搜档网
当前位置:搜档网 › 中英文翻译几何在机械设计中的作用

中英文翻译几何在机械设计中的作用

中英文翻译几何在机械设计中的作用
中英文翻译几何在机械设计中的作用

本科毕业论文(设计)翻译

题目新型超声波洗碗机

学院制造科学与工程学院

专业机械设计及其自动化

学生姓名

学号年级08 指导教师蔡鹏

教务处制表

二O一二年五月二十八日

On the Role of Geometry in Mechanical Design

Vadim Shapiro Herb Voelcker

The Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA

A complete design usually specifies a mechanical system in terms of component parts and assembly relationships. Each part has a fully defined nominal or ideal form and well defined material properties. Tolerances are used to permit variations in the form and properties of the components, and are used also to permit variations in the assembly relationships. Thus the geometry and material properties of the system and all of its pieces are fully defined (at least in principle). Henceforth we shall focus on geometry and, for reasons that will become evident, will not deal with materials despite their obvious importance.

Mechanical systems specified in the manner just described meet functional specifications that appeared initially as design goals. The process of design can be thought of as "generating the geometry "the breakdown into components with coarsely specified geometry, and then the detailed specification of the component forms and fitting relationships. Design seems to proceed through simultaneous refinement of geometry and function [I]. An important line of design research seeks scientific models for this refinement process and systematic procedures for improving and perhaps automating it.

At present we have tools for dealing with two widely separated stages of the refinement process.

For single parts, function is usually specified through loads on pieces of surface (e.g.

a force distribution over a support surface, a flow rate through an orifice, a radiation pattern over a cooling fin); specification of the solid material that pro-vides a carrier for the pieces of surface may be viewed as a constrained shape optimization process. At the higher level of "unit functionality," where one deals with springs, motors, gear boxes, heat exchangers, and the like, geometry usually is abstracted into real numbers if acknowledged at all, and function is cast in terms of ordinary differential or algebraic equations (for heat flow, motor torque as a function of field current, and so forth).Systems of such equations describe the composite functionalism of networks of functional units. There is a big gap between these "islands of understanding," and intermediate stages of abstraction are needed which acknowledge the partial geometry and spatial arrangement topology of subassemblies. Broadly speaking, geometry is faring badly in contemporary design

research; many investigators either "sweep it under the carpet" ordeal with it syntactically, e.g. through "features" defined in ad hoc ways. Clearly we need more systematic ways to address the relationship between geometry and function, and we suggest below some initial steps toward this goal.

Energy Exchange as a Mechanism for Modeling Mechanical Function Mechanical artifacts interact with their environments through spatially distributed energy ex-changes, and we argue below that mechanical functionalism can be modeled in terms of these exchanges. The initial cast of the argument draws heavily on seminal work by Henry Paynter [2].We shall regard mechanical artifacts as systems that range from single solids or fluid streams, which usually are the lowest level of natural system that exhibit important properties of mechanics, to complex assemblies of solids and streams. A closed boundary, which may be physical or conceptual, is a distinguishing characteristic of a system: the sys-tem lies within (and partially in) the boundary, the environment lies outside, and interaction occurs through the boundary. We distinguish the following:

S : the physical system under discussion;

8S : the boundary of S;

V : a spatial region containing S whose complement isthe environment;

8 V : the boundary of V.

S may coincide with V, and 8S and 8 V are closed surfaces (usually 2-mainfolds) in E 3. We distinguish S from V because S may be partially or wholly un-known (recall that this note is about design) but bound able by a known V. The principle of continuity of energy applies tall levels of system abstraction. If no energy is generated by the system, then

The surface integral on the left describes the total energy flux (instantaneous power) through the boundary; P is a generalized Poynting vector describing the instantaneous rate at which energy is transported per unit area, and n is the normal at a point in the boundary 8 V. On the right, Oe/Ot is the(volumetric) density of energy stored in the system, and g is the rate of energy loss or dissipation. A system interacts with its environment by ex-changing energy through its physical boundary: for example, by radiating energy stored in the system over a portion of its area, or by providing support to an external mating part and thereby inducing storage of deformation energy in the system. The sub-sets of the physical boundary over which such ex-changes occur will be called (following Paynter) energy ports. If s~ is the physical boundary subset ('piece of surface') associated with the it u port, then

Thus the total energy flux through the boundary is as um of signed fluxes through the ports. We note that a boundary subset si may belong to several ports, and that body forces, such as those induced by gravitational and magnetic fields, may be accommodated by taking ~S as the associated port.

Geometrical and Functional Refinement in the Limit

The left side of Eq. (2a) specifies energy exchanges through the system's ports and requires that the flux vector(s) and port geometries be known. The terms on the right cover internal energy (re)distribution and/or dissipation. The physical effects implied by these terms depend on the energy regime(s) and the geometry of the system; there may be rigid body motion, elastic or plastic deformation, temperature redistribution, and so forth. Mathematical evaluation requires the solution of 3-D boundary- and/or initial-value problems. Very marked simplifications ensue if one assumes that 1) the ports are spatially localized and idealized so that the integrals on the left of Eq. (2a)may be evaluated individually to yield terms Pi, and2) internal energy storage and dissipation are similarly localized in disjoint discrete regions, thereby permitting the right-hand integrals to be decomposed into sums of local integrals which may be evaluated individually. With these assumptions, Eq. (2a) may be rewritten

where Pi is the power through the discrete port, E is the instantaneous energy stored in the discrete region, and Gk is the dissipation rate in the k discrete region.

A limiting form of this refinement(in Paynter's terminology--reticulation) is a "Dirac-delta limit" wherein the ports shrink to spots of zero area and the volumetric regions shrink to point masses, idealized resistors, and the like. Equation (3) is the basis for Paynter's energy bond diagrams, or bond graphs. It describes a sys-tem that may transfer, transform, store, and dissipate energy through elements whose geometry has been refined into a few real numbers--the spatial l positions of the discrete ports and lumped regions(which generally are not carried in bond-graph representations), and integral characterizations of the

discrete ports and regions (for example the" value," in kilograms, of a point mass). This higher view enables one to analyze the dynamics of the idealized (discreet) system, but one can deduce little about the geometry of feasible distributed (i.e., real) systems from such analyses; essentially all geometry must be induced. Apparently we have gone too far, i.e., have thrown away too much geometry.

Fig. (1) Design of simple bracket

Toward an Appropriate Role for Geometry We would like to step back from the limiting refinement just discussed, where all notions of form have been lost, and includes in the problem some continuous geometry--but not the full-blown field problem covered by Eq. (I) unless this is unavoidable. We shall suggest below three principles governing the interaction of form and function that we believe will yield geometrically well defined (but not necessarily optimum) designs. A simple but common example drawn from practice--design of a bracket—will motivate the discussion (Fig. 1).

The design begins with three holes of known diameter and configuration that are to be carried by an unknown solid (Fig. la); these mate with other parts (two screws and a pivot pin). Bosses are created to contain the holes (Fig. lb) because of concern about interference with other components passing between the holes. Finally the holes and bosses are bound together into a single part as in Figs. lc and ld, with the final shape being governed by criteria for clearance, strength, weight, and aesthetic and manufacturing simplicity. Two simple but important inferences may be drawn from the example. Firstly, the initial holes(plus some implied constraint surfaces in the third dimension) are the bracket's energy ports; they are fully specified geometrically and specify by implication what the bracket is to do--maintain the

relative position of ports whose geometry admits rotational motion. In principle the associated energy regimes(force, torque: elasticity) can be fully specified as well, but in practice they are often only implied or "understood." Secondly, the remaining geometry is discretionary but constrained by requirements that the holes be bound into a connected solid, that the solid not interfere with other components, and so forth. We note that, at the single-component level of the bracket, shape optimization usually does require solution of the full 3-D field problem covered by Eq. (2a).

Fig (2) position-fixing of the character bracket

From this example and others we induce: Principle 1. A system's "function" is determined by its energy ports, which are generally subsets of its physical boundary, and the energy regimes operating on those ports; both should be fully defined. The remaining geometry of the system is discretionary provided that 1) it admits at least one physical realization of the system that satisfies the port specifications, and 2) other external constraints, e.g. on overall size, are met. Principle 2. Energy exchanges within a system al-ways may be represented independently of geometry, e.g. via bond graphs. Figure 2 shows the position-fixing capabilities of the bracket represented (non uniquely) by ideal springs attached to the locally rigid ports. This representation of the bracket's partial functionalism assumes ideally elastic behavior, and this assumption should be checked, e.g. by finite-element analysis, as the bracket's final shape is being determined. Figure 3 shows a slightly more complicated sys-t e m - a n indicator that senses pressure via an orifice (port) of known geometry, and displaces a rotary indicator correspondingly. The output indicator is a port because we require that it be able

Fig(3) A pressure measure system

to do work on the environment, e.g. overcome specified restraining torques over a defined range of travel, and hence its geometry must be defined. The system also has a third support port. The system's primary function is represented internally by a pres-sure/torque transformer and a rotary spring which are shown as bond graph elements in the style of Ulrich and Searing [3], but this representation is not unique; it may be replaced with other, arbitrarily elaborate arrangements of idealized elements having the same input/output functionalism plus other paths that terminate internally. Equation (4) provides the rationale for Principle2. The essential idea is that the port flow on the left of Eq. (2a) may be handled internally (the right-hand integrals in E q. (2a)) in many ways.

If we are assured by Principle I, or simply assume, that internal solutions exist, then we may reticulate the internal geometry and deal with integral quantities as in Eq.

(3).Principle 3. Principles 1 and 2 must hold for all subsystems defined on combinatorial decompositions of a system. Principle 3 provides means for the simultaneous refinement of geometry and function. It enables complicated systems to be decomposed recursively into functional subsystems provided that one defines the ports as one proceeds. The limiting combinatorial refinement is single parts, and at this level one must solve the field problem of Eq. (2a) to obtain complete geometric specifications.

Concluding Remarks

The thoughts above are aimed at finding means to establish for geometry an appropriate formal role in a theory of mechanical design. It seems obvious to us that geometry should have such a role, but the work needed to establish it has barely begun.

Epilogue Remarks on Features

This work grew out of a several-month effort to characterize geometric features in a formal man-n e r w a n effort that largely failed. The effort was motivated by the fact that mechanical design and manufacturing are often discussed and done in terms of "features," but there are no agreed view son what features " a r e " or " d o " [4]. (Slots, fibs, webs, and shafts, are typical features; all involve geometry in one way or another.)We began with a conjecture: A geometric feature may be defined as a geometric idealization of a port for energy exchange in a defined regime. (This notion is appealing because it implies that a system's feature-set specifies all of the geometry needed to define the system's interactions with its environment; the remaining geometry is determined by constraints and optimization.) We then proceeded to show that the conjecture is formally consistent in design, manufacturing, and inspection applications. In machining, for example, geometric features maybe associated with the boundary of the removed material; the energetic process is machining itself, whose dynamics are reasonably well understood in a

macroscopic sense. Clamping features may be de-fined primarily through elastic energy storage, inspection features through the energetic exchange involved in the measurement process, etc. But a sour explanations grew increasingly contrived and our difficulties with solid and other non-surface features mounted, we began to sense that features could not be defined in any universal system other than a purely syntactic system. Currently we believe that features are simply in-formation structures that represent, often in parametric form, known solutions to local problems. While a syntactic structure can be imposed on them, their underlying semantics can vary widely and need not involve particular kinds of geometry, or indeed any geometry at all. However, if a feature is to be used properly, a feature-context must be supplied the technical conditions and criteria that led to the solution the feature represents. Given the feature-context (e.g., as domain knowledge in a de-signer's head) and appropriate reasoning power to adapt the solution to the current problem, features can be very effective; their popularity among human designers attests to this. Recent work by Duffey and Dixon [5] illustrates that features can be used in automatic design when feature-contexts and appropriate reasoning power are provided. (The handling of features by Duffey and Dixon seems ad hoc, but "ad-hockey" may be intrinsic if our current permissive view of features is correct.) Features can be dangerous when used without their contexts and appropriate reasoning power, as nonsense designs produced by certain automatic design systems illustrate. Finally, we wish to point out that the Characterization of features as " known solutions to local problems " places strong constraints on schemes for combining features to make new features. A feature combination makes sense only if it can be shown to be a valid solution to a well defined local problem. But even determining the domain of the combination problem as a function of its c o m p o n e n t do-mains may p r o v e very difficult. Acknowledgments

The work reported here was supported in part by the General Motors Corporation under its corporate fellowship program, and by the National Science Foundation under grant MIP-87-19196.

References

1. Alexander, C., Notes on the Synthesis of Form, Harvard University Press, 1964

2. Paynter, H.M., Analysis and Design of Engineering Systems, MIT Press, 1961

3. Ulrich, K.T. and Searing, W.P., "Conceptual Design: Syn-thesis of System of Components," 1987ASME Winter Annual Meeting, PED Vol. 25

4. Report of the Workshop on Features in Design and Manufacturing, February 26-28, 1988 University of California, Los Angeles

5. Duffey, M.R. and Dixon, J.R., "Automating extrusion de-sign: a case study in geometric and topological reasoning for mechanical design," Computer-Aided Design, Vol. 20, No.10, pp. 589-596, December 1988

几何在机械设计中的作用

Vadim Shapiro,Herb Voelcker*

The Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA

一个完整的设计通常指定一个机械系统的零部件和装配关系。每个部分都有一个完全定义的名义或理想的形式和定义良好的物质属性。公差是用来允许组件的形式和性质的变化,也用来允许在装配关系的变化。因此,该系统的几何形状和材料的性能和其所有的作品都完全定义(至少在原则上)。今后,我们将集中几何,将成为明显的原因,将不会处理的材料,尽管其重要性显而易见。描述的方式在指定的机械系统只是满足最初出现作为设计目标的功能规格。在设计过程中,可以被认为是“生成几何”与粗糙指定的几何体划分成组件,然后组件的形式和拟合关系的详细规范。设计似乎着手,通过几何形状和功能的同时细化。细化过程和改善,或许自动化系统的程序设计研究的一个重要防线,旨在科学模型。目前,我们有两个相距甚远的细化过程中的阶段处理工具。为单件,功能件表面上的负载(如支持表面的受力分布,通过孔板的流量,通过冷却鳍的辐射模式)规范,提供了坚实的物质通常被指定通过表面件的,承运人可以被看作是受约束的形状优化过程。[1]

对单件而言,功能件表面上的负载(如支持表面的受力分布,通过孔板的流量,通过冷却鳍的辐射模式);固体材料的规范通常规定通过亲比德斯载体表面的碎片可以被看作是一个约束的形状优化亲过程。

在更高层次的“单位的功能,”其中一个弹簧,马达,齿轮箱,热交换器,之类的,几何的交易通常抽象的实数,如果都承认,和普通功能差分或代数方程组(热流,扭矩电机励磁电流的功能,等等)。这些方程的系统描述网络的功能单位的复合机能。之间有一个很大的差距“联合国理解岛”和抽象的中间阶段,需要承认部分的几何结构和空间安排的组件拓扑。从广义上讲,几何严重的是远在当代设计研究;许多研究者或者“扫地毯下的”磨难与语法,例如通过特别的方式定义的“功能”。显然,我们需要更系统的方法来解决几何结构和功能之间的关系,我们建议以下一些初步的步骤,为实现这一目标。

作一个能源交易机械功能建模机制

机械构件交互他们的环境中使用,通过能量空间分布前的变化,我们认为以下机械机能,可以在这些交流为蓝本。[2]的说法初始投绘制沉重的开创性的工作,由亨利·潘德。我们应视为系统的机械构件,范围从单一的固体或液体流,这通常是自然系统的最低水平,表现出力学的重要属性,固体和溪流的复杂组件。一个封闭的边界,可能是物理或概念,ISA系统的显着特征:系统的边界范围内(部分),在于外部环境,并通过边界发生互动。我们区分如下:S:所讨论的物理系统;

8S:S的边界;

V:含S环境的补充是一个空间区域;

8 V:VS的边界

可能与V不谋而合,8S和8 V的表面(通常主要褶皱2)在E3。我们区分从V因为可能是部分或全部联合国著名的(记得,这说明设计),但必然能够通过一个已知的五能源的连续性的原则适用于高层次的系统抽象。如果没有能量,然后由系统生成。

在不可分割的表面上,介绍了能量通量(瞬时功率)通过边界,P是一个广义的坡印廷矢量划线在能源运输每单位面积,和n的瞬时速度是在8V,在边界问题上的权利,OE正常/ OT是能源(体积)密度在系统中存储,g是能量损耗或损耗率。一个系统的相互作用与变化前通过其物理边界的能源环境:例如,通过辐射能量储存在系统超过其面积的部分,或提供支持托安对外交配的一部分,从而诱发变形能量存储年龄系统。超过前变化发生的物理边界的子集将被称为(以下潘德)能源港口。如果是物理边界的一个子集(“面片”)国际电联端口相关,然后

因此,通过边界的总能量通量的通过端口签署的通量ASUM。我们注意到综合类边界的一个子集SI可能属于多个港口,该机构的力量,如引力和磁场诱导的,可以由小号关联的端口提供获知

在限制式的几何结构和功能的细化。

左侧(2A)通过系统的端口指定的能量交换,并要求被称为磁通矢量(S)和端口几何。右盖板内部能量(重新)分配和/或耗散的条款。这些条款所隐含的物理效应,取决于能源制度(S)和系统的几何形状;有可能是刚体运动,弹性或塑性变形,温度再分配,依此类推。数学评估需要的3-D的边界和/或初始值问题的解决方案。非常明显的简化,随之而来,如果之一,仅从1)端口空间本地化和理想化,所以上式左边的积分。(2A)可单独评估,以产量计算PI,and2)内部能量储存和消耗同样定位在不相交的离散地区,允许右手积分可单独评估当地的积分款项分解构成。与这些假设式。(2A)可能被改写

其中Pi是权力通过IH分立端口,EJ是瞬时能量储存在第j个离散地区,GK 是在第k个离散地区的耗散率。这种细化的限制形式(或离散,或- 在潘德的术语- 网状)是“狄拉克三角洲极限”,其中的端口缩小到零面积的斑点和TRIC 地区的体积缩小点群众,理想化电阻,和喜欢。方程(3)潘德的能源债券的图表,键合图的基础上。它描述了系统温度,可转让,转换,存储,并通过精成几个实数的几何元素被检定的能源- 耗散,颈部离散港口和集中的地区(一般不进行债券的空间位置图表示)和离散港口和地区(例如“价值”,以千克为一个质点,)组成的刻画。较高的视图使一个理想化的(离散)系统的动力学分析,几何可行的分布式系统(即实际)从这样的分析,但可以推断小,基本上所有的几何结构必须引起。显然,我们已经走得太远,即,已经丢掉了太多的几何图形。

图1 简易支架的设计

走向几何适当的角色,我们想退一步限制完善的,只是讨论,所有形式的疑问和观念的丢失,并在问题,包括一些连续的几何- 而不是全面爆发式所涵盖的领域的问题。除非这是不可避免的。我们将提出以下三个互动的形式和功能,我们相信这将产生几何定义(但不一定是最佳的)设计的原则。从实践中得出- 支架的设计- 一个简单而常见的例子将激励的讨论(图1)设计开始与著名DI-直径三洞和配置是由一个未知的固体进行(图。LA);这些队友与其他部分(两个螺钉和枢轴销)。老板是创建包含孔(图磅),因为关注与孔之间的传递其他组件的干扰。最后孔和老板联系在一起,作为在图的一部分。LC和LD,最终的形状与间隙,强度,重量和审美和制造简单的标准管辖。从这个例子可以得出两个简

单但重要的推论。首先,初始孔(加上一些隐含在第三个层面的约束表面)括号内的能源港口;它们完全指定几何,并指定由支架是做什么的意义- 维护港口的相对位置,其几何承认旋转运动。相关的能源制度(力,扭矩:弹性),原则上可以完全指定为好,但在实践中,他们往往只暗示或“理解。”其次,余下的几何是全权的,但要求限制孔将连接坚实的约束

图2 支架位置固定的特点

固体不干扰其他组件,等等。我们注意到,在支架上的单组分,形状优化通常需要全覆盖式3-D场问题的解决方案。(2A),我们从这个例子和其他诱导:原则1。系统的“功能”是由一般亚群挡住物理边界,其能源港口,能源制度,对这些端口进行操作,同时应充分界定。该系统的其余几何酌情元提供

1)承认至少有一个系统,满足港口规范,应征者具备的物理实现.

2)其他外部约束,如整体规模上,都得到满足。原则2。可派代表在一个系统内能量的方式交流,独立的几何结构尝试,例如:通过键合图图2显示了代表固定位置的能力国税发支架连接到本地的刚性端口的理想弹簧(非唯一)。这种支架的部分机能,仅从理想的弹性行为,这种假设的代表权应进行检查,如有限元分析,作为支架的最终形状被确定。图3显示了一个稍微复杂的系统的一个指标,通过已知的几何口(端口),取代旋转指示器相应的感官压力。输出指示灯是一个港口,因为我们需要它能够

图3 压力测量系统

做对环境的工作,例如克服制约了旅游的定义范围的扭矩指定的,因此必须定义其几何。该系统还具有第三个支持端口。该系统的主要功能是代表国内1压力/扭矩变压器和1旋转弹簧撰稿显示乌尔里希的风格债券图形元素和见环[3],但

这种表示不独特,它可能会被其他,随意更换甲肝相同的输入/输出机能,加上国内其他路径终止理想化元素的精心安排。方程(4)提供的理由为原则2。基本思想是港口流动式左。(2A)可处理包括内部(右边积分式(2A))在许多方面。如果我们原则上是放心我,或简单地假设,即内部解决方案存在,那么我们可能会活动的数量网纹式的内部几何和处理。(3)原则3。原则1和2必须持

有组合分解系统中定义的所有子系统。原则3提供的几何形状和功能的同时细化的手段。它使复杂的系统分解成递归功能子系统提供的罚款作为一个所得的端口。组合细化的限制是单件,并在这个水平,就必须解决的EQ域的问题。(2A),以获得完整的几何规格。

结束语

上述思想的目的是寻找手段几何建立一个适当的正式角色INA机械设计理论。这似乎是显而易见的几何,应该有这样的作用,但需要建立它的工作才刚刚开始。

特点后记备注

这项工作持续了数月的努力,表征几何特征,在一个正式的方式,基本上未能努力。事实上,机械设计努力的动机和制造经常讨论,并在完成“功能,”但也有不同意的观点儿子有什么特点“是”或“做”[4]。(槽,避免信口开河,网,并轴,是典型的特点;所有涉及这样或那样的几何形状。)

我们开始了一个猜想:一个几何特征可以作为定义政权的能量交换端口的几何理想化定义。(这种观点是有吸引力,因为它意味着该系统的功能,集指定所有需要定义与环境系统的相互作用的几何;。,其余的几何形状取决于约束和优化),我们再进行的,猜想是正式在设计,制造,检查应用程序一致。例如,在加工,几何特征也许与拆下的材料边界;充满活力的过程是加工本身,其动态合理以及在宏观意义上的理解。夹紧功能,可去罚款,主要是通过弹性储能,在测量过程中所涉及的充满活力的交流功能,通过检查等,但酸的解释越来越做作和安装我们的困难与固体和其他非表面特征,我们就开始感,不能被定义在一个纯粹的语法系统以外的任何通用系统的功能。

目前,我们相信,特点是简单中形成的结构,往往在第十进制的形式,代表,被称为解决当地问题。虽然语法结构可以强加给他们的,其基本语义可以有很大的不同,需要不涉及特定种类的几何形状,或任何几何。但是,如果要正确使用的功能,一个功能上下文必须提供的技术条件和标准,导致解决方案的功能代表。鉴于功能的上下文(例如,作为一个去签名者的头域知识)和相应的推理能力,以适应当前的问题的解决,功能可以非常有效,他们胡男子设计师之间的人气证明了这一点。

Duffey和Dixson[5]最近的工作表明,功能可以在自动设计功能,环境和适当的推理能力提供时使用。(Duffey and Dixson的处理功能似乎特设但“ad-hocery”可能是内在的,如果我们目前的许可功能的看法是正确的。)功能可能是危险的,如果没有他们的环境和适当的推理能力,废话设计产生某些自动设计系统的说明。

最后,我们想指出,为“地方问题的已知解决方案”的功能特性会将计划的

强有力的约束相结合的功能,使新的功能。一个功能相结合,使感,只有当它可以被证明是一个有效的解决方案,以一个定义良好的本地问题。但即使确定的组合,作为一个组成部分,其功能做水管可能被证明是非常困难的问题域。

致谢。

这里报道的工作是支持的,由通用汽车公司根据其公司的奖学金计划,并授予国家科学基金会下的一部分MIP-87-19196。

References:

1. Alexander, C., Notes on the Synthesis of Form, Harvard University Press, 1964

2. Paynter, H.M., Analysis and Design of Engineering Systems, MIT Press, 1961

3. Ulrich, K.T. and Seering, W.P., "Conceptual Design: Synthesis of System of Components," 1987ASME Winter Annual Meeting, PED Vol. 25

4. Report of the Workshop on Features in Design and Manufacturing, February 26-28, 1988 University of California, Los Angeles

5. Duffey, M.R. and Dixon, J.R., "Automating extrusion de-sign: a case study in geometric and topological reasoning for mechanical design," Computer-Aided Design, Vol. 20, No.10, pp. 589-596, December 1988

冲压模具技术外文翻译(含外文文献)

前言 在目前激烈的市场竞争中,产品投入市场的迟早往往是成败的关键。模具是高质量、高效率的产品生产工具,模具开发周期占整个产品开发周期的主要部分。因此客户对模具开发周期要求越来越短,不少客户把模具的交货期放在第一位置,然后才是质量和价格。因此,如何在保证质量、控制成本的前提下加工模具是值得认真考虑的问题。模具加工工艺是一项先进的制造工艺,已成为重要发展方向,在航空航天、汽车、机械等各行业得到越来越广泛的应用。模具加工技术,可以提高制造业的综合效益和竞争力。研究和建立模具工艺数据库,为生产企业提供迫切需要的高速切削加工数据,对推广高速切削加工技术具有非常重要的意义。本文的主要目标就是构建一个冲压模具工艺过程,将模具制造企业在实际生产中结合刀具、工件、机床与企业自身的实际情况积累得高速切削加工实例、工艺参数和经验等数据有选择地存储到高速切削数据库中,不但可以节省大量的人力、物力、财力,而且可以指导高速加工生产实践,达到提高加工效率,降低刀具费用,获得更高的经济效益。 1.冲压的概念、特点及应用 冲压是利用安装在冲压设备(主要是压力机)上的模具对材料施加压力,使其产生分离或塑性变形,从而获得所需零件(俗称冲压或冲压件)的一种压力加工方法。冲压通常是在常温下对材料进行冷变形加工,且主要采用板料来加工成所需零件,所以也叫冷冲压或板料冲压。冲压是材料压力加工或塑性加工的主要方法之一,隶属于材料成型工程术。 冲压所使用的模具称为冲压模具,简称冲模。冲模是将材料(金属或非金属)批量加工成所需冲件的专用工具。冲模在冲压中至关重要,没有符合要求的冲模,批量冲压生产就难以进行;没有先进的冲模,先进的冲压工艺就无法实现。冲压工艺与模具、冲压设备和冲压材料构成冲压加工的三要素,只有它们相互结合才能得出冲压件。 与机械加工及塑性加工的其它方法相比,冲压加工无论在技术方面还是经济方面都具有许多独特的优点,主要表现如下; (1) 冲压加工的生产效率高,且操作方便,易于实现机械化与自动化。这是

外文翻译

Load and Ultimate Moment of Prestressed Concrete Action Under Overload-Cracking Load It has been shown that a variation in the external load acting on a prestressed beam results in a change in the location of the pressure line for beams in the elastic range.This is a fundamental principle of prestressed construction.In a normal prestressed beam,this shift in the location of the pressure line continues at a relatively uniform rate,as the external load is increased,to the point where cracks develop in the tension fiber.After the cracking load has been exceeded,the rate of movement in the pressure line decreases as additional load is applied,and a significant increase in the stress in the prestressing tendon and the resultant concrete force begins to take place.This change in the action of the internal moment continues until all movement of the pressure line ceases.The moment caused by loads that are applied thereafter is offset entirely by a corresponding and proportional change in the internal forces,just as in reinforced-concrete construction.This fact,that the load in the elastic range and the plastic range is carried by actions that are fundamentally different,is very significant and renders strength computations essential for all designs in order to ensure that adequate safety factors exist.This is true even though the stresses in the elastic range may conform to a recognized elastic design criterion. It should be noted that the load deflection curve is close to a straight line up to the cracking load and that the curve becomes progressively more curved as the load is increased above the cracking load.The curvature of the load-deflection curve for loads over the cracking load is due to the change in the basic internal resisting moment action that counteracts the applied loads,as described above,as well as to plastic strains that begin to take place in the steel and the concrete when stressed to high levels. In some structures it may be essential that the flexural members remain crack free even under significant overloads.This may be due to the structures’being exposed to exceptionally corrosive atmospheres during their useful life.In designing prestressed members to be used in special structures of this type,it may be necessary to compute the load that causes cracking of the tensile flange,in order to ensure that adequate safety against cracking is provided by the design.The computation of the moment that will cause cracking is also necessary to ensure compliance with some design criteria. Many tests have demonstrated that the load-deflection curves of prestressed beams are approximately linear up to and slightly in excess of the load that causes the first cracks in the tensile flange.(The linearity is a function of the rate at which the load is applied.)For this reason,normal elastic-design relationships can be used in computing the cracking load by simply determining the load that results in a net tensile stress in the tensile flange(prestress minus the effects of the applied loads)that is equal to the tensile strength of the concrete.It is customary to assume that the flexural tensile strength of the concrete is equal to the modulus of rupture of the

机械专业毕业论文外文翻译

附录一英文科技文献翻译 英文原文: Experimental investigation of laser surface textured parallel thrust bearings Performance enhancements by laser surface texturing (LST) of parallel-thrust bearings is experimentally investigated. Test results are compared with a theoretical model and good correlation is found over the relevant operating conditions. A compari- son of the performance of unidirectional and bi-directional partial-LST bearings with that of a baseline, untextured bearing is presented showing the bene?ts of LST in terms of increased clearance and reduced friction. KEY WORDS: ?uid ?lm bearings, slider bearings, surface texturing 1. Introduction The classical theory of hydrodynamic lubrication yields linear (Couette) velocity distribution with zero pressure gradients between smooth parallel surfaces under steady-state sliding. This results in an unstable hydrodynamic ?lm that would collapse under any external force acting normal to the surfaces. However, experience shows that stable lubricating ?lms can develop between parallel sliding surfaces, generally because of some mechanism that relaxes one or more of the assumptions of the classical theory. A stable ?uid ?lm with su?cient load-carrying capacity in parallel sliding surfaces can be obtained, for example, with macro or micro surface structure of di?erent types. These include waviness [1] and protruding microasperities [2–4]. A good literature review on the subject can be found in Ref. [5]. More recently, laser surface texturing (LST) [6–8], as well as inlet roughening by longitudinal or transverse grooves [9] were suggested to provide load capacity in parallel sliding. The inlet roughness concept of Tonder [9] is based on ??e?ective clearance‘‘ reduction in the sliding direction and in this respect it is identical to the par- tial-LST concept described in ref. [10] for generating hydrostatic e?ect in high-pressure mechanical seals. Very recently Wang et al. [11] demonstrated experimentally a doubling of the load-carrying capacity for the surface- texture design by reactive ion etching of SiC

毕业设计外文翻译资料

外文出处: 《Exploiting Software How to Break Code》By Greg Hoglund, Gary McGraw Publisher : Addison Wesley Pub Date : February 17, 2004 ISBN : 0-201-78695-8 译文标题: JDBC接口技术 译文: JDBC是一种可用于执行SQL语句的JavaAPI(ApplicationProgrammingInterface应用程序设计接口)。它由一些Java语言编写的类和界面组成。JDBC为数据库应用开发人员、数据库前台工具开发人员提供了一种标准的应用程序设计接口,使开发人员可以用纯Java语言编写完整的数据库应用程序。 一、ODBC到JDBC的发展历程 说到JDBC,很容易让人联想到另一个十分熟悉的字眼“ODBC”。它们之间有没有联系呢?如果有,那么它们之间又是怎样的关系呢? ODBC是OpenDatabaseConnectivity的英文简写。它是一种用来在相关或不相关的数据库管理系统(DBMS)中存取数据的,用C语言实现的,标准应用程序数据接口。通过ODBCAPI,应用程序可以存取保存在多种不同数据库管理系统(DBMS)中的数据,而不论每个DBMS使用了何种数据存储格式和编程接口。 1.ODBC的结构模型 ODBC的结构包括四个主要部分:应用程序接口、驱动器管理器、数据库驱动器和数据源。应用程序接口:屏蔽不同的ODBC数据库驱动器之间函数调用的差别,为用户提供统一的SQL编程接口。 驱动器管理器:为应用程序装载数据库驱动器。 数据库驱动器:实现ODBC的函数调用,提供对特定数据源的SQL请求。如果需要,数据库驱动器将修改应用程序的请求,使得请求符合相关的DBMS所支持的文法。 数据源:由用户想要存取的数据以及与它相关的操作系统、DBMS和用于访问DBMS的网络平台组成。 虽然ODBC驱动器管理器的主要目的是加载数据库驱动器,以便ODBC函数调用,但是数据库驱动器本身也执行ODBC函数调用,并与数据库相互配合。因此当应用系统发出调用与数据源进行连接时,数据库驱动器能管理通信协议。当建立起与数据源的连接时,数据库驱动器便能处理应用系统向DBMS发出的请求,对分析或发自数据源的设计进行必要的翻译,并将结果返回给应用系统。 2.JDBC的诞生 自从Java语言于1995年5月正式公布以来,Java风靡全球。出现大量的用java语言编写的程序,其中也包括数据库应用程序。由于没有一个Java语言的API,编程人员不得不在Java程序中加入C语言的ODBC函数调用。这就使很多Java的优秀特性无法充分发挥,比如平台无关性、面向对象特性等。随着越来越多的编程人员对Java语言的日益喜爱,越来越多的公司在Java程序开发上投入的精力日益增加,对java语言接口的访问数据库的API 的要求越来越强烈。也由于ODBC的有其不足之处,比如它并不容易使用,没有面向对象的特性等等,SUN公司决定开发一Java语言为接口的数据库应用程序开发接口。在JDK1.x 版本中,JDBC只是一个可选部件,到了JDK1.1公布时,SQL类包(也就是JDBCAPI)

机械设计设计外文文献翻译、中英文翻译、外文翻译

机械设计 摘要:机器是由机械装置和其它组件组成的。它是一种用来转换或传递能量的装置,例如:发动机、涡轮机、车辆、起重机、印刷机、洗衣机、照相机和摄影机等。许多原则和设计方法不但适用于机器的设计,也适用于非机器的设计。术语中的“机械装置设计”的含义要比“机械设计”的含义更为广泛一些,机械装置设计包括机械设计。在分析运动及设计结构时,要把产品外型以及以后的保养也要考虑在机械设计中。在机械工程领域中,以及其它工程领域中,所有这些都需要机械设备,比如:开关、凸轮、阀门、船舶以及搅拌机等。 关键词:设计流程设计规则机械设计 设计流程 设计开始之前就要想到机器的实际性,现存的机器需要在耐用性、效率、重量、速度,或者成本上得到改善。新的机器必需具有以前机器所能执行的功能。 在设计的初始阶段,应该允许设计人员充分发挥创造性,不要受到任何约束。即使产生了许多不切实际的想法,也会在设计的早期,即在绘制图纸之前被改正掉。只有这样,才不致于阻断创新的思路。通常,还要提出几套设计方案,然后加以比较。很有可能在这个计划最后决定中,使用了某些不在计划之内的一些设想。 一般的当外型特点和组件部分的尺寸特点分析得透彻时,就可以全面的设计和分析。接着还要客观的分析机器性能的优越性,以及它的安全、重量、耐用性,并且竞争力的成本也要考虑在分析结果之内。每一个至关重要的部分要优化它的比例和尺寸,同时也要保持与其它组成部分相协调。 也要选择原材料和处理原材料的方法。通过力学原理来分析和实现这些重要的特性,如那些静态反应的能量和摩擦力的最佳利用,像动力惯性、加速动力和能量;包括弹性材料的强度、应力和刚度等材料的物理特性,以及流体润滑和驱动器的流体力学。设计的过程是重复和合作的过程,无论是正式或非正式的进行,对设计者来说每个阶段都很重要。 最后,以图样为设计的标准,并建立将来的模型。如果它的测试是符合事先要

机械设计外文翻译(中英文)

机械设计理论 机械设计是一门通过设计新产品或者改进老产品来满足人类需求的应用技术科学。它涉及工程技术的各个领域,主要研究产品的尺寸、形状和详细结构的基本构思,还要研究产品在制造、销售和使用等方面的问题。 进行各种机械设计工作的人员通常被称为设计人员或者机械设计工程师。机械设计是一项创造性的工作。设计工程师不仅在工作上要有创造性,还必须在机械制图、运动学、工程材料、材料力学和机械制造工艺学等方面具有深厚的基础知识。如前所诉,机械设计的目的是生产能够满足人类需求的产品。发明、发现和科技知识本身并不一定能给人类带来好处,只有当它们被应用在产品上才能产生效益。因而,应该认识到在一个特定的产品进行设计之前,必须先确定人们是否需要这种产品。 应当把机械设计看成是机械设计人员运用创造性的才能进行产品设计、系统分析和制定产品的制造工艺学的一个良机。掌握工程基础知识要比熟记一些数据和公式更为重要。仅仅使用数据和公式是不足以在一个好的设计中做出所需的全部决定的。另一方面,应该认真精确的进行所有运算。例如,即使将一个小数点的位置放错,也会使正确的设计变成错误的。 一个好的设计人员应该勇于提出新的想法,而且愿意承担一定的风险,当新的方法不适用时,就使用原来的方法。因此,设计人员必须要有耐心,因为所花费的时间和努力并不能保证带来成功。一个全新的设计,要求屏弃许多陈旧的,为人们所熟知的方法。由于许多人墨守成规,这样做并不是一件容易的事。一位机械设计师应该不断地探索改进现有的产品的方法,在此过程中应该认真选择原有的、经过验证的设计原理,将其与未经过验证的新观念结合起来。 新设计本身会有许多缺陷和未能预料的问题发生,只有当这些缺陷和问题被解决之后,才能体现出新产品的优越性。因此,一个性能优越的产品诞生的同时,也伴随着较高的风险。应该强调的是,如果设计本身不要求采用全新的方法,就没有必要仅仅为了变革的目的而采用新方法。 在设计的初始阶段,应该允许设计人员充分发挥创造性,不受各种约束。即使产生了许多不切实际的想法,也会在设计的早期,即绘制图纸之前被改正掉。只有这样,才不致于堵塞创新的思路。通常,要提出几套设计方案,然后加以比较。很有可能在最后选定的方案中,采用了某些未被接受的方案中的一些想法。

机械类毕业设计外文翻译

本科毕业论文(设计) 外文翻译 学院:机电工程学院 专业:机械工程及自动化 姓名:高峰 指导教师:李延胜 2011年05 月10日 教育部办公厅 Failure Analysis,Dimensional Determination And

Analysis,Applications Of Cams INTRODUCTION It is absolutely essential that a design engineer know how and why parts fail so that reliable machines that require minimum maintenance can be designed.Sometimes a failure can be serious,such as when a tire blows out on an automobile traveling at high speed.On the other hand,a failure may be no more than a nuisance.An example is the loosening of the radiator hose in an automobile cooling system.The consequence of this latter failure is usually the loss of some radiator coolant,a condition that is readily detected and corrected.The type of load a part absorbs is just as significant as the magnitude.Generally speaking,dynamic loads with direction reversals cause greater difficulty than static loads,and therefore,fatigue strength must be considered.Another concern is whether the material is ductile or brittle.For example,brittle materials are considered to be unacceptable where fatigue is involved. Many people mistakingly interpret the word failure to mean the actual breakage of a part.However,a design engineer must consider a broader understanding of what appreciable deformation occurs.A ductile material,however will deform a large amount prior to rupture.Excessive deformation,without fracture,may cause a machine to fail because the deformed part interferes with a moving second part.Therefore,a part fails(even if it has not physically broken)whenever it no longer fulfills its required function.Sometimes failure may be due to abnormal friction or vibration between two mating parts.Failure also may be due to a phenomenon called creep,which is the plastic flow of a material under load at elevated temperatures.In addition,the actual shape of a part may be responsible for failure.For example,stress concentrations due to sudden changes in contour must be taken into account.Evaluation of stress considerations is especially important when there are dynamic loads with direction reversals and the material is not very ductile. In general,the design engineer must consider all possible modes of failure,which include the following. ——Stress ——Deformation ——Wear ——Corrosion ——Vibration ——Environmental damage ——Loosening of fastening devices

毕业设计外文翻译附原文

外文翻译 专业机械设计制造及其自动化学生姓名刘链柱 班级机制111 学号1110101102 指导教师葛友华

外文资料名称: Design and performance evaluation of vacuum cleaners using cyclone technology 外文资料出处:Korean J. Chem. Eng., 23(6), (用外文写) 925-930 (2006) 附件: 1.外文资料翻译译文 2.外文原文

应用旋风技术真空吸尘器的设计和性能介绍 吉尔泰金,洪城铱昌,宰瑾李, 刘链柱译 摘要:旋风型分离器技术用于真空吸尘器 - 轴向进流旋风和切向进气道流旋风有效地收集粉尘和降低压力降已被实验研究。优化设计等因素作为集尘效率,压降,并切成尺寸被粒度对应于分级收集的50%的效率进行了研究。颗粒切成大小降低入口面积,体直径,减小涡取景器直径的旋风。切向入口的双流量气旋具有良好的性能考虑的350毫米汞柱的低压降和为1.5μm的质量中位直径在1米3的流量的截止尺寸。一使用切向入口的双流量旋风吸尘器示出了势是一种有效的方法,用于收集在家庭中产生的粉尘。 摘要及关键词:吸尘器; 粉尘; 旋风分离器 引言 我们这个时代的很大一部分都花在了房子,工作场所,或其他建筑,因此,室内空间应该是既舒适情绪和卫生。但室内空气中含有超过室外空气因气密性的二次污染物,毒物,食品气味。这是通过使用产生在建筑中的新材料和设备。真空吸尘器为代表的家电去除有害物质从地板到地毯所用的商用真空吸尘器房子由纸过滤,预过滤器和排气过滤器通过洁净的空气排放到大气中。虽然真空吸尘器是方便在使用中,吸入压力下降说唱空转成比例地清洗的时间,以及纸过滤器也应定期更换,由于压力下降,气味和细菌通过纸过滤器内的残留粉尘。 图1示出了大气气溶胶的粒度分布通常是双峰形,在粗颗粒(>2.0微米)模式为主要的外部来源,如风吹尘,海盐喷雾,火山,从工厂直接排放和车辆废气排放,以及那些在细颗粒模式包括燃烧或光化学反应。表1显示模式,典型的大气航空的直径和质量浓度溶胶被许多研究者测量。精细模式在0.18?0.36 在5.7到25微米尺寸范围微米尺寸范围。质量浓度为2?205微克,可直接在大气气溶胶和 3.85至36.3μg/m3柴油气溶胶。

机械手机械设计论文中英文资料对照外文翻译

中英文资料对照外文翻译 机械设计 摘要: 机器由机械和其他元件组成的用来转换和传输能量的装置。比如:发动机、涡轮机、车、起重机、印刷机、洗衣机和摄影机。许多机械方面设计的原则和方法也同样适用于非机械方面。术语中的“构造设计”的含义比“机械设计”更加广泛,构造设计包括机械设计。在进行运动分析和结构设计时要把产品的维护和外形也考虑在机械设计中。在机械工程领域中,以及其它工程领域,都需要机械设备,比如:开关、凸轮、阀门、船舶以及搅拌机等。 关键词:设计流程设计规则机械设计 设计流程 设计开始之前就要想到机器的实用性,现有的机器需要在耐用性、效率、重量、速度,或者成本上得到改善。新的机器必需能够完全或部分代替以前人的功能,比如计算、装配、维修。 在设计的初级阶段,应该充分发挥设计人员的创意,不要受到任何约束。即使有一些不切实际的想法,也可以在设计的早期,即在绘制图纸之前被改正掉。只有这样,才不致于阻断创新的思路。通常,必须提出几套设计方案,然后进行比较。很有可能在这个计划最后指定使用某些不在计划方案内的一些想法的计划。 一般当产品的外型和组件的尺寸特点已经显现出来的时候,就可以进行全面的设计和分析。接着还要客观的分析机器性能、安全、重量、耐用性,并且成本也要考虑在内。每一个至关重要的部分要优化它的比例和尺寸,同时也要保持与其它组成部分的平衡。 选择原材料和工艺的方法。通过力学原理来分析和实现这些重要的特性,如稳定和反应的能量和摩擦力的利用,动力惯性、加速度、能量;包括材料的弹性强度、应力和刚度等物理特性,以及流体的润滑和驱动器的流体力学。设计的过程是一个反复与合作的过程,无论是正式的还是非正式的,对设计者来说每个阶段都很重要。。产品设计需要大量的研究和提升。许多的想法,必须通过努力去研究成为一种理念,然后去使用或放弃。

机械类外文翻译

机械类外文翻译 塑料注塑模具浇口优化 摘要:用单注塑模具浇口位置的优化方法,本文论述。该闸门优化设计的目的是最大限度地减少注塑件翘曲变形,翘曲,是因为对大多数注塑成型质量问题的关键,而这是受了很大的部分浇口位置。特征翘曲定义为最大位移的功能表面到表面的特征描述零件翘曲预测长度比。结合的优化与数值模拟技术,以找出最佳浇口位置,其中模拟armealing算法用于搜索最优。最后,通过实例讨论的文件,它可以得出结论,该方法是有效的。 注塑模具、浇口位臵、优化、特征翘曲变形关键词: 简介 塑料注射成型是一种广泛使用的,但非常复杂的生产的塑料产品,尤其是具有高生产的要求,严密性,以及大量的各种复杂形状的有效方法。质量ofinjection 成型零件是塑料材料,零件几何形状,模具结构和工艺条件的函数。注塑模具的一个最重要的部分主要是以下三个组件集:蛀牙,盖茨和亚军,和冷却系统。拉米夫定、Seow(2000)、金和拉米夫定(2002) 通过改变部分的尼斯达到平衡的腔壁厚度。在平衡型腔充填过程提供了一种均匀分布压力和透射电镜,可以极大地减少高温的翘曲变形的部分~但仅仅是腔平衡的一个重要影响因素的一部分。cially Espe,部分有其功能上的要求,其厚度通常不应该变化。 pointview注塑模具设计的重点是一门的大小和位臵,以及流道系统的大小和布局。大门的大小和转轮布局通常被认定为常量。相对而言,浇口位臵与水口大小布局也更加灵活,可以根据不同的零件的质量。 李和吉姆(姚开屏,1996a)称利用优化流道和尺寸来平衡多流道系统为multiple 注射系统。转轮平衡被形容为入口压力的差异为一多型腔模具用相同的蛀牙,也存

引进外资外文翻译资料

河南科技学院新科学院 2013届本科毕业生论文(设计) 英文文献及翻译 Foreign capital inflows and welfare in an economy with imperfect competition 学生姓名:王艳杰 所在院系:经济系 所学专业:国际经济与贸易 导师姓名:侯黎杰 完成时间:2013年4月15日

Foreign capital inflows and welfare in an economy with imperfect competition Abstract:This paper examines the resource allocational and welfare effects of exogenous inflows of foreign capital in a general-equilibrium model with oligopolistic competition and unemployment. Although the welfare impact for the short run is ambiguous and dependent upon the strength of excess profits and scale economies relative to unemployment in manufacturing, in the long run additional inflows of foreign capital always improve national welfare with capital mobility. Hence, attracting foreign capital remains a sound policy for economies characterized by imperfect competition, scale economies,and regional unemployment. Keywords: International capital mobility; Imperfect competition; Welfare 1.Introduction The welfare effects of exogenous inflows of foreign capital in the presence of trade restrictions have been extensively studied. Brecher and Diaz Alejandro (1977) show that when imports are subject to tariffs, an introduction of fo reign capital inflows accentuates the tariff distortion and hence reduces national welfare if the import-competing sector is relatively capital-intensive. In contrast, Dei (1985) shows that when imports are restricted by quotas,foreign capital inflows in the presence of foreign-owned capital always improve welfare by depressing the rental and so lowering the payments to existing foreign-owned capital. Recently, Neary (1981), using a common framework for both tariffs and quotas, obtains more general results of foreign capital inflows; the welfare effect of such inflows depends crucially on whether foreign-owned capital exists initially in the home country. In addition, Khan (1982) and Grinols (1991) have examined the effects of foreign capital inflows for a generalized Harris-Todaro economy under tariff protection. Khan finds that the result by Brecher and Diaz Alejandro is still valid even in the presence of unemployment, whereas Grinols argues that increased foreign capital need not be detrimental to welfare if the opportunity costs of labor are sufficiently low. Noteworthy is that the models used by these authors are all based upon the premise of perfect competition along with constant returns-to-scale technology. Although perfect competition serves as a useful assumption in crystallizing theoretical insights, it nevertheless fails to depict many of the real-world phenomena. The real-world economy is characterized, to a large extent, by imperfect competition and economies of scale. The policy implications of imperfect competition and economies

机械类毕业设计外文文献翻译

沈阳工业大学工程学院 毕业设计(论文)外文翻译 毕业设计(论文)题目:工具盒盖注塑模具设计 外文题目:Friction , Lubrication of Bearing 译文题目:轴承的摩擦与润滑 系(部):机械系 专业班级:机械设计制造及其自动化0801 学生姓名:王宝帅 指导教师:魏晓波 2010年10 月15 日

外文文献原文: Friction , Lubrication of Bearing In many of the problem thus far , the student has been asked to disregard or neglect friction . Actually , friction is present to some degree whenever two parts are in contact and move on each other. The term friction refers to the resistance of two or more parts to movement. Friction is harmful or valuable depending upon where it occurs. friction is necessary for fastening devices such as screws and rivets which depend upon friction to hold the fastener and the parts together. Belt drivers, brakes, and tires are additional applications where friction is necessary. The friction of moving parts in a machine is harmful because it reduces the mechanical advantage of the device. The heat produced by friction is lost energy because no work takes place. Also , greater power is required to overcome the increased friction. Heat is destructive in that it causes expansion. Expansion may cause a bearing or sliding surface to fit tighter. If a great enough pressure builds up because made from low temperature materials may melt. There are three types of friction which must be overcome in moving parts: (1)starting, (2)sliding, and(3)rolling. Starting friction is the friction between two solids that tend to resist movement. When two parts are at a state of rest, the surface irregularities of both parts tend to interlock and form a wedging action. To produce motion in these parts, the wedge-shaped peaks and valleys of the stationary surfaces must be made to slide out and over each other. The rougher the two surfaces, the greater is starting friction resulting from their movement . Since there is usually no fixed pattern between the peaks and valleys of two mating parts, the irregularities do not interlock once the parts are in motion but slide over each other. The friction of the two surfaces is known as sliding friction. As shown in figure ,starting friction is always greater than sliding friction . Rolling friction occurs when roller devces are subjected to tremendous stress which cause the parts to change shape or deform. Under these conditions, the material in front of a roller tends to pile up and forces the object to roll slightly uphill. This changing of shape , known as deformation, causes a movement of molecules. As a result ,heat is produced from the added energy required to keep the parts turning and overcome friction. The friction caused by the wedging action of surface irregularities can be overcome

相关主题