、(广安)如图,已知抛物线y=x +bx+c 经过点(1,-5)和(-2,4)

( 2)设此抛物线与直线y=x 相交于点 A ,B(点 B 在点 A 的侧),平行于 y 轴的直线x=m( 0< m< 5 +1)

与抛物线交于点M ,与直线y=x 交于点 N ,交 x 轴于点 P,求线段 MN 的长(用含m 的代数式表示);( 3)在条件( 2)的情况下,连接OM 、 BM ,是否存在m 的值,使△ BOM 的面积 S 最大?若存在,请

求出 m 的值;若不存在,请说明理由

5、已知:抛物线y=ax2+bx+c 与x轴交于A、B两点,与y轴交于点C.其中点A在x轴的负半轴上,

点C 在 y 轴的负半轴上,线段 OA 、 OC 的长( OA < OC )是方程 x2-5x+4=0 的两个根,且抛物线的对称轴是

直线 x=1.

( 1)求 A 、 B 、C 三点的坐标;

(2)求此抛物线的解析式;

(3)若点 D 是线段 AB 上的一个动点(与点 A 、B 不重合),过点 D 作 DE ∥ BC 交 AC 于点 E,连接 CD ,

设 BD 的长为 m,△ CDE 的面积为S,求 S 与 m 的函数关系式,并写出自变量m 的取值范围.S 是否存在最大值?若存在,求出最大值并求此时 D 点坐标;若不存在,请说明理由.

6.( 2011?济宁)如图,第一象限内半径为 2 的⊙ C 与 y 轴相切于点 A ,作直径AD ,过点 D 作⊙ C 的切线 l 交 x 轴于点 B, P 为直线 l 上一动点,已知直线PA 的解析式为:y=kx+3 .

( 1)设点 P 的纵坐标为p ,写出 p 随 k 变化的函数关系式.

( 2)设⊙ C 与 PA 交于点 M ,与 AB 交于点 N ,则不论动点P 处于直线l 上(除点 B 以外)的什么位置时,都有△ AMN ∽△ ABP .请你对于点P 处于图中位置时的两三角形相似给予证明;

( 3)是否存在使△AMN 的面积等于32

的k值?若存在,请求出符合的k 值;若不存在,请说明理由.25

练习巩固:

3.( 2011?南充)抛物线y=ax 2 +bx+c 与 x 轴的交点为 A ( m-4 , 0)和 B( m, 0),与直线y= -x+p 相交于

点A 和点 C (2m-4 , m-

6 ).( 1)求抛物线的解析

式;

( 2)若点 P 在抛物线上,且以点P 和 A ,C 以及另一点Q 为顶点的平行四边形面积为12,求点 P,Q 的

坐标;

( 3)在( 2)条件下,若点M 是 x 轴下方抛物线上的动点,当△PQM 的面积最大时,请求出△PQM 的

最大面积及点M 的坐标.

2.如图 ,在平面直角坐标系中,直线 AB 与 X 轴交于点 A(-2,0) ,与反比例函数在第一象限内的

图像交于点 B(2,n),连接 BO, 若 S△AOB=2 3, (1) 求改反比例函数和直线AB的解析式。

( 2)若直线 AB与 Y 轴的交点为 C,P 为反比例函数在第一象限内的图像上一点(点 P 在点 B 的右侧),连接 BP、 OP,若三角形 POB 的面积是 S△COB的面积的 2 倍,求点 P 的坐标。

B

C P A O

二次函数和三角形面积的综合

二次函数与三角形面积的综合 寻找类 1、重点:中考压轴题的重点在于寻找分析问题,解决问题的思路和方法。能应对这部分题 的关键需要熟练几部分知识点:(1)二次函数与一次函数,反比例函数的解析式(2)勾股定理(3)四边形(4)相似三角形和三角形全等(5)锐角三角函数(6)轴对称和中心对称(7)求交点的方法(8)知识的综合运用 2、难点:寻找联系是这部分内容的一个关键所在,也是一个难点。尤其是遇到二次函数与 三角形面积的综合题的解题思路。运用面积求坐标等等的合理运用,以及运用的重要因素在哪里? 3、易错点:面积中涉及求面积的方法,坐标漏找或错找,坐标与线段长度之间的联系,坐 标在不在二次函数的图像上。这些都是在考试中容易失分的地方。 4、切入点:例如:根据已有条件求坐标,首先要想到平面直角坐标系与锐角三角函数的联 系,尤其是正切的运用。这样直观的可以求出坐标(前提必须建立直角三角形),如果不是直角三角形可以想法构建直角三角形,这是求坐标的最好方法,此方法不通的情况下可以运用勾股定理进行求解,很少运用相似求。掌握了求解方法再做题的时候就知道如何下手了。而次部分求面积的时候要先找到点的坐标的具体位置以及如何通过面积求坐标。 5.求面积常用的方法 a.直接法b。简单的组合c。面积不变同底等高或等底等高的转换 d.相似 e.三角函数f。找面积的最大最小值利用二次函数的性质 (1)直接法若题已经给出或能由已知条件推出个边的长度并且通过坐标能找到对应的

的高,那么三角形的面积能直接用公式算出来。 此题中的三角形的面积就能直接求出。 (2)通过简单的重新组合就能求出面积。 第6题 (2009年贵州安顺市)27、(本题满分12分) 如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)。

最新2021学年九年级中考数学复习--二次函数中三角形面积问题教案

二次函数中三角形面积问题 教案 教学目标: 1. 掌握在平面直角坐标系中求三角形面积的两种基本方法:直接法与割补法,会用割补法把一般位置的三角形转化为特殊位置的三角形; 2. 会把三角形面积问题转化为线段问题,把线段问题转化为点的坐标问题; 3. 提高运算能力、分析问题与解决问题的能力,养成良好的思维习惯,规范答题; 4. 体会数形结合、转化化归、函数建模等数学思想在解题中的应用。 教学重点:求三角形面积的两种基本方法:直接法与割补法及其应用。 教学难点:理解如何进行割补,并会进行有效的割(或补),把一般位置的三角形转化为特 殊位置的三角形,会表示所割(或补)三角形的底或高。 教学过程: 一、课前预习: 1、知识与方法回顾: 在平面直角坐标系中,求下列特殊位置三角形的面积: 高底三角形面积公式:??= ?2 1 ABC S 应用条件:有一条边在坐标轴上或者平行坐标轴(特殊位置三角形)。 解题方法:直接法,即以在坐标轴上或平行坐标轴的边为底边,过另一个顶点作高,然后用 三角形面积公式直接进行求解。 2、基础训练: 如图1,在平面直角坐标系中,已知抛物线与x 轴相交于点)0,1(),0,3(B A -,与y 轴相交于点)3,0(C ,过点C 作x CD //轴交抛物线于点D 。 (1)求该抛物线的解析式; A B C D y x 图1 O C B A y O x y O x B A C y O x B A C y O x B A C

(2)连接AC 、BC ,求ABC ?的面积; 注意事项:利用点的坐标求线段(底、高)长度时,要用大的减去小的,即在x 轴上或平行x 轴的线段长度等于右边点的横坐标减去左边点的横坐标,在y 轴上或平行y 轴的线段长度等于上面点的纵坐标减去下面点的纵坐标。 (3)如图2,点E (-4,-5)是抛物线上一点,求CDE ?的面积。 解题基本思路:点(坐标)——线段(底、高)——面积 二、专题复习,能力提升: 1、知识归纳提升: 在平面直角坐标系中,求一般位置三角形的面积: =?ACP S ; =?ACP S ; =?ACP S ;=?ACP S ; 教师引导学生完成,展示学生成果。 归纳小结: ①应用条件:三角形的边都不在坐标轴上,也不平行坐标轴。 ②方法:割补法,即用割(或补)的方法把一般位置的三角形转化为特殊位置的三角形(预 习中有边在坐标轴上或平行坐标轴的三角形),然后用直接法求两个(或几个)三角形面积之和(或差)。 ③ 关键:怎么割,如何补,才能把一般位置的三角形转化为特殊位置的三角形。 2、提升训练(应用): (4)如图3,若点M 是抛物线的顶点,求ACM ?的面积。 A B C D y x 图2 F E O D A C P y x O A C P y x O D A C P y x O D A C P O y x

二次函数中常见图形的的面积问题

二次函数中常见图形的的面积问题

二次函数中常见图形的的面积问题说出如何表示各图中阴影部分的面积? 如图1,过△ABC的三个顶点分别作出与水平垂直的三条线,外侧两条直线之间的距离叫△ABC的“水平宽”,中间的这条直线在△ABC内部线段的长度叫△ABC 的“铅垂高h”。三角形面积的新方法:,即三角形面积等于水平宽与铅垂高乘积的一半。 x y O M E N A 图 O x y D C 图 x y O D C E B 图六 P x y O A B D 图 E x y O A B 图 x y O A B 图

抛物线322+--=x x y 与x 轴交与A 、B (点A 在B 右侧),与y 轴交与点C , D 为抛物线的顶点,连接BD ,CD , (1)求四边形BOCD 的面积. (2)求△BCD 的面积.(提示:本题中的三角形没有横向或纵向的边,可以通过添加辅助线进行转化,把你想到的思路在图中画出来,并选择其中的一种写出详细的解答过程) 如图1,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0), 交y 轴于点B 。 (1)求抛物线和直线AB 的解析式;(2)求△CAB 的铅垂高CD 及S △CAB ; (3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △ PAB =S △CAB ,若存在,求出P 点的坐标; 若不存在,请说明理由。

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,4),C(2,4)三点,且与x 轴的另一个交点为E 。 (1)求该抛物线的解析式; (2)求该抛物线的顶点D 的坐标和对称轴; (3)求四边形ABDE 的面积 已知二次函数322--=x x y 与x 轴交于A 、B 两点(A 在B 的左边),与y 轴交于点C ,顶点为在双曲线3 y x =上是否存在点N ,使得ABC NAB S S ??=,若存在直接写出N 的坐标;若不存在,请说明理由. A x y O B C 变式二图

二次函数动点面积最值问题

二次函数最大面积 例1如图所示,等边△ ABC中,BC=10cm,点R, P?分别从B,A同时岀发,以1cm/s的速度沿线段BA,AC 移动,当移动时间 练习 1如图,在矩形ABCD中,AB=6cm , BC=12cm,点P从点A岀发沿AB边向点B以1cm/s的速度移动,同时点Q从点B岀发沿BC边向C以2cm/s的速度移动,如果P,Q同时岀发,分别到达B、C两点就停止移动。 _ ___________________________________________ 2 (1 )设运动开始后第t秒,五边形APQCD的面积是Scm ,写岀S与t函数关系式,并指岀 t的取值范围。 (2) t为何值时,S最小?并求岀这个最小值。 A开始沿 Q B B边向点B以 A 2 如图,在△ ABC 中,/ B=9 0°, AB=22CM,BC=20CM ,点P 从点 2cm/S的速度移动,点Q从点B开始沿着BC边向点C以1cm/S的速度移动,P,Q分别从A,B 同时岀发。 2 求四边形APQC的面积y ( cm )与PQ移动时间x (s)的函数关系式, 以及自变 量x的取值范围。 C 3如图正方形ABCD的边长为4cm,点P是BC边上不与B,C重合的任意一点点P作PQ丄AP交DC于点Q,设BP的长为x cm,CQ的长为y cm。 (1)求点P在BC上的运动的过程中y的最大值。 1 (2 )当y= cm时,求x的值。 4 4如图所示,边长为 在线段 记CD (1) 过A D P B B 1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,动点点E, 连接O BC上移动(不与B,C重合),连接OD,过点D作DE丄OD, 的长为 t o 1 当t=丄时,求线段DE 3 如果梯形CDEB的面积为所在直线的函数表达式 S,那么S是否 以及此时 (2) 存在最大值?若存在,请求出最大值,t的值; 若不存在,请说明理由。 2 2 (3)当OD DE的算术平方根取最小值时, (4)求点E的坐标。 二次函数最大面积交AB D B E 能力提高 例题如图所示,在梯形ABCD中,AD// BC,AB=AD=DC=2CM,BC=4C在等腰△ PQR中,/ QPR=120 ,底边QR=6CM点B,C,Q,R在同一直线 1cm/s的速度沿直线I向左匀速移动, (1) (2) t秒时梯形 I上,且C,Q两点重合,如果等腰△ PQR以 2 ABCD与等腰△ PQF重合部分的面积记为Scm 当t=4时,求S的值。 当4< t < 10时,求S与t的函数关系式, A 并求岀S的最大值。 D 1 / 2

二次函数中三角形面积问题

二次函数中三角形面积问题 【典型例题】:如图,二次函数y=-x2+2x+3与y轴,x轴交于点A ,B,点C是直线AB上方抛物线上的一个动点(不与点A ,B重合),求△ABC面积的最大值.【方法一】竖割法:过点C作CD⊥x轴,垂足为D,交AB于点E, S△ABC=S△ACE +S△BCE =1/2CE·(xc--xA)+1/2CE·(xB-xC)=1/2OB·CE 解:令x=0, y=3 点C的坐标为(0,3); 令y=0, 则-x2+2x+3=0 ,解得:x1=-1 x2=3 点B的坐标为(3,0), 设AB所在直线的解析式为y=kx+b. 求出直线AB所在直线的解析式为y=-x+3. 设点E的坐标为(m,-m+3) ,则点C的坐标为(m, -m2+2m+3) CE=y C-y E= -m2+2m+3-(-m+3)= -m2+3m S△ABC=S△ACE +S△BCE =1/2CE·(xc--xA)+1/2CE·(xB-xC) =1/2OB·CE =1/2×3( -m2+3m) =--3m2/2+9m/2 S△ABC最大值=4ac-b2/4a=27/8 【方法二】割补法:连接OC,S△ABC=S△OAC +S△OBC-S△OAB 解:S△ABC=S△OAC+S△OBC-S△OAB =1/2×OA·X C+1/2×OB·Y C-1/2×OA×OB =1/2×3×m+1/2×3×(-m2+2m+3)-1/2×3×3 =-3m2/2+9m/2 S△ABC最大值=4ac-b2/4a=27/8 【方法三】平移法:平移直线AB,当直线AB与抛物线只有一个交点时,此时三角形ABC的面积最大。 解:设和y=-x+3平行的动直线的解析式为y=-x+b,用y=-x+b和y=-x2+2x+3联立方程组得:-x+b=-x2+2x+3,整理得:x2-3x+b-3=0 当Δ=0时,b=21/4,此时的点C的坐标为(3/2,9/2)。 SΔABC=(21/4-3)×3×1/2=27/8 【举一反三】 1.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E 点的坐标.

二次函数与三角形

二次函数与三角形 抛物线与三角形的结合是抛物线与平面几何结合生成综合性问题的一种重要形式,这类问题以抛物线为背景,探讨是否存在一些点,使其能构成某些特殊图形,有以下常见的形式:(1)抛物线上的点能否构成特殊的线段; (2)抛物线上的点能否构成特殊的角; (3)抛物线上的点能否构成特殊三角形; (4)抛物线上的点能否构成全等三角形、相似三角形; 这类问题把抛物线性质和平面图形性质有机结合,需综合运用待定系数法、数形结合、分类讨论等思想方法。 1、如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D. (1)求抛物线的解析式; (2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标; (3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t 为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值.

2、如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A在x轴的正半轴上,顶点C在y的正半轴上,点B的坐标是(5,3),抛物线y=x2+bx+c经过A、C两点,与x轴的另一个交点是点D,连接 BD. (1)求抛物线的解析式; (2)点M是抛物线对称轴上的一点,以M、B、D为顶点的三角形的面积是6,求点M的坐标; (3)点P从点D出发,以每秒1个单位长度的速度沿D→B匀速运动,同时点Q从点B出发,以每秒1个单位长度的速度沿B→A→D匀速运动,当点P到达点B时,P、Q同时停止运动,设运动的时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是等腰三角形?请直接写出所有符合条件的值. 3、已知函数2 3 2 2 y kx x =-+(k是常数)

二次函数的应用——面积最大问题

《二次函数的应用——何时围得面积最大?》 说课稿 【教材分析】 二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题,而最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对于面积问题学生易于理解和接受,也为求解最大利润等问题奠定基础。目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关的应用问题。 【课时安排】 教材中二次函数的应用只设计了3个例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积最大、利润最大、运动中的二次函数、综合应用四课时,本节是第一课时。 【学情及学法分析】 对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课

标中知识与技能呈螺旋式上升的规律。 【教学目标】 1.知识与技能:通过本节学习,巩固二次函数y=2ax bx c ++(a ≠0)的 图象与性质,理解顶点与最值的关系,会求解最值问题。 2. 过程与方法:通过观察图象,理解顶点的特殊性,会把实际问题中 的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的 能力,并体会一般与特殊的关系,了解数形结合思想、函数思想。 3.情感、态度与价值观:通过学生之间的讨论、交流和探索,建立合 作意识,提高探索能力,激发学习的兴趣和欲望,体会数学在生活中广泛 的应用价值。 教学重点: 利用二次函数y=2ax bx c ++(a ≠0)的图象与性质,求面积最值问题 教学难点: 正确构建数学模型 三、教学方法与手段的选择 由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本 节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探 究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性, 突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。 为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。 四、教学流程 (一)复习引入: 复习引入阶段我设计了三个问题:

6.4 二次函数的应用(2)【最大面积是多少】

§6.4 二次函数的应用(2)【最大面积是多少】---( 教案) 备课时间: 主备人: 教学目标: 掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题. 教学重点: 本节的重点是应用二次函数解决图形有关的最值问题,这是本书惟一的一种类型,也是二次函数综合题目中常见的一种类型.在二次函数的应用中占有重要的地位,是经常考查的题型,根据图形中的线段之间的关系,与二次函数结合,可解决此类问题. 教学难点: 由图中找到二次函数表达式是本节的难点,它常用的有三角形相似,对应线段成比例,面积公式等,应用这些等式往往可以找到二次函数的表达式. 教学方法: 教师指导学生自学法。 教学过程: 一、例题: 例1、如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上. (1)设矩形的一边AB=xcm,那么AD边的长度如何表示? (2)设矩形的面积为ym2,当x取何值时,y的最大值是多少? 例2、某建筑物窗户如图所示,它的上半部是半圆,下半部是矩形.制造窗框的材料总长(图中所有黑线的长度和)为15m.当x等于多少时,窗户透过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少? 二、练习 1、如图⑴,在Rt△ABC中,AC=3cm,BC=4cm,四边形CFDE为矩形,其中CF、CE在两直角 边上,设矩形的一边CF=xcm.当x取何值时,矩形ECFD的面积最大?最大是多少?

2、如图⑵,在Rt△ABC中,作一个长方形DEGF,其中FG边在斜边上,AC=3cm,BC=4cm,那么长方形OEGF的面积最大是多少? 3、如图⑶,已知△ABC,矩形GDEF的DE边在BC边上.G、F分别在AB、AC边上,BC=5cm, S△ABC为30cm2,AH为△ABC在BC边上的高,求△ABC的内接长方形的最大面积. 三、小结:本节课我们学习了什么? 四、作业:

二次函数面积最大问题

二次函数面积最大问题 : 1、如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x 轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)求三角形CBM的最大值 2、如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点. ①若点P在抛物线上,且S △POC =4S △BOC .求点P的坐标; ②设点Q是抛物线上一点,位于线段AC的下方,作QD⊥x轴交抛物线于点D,交AC于点P,求线段QP长度的最大值.(3)求S△ACQ的最大值,

3、如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标. 4、如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=.(1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;

5、如图,在直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(1,﹣),已知抛物线y=ax2+bx+c(a≠0)经过三点A、B、O(O为原点).(1)求抛物线的解析式;(2)在该抛物线的对称轴上,是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)如果点P是该抛物线上x轴上方的一个动点,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号) 6、如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点(E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.

中考数学复习二次函数与三角形的面积问题

二次函数与三角形的面积问题 1.运用2 铅垂高 水平宽?= s ; 2.运用y ; 3.将不规则的图形分割成规则图形,从而便于求出图形的总面积。 类型一:三角形的某一条边在坐标轴上或者与坐标轴平行 例1.已知:抛物线的顶点为D (1,-4),并经过点E (4,5),求: (1)抛物线解析式; (2)抛物线与x 轴的交点A 、B ,与y 轴交点C ; (3)求下列图形的面积△ABD 、△ABC 、△ABE 、△OCD 、△OCE 。 解题思路:求出函数解析式________________;写出下列点的坐标:A______;B_______;C_______;求出下列线段的长:AO________;BO________;AB________;OC_________。求出下列图形的面积△ABD 、△ABC 、△ABE 、△OCD 、△OCE 。 一般地,这类题目的做题步骤:1.求出二次函数的解析式;2.求出相关点的坐标;3.求出相关线段的长;4.选择合适 方法求出图形的面积。 训练1.如图所示,已知抛物线()02 ≠++=a c bx ax y 与x 轴相交于两点A ()0,1x , B ()0,2x ()21x x <, 与y 轴负半轴相交于点C ,若抛物线顶点P 的横坐标是1,A 、 B 两点间的距离为4,且△ABC 的面积为6。 (1)求点A 和B 的坐标; (2)求此抛物线的解析式; (3)求四边形ACPB 的面积。 类型二:三角形三边均不与坐标轴轴平行,做三角形的铅垂高。(歪歪三角形拦腰来一刀) 关于2 铅垂高 水平宽?= ?S 的知识点:如图1,过△ABC 的三个顶点分别作出与水平线垂直的 三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ah S ABC 2 1 =?,即三角形面积等于水平宽与铅垂高乘积的一半. 想一想:在直角坐标系中,水平宽如何求?铅垂高如何求? 例2.如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ?;(3)是否存在一点P ,使S △P AB = 8 9S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由. 解题思路:求出直线AB 的解析式是为了求出D .点的纵坐标.....D y ; x A B O C y P B C 铅垂高 水平宽 h a 图1 图-2 x C O y A B D 1 1

二次函数的最大面积问题

初四数学二次函数中的最大面积专题练习题 1.如图,在直角坐标系中有一直角三角形AOB ,O 为坐标原点,OA=1,tan ∠BAO=3,将此三角形绕原点O 逆时针旋转90°,得到△DOC .抛物线y=ax 2+bx+c 经过点A 、B 、 C . (1)求抛物线的解析式. (2)若点P 是第二象限内抛物线上的动点,其横坐标为t . ①设抛物线对称轴l 与x 轴交于一点E ,连接PE ,交CD 于F ,求出当△CEF 与△COD 相似时点P 的坐标. ②是否存在一点P ,使△PCD 的面积最大?若存在,求出△PCD 面积的最大值;若不存在,请说明理由. 2.如图,已知抛物线c x ax y +- =2 32与x 轴相交于A ,B 两点,并与直线221-=x y 交于B ,C 两点,其中点C 是直线221-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由. 3.某基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长54米的不锈钢栅栏围成,与墙平行的一边留一个宽为2米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:

(1)设AB=x 米(x >0),试用含x 的代数式表示BC 的长; (2)请你判断谁的说法正确,为什么? 4.如图,已知抛物线c bx ax y ++=2 过点A (6,0),B (-2,0),C (0,-3). (1)求此抛物线的解析式; (2)若点H 是该抛物线第四象限的任意一点,求四边形OCHA 的最大面积; (3)若点Q 在y 轴上,点G 为该抛物线的顶点,且∠QGA=45o,求点Q 的坐标. 5.如图,抛物线y=-x 2-2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求A 、B 、C 的坐标; (2)设点H 是第二象限内抛物线上的一点,且△HAB 的面积是6,求点H 的坐标; (3)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积. 6.如图,△ABC 中,∠C=90°,BC=7cm ,AC=5,点P 从B 点出发,沿BC 方向以2m/s 的速度移动,点Q 从C 出发,沿CA 方向以1m/s 的速度移动.

二次函数与三角形最大面积3种求法

))))))))) 二次函数与三角形最大面积的3种求法 一.解答题(共7小题) 21.(2012?广西)已知抛物线y=ax+2x+c的图象与x轴交于点A(3,0)和点C,与y轴交于点B(0,3). (1)求抛物线的解析式; (2)在抛物线的对称轴上找一点D,使得点D到点B、C的距离之和最小,并求出点D的坐标;(3)在第一象限的抛物线上,是否存在一点P,使得△ABP的面积最大?若存在,求出点P的 坐标;若不存在,请说明理由. 茂名)如图,抛物线与x轴交于点A和点B,与y2.(2013?轴交于点C,已知点B的坐标为(3,0). (1)求a的值和抛物线的顶点坐标; (2)分别连接AC、BC.在x轴下方的抛物线上求一点M,使△AMC与△ABC的面积相等;(3)设N是抛物线对称轴上的一个动点,d=|AN﹣CN|.探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理

由. 3.(2011?茂名)如图,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0),C (5,0),抛物线对称轴l与x轴相交于点M. (1)求抛物线的解析式和对称轴; (2)点P在抛物线上,且以A、O、M、P为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出点P的坐标; (3)连接AC.探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请你说明理由.). ))))))))) ,)5,0,0),C((黔西南州)如图,在平面直角坐标系xOy中,已知抛物线经过点A0,4),B (1.4(2012?.x轴相交于点M抛物线的对称轴l与)求抛物线对应的函数解析式和对称轴;(1为顶点的四边形的四条边的长度为四个连续的PM、)上的一点,若以A、O、(2)设点P为抛物线(x>5 的坐标;正整数,请你直接写出点P的面积最大?若存在,请你求NAC,使△,探索:在直线AC下方的抛物线上是否存在一点N(3)连接AC N的坐标;若不存在,请说明

二次函数面积最大值

二次函数面积最大值 教学目标: 1.通过本节课学习,巩固二次函数y=2ax bx c ++(a ≠0)的图象与性质,理解顶点 与最值的关系,会求解最值问题。 2.通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,了解数形结合思想、函数思想。 教学重点: 利用二次函数y=2ax bx c ++(a ≠0)的图象与性质,求面积最值问题 教学难点: 1、正确构建数学模型 2、对函数图象顶点与最值关系的理解与应用 教学过程: 一、复习旧知: 1.二次函数y=ax 2+bx+c 的图象是一条 ,它的对称轴是 ,顶点坐标是 . 当 a>0时,抛物线开口向 ,有最 点,函数有最 值,是_____;当 a<0时,抛物线开口向 ,有最 点,函数有最 值,是 . 2. 二次函数y=2x 2-8x+9的对称轴是 ,顶点坐标是 .当x= 时,函数有最 值,是 . 二、创设情境: 小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃 ,他买回了32米长的不锈钢管准备作为花圃的围栏(如图所示),花圃的宽AD 究竟应为多少米才能使花圃的面积最大 (设计意图:寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,加深对知识的理解,做到数与形的完美结合,既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。) 三、讲解新知: 有一块三角形余料如图所示,∠A=90°,AM=30cm ,AN=40cm ,要利用这块余料截出一个矩形,怎样截取矩形的面积最大

二次函数和三角形最大面积的3种求法

WORD格式整理版 二次函数与三角形最大面积的3种求法 一.解答题(共7小题) 1.(2012?广西)已知抛物线y=ax2+2x+c的图象与x轴交于点A(3,0)和点C,与y轴交于点B(0,3).(1)求抛物线的解析式; (2)在抛物线的对称轴上找一点D,使得点D到点B、C的距离之和最小,并求出点D的坐标; (3)在第一象限的抛物线上,是否存在一点P,使得△ABP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由. 2.(2013?茂名)如图,抛物线与x轴交于点A和点B,与y轴交于点C,已知点B的坐标 为(3,0). (1)求a的值和抛物线的顶点坐标; (2)分别连接AC、BC.在x轴下方的抛物线上求一点M,使△AMC与△ABC的面积相等; (3)设N是抛物线对称轴上的一个动点,d=|AN﹣CN|.探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理由. 3.(2011?茂名)如图,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线对称轴l与x轴相交于点M. (1)求抛物线的解析式和对称轴; (2)点P在抛物线上,且以A、O、M、P为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出点P的坐标; (3)连接AC.探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请你说明理由.

4.(2012?黔西南州)如图,在平面直角坐标系xOy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线的对称轴l与x轴相交于点M. (1)求抛物线对应的函数解析式和对称轴; (2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形的四条边的长度为四个连续的正整数,请你直接写出点P的坐标; (3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请说明理由. 5.(2013?新疆)如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3). (1)求抛物线的解析式; (2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由; (3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标. 6.(2009?江津区)如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.

二次函数及三角形周长,面积最值问题

二次函数与三角形周长,面积最值问题 知识点:1、二次函数线段,周长问题 2、二次函数线段和最小值线段差最大值问题 3、二次函数面积最大值问题 【新授课】 考点1:线段、周长问题 例1.(2018·)在平面直角坐标系中,已知抛物线的顶点坐标为(2,0),且经过点(4,1), 如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1. (1)求抛物线的解析式; (2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由. 拓展:在l上是否存在一点P,使PB-PA取得最大值?若存在,求出点P的坐标。

练习 1、如图,已知二次函数24 =-+的图象与坐标轴交于点A(-1,0)和点B(0,-5). y ax x c (1)求该二次函数的解析式;

(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标. 2、如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC ∥x轴,点A在x轴上,点C在y轴上,且AC=BC. (1)求抛物线的解析式. (2)在抛物线的对称轴上是否存在点M,使|MA-MB|最大?若存在,求出点M的坐标;若不存在,请说明理由.

例2. (2018?莱芜)如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C (0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E. (1)求抛物线的函数表达式; (2)如图1,求线段DE长度的最大值; 练习 1x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,1、如图,抛物线y= 2

二次函数应用(最大面积问题)

一、教学过程 AB 和AD 分别在两直角边上,1、如图。在一个直角三角形的内部画一个矩形ABCD,其中 AN=40m, AM=30m (1)设矩形的一边AB= xm,那么 AD 边的长度如何表示? (2)设矩形的面积为ym2,当x 取何值时,y 的最大值是多少? (二)变式探究 【探究一】在上一个问题中,如果把矩形改成如图所示的位置,其顶点 A 和顶点 D 分别在两直角边上, BC 在斜边上,其他条件不变,那么矩形的最大面积是什么? 【探究二】如图,已知△ABC是一等腰三角形铁板余料,AB=AC=20cm, BC=24cm,若在 △ABC 上,截出一零件 DEFG,使得 EF在 BC上,点 D、G 分别在边 AB、AC上,问矩形 DEFG 的最大面积是多少?

(三)课下作业 1、如图,在一面靠墙的空地上用长为24 米的篱笆,围成中间隔有两道篱笆的长方形花圃, 设花圃的宽AB 为 x 米,面积S 平方米 (1)求 S 与 x 的函数关系式及自变量的取值范围; (2)当 x 取何值时所围成的花圃面积最大,最大值是多少? (3)若墙的最大利用长度为8 米,求此时围成花圃的最大面积和最小面积分别是多少? 2、如图, AD 是△ ABC的高, BC=60cm,AD=40cm,点 P,Q 是 BC边上的点,点 S 在 AB 边上,点 R 在 AC 边上,四边形 SPQR是矩形,求矩形 SPQR面积最大值 BC、 CD 上的两个动点,当M 点在BC 上运动时,3、正方形ABCD边长为 4, M 、N 分别是 保持 AM和MN垂直 (1)证明: RT△ ABM∽ RT△ MCN (2)设 BM=x,梯形 ABCN 的面积为y,求y与x之间的函数关系式:当 M 点运动到什么位 置时, (3)四边形ABCN 面积最大,并求出最大面积

二次函数与三角形的面积问题

二次函数与三角形的面积问题 【教学目标】 1.能够根据二次函数中不同图形的特点选择合适的方法解答图形的面积。 2.通过观察、分析、概括、总结等方法了解二次函数面积问题的基本类型,并掌握二次函数中面积问 题的相关计算,从而体会数形结合思想和转化思想在二次函数中的应用。 3.掌握利用二次函数的解析式求出相关点的坐标,从而得出相关线段的长度,利用割补方法求图形的面积。【教学重点和难点】 1.运用 2铅垂高 水平宽? = s; 2.运用y; 3.将不规则的图形分割成规则图形,从而便于求出图形的总面积。 【教学过程】 类型一:三角形的某一条边在坐标轴上或者与坐标轴平行 例1.已知:抛物线的顶点为D(1,-4),并经过点E(4,5),求: (1)抛物线解析式; (2)抛物线与x轴的交点A、B,与y轴交点C; (3)求下列图形的面积△ABD、△ABC、△ABE、△OCD、△OCE。 解题思路:求出函数解析式________________;写出下列点的坐标:A______;B_______;C_______;求出下列线段的长:AO________;BO________;AB________;OC_________。求出下列图形的面积△ABD、△ABC、△ABE、△OCD、△OCE。

一般地,这类题目的做题步骤:1.求出二次函数的解析式;2.求出相关点的坐标;3.求出相关线段的长;4.选择合适 方法求出图形的面积。 变式训练1.如图所示,已知抛物线()02 ≠++=a c bx ax y 与x 轴相交于两点A ()0,1x , B ()0,2x ()21x x <,与y 轴负半轴相交于点 C ,若抛物线顶点P 的横坐标是1,A 、 B 两点间的距离为4,且△ABC 的面积为6。 (1)求点A 和B 的坐标; (2)求此抛物线的解析式; (3)求四边形ACPB 的面积。 类型二:三角形三边均不与坐标轴轴平行,做三角形的铅垂高。(歪歪三角形拦腰来一刀) 关于2 铅垂高 水平宽?= ?S 的知识点:如图1,过△ABC 的三个顶点分别作出与水平线垂直的 三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ah S ABC 2 1 =?,即三角形面积等于水平宽与铅垂高乘积的一半. 想一想:在直角坐标系中,水平宽如何求?铅垂高如何求? 例2.如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ?;(3)是否存在一点P ,使S △P AB =8 9 S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由. 解题思路:求出直线AB 的解析式是为了求出D .点的纵坐标.....D y ; 铅垂高,注意线段的长度非负性;分析P 点在直线AB 的上方还是下方? x A B O C y P B C 铅垂高 水平宽 h a 图1 图-2 x C O y A B D 1 1

二次函数中三角形面积最大值综合题

二次函数中三角形面积 最大值综合题 Revised by Petrel at 2021

2017中考数学全国试题汇编------二次函数中三角形面积最大值综合题 28.(2017甘肃白银)如图,已知二次函数24y ax bx =++的图象与x 轴交于点 ()2,0B -,点()8,0C ,与y 轴交于点A . (1)求二次函数24y ax bx =++的表达式; (2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作 //NM AC ,交AB 于点M ,当AMN ?面积最大时,求N 点的坐标; (3)连接OM ,在(2)的结论下,求OM 与A C 的数量关系. 解:(1)将点B ,点C 的坐标分别代入24y ax bx =++, 得:4240 64840 a b a b -+=?? ++=?,1分 解得:14a =-,32 b =. ∴该二次函数的表达式为21 344 2 y x x =-++.3分 (2)设点N 的坐标为(n ,0)(-2<n <8), 则2BN n =+,8CN n =-. ∵B (-2,0),C (8,0), ∴BC =10. 令0x =,解得:4y =, ∴点A (0,4),OA =4, ∵MN ∥AC , ∴ 810 AM NC n AB BC -== .4分 ∵OA =4,BC =10, ∴11 4102022 ABC S BC OA =?=??=.5分

∴2811 (8)(2)(3)510 55 AMN ABN n S S n n n -= =-+=--+.6分 ∴当n =3时,即N (3,0)时,△AMN 的面积最大.7分 (3)当N (3,0)时,N 为BC 边中点. ∴M 为AB 边中点,∴1 2 OM AB.=8分 ∵2241625AB OB OA =+=+=, 22641645AC OC OA =+=+=, ∴12AB AC,=9分 ∴1 4 OM AC =.10分 24(2017海南).抛物线23y ax bx =++经过点()1,0A 和点()5,0B 。 (1)求该抛物线所对应的函数解析式; (2)该抛物线与直线3 35 y x = +相交于C D 、两点,点P 是抛物线上的动点且位于x 轴下方。直线//PM y 轴,分别与x 轴和直线CD 交与点M N 、。 ①连结PC PD 、,如图12-1,在点P 运动过程中,PCD ?的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由; ②连结PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图12-2。是否存在点P ,使得CNQ ?与PBM ?相似?若存在,求出满足条件的点P 的坐标;若不存在,说明理由。 【分析】(1)由A 、B 两点的坐标,利用待定系数法可求得抛物线解析式; (2)①可设出P 点坐标,则可表示出M 、N 的坐标,联立直线与抛物线解析式可求得C 、D 的坐标,过C 、D 作PN 的垂线,可用t 表示出△PCD 的面积,利用二次函数的性质可求得其最大值; ②当△CNQ 与△PBM 相似时有 = 或 = 两种情况,利用P 点坐标,可 分别表示出线段的长,可得到关于P 点坐标的方程,可求得P 点坐标.

相关主题