搜档网
当前位置:搜档网 › 直线的倾斜角与斜率经典例题(有答案精品)

直线的倾斜角与斜率经典例题(有答案精品)

直线的倾斜角与斜率经典例题(有答案精品)
直线的倾斜角与斜率经典例题(有答案精品)

直线的倾斜角与斜率(20131125)讲义

类型一:倾斜角与斜率的关系

1.已知直线的倾斜角的变化范围为,求该直线斜率的变化范围;

【变式】直线的倾斜角的范围是( )

A.B.C.D.

类型二:斜率定义

2.已知△ABC为正三角形,顶点A在x轴上,A在边BC的右侧,∠BAC的平分线在x轴上,求边AB与AC所在直线的斜率.

【变式1】如图,直线的斜率分别为,则( )

A.

B.

C.

D.

类型三:斜率公式的应用

3.求经过点,直线的斜率并判断倾斜角为锐角还是钝角.【变式1】过两点,的直线的倾斜角为,求的值.

【变式2】为何值时,经过两点(-,6),(1,)的直线的斜率是12.

4.已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值.【变式1】已知,,三点,这三点是否在同一条直线上,为什么?

【变式2】已知直线的斜率,,,是这条直线上的三个点,求和的值.

类型四:两直线平行与垂直

5.四边形的顶点为,,,,试判断四边形

的形状.

【变式1】已知四边形的顶点为,,,,求证:四边形

为矩形.

【变式2】已知,,三点,求点,使直线,且.【变式3】若直线与直线互相垂直,则实数=__________.

直线的倾斜角与斜率(20131125)作业

姓名成绩

1.已知直线l过点(m,1),(m+1,tanα+1),则()

A.α一定是直线l的倾斜角B.α一定不是直线l的倾斜角

C.α不一定是直线l的倾斜角D.180°-α一定是直线l的倾斜角

2.如图,直线l经过二、三、四象限,l的倾斜角为α,斜率为k,则()

A.k sinα>0B.k cosα>0 C.k sinα≤0D.k cosα≤0

3.12312

A.k1k2=-1 B.k2k3=-1 C.k1<0 D.k2≥0

4.已知a>0,若平面内三点A(1,-a),B(2,a2),C(3,a3)共线,则a=________.

5.已知两点A(-1,-5),B(3,-2),若直线l的倾斜角是直线AB倾斜角的一半,则l的斜率是________.

6已知两条直线l1:ax+by2bm是直线l1∥l2的 ()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

7.已知直线a2x+y+2=0与直线bx-(a2+1)y-1=0互相垂直,则|ab|的最小值为()

A.5 B.4 C.2 D.1

8.已知直线ax -by -2=0与曲线y =x 3在点P (1,1)处的切线互相垂直,则a

b 为 ( )

A.23 B .-23 C.13 D .-13

9.设直线l 1的方程为x +2y -2=0,将直线l 1绕原点按逆时针方向旋转90°得到直线l 2,则l 2的方程是________________.

10.若关于x 的方程|x -________.

11.已知点A (2,3),B (-5,2),若直线l 过点P (-1,6),且与线段AB 相交,则该直线倾斜角的取值范围是________.

12.已知点M (2,2),N (5,-2),点P 在x 轴上,分别求满足下列条件的P 点坐标. (1)∠MOP =∠OPN (O 是坐标原点).(2)∠MPN 是直角.

直线的倾斜角与斜率(20131125)讲义答案

类型一:倾斜角与斜率的关系

1.已知直线的倾斜角的变化范围为,求该直线斜率的变化范围;

思路点拨:

已知角的范围,通过正切函数的图像,可以求得斜率的范围,反之,已知斜率的范围,通过正切函数的图像,可以求得角的范围

解析:

∵,

∴.

总结升华:

在知道斜率的取值范围求倾斜角的取值范围,或知道倾斜角的取值范围求斜率的取值范围时,可利用

在和上是增函数分别求解.当时,;当时,;当时,;当不存在时,.反之,亦成立.

举一反三:

【变式】

(2010山东潍坊,模拟)直线的倾斜角的范围是

A.B.

C.D.

【答案】B

解析:由直线,

所以直线的斜率为.

设直线的倾斜角为,则.

又因为,即,

所以.

类型二:斜率定义

2.已知△ABC为正三角形,顶点A在x轴上,A在边BC的右侧,∠BAC的平分线在x轴上,求边AB与AC所在直线的斜率.

思路点拨:

本题关键点是求出边AB与AC所在直线的倾斜角,利用斜率的定义求出斜率.

解析:

如右图,由题意知∠BAO=∠OAC=30°

∴直线AB的倾斜角为180°-30°=150°,直线AC的倾斜角为30°,

∴k AB=tan150°=k AC=tan30°=

总结升华:

在做题的过程中,要清楚倾斜角的定义中含有的三个条件①直线向上方向

②轴正向③小于的角,只有这样才能正确的求出倾斜角.

举一反三:

【变式1】

如图,直线的斜率分别为,则( )

A.

B.

C.

D.

【答案】

由题意,,则

本题选题意图:对倾斜角变化时,如何变化的定性分析理解.∴选B.

类型三:斜率公式的应用

3.求经过点,直线的斜率并判断倾斜角为锐角还是钝角.思路点拨:

解析:

且,

经过两点的直线的斜率,

即.

即当时,为锐角,当时,为钝角.

总结升华:

本题求出,但的符号不能确定,我们通过确定的符号来确定的符号.当时,

,为锐角;当时,,为钝角.

举一反三:

【变式1】

过两点,的直线的倾斜角为,求的值.

【答案】

由题意得:

直线的斜率,

故由斜率公式,

解得或.

经检验不适合,舍去.

故.

【变式2】

为何值时,经过两点(-,6),(1,)的直线的斜率是12.

【答案】

即当时,,两点的直线的斜率是12.

4.已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值.

思路点拨:

如果过点AB,BC的斜率相等,那么A,B,C三点共线.

解析:

∵A、B、C三点在一条直线上,

∴k AB=k AC.

总结升华:

斜率公式可以证明三点共线,前提是他们有一个公共点且斜率相等.

举一反三:

【变式1】

已知,,三点,这三点是否在同一条直线上,为什么?

【答案】

经过,两点直线的斜率.

经过,两点的直线的斜率.

所以,,三点在同一条直线上.

【变式2】

已知直线的斜率,,,是这条直线上的三个点,求和的值.

【答案】

由已知,得

;.

因为,,三点都在斜率为2的直线上,

所以,.

解得,.

类型四:两直线平行与垂直

5.四边形的顶点为,,,,试判断四边形

的形状.

思路点拨:

证明一个四边形为矩形,我们往往先证明这个四边形为平行四边形,然后再证明平行四边形的一个角为直角.

解析:

边所在直线的斜率,

边所在直线的斜率,

边所在直线的斜率,

边所在直线的斜率.

,,,,即四边形为平行四边形.

又,,即四边形为矩形.

总结升华:

证明不重和的的两直线平行,只需要他们的斜率相等,证明垂直,只需要他们斜率的乘积为-1.

举一反三:

【变式1】

已知四边形的顶点为,,,,求证:四边形为矩形.【答案】

由题意得边所在直线的斜率.

边所在直线的斜率,

边所在直线的斜率,

边所在直线的斜率,

则;.

所以四边形为平行四边形,

又因为,

即平行四边形为矩形.

已知,,三点,求点,使直线,且.

【答案】

设点的坐标为,由已知得直线的斜率;

直线的斜率;直线的斜率;直线的斜率.

由,且得解得,.

所以,点的坐标是.

【变式3】

(2011浙江12)若直线与直线互相垂直,则实数=__________.【答案】

因为直线与直线互相垂直,所以,所以.

直线的倾斜角与斜率(20131125)作业答案

姓名 成绩

1.已知直线l 过点(m,1),(m +1, ( ) A .α一定是直线l 的倾斜角 B .α一定不是直线l 的倾斜角 C .α不一定是直线l 的倾斜角 D .180°-α一定是直线l 的倾斜角 解析:设θ为直线l 的倾斜角, 则tan θ=tan α+1-1m +1-m

=tan α,

∴α=kπ+θ,k ∈Z ,当k ≠0时,θ≠α. 答案:C

2.如图,直线l 经过二、三、四象限,l 的倾斜角为α,斜率

为k ,则

( )

A .k sin α>0

B .k cos α>0

C .k sin α≤0

D .k cos α≤0 解析:显然k <0,π

2<α<π,

∴cos α<0,∴k cos α>0. 答案:B

3.12312

( )

A .k 1k 2=-1

B .k 2k 3=-1

C .k 1<0

D .k 2≥0 解析:结合图形知,k 1<0. 答案:C

4.(2008·浙江高考)已知a >0,若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =________. 解析:∵A 、B 、C 三点共线,

∴k AB =k BC ,即a 2+a 2-1=a 3-a 23-2,又a >0,∴a =1+ 2.

答案:1+ 2

5.已知两点A (-1,-5),B (3,-2),若直线l 的倾斜角是直线AB 倾斜角的一半,则l 的斜率是________. 解析:设直线AB 的倾斜角为2α,则直线l 的倾斜角为α,由于0°≤2α<180°,∴0° ≤α<90°,由

tan2α=-2-(-5)3-(-1)=34,得tan α=13,即直线l 的斜率为1

3.

答案:1

3

6.(2009·陕西八校模拟)12+p =0,则an =bm 是直线l 1∥l 2

( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分也不必要条件

解析:∵l 1∥l 2?an -bm =0,且an -bm =0?/ l 1∥l 2,故an =bm 是直线l 1∥l 2的必要不充分条件. 答案:B

7.(2009·福建质检)已知直线a 2x +y +2=0与直线bx -(a 2+1)y -1=0互相垂直,则|ab |的最小值为

( )

A .5

B .4

C .2

D .1 解析:由题意知,a 2b -(a 2+1)=0且a ≠0, ∴a 2

b =a 2

+1,∴ab =a 2+1a =a +1a

∴|ab |=|a +1a |=|a |+1

|a |≥2.(当且仅当a =±1时取“=”).

答案:C

8.(2010·合肥模拟)已知直线ax -by -2=0与曲线y =x 3在点P (1,1)处的切线互相垂直,则a

b 为

( )

A.23 B .-23 C.13 D .-13 解析:曲线y =x 3在点P (1,1)处的切线斜率为3, 所以a b =-13.

答案:D

9.(2009·泰兴模拟)设直线l 1的方程为x +2y -2=0,将直线l 1绕原点按逆时针方向旋转90°得到直线l 2,则l 2的方程是________________.

解析:∵l 1⊥l 2,k 1=-1

2

,∴k 2=2,

又点(0,1)在直线l 1上,故点(-1,0)在直线l 2上, ∴直线l 2的方程为y =2(x +1),即2x -y +2=0. 答案:2x -y +2=0

10.若关于x 的方程|x -1|-kx =0有且只有一个正实数根,则实数k 的取值范围是________. 解析:数形结合.在同一坐标系内画出函数y =kx ,y =|x -1|的图象如图所示,显然k ≥1或k =0时满足题意.

答案:k ≥1或k =0

11.(2009·青岛模拟)已知点A (2,3),B (-5,2),若直线l 过点P (-1,6),且与线段AB 相交,则该直线倾斜角的取值范围是________. 解析:如图所示,

k P A =

6-3

-1-2

=-1, ∴直线P A 的倾斜角为3π

4,

k PB =

6-2

-1-(-5)

=1,

∴直线PB 的倾斜角为π

4

从而直线l 的倾斜角的范围是[π4,3π

4].

答案:[π4,3π

4

]

12.已知点M (2,2),N (5,-2),点P 在x 轴上,分别求满足下列条件的P 点坐标. (1)∠MOP =∠OPN (O 是坐标原点). (2)∠MPN 是直角. 解:设P (x,0),

(1)∵∠MOP =∠OPN ,∴OM ∥NP . ∴k OM =k NP .

又k OM =2-02-0=1,k NP =0-(-2)x -5=2

x -5(x ≠5),

∴1=

2

x -5

,∴x =7, 即P 点坐标为(7,0).

(2)∵∠MPN =90°,∴MP ⊥NP , ∴k MP ·k NP =-1. 又k MP =22-x (x ≠2),k NP =2

x -5

(x ≠5), 22

即P点坐标为(1,0)或(6,0).

数学必修2 直线与方程典型 例题

第三章直线与方程 3.1 直线的倾斜角与斜率 3.1.1 倾斜角与斜率 【知识点归纳】 1.直线的倾斜角: 2.直线的斜率: 3.直线的斜率公式: 【典型例题】 题型一求直线的倾斜角 例 1 已知直线的斜率的绝对值等于,则直线的倾斜角为(). A. 60° B. 30° C. 60°或120° D. 30°或150° 变式训练: 设直线过原点,其倾斜角为,将直线绕原点沿逆时针方向旋转45°, 得到直线,则的倾斜角为()。 A. B. C. D. 当0°≤α<135°时为,当135°≤α<180°时,为 题型二求直线的斜率 例2如图所示菱形ABCD中∠BAD=60°,求菱形ABCD各边和两条对角线所在直线的倾斜角和斜率. 变式训练:已知过两点, 的直线l的倾斜角为45°,求实数的值. 题型三直线的倾斜角与斜率的关系 例3右图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则(). A .k1<k2<k3 B. k3<k1<k2 C. k3<k2<k1 D. k1<k3<k2

拓展一三点共线问题 例4 已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值. 变式训练: 若三点P(2,3),Q(3,),R(4,)共线,那么下列成立的是(). A. B. C. D. 拓展二与参数有关问题 例 5 已知两点A (-2,- 3) , B (3, 0) ,过点P (-1, 2)的直线与线段AB始终有公共点,求直线的斜率的取值范围. 变式训练: 已知两点,直线过定点且与线段AB相交,求直线的斜率的取值范围.

拓展三利用斜率求最值 例 6 已知实数、满足当2≤≤3时,求的最大值与最小值。 变式训练:利用斜率公式证明不等式:且 3.1.2 两条直线平行与垂直的判定 【知识点归纳】 1.直线平行的判定 2.两条直线垂直的判定(注意垂直与x轴和y轴的两直线): 【典型例题】 题型一两条直线平行关系 例 1 已知直线经过点M(-3,0)、N(-15,-6),经过点R(-2,)、S(0,),试判断与是否平行? 变式训练:经过点和的直线平行于斜率等于1的直线,则的值是(). A.4 B.1 C.1或3 D.1或4

直线与方程(经典例题)

直线与方程 知识点复习: 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即tan k α=。斜率反映直线与轴的倾斜程度。 当[ ) 90,0∈α时,0≥k ; 当( ) 180,90∈α时,0

数学必修2---直线与方程典型例题(精)

第三章 直线与方程 3.1 直线的倾斜角与斜率 3.1.1 倾斜角与斜率 【知识点归纳】 1.直线的倾斜角: 2.直线的斜率: 3.直线的斜率公式: 【典型例题】 题型 一 求直线的倾斜角 例 1 已知直线l 的斜率的绝对值等于3,则直线的倾斜角为( ). A. 60° B . 30° C. 60°或120° D. 30°或150° 变式训练: 设直线l 过原点,其倾斜角为α,将直线l 绕原点沿逆时针方向旋转45°,得到直线1l ,则 1l 的倾斜角为( )。 A. 45α+? B . 135α-? C. 135α?- D. 当0°≤α<135°时为45α+?,当135°≤α<180°时,为135α-? 题型 二 求直线的斜率 例 2如图所示菱形ABCD 中∠BAD =60°,求菱形A BCD 各边和两条对角线所在直线的倾斜角和斜率. 变式训练: 已知过两点22(2,3)A m m +-, 2(3,2)B m m m --的直线l 的倾斜角为45°,求实数m 的值. 题型 三 直线的倾斜角与斜率的关系 例3右图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ). A .k 1<k 2<k3? B. k3

变式训练: 若三点P (2,3),Q (3,a ),R (4,b )共线,那么下列成立的是( ). A .4,5a b == B.1b a -= C.23a b -= D.23a b -= 拓展 二 与参数有关问题 例 5 已知两点A (-2,- 3) , B (3, 0) ,过点P (-1, 2)的直线l 与线段AB 始终有公共点,求直线l 的斜率k 的取值范围. 变式训练: 已知(2,3),(3,2)A B ---两点,直线l 过定点(1,1)P 且与线段AB相交,求直线l 的斜率k 的取值范围. 拓展 三 利用斜率求最值 例 6 已知实数x 、y 满足28,x y +=当2≤x ≤3时,求y x 的最大值与最小值。 变式训练: 利用斜率公式证明不等式:(0a m a a b b m b +><<+且0)m > 3.1.2 两条直线平行与垂直的判定 【知识点归纳】

【范文】《直线的倾斜角与斜率》导学案

《直线的倾斜角与斜率》导学案 一、教学内容分析 “直线的倾斜角和斜率”一节是解析几何的入门课,担负着开启全章的重任,因此在本课时的教学中不但要落实显性知识,更重要的是要揭示隐性知识:研究解析几何的基本方法——坐标法。 本课时涉及到两个概念——倾斜角和斜率,它们都是反映直线相对于x轴正方向的倾斜程度的,倾斜角是从“形”的角度刻画直线的倾斜程度,而斜率是从“数”的角度刻画直线的倾斜程度。二者联系的桥梁是正切函数值,进一步可以用直线上两点的坐标表示直线的斜率。 倾斜角是一个桥梁,利用它可以将两直线的位置关系问题转化为斜率问题。而在建立直线方程,研究直线的几何性质时斜率起着重要的作用。因此,坐标法和斜率是本课时的核心概念。据此确定本课时的教学重点是: 使学生经历几何问题代数化的过程,并初步了解解析几何研究问题的基本思想方法,体会坐标法。 理解斜率的定义,掌握过两点的直线的斜率公式。 二、教学目标分析 .理解倾斜角的概念,体会在直角坐标系下,以坐标轴为“参照系”,用统一的标准刻画几何元素的思想方法。

2.理解斜率的定义和斜率公式,经历几何问题代数化的过程,了解解析法的基本步骤,感受解析几何的思想方法。 3.通过解析几何发展史的简单介绍,渗透数学文化教育。 三、教学问题诊断分析 平面几何中,“两点确定一条直线”是没有“参照系”的,如何使学生在这一知识的基础上,顺利、自然地过渡到直角坐标系下用一个点和倾斜角确定一条直线,是比较困难的。事实上,已知直线的倾斜角就相当于已知直线的方向,因此已知“两个点可以确定直线的方向”,这与“一个点和直线的方向确定一条直线”是一致的。在教学中应注意引导学生认识到这种联系。 函数是以图助数,利用图形使代数问题直观化,解析几何则是以数助形,用坐标法研究几何问题。它们都体现了数形结合思想,但角度不同。学生知道一次函数的图象是一条直线,这里研究的是直线的方程,学生容易将二者混淆,误认为方程就是一次函数。因此在教学时要注意澄清二者的不同。 基于上述分析,确定本课时的教学难点为: 直角坐标系下对刻画直线的几何要素的认识——倾斜角概念的形成;用坐标刻画倾斜角的方法——斜率概念本质的认识。

直线与直线方程经典例题

必修2 第二章 解析几何初步 第一节:直线与直线方程(王建明) 一、直线的倾斜角和斜率 (1)倾斜角定义:平面直角坐标系中,对于一条与x 轴相交的直线l , 把__x 轴(正方向)_按__逆时针__方向绕着交点旋转到和直线l 重合所成的角, 叫作直线l 的倾斜角。(0°≤α<180°) (2)斜率k=tan α=1 212x x y y -- (0°≤α<180°),当α=90时,k 不存在。(两种求法,注意21x x =的情况)(3)函数y=tanx 在)90,0[0增加的,在)180,90(00也是增加的。 例1:过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为 。 例2:过两点A (m 2+2,m 2-3),B (3-m-m 2,2m )的直线l 的倾斜角为45°求m 的值。 例3:已知直线l 经过点P (1,1),且与线段MN 相交,又M (2,-3),N (-3,-2),求直线l 的斜率k 的取值范围。 例4:已知a >0,若平面内三点A (1,—a ),B (2,a 2),C(3,a 3)共线,则a 值为 。 练习: 1经过点P (2,m )和Q (2m ,5)的直线的斜率等于12 ,则m 的值是( B ) A .4 B .3 C .1或3 D .1或4 变:的取值范围的斜率的直线求经过点 )1,cos (),sin ,2( k l B A θθ-- 2. 已知直线l 过P(-1,2),且与以A(-2,-3)、B(3,0)为端点的线段相交,求直线l 的斜率的取值范围. 点评:要用运动的观点,研究斜率与倾斜角之间的关系!答案: ? ?? ??-∞,-12∪[5,+∞) 3.已知坐标平面内三点A (-1,1),B (1,1),C (2,3+1),若D 为△ABC 的边AB 上一动点,求直线CD 斜率k 的变化范围. 答案:? ???-∞,-12∪[5,+∞) 二、两直线的平行与垂直 1.平行的判定: 2. 垂直的判定: 例(1)l 1 经过点M (-1,0), N (-5,-2),l 2经过点R (-4,3),S (0,5),l 1与l 2是否平行? (2)l 1 经过点A (m ,1), B (-3,4), )l 2 经过点C (1,m ), D (-1, m+1),确定m 的值,使l 1//l 2。 练习: 例(1) l 1的倾斜角为45,l 2经过点P (-2,-1),Q (3,-6). 例(2)已知点M (2,2)和N (5,-2),点P 在x 轴上,且∠MPN 为直角,求点P 的坐标。 练习: 1.求a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直? 答案:a=-1 2.求过点P (1,-1),且与直线l 2:2x +3y +1=0垂直的直线方程. 答案:3x -2y -5=0. 三、直线的方程 1、点斜式: y-y 0=k (x -x 0) (斜率存在,可为0) 1、 斜截式: y=kx +b (b 是与y 轴的交点) (斜率存在,可为0)

2.1.1直线的倾斜角与斜率-导学案

直线的倾斜角与斜率(导学案) 使用说明: 1.用15分钟左右的时间,阅读探究课本62 59- p页的基础知识,自主高效预习,提升自己的阅读理解能力;2.完成教材助读设置的问题,然后结合课本的基础知识和例题,完成自测练习。 【学习目标】 1.了解在直角坐标系中,确定直线位置的几何要素 2.理解直线的倾斜角和斜率的概念直线的 3.掌握过两点的斜率的计算公式 【重点难点】 重点:直线的倾斜角和斜率的概念; 难点:直线的倾斜角与斜率的关系 一、知识链接 1.在直角坐标系中,只知道直线上的一点,能不能确定一条直线呢? 2.在日常生活中,我们常说这个山坡很陡峭, 有时也说坡度,这里的陡峭和坡度说的是山坡与水平面之间的一个什么关系呢? 二、教材助读 1.直线的倾斜角 (1)在直角坐标系中,确定直线位置的几何要素有 (2)倾斜角的定义是 (3)当直线与x轴平行或重合时,我们规定它的倾斜角为度 (4)直线倾斜角的范围为 试试:请描出下列各直线的倾斜角 函数y=x的图像的倾斜角为 , y=-x的图像的倾斜角 为 , 直线x=1倾斜角为 ,直线y=0倾斜角为2.直线的斜率 (1)在日常生活中,我们经常用“升高量与前进量的比”表示“坡度”,则坡度的公式是怎样的? (2)斜率的定义:一条直线的倾斜角 a (α≠900) 的正切值叫做这条直线的斜率,记为 k=tan a 试试:已知各直线倾斜角,则其斜率的值为 α=0°时,则k 0°<α< 90°,则k α= 90°,,则k 90 °<α< 180°,则k 3.过两点的直线斜率的公式 (1)由直线上两点) , ( 1 1 y x A、) , ( 2 2 y x B来求直线的斜率k的公式是: 当 2 1 x x≠时,k= 当x1=x2 时, k (2)如果 1 2 1 2 ,x x y y≠ =则直线与x轴k= 如果 1 2 1 2 ,x x y y= ≠则直线与x轴倾斜角等于k (3)直线的斜率与所选择直线上两点的位置有无关系?顺序有无关系? 预习自测 1.已知直线的倾斜角,求直线的斜率 (1) 30 = α(2) 135 = α(3) 90 = α 2.已知直线的斜率求直线的倾斜角 (1)0 = k(2)1 = k(3)3 - = k(4)k不存在 3.分别求经过下列两点的直线的斜率 (1)(2,3)和(4,5)(2)(-3,-1)和(2,-1) (3)(1,3)和(-1,3 3) 4.过点) ,2 (m P-和)4, (m Q的直线的斜率等于1,则m的值为___________ 基础知识探究 1.直线的倾斜角与斜率的关系 (1) 当直线与x轴不垂直时,直线的斜率k与倾斜角α之间满足关系式_________;当直线与x轴垂直时,直线的斜率________ 预习案 探究案

《直线与方程》教案+例题精析

考点1:倾斜角与斜率 (一)直线的倾斜角 例1例1. 若θ为三角形中最大内角,则直线0tan :=++m y x l θ的倾斜角的范围是( ) A.??? ?????? ??32,22,0πππ B.??? ?????? ??32223ππππ,, C.??? ?????? ??πππ,,330 D.?? ? ?????? ??πππ,,3220 2 若直线:l y kx =2360x y +-=的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .,63ππ?????? B .,62ππ?? ??? C .,32ππ?? ??? D .,62ππ?????? (二)直线的斜率及应用 3、利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。 例2、设,,a b c 是互不相等的三个实数,如果333(,)(,)(,)A a a B b b C c c 、、在同一直线上,求证:0a b c ++= 1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b a B .1=-b a C .0=+b a D .0=-b a 2.过点P (-2,m )和Q (m ,4)的直线的斜率等于1,则m 的值为() A.1 B.4 C.1或3 D.1或4 3.已知直线l 则直线的倾斜角为( ) A. 60° B. 30° C. 60°或120° D. 30°或150° 4.若三点P (2,3),Q (3,a ),R (4,b )共线,那么下列成立的是( ). A .4,5a b == B .1b a -= C .23a b -= D .23a b -= 5.右图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ). A .k 1<k 2<k 3 B. k 3<k 1<k 2 C. k 3<k 2<k 1 D. k 1<k 3<k 2 6.已知两点A (x ,-2),B (3,0),并且直线AB 的斜率为2,则x = . 7.若A (1,2),B (-2,3),C (4,y )在同一条直线上,则y 的值是 . 8.已知(2,3),(3,2)A B ---两点,直线l 过定点(1,1)P 且与线段AB 相交,求直线l 的斜率k 的取值范围. 9、直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________. 考点2:求直线的方程 例3. 已知点P (2,-1).(1)求过P 点且与原点距离为2的直线l 的方程; (2)求过P 点且与原点距离最大的直线l 的方程,最大距离是多少? (3)是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由. 1、求过点P (2,-1),在x 轴和y 轴上的截距分别为a 、b,且满足a=3b 的直线方程。 2、设A 、B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A. x +y -5=0 B. 2x -y -1=0 C. 2y -x -4=0 D. 2x +y -7=0 3、直线过点(-3,4),且在两坐标轴上的截距之和为12,则该直线方程为________. 4、过点P (-2,3)且在两坐标轴上的截距相等的直线l 的方程为_____________. 5、已知点A (2,-3)是直线a 1x +b 1y +1=0与直线a 2x +b 2y +1=0的交点,则经过两个不同点P 1(a 1,b 1)和P 2(a 2,b 2)的直线方程是( )A .2x -3y +1=0 B .3x -2y +1=0 C .2x -3y -1=0 D .3x -2y -1=0 6、.过点P (0,1)且和A (3,3),B (5,-1)的距离相等的直线方程是( ) A .y =1 B .2x +y -1=0 C .y =1或2x +y -1=0 D .2x +y -1=0或2x +y +1=0 7.如图,过点P (2,1)作直线l ,分别为交x 、y 轴正半轴于A 、B 两点。(1)当⊿AOB

数学必修2---直线与方程典型例题

第三章直线与方程 【典型例题】 题型一求直线的倾斜角与斜率 设直线I斜率为k且1

3.1.2两条直线平行与垂直的判定 【 【典型例题】 题型一两条直线平行关系 例1 已知直线l i 经过点M (-3, 0)、N (-15,-6), 12 经过点R (-2, - )、S (0, 2 5),试判断^与12是否平行? 2 变式训练:经过点P( 2,m)和Q(m,4)的直线平行于斜率等于1的直线,贝U m的值是(). A . 4 B. 1 C. 1 或3 D. 1 或4 题型二两条直线垂直关系 例2已知ABC的顶点B(2,1), C( 6,3),其垂心为H( 3,2),求顶点A的坐标. 变式训练:(1) h的倾斜角为45 ° 12经过点P (-2,-1 )、Q (3,-6),问h与12是否垂直? (2)直线11,12的斜率是方程x2 3x 1 0的两根,则h与12的位置关系是—. 题型三根据直线的位置关系求参数 例3已知直线h经过点A(3,a)、B (a-2,-3),直线S经过点C (2,3)、D (-1,a-2) (1)如果I1//I2,则求a的值;(2)如果11丄12,则求a的值 题型四直线平行和垂直的判定综合运用 例4四边形ABCD的顶点为A(2,2 2 2)、B( 2,2)、C(0,2 2.. 2)、D(4,2),试判断四边形ABCD的形状.

直线与方程知识点及典型例题.docx

第三章直线与方程知识点及典型例题 1. 直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0 度。因此,倾斜角的取值范围是0°≤α<180° 2. 直线的斜率 ① 定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。 直线的斜率常用k 表示。即 k=tan 。斜率反映直线与轴的倾斜程度。 当直线 l 与 x 轴平行或重合时 ,α=0°,k = tan0 =0;° 当直线 l 与 x 轴垂直时 ,α= 90k°不,存在 . 当0,90时, k0 ;当90 ,180时, k0;当90 时,k不存在。 例 .如右图,直线l 1的倾斜角 =30°,直线 l1⊥ l 2,求直线 l1和 l2的斜率 . y 解: k1=tan30° =3∵ l1⊥ l2∴ k1· k2 =— 1l 1 3 ∴ k2 =—32x 1 例:直线 x 3 y50 的倾斜角是()o l2 °°°° ②过两点 P1 (x1, y1)、P1(x1,y1) 的直线的斜率公式: k y2y 1 ( x1x 2 ) x2x1 注意下面四点: (1)当x1x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k与 P1、 P2的顺序无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 例 .设直线l1经过点A(m,1)、B(—3,4),直线l2经过点C(1,m)、D(—1,m+1), 当 (1) l / / l 2(2) l⊥l时分别求出 m 的值 111 ※三点共线的条件:如果所给三点中任意两点的斜率都有斜率且都相等,那么这三点共线。 3. 直线方程 ① 点斜式:y y1k( x x1 )直线斜率k,且过点x1, y1 注意:当直线的斜率为0°时, k=0,直线的方程是y=y1。 当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都

最新直线与方程知识点及典型例题

第三章 直线与方程知识点及典型例题 1. 直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时 ,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° 2. 直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。 直线的斜率常用k 表示。即k=tan α。斜率反映直线与轴的倾斜程度。 当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; 当直线l 与x 轴垂直时, α= 90°, k 不存在. 当[ ) 90,0∈α时,0≥k ; 当( ) 180 ,90∈α时,0

高中数学 倾斜角和斜率学案 新人教A版必修2

3.1.1 倾斜角与斜率导学案 ★学习目标 1.理解直线的倾斜角的定义、范围和斜率; 2.掌握过两点的直线斜率的计算公式; 3.能用公式和概念解决问题. ★学习重点:直线倾斜角与斜率概念;斜率计算公式. ★学习难点:直线的倾斜角与斜率关系;直线斜率公式的推导. ★学习过程 一、自主学习 阅读课本P82—P86回答下列问题: 问题1、在直角坐标系中,过点P 的一条直线绕P 点旋转,不管旋转多少周,它对x 轴的相对位置有几种情形,请画出来?这些直线有什么联系和区别呢? 问题2、怎样描述直线的倾斜程度呢?可以用一个什么几何量来反映这一倾斜程度呢? 问题3、直线的倾斜角的取值范围是多少?任一直线一定有倾斜角吗? 问题4、在日常生活中,我们经常用“升高量与前进量的比”表示“坡度”,则坡度的公式是怎样的? 问题5、任何直线都有斜率么?斜率为正或负时,直线具有怎样的位置?请用图形语言表 示. 二、合作探究 1、如何在直线l 上任取两个不同点11122212(,),(,)()P x y P x y x x ≠坐标计算直线的斜率? 2、过直线上两点的直线斜率公式适用范围如何?与两坐标的顺序有关吗?当直线与x 轴平行或重合或垂直,公式还适用吗? 三、训练反馈 1、在平面直角坐标系中,下列叙述中不正确的是( ) A.若直线的斜率存在,则必有倾斜角与之对应 B. 每一条直线都惟一对应一个倾斜角 C.与坐标轴垂直的直线的倾斜角为?0或?90 D.若直线的倾斜角为α,则直线的斜率为αtan 2、填表:已知直线的倾斜角或斜率,求相应的斜率或倾斜角。 参考公式:当α是锐角时,tan 180tan αα?-=-(). 3、已知A(-3,2),B(4,1),C(0,-2),求直线AB,BC,CA 的斜率,并判断它们的倾斜角是钝角还是锐角. 4、在平面直角坐标系中,画出经过原点且斜率分别为1,-1,2及-3的直线1234,,l l l l 及 四、拓展延伸 经过点P(0,-1)作直线l ,若直线l 与连接A(1,2),B(2,1)的线段总有公共点,找出直线 l 的斜率k 的取值范围,并说明理由. ★学后总结: 1、今天学到了什么?(知识方面)

直线与圆的方程典型例题(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 赠人玫瑰,手留余香。 高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 2224)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C

∴半径204)11(2 2 = ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 分析:根据问题的特征,宜用圆的标准方程求解. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2 =---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2 2 2 7)14()2(=-+-a ,或2 2 2 1)14()2(=-+-a (无解),故可得 1022±=a . ∴ 所 求 圆 方 程 为 2 224)4()1022(=-+--y x ,或 2224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2 2 2 7)14()2(=--+-a ,或2 2 2 1)14()2(=--+-a (无解),故 622±=a . ∴ 所 求 圆 的 方 程 为 2 224)4()622(=++--y x ,或 2224)4()622(=+++-y x . 说明:对本题,易发生以下误解: 由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如 2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其 圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2 2 2 7)14()2(=-+-a ,解

直线的倾斜角与斜率、直线的方程(学案教师版)

第九章平面解析几何 第1讲直线的倾斜角与斜率、直线的方程班级__________ 姓名_________ 【概念自查】 一.判断正误(正确的打“√”,错误的打“×”,并举反例) (1)直线的倾斜角越大,其斜率就越大.() (2)直线的斜率为tanα,则其倾斜角为α.() (3)斜率相等的两直线的倾斜角不一定相等.() (4)经过点P(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示.() (5)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.() 【知识梳理】参考《优化方案》P145 1.直线的倾斜角与直线的斜率 (1)直线倾斜角的定义:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α。 注:当直线l与x轴平行或重合时,规定它的倾斜角为0° (2)直线l倾斜角α的范围是. (3)直线的倾斜角α与斜率k的关系:①. ②.(数形结合来解释) 2.直线方程的五种形式

例1 (1)直线x sin α+y +2=0的倾斜角的取值范围是( ) A.[)0,π B.????0,π4∪????3π 4,π C.????0,π4 D.????0,π4∪??? ?π 2,π (2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点, 则直线l 斜率的取值范围为 . 【解析】 (1)设直线的倾斜角为θ,则有tan θ=-sin α.因为sin α∈[-1,1],所以-1≤tan θ≤1,又θ∈[0,π),所以0≤θ≤π4或3π 4 ≤θ<π,故选B . (2)如图,因为k AP =1-0 2-1=1, k BP = 3-0 0-1 =-3,所以直线l 的斜率k ∈(]-∞,-3∪[)1,+∞. 【答案】 (1)B (2)(]-∞,-3∪[)1,+∞ 【考点突破】考点2 求直线的方程 例2 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为 10 10 ; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且与原点的距离为5. 【解】 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α= 10 10 (0≤α<π), 从而cos α=±31010,则k =tan α=±1 3. 故所求直线方程为y =±1 3(x +4), 即x +3y +4=0或x -3y +4=0. (2)由题设知纵横截距不为0,设直线方程为x a +y 12-a =1, 又直线过点(-3,4), 从而-3a +412-a =1,解得a =-4或a =9. 故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0满足题意; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5),即kx -y +10-5k =0.

人教A版高中数学必修2第三章 直线与方程3.1 直线的倾斜角与斜率习题(3)

直线的倾斜角和斜率 3.1倾斜角和斜率 1、直线的倾斜角的概念:当直线l 与x 轴相交时, 取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时, 规定α= 0°. 2、 倾斜角α的取值范围: 0°≤α<180°. 当直线l 与x 轴垂直时, α= 90°. 3、直线的斜率: 一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,也就是 k = tan α ⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l 与x 轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在. 4、 直线的斜率公式: 给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 3.1.2两条直线的平行与垂直 1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即 注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k 1=k 2, 那么一定有L 1∥L 2 2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即 基础卷 一.选择题: 1.下列命题中,正确的命题是 (A )直线的倾斜角为α,则此直线的斜率为tan α (B )直线的斜率为tan α,则此直线的倾斜角为α (C )任何一条直线都有倾斜角,但不是每一条直线都存在斜率 (D )直线的斜率为0,则此直线的倾斜角为0或π 2.直线l 1的倾斜角为30°,直线l 2⊥l 1,则直线l 2的斜率为 (A )3 (B )-3 (C )33 (D )-3 3 3.直线y =x cos α+1 (α∈R )的倾斜角的取值范围是 (A )[0, 2π] (B )[0, π) (C )[-4π, 6π] (D )[0, 4π]∪[4 3π,π) 4.若直线l 经过原点和点(-3, -3),则直线l 的倾斜角为 (A )4π (B )54π (C )4π或54 π (D )-4π 5.已知直线l 的倾斜角为α,若cos α=-5 4,则直线l 的斜率为

高一数学直线方程知识点归纳及典型例题

直线的一般式方程及综合 【学习目标】 1.掌握直线的一般式方程; 2.能将直线的点斜式、两点式等方程化为直线的一般式方程,并理解这些直线的不同形式的方程在表示直线时的异同之处; 3.能利用直线的一般式方程解决有关问题. 【要点梳理】 要点一:直线方程的一般式 关于x和y的一次方程都表示一条直线.我们把方程写为Ax+By+C=0,这个方程(其中A、B不全为零)叫做直线方程的一般式. 要点诠释: 1.A、B不全为零才能表示一条直线,若A、B全为零则不能表示一条直线. 当B≠0时,方程可变形为 A C y x B B =--,它表示过点0, C B ?? - ? ?? ,斜率为 A B -的直线. 当B=0,A≠0时,方程可变形为Ax+C=0,即 C x A =-,它表示一条与x轴垂直的直线. 由上可知,关于x、y的二元一次方程,它都表示一条直线. 2.在平面直角坐标系中,一个关于x、y的二元一次方程对应着唯一的一条直线,反过来,一条直线可以对应着无数个关于x、y的一次方程(如斜率为2,在y轴上的截距为1的直线,其方程可以是2x―y+1=0, 也可以是 11 22 x y -+=,还可以是4x―2y+2=0等.) 要点二:直线方程的不同形式间的关系 直线方程的五种形式的比较如下表: 要点诠释: 在直线方程的各种形式中,点斜式与斜截式是两种常用的直线方程形式,要注意在这两种形式中都要求直线存在斜率,两点式是点斜式的特例,其限制条件更多(x1≠x2,y1≠y2),应用时若采用(y2―y1)(x―x1)―(x2―x1)(y―y1)=0的形式,即可消除局限性.截距式是两点式的特例,在使用截距式时,首先要判断是否满足“直线在两坐标轴上的截距存在且不为零”这一条件.直线方程的一般式包含了平面上的所有直线形式.一般式常化为斜截式与截距式.若一般式化为点斜式,两点式,由于取点不同,得到的方程也不同. 要点三:直线方程的综合应用 1.已知所求曲线是直线时,用待定系数法求. 2.根据题目所给条件,选择适当的直线方程的形式,求出直线方程. 对于两直线的平行与垂直,直线方程的形式不同,考虑的方向也不同.

人教版高中数学必修 知识点考点及典型例题解析全

必修二 第一章 空间几何体 知识点: 1、空间几何体的结构 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。 2、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3= 3、球的体积公式:33 4  R V π= ,球的表面积公式:24 R S π= 4、柱体h s V ?=,锥体h s V ?=31,锥体截面积比:22 2 1 21h h S S = 5、空间几何体的表面积与体积 ⑴圆柱侧面积; l r S ??=π2侧面 ⑵圆锥侧面积: l r S ??=π侧面 典型例题: ★例1:下列命题正确的是( ) A.棱柱的底面一定是平行四边形 B.棱锥的底面一定是三角形 C.棱柱被平面分成的两部分可以都是棱柱 D.棱锥被平面分成的两部分不可能都是棱锥 ★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) A 21 倍 B 42倍 C 2倍 D 2倍 ★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是( ) A.上部是一个圆锥,下部是一个圆柱 B.上部是一个圆锥,下部是一个四棱柱 C.上部是一个三棱锥,下部是一个四棱柱 D.上部是一个三棱锥,下部是一个圆柱

★★例4:一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是 A .28cm π B 2 12cm π. C 216cm π. D .220cm π 二、填空题 ★例1:若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________. ★例2:球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍. 第二章 点、直线、平面之间的位置关系 知识点: 1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。 2、公理2:过不在一条直线上的三点,有且只有一个平面。 3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点 的公共直线。 4、公理4:平行于同一条直线的两条直线平行. 5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。 6、线线位置关系:平行、相交、异面。 7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。 8、面面位置关系:平行、相交。 9、线面平行: ⑴判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简 称线线平行,则线面平行)。 ⑵性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与 该直线平行(简称线面平行,则线线平行)。 10、面面平行: ⑴判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简 称线面平行,则面面平行)。 ⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行(简称 面面平行,则线线平行)。 11、线面垂直: ⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和 这个平面垂直。 ⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直 (简称线线垂直,则线面垂直)。 ⑶性质:垂直于同一个平面的两条直线平行。 12、面面垂直: ⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。 ⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直(简称线面垂直,

相关主题