搜档网
当前位置:搜档网 › 建筑类外文翻译+译文

建筑类外文翻译+译文

建筑类外文翻译+译文
建筑类外文翻译+译文

Architecture in a Climate of Change

Page52-Page62

Low energy techniques for housing

It would appear that,for the industrialised countries,the best chance of rescue lies with the built environment because buildings in use or in the course of erection are the biggest single indirect source of carbon emissions generated by burning fossil fuels,accounting for over 50 per cent of total emissions.If you add the transport costs generated by buildings the UK government estimate is 75 per cent.It is the built environment which is the sector that can most easily accommodate fairly rapid change without pain.In fact,upgrading buildings, especially the lower end of the housing stock,creates a cluster of interlocking virtuous circles. Construction systems

Having considered the challenge presented by global warming and the opportunities to generate fossil-free energy,it is now time to consider how the demand side of the energy equation can respond to that challenge.The built environment is the greatest sectoral consumer of energy and,within that sector,housing is in pole position accounting for 28 per cent of all UK carbon dioxide (CO2) emissions.

In the UK housing has traditionally been of masonry and since the early 1920s this has largely been of cavity construction.The purpose was to ensure that a saturated external leaf would have no physical contact with the inner leaf apart from wall ties and that water would be discharged through weep holes at the damp-proof course level.Since the introduction of thermal regulations,initially deemed necessary to conserve energy rather than the planet,it has been common practice to introduce insulation into the cavity.For a long time it was mandatory to preserve a space within the cavity and a long rearguard battle was fought by the traditionalists to preserve this‘sacred space’.Defeat was finally conceded when some extensive research by the Building Research Establishment found that there was no greater risk of damp penetration with filled cavities and in fact damp through condensation was reduced.

Solid masonry walls with external insulation are common practice in continental Europe and are beginning to make an appearance in the UK.In Cornwall the Penwith Housing Association has built apartments of this construction on the sea front, perhaps the most challenging of situations.

The advantages of masonry construction are:

● It is a tried and tested technology familiar to house building companies of all sizes.

● It is durable and generally risk free as regards catastrophic failure–though not entirely.A few years ago the entire outer leaf of a university building in Plymouth collapsed due to the fact that the wall ties had corroded.

● Exposed brickwork is a low maintenance system; maintenance demands rise considerably if it receives a rendered finish.

● From the energy efficiency point of view,masonry homes have a relatively high thermal mass which is considerably improved if there are high density masonry

internal walls and concrete floors.

Framed construction

Volume house builders are increasingly resorting to timber-framed construction with a brick outer skin,making them appear identical to full masonry construction.The attraction is the speed of erection especially when elements are fabricated off site. However,there is an unfortunate history behind this system due to shortcomings in quality control.This can apply to timber which has not been adequately cured or seasoned.Framed buildings need to have a vapour barrier to walls as well as roofs. With timber framing it is difficult to avoid piercing the barrier.There can also be problems achieving internal fixings.For the purist,the ultimate criticism is that it is illogical to have a framed building clad in masonry when it cries out for a panel,boarded,slate or tile hung external finish.

Pressed steel frames for homes are now being vigorously promoted by the steel industry.The selling point is again speed of erection but with the added benefit of a guaranteed quality in terms of strength and durability of the material.

From the energy point of view,framed buildings can accommodate high levels of insulation but have relatively poor thermal mass unless this is provided by floors and internal walls.

Innovative techniques

Permanent Insulation Formwork Systems (PIFS) are beginning to make an appearance in Britain.The principle behind PIFS is the use of precision moulded interlocking hollow blocks made from an insulation material,usually expanded polystyrene.They can be rapidly assembled on site and then filled with pump grade concrete.When the concrete has set the result is a highly insulated wall ready for the installation of services and internal and exterior finishes.They can achieve a U-value as low as 0.11 W/m2K.Above three storeys the addition of steel reinforcement is necessary. The advantages of this system are:

● Design flexibility; almost any plan shape is possible.

● Ease and speed of erection;skill requirements are modest which is why it has proved popular with the self-build sector.Experienced erectors can achieve 5 m2 per man hour for erection and placement of concrete.

● The finished product has high structural strength together with considerable thermal mass and high insulation value.

Solar design

Passive solar design

Since the sun drives every aspect of the climate it is logical to describe the techniques adopted in buildings to take advantage of this fact as‘solar design’. The most basic response is referred to as‘passive solar design’.In this case buildings are designed to take full advantage of solar gain without any intermediate operations.

Access to solar radiation is determined by a number of conditions:

● the sun’s position relative to the principal facades of the building(solar altitude and azimuth);

● site orientation and slope;

● existing obstructions on the site;

● potential for overshadowing from obstructions outside the site boundary.

One of the methods by which solar access can be evaluated is the use of some form of sun chart.Most often used is the stereographic sun chart in which a series of radiating lines and concentric circles allow the position of nearby obstructions to insolation,such as other buildings,to be plotted.On the same chart a series of sun path trajectories are also drawn(usually one arc for the 21st day of each month); also marked are the times of the day.The intersection of the obstructions’outlines and the solar trajectories indicate times of transition between sunlight and shade. Normally a different chart is constructed for use at different latitudes (at about two degree intervals).

Sunlight and shade patterns cast by the proposed building itself should also be considered.Graphical and computer prediction techniques may be employed as well as techniques such as the testing of physical models with a heliodon.

Computer modelling of shadows cast by the sun from any position is offered by Integrated Environmental Solutions (IES) with its‘Suncast’program.This is a user-friendly program which should be well within normal undergraduate competence. The spacing between buildings is important if overshading is to be avoided during winter months when the benefit of solar heat gain reaches its peak.On sloping sites there is a critical relationship between the angle of slope and the level of overshading.For example, if overshading is to be avoided at a latitude of 50N,rows of houses on a 10 north-facing slope must be more than twice as far apart than on 10 south-facing slope.

Trees can obviously obstruct sunlight.However,if they are deciduous,they perform the dual function of permitting solar penetration during the winter whilst providing a degree of shading in the summer.

Again spacing between trees and buildings is critical.

Passive solar design can be divided into three broad categories:

● direct gain;

● indirect gain;

● attached sunspace or conservatory.

Each of the three categories relies in a different way on the‘greenhouse effect’as a means of absorbing and retaining heat.The greenhouse effect in buildings is that process which is mimicked by global environmental warming.In buildings,the incident solar radiation is transmitted by facade glazing to the interior where it is absorbed by the internal surfaces causing warming.However,re-emission of heat back through the glazing is blocked by the fact that the radiation is of a much longer wavelength than the incoming radiation.This is because the re-emission is from surfaces at a much lower temperature and the glazing reflects back such radiation to the interior.

Direct gain

Direct gain is the design technique in which one attempts to concentrate the majority of the building’s glazing on the sun-facing facade.Solar radiation is admitted directly into the space concerned.Two examples 30 years apart are the author’s house

in Sheffield,designed in 1967 and the Hockerton Project of 1998 by Robert and Brenda Vale.The main design characteristics are:

● Apertures through which sunlight is admitted should be on the solar side of the building, within about 30 of south for the northern hemisphere.

● Windows facing west may pose a summer overheating risk.

● Windows should be at least double glazed with low emissivity glass (Low E) as now required by the UK Building Regulations.

● The main occupied living spaces should be located on the solar side of the building.

● The floor should be of a high thermal mass to absorb the heat and provide thermal inertia,which reduces temperature fluctuations inside the building.

● As regards the benefits of thermal mass,for the normal daily cycle of heat absorption and emission,it is only about the first 100 mm of thickness which is involved in the storage process.Thickness greater than this provides marginal improvements in performance but can be useful in some longer-term storage options.

● In the case of solid floors,insulation should be beneath the slab.

● A vapour barrier should always be on the warm side of any insulation.

● Thick carpets should be avoided over the main sunlit and heatabsorbing portion of the floor if it serves as a thermal store.However,with suspended timber floors a carpet is an advantage in excluding draughts from a ventilated underfloor zone. During the day and into the evening the warmed floor should slowly release its heat, and the time period over which it happens makes it a very suitable match to domestic circumstances when the main demand for heat is in the early evening.

As far as the glazing is concerned,the following features are recommended: ● Use of external shutters and/or internal insulating panels might be considered to reduce night-time heat loss.

● To reduce the potential of overheating in the summer,shading may be provided by designing deep eaves or external louvres. Internal blinds are the most common technique but have the disadvantage of absorbing radiant heat thus adding to the internal temperature.

● Heat reflecting or absorbing glass may be used to limit overheating.The downside is that it also reduces heat gain at times of the year when it is beneficial. ● Light shelves can help reduce summer overheating whilst improving daylight distribution.

Direct gain is also possible through the glazing located between the building interior and attached sunspace or conservatory;it also takes place through upper level windows of clerestory designs.In each of these cases some consideration is required concerning the nature and position of the absorbing surfaces.

In the UK climate and latitude as a general rule of thumb room depth should not be more than two and a half times the window head height and the glazing area should be between about 25 and 35 per cent of the floor area.

Indirect gain

In this form of design a heat absorbing element is inserted between the incident solar radiation and the space to be heated;thus the heat is transferred in an indirect

way.This often consists of a wall placed behind glazing facing towards the sun,and this thermal storage wall controls the flow of heat into the building.The main elements

● High thermal mass element positioned between sun and internal spaces,the heat absorbed slowly conducts across the wall and is liberated to the interior some time later.

● Materials and thickness of the wall are chosen to modify the heat flow.In homes the flow can be delayed so that it arrives in the evening matched to occupancy periods. Typical thicknesses of the thermal wall are 20–30 cm.

● Glazing on the outer side of the thermal wall is used to provide some insulation against heat loss and help retain the solar gain by making use of the greenhouse effect.

● The area of the thermal storage wall element should be about 15–20 per cent of the floor area of the space into which it emits heat.

● In order to derive more immediate heat benefit,air can be circulated from the building through the air gap between wall and glazing and back into the room.In this modified form this element is usually referred to as a Trombe wall. Heat reflecting blinds should be inserted between the glazing and the thermal wall to limit heat build-up in summer.

In countries which receive inconsistent levels of solar radiation throughout the day because of climatic factors (such as in the UK),the option to circulate air is likely to be of greater benefit than awaiting its arrival after passage through the thermal storage wall.

At times of excess heat gain the system can provide alternative benefits with the air circulation vented directly to the exterior carrying away its heat,at the same time drawing in outside air to the building from cooler external spaces.

Indirect gain options are often viewed as being the least aesthetically pleasing of the passive solar options,partly because of the restrictions on position and view out from remaining windows,and partly as a result of the implied dark surface finishes of the absorbing surfaces.

As a result,this category of the three prime solar design technologies is not as widely used as its efficiency and effectiveness would suggest.

Attached sunspace/conservatory

This has become a popular feature in both new housing and as an addition to existing homes.It can function as an extension of living space,a solar heat store,a preheater for ventilation air or simply an adjunct greenhouse for plants.On balance it is considered that conservatories are a net contributor to global warming since they are often heated.Ideally the sunspace should be capable of being isolated from the main building to reduce heat loss in winter and excessive gain in summer.The area of glazing in the sunspace should be 20–30 per cent of the area of the room to which it is attached.The most adventurous sunspace so far encountered is in the Hockerton housing development which will feature later.

Ideally the summer heat gain should be used to charge a seasonal thermal storage element to provide background warmth in winter.

At the very least,air flow paths between the conservatory and the main building should be carefully controlled.

Active solar thermal systems

A distinction must be drawn between passive means of utilising the thermal heat of the sun, discussed earlier,and those of a more‘active’nature Active systems take solar gain a step further than passive solar.They convert direct solar radiation into another form of energy.Solar collectors preheat water using a closed circuit calorifier.The emergence of Legionella has highlighted the need to store hot water at a temperature above 60 C which means that for most of the year in temperate climes active solar heating must be supplemented by some form of heating.

Active systems are able to deliver high quality energy.However,a penalty is incurred since energy is required to control and operate the system known as the ‘parasitic energy requirement’.A further distinction is the difference between systems using the thermal heat of the sun,and systems,such as photovoltaic cells, which convert solar energy directly into electrical power.

For solar energy to realise its full potential it needs to be installed on a district basis and coupled with seasonal storage.One of the largest projects is at Friedrichshafen.The heat from 5600 m2 of solar collectors on the roofs of eight housing blocks containing 570 apartments is transported to a central heating unit or substation.It is then distributed to the apartments as required.The heated living area amounts to 39 500 m2.

Surplus summer heat is directed to the seasonal heat store which,in this case, is of the hot water variety capable of storing 12 000 m3.The scale of this storage facility is indicated by Figure 5.9.

The heat delivery of the system amounts to 1915 MWh/year and the solar fraction is 47 per cent.The month by month ratio between solar and fossil-based energy indicates that from April to November inclusive,solar energy accounts for almost total demand,being principally domestic hot water.

In places with high average temperatures and generous sunlight,active solar has considerable potential not just for heating water but also for electricity generation.This has particular relevance to less and least developed countries.

环境变化影响下的建筑学

房屋设计中的低能耗技术

显而易见,在工业化国家,最好的营救机会依赖于建筑环境,因为不论是在使用的建筑或者是在建设的建筑,都是最大的、单一的、间接地由化石燃料的燃烧所引起的碳排放的源头,而这些站了所有排放的50%。如果你加上为建造这些建筑在运输上所产生的碳排放,英国政府估计这个数字会上升到75%。也就是在建成环境这个领域里,能够简单的容纳如此快速的改变却不产生负面效果。事实上,升级建筑,特别是那些较老较旧的房子,将会营造一个连锁的良性循环。

施工系统

考虑到现在由全球性变暖以及非化石燃料使用机会所带来的的挑战。现在就是最好的时机去解决能量方程式一边的需求如何作用到这一挑战。建成环境是所有能耗中最大的消费者,在这里,住宅又以全英国28%的二氧化碳排放居于杆位。

在英国,一直就有用石头建设住宅的出传统,并且从十九世纪二十年代早期开始,这一习惯得到了广泛的应用。这是为了使一个极湿的外表面能不至于和其内表面存在物理上的连接,这样,墙的联系被分开了,水也能够通过防水通排向外面。自从把热源控制引进来以后,最初人们认为的保护能源比保护星球更重要的理念,已经被广泛的在建筑洞口绝热材料的使用上。在一段很长的时间里,保护建筑的洞口是被强制命令的,并且一场由传统主义者发起的保护“圣所”的战争也已经持续了很久。失败最终被承认,通过BRE的大量研究我们发现,填满建筑的洞口并不会提高潮气穿透建筑的奉献,事实上,通过洞口的潮气反而减少了。

带有外部绝热材料的砌体墙面被广泛的在欧洲大陆实践,在英国,他们甚至作为外立面的装饰而使用。在康沃尔郡,PHA在面朝大海的地方用这种方法建了一栋住宅,肯能这就是最具挑战的条件了。

砌体建筑的优势有:

●对于任何建筑公司而言,他都是一个熟悉并经得住考验的技术。

●他是一个使用寿命长,并且通常情况下不会产生毁灭性灾难的建筑形式,尽管他还不是很完善。几年前,普利茅斯一所大学建筑的整个屋顶突然坍塌,经调查,墙的连接部分被腐蚀是这一事故的缘由。

●裸露的砖石结构是一种低维护费的系统,如果奏效的话,维护费还会上升很大一部分。●从能效的角度考虑,如果其有高密度的砌体内墙和混凝土楼板,砌体住宅本身较高的比热还将有一个很大的提升。

框架建筑

大量住宅的建筑者开始热衷于采用有砖石外墙的木构架建筑,这使得他们他们看起来和砌体建筑一样。他的吸引力在于如果基础在空闲的地区进行建设,建筑速度将会非常的快。然而这一系统仍然有一个不幸的历史背景,因为在质量控制方面它还存在着很多的缺点。这些突出的表现在那些不是很牢固或者不成熟的木材上。框架建筑和屋顶一样需要防潮层。加上木结构以后他将很难避免潮气的渗透,在内部固定方面也仍然存在着很多问题。对于那些纯粹论者,最大的指责在于当框架建筑迫切的需要一个以面板,屋面,石板或瓦片悬挂在外部结束的时候,这在某种程度上是不合逻辑的。

现在,钢铁工业大大促进了为家庭而制的压制钢框架的应用。伴随新建筑材料在强度和耐久能力上的良好保证,即使施工速度很快,还是很有卖点的。

从能源角度看,框架建筑能够提供较高等级的隔绝效果,但是框架建筑有一个相对较低的比热,除非其由地板和内墙提供。

创新的技术

在英国,PIFS正在为新的技术努力。他们的原则底线是由绝热材料制作的精确模数化得榫卯结构的使用,通常这些是膨胀聚苯乙烯。因为他们可以被快速装配,并填充上加气水泥。当

混凝土结构完成,将会变成一个更高效的绝热墙,无论是在内部还是外部的安装服务上。这样,他将以小于0.11W/㎡K的成绩得到一个U级评价。超过三层的建筑,钢筋的增加还是必要的。

这一系统的优势在于:

●设计的灵活性:几乎所有的形状都是可以的。

●简单且快速的建筑时间:适度的技术要求使得他在自家建筑中非常流行,经验丰富的建筑工人可以以每小时5平方米的速度用混凝土进行建设。

●最终的成果具有较高的建筑强度并且兼有比较不错的比热和隔热等级。

日光设计

积极的日光设计

自从太阳驱动每个季节的变化以来,人们利用“日光设计”这一优势在建筑上就很合乎逻辑了。最基本的答复就是像“积极地日光设计”一样。因此,现在的建筑设计都会充分利用太阳能而非间接地通过其他方式。

通过的太阳辐射决定于一系列的因素:

●太阳对于建筑主立面的位置(太阳方位角和高度角)

●基地的定位和坡度

●基地现存的障碍物

●基地外潜在的会遮挡阳光的物体

太阳辐射的一种评价方式是某种形式的太阳图标,最常使用的是立体太阳图表,在这种图标里,一系列的射线和许多同心圆使得我们能够得到遮挡物的日照分析。就像其他建筑一样,用来标绘。在相同的图志上,一系列的太阳光路径被绘制(通常情况下是每个月的第21天);并且同样也会把那天的时间标识上。太阳光照射到遮挡物的外轮廓所形成阴影的交叉口就是阳光和阴影的分割部分。通常情况下不同的纬度会有不同的图志(一般在两个纬度等级之内)。

建筑自身对光线和阴影的影响也要被考虑进来,图解的、计算机预测技术可能受制于像在同一个日影仪下的物理模型测试的技术。

IES的“阳光投影”程序可以用电脑模拟从任何一个角度投射的太阳光和影。这是一个对于拥有一般技能的大学生都很容易掌握的程序。

两个建筑物之间的距离是很重要的,这样可以避免在冬季获得阳光最好的时候得不到足够多的阳光。再有坡度的地块内,坡底的坡度和遮挡的等级之间存在一个决定性的关系。比如说,如果要在北纬50°的地方避免阳光被遮挡,北倾10°排列的建筑群之间的距离要比南倾10°的建筑群的间距多一倍。

大树很明显会遮挡阳光。但是如果他们是落叶植物,他们将扮演两重角色。在冬天,他可以是阳光通过他们进行照射;在夏天,他又能提供相当数量的阴影。

积极的阳光设计可以被分为三大类:

●直接获得阳光

●间接获得阳光

●附加日光间或者温室

这三种方式中的任何一种都是从不同角度利用“温室效应”,而这正是一种吸收和保留温度的方法。温室效应在建筑上的应用是模仿全有气候变暖的过程,在建筑上,偶尔的太阳辐射是通过建筑主立面的窗户透射进来的,房屋内表面吸收以后使得房间的温度得到提高。然而,二次辐射所产生的热量却被玻璃窗阻隔在内,因为这一波长要远比辐射进来的长。二次辐射的辐射源是内部墙面,他的温度要比外面的温度低很多,玻璃窗也正好可以将其反射到内部。直接获得阳光

直接获得的建筑技术是集中绝大多数的玻璃窗在房间面朝太阳的一边。太阳辐射可以直接进入有关的房间,时隔30年之久的两个例子是1967年作者在设菲尔德的住宅,和1998年由罗伯特和布伦达?瓦勒在霍克顿进行的项目。主要的设计参数如下:

●能够使阳光通过的孔隙必须在建筑面朝太阳的一面,在北半球,其要在南方的±30°以内。

●西向的窗户将会提高房间过热的风险。

●现在,英国建筑学会要求,在进行房屋建设过程中最少需要使用双层的LOW-E玻璃。

●主要的居住空间需要设置在建筑面朝太阳的一侧。

●楼板需要有较高的比热来储存热量和释放热量,这将降低房间内温度的波动。

●得益于较高的比热,在日常热量吸收和释放循环中,只需要最上面那100毫米厚的楼板就足够储存热量。超过这一厚度的楼板在储存热量上的提升别没有太大的提高,但是在其他短期储存能力上还是有好处的。

●相对于固体楼板,绝热层应放置在板面的下方。

●绝气层应始终在隔热层温度相对较高的一侧。

●厚地毯应避免放置在主要阳光照射的地方或者被用作储存热量的楼板层上。然而,对于悬浮木地板,地毯可以阻止由通风系统所带来的气流。从早到晚,被加热的地板可以缓慢释放它的热量,这一过程发生的时间段包括傍晚最需要热量的时候,这也使得房间变得非常适宜人们居住。

考虑到玻璃窗的需求,以下几方面是需要注意的:

●采用外部百叶窗或者内部绝热板可以降低晚上热量的流失。

●在夏天,为了降低房间过热的风险,在设计时可以采用较深的屋檐来提供阴影。在房间内使用窗帘是最常用的技术,但他并不能减少由于辐射所产生的温度上升。

●热反射玻璃和吸热玻璃可以有效地限制房间过热,但是他们的缺点是无法在房间需要热量的时候给予房间足够的温度。

●遮阳驾可以在降低夏季房间过热的同时改善日光的分布。

直接获得的方式即使是通过房间内的窗户和附加日光间也是可以的,在高处的天窗设计上也可以发生日光的直接获得。在以上的每一种情况,我们都需要考虑他的性质和在吸热表面的位置。

在英国,气候和纬度是人们最常需要考虑的问题。房间的深度不能超过窗户上沿高度的2.5倍,窗地比也应控制在25%-35%之间。

间接获得阳光

通过这种设计方法,一个吸热元件被嵌入到入射的太阳辐射和需要加热的部位之间。这样,温度就通过一种间接地方式转移到另一边。他们通常会在面对太阳的一侧建立这样一面墙,然后这面墙就会控制流入建筑内的温度。以下是主要的原理。

●高比热的部件被放置在太阳光和内部空间之间,通过这面墙热量被缓慢的吸收,并且在以后的时间里缓慢对建筑内部产生影响。

●人们选择不同厚度和材料的墙来改变热量的流动。对于家庭而言,通过延时这一流动,可以使房间在晚上最需要温度的时候得到热量。通常,储热墙的厚度在20-30cm之间。

●在储热墙外侧的玻璃窗在某种程度上扮演了阻止热量流失的角色,并可以通过产生类似温室效应的方法保存获得的热量。

●储热墙的面积至少应占他提供热量楼板面积的15%-20%。

●为了得到更多的即时热量,空气可以通过储热墙和玻璃窗之间的缺口在屋内外循环流动。通过这一改进形式,这一构件通常被命名为特朗勃墙。热反射窗帘应放置在玻璃窗和储热墙之间以防止夏季室内温度过高。

在不同的国家,不同的地区在白天因为气候的影响可能会收到不同量的热辐射(比如英

国),在这种情况下,空气通过流动所带来的好处就远远要大于储热墙通过延时作用所带来的好处。

当系统获得了过多的热量,他可以通过与外面联系的空洞把多余的热量带到房间外面,并从室外温度相对较低的地方获得新鲜的空气。

间接获得的方式通常被认为是积极地日光系统中最不合美学范畴的,一定程度上是因为他摆放位置的限制和透过窗户所看到的效果上,也有可能是因为其黑色的吸热表面所暗指的含义。

结果,这三种主要的日光设计技术虽然十分有效,但他们并不像他们没有被广泛应用。

附加日光间或者温室

对于新建的建筑或者现存的建筑,附加日光间已经变得越来越流行了。他可以作为居住空间的拓展部分而存在,同时也可以是太阳能储存器、流动空气预热器,或者仅仅是植物暖房的附属用房。总的来说,由于他们经常会被过分加热,所以人们认为温室从某种角度上会使全球温度升高。我们不能把附加日光间在冬季为房间提供热量和在夏季阻止房间被过分加热的能力分割来看。玻璃幕墙的面积至少应占他提供热量面积的20%-30%。迄今为止最先进的附加日光间不久将会在霍克顿建成。

最完美的情况是,夏季把热量储存在一个季节性的储热元件上让其在冬季同样可以产生效果。

至少,空气在温室和建筑本身内流动的路径需要被小心的控制。

主动地太阳能系统

在积极的利用太阳热量的同时我们必须区分一些情况,如果考虑得更早些,就说他们的活跃本性,主动的太阳能系统要比积极地太阳能系统更领先一步。他们把直接的太阳辐射转变成另外一种形式的能量。太阳能集热器使用一个闭合环形加热器预热水。在超过60°C的温度下,军团杆菌突出的需要被储存的热水。那意味着在温度适宜的地区,一年中的大部分时间主动的太阳能系统还需要其他形式的能量源来补充其不足的部分。

主动地系统可以提供更优质的能源。然而,不良的后果伴随能量的控制和人们熟知的作为“能量寄生需要”的运营系统而产生。一个更长远的区别是,使用储存太阳热量的系统和系统-把太阳能直接转化成电能储存在光电电池内的不同。

为了能够发挥太阳能的全部潜力,他需要被安装在有区域基础和拥有联系季节性储存的平台上。在腓特烈港,人们正在进行一项大型项目。人们把为570户提供能量的总共8个房顶5600㎡的太阳能吸收器所处存下来的能量中央暖气设备或者变电站。他可以按要求把能量分发到各个房间,经统计,他一共为39500㎡的居住空间提供热量。

多余的夏季热量被储存起来,储存方法是通过各种方式加热的12000立方米的热水。

通过这种系统产生的热量一年有1915MWH之多,日光带来的有47%。从四月到十一月,无论是哪个月,在太阳能和化石燃料所带来的能量的比率中,太阳能几乎都提供了全部的能量需求,这也很好的提供了主要的生活用水。

在那些平均气温较高日光也相对较充足的地区,主动地日光系统不单可以考虑用于加热冷水,同样也可以考虑被用来发电。那些不是很发达的国家可以特别注意一下。

AT89C51单片机外文翻译

AT89C51外文翻译 Description The AT89C51 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash Programmable and Erasable Read Only Memory (PEROM). The device is manufactured using Atmel’s high density nonvolatile memory technology and is compatible with the industry standard MCS-51? instruction-set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C51 is a powerful microcomputer which provides a highly flexible and cost effective solution to many embedded control applications. Features ? Compatible with MCS-51? Products ? 4K Bytes of In-System Reprogrammable Flash Memory – Endurance: 1,000 Write/Erase Cycles ? Fully Static Operation: 0 Hz to 24 MHz ? Three-Level Program Memory Lock ? 128 x 8-Bit Internal RAM ? 32 Programmable I/O Lines ? Two 16-Bit Timer/Counters ? Six Interrupt Sources ? Programmable Serial Channel ? Low Power Idle and Power Down Modes The AT89C51 provides the following standard features: 4K bytes of Flash,128 bytes of RAM, 32 I/O lines, two 16-bit timer/counters, a five vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator and clock circuitry. In addition, the AT89C51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The Power-down Mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset.

建筑类型和设计-外文翻译

南京理工大学 毕业设计(论文)外文资料翻译 学院(系):南京理工大学继续教育学院 专业:土木工程 姓名: 学号: 外文出处:学术论坛网 附件: 1.外文资料翻译译文;2.外文原文。 注:请将该封面与附件装订成册。

附件1:外文资料翻译译文 建筑类型和设计 厂房与人民息息相关,因为它提供必要的空间,工作和生活中。 由于其使用的分类,建筑主要有两种类型:工业建筑和民用建筑各工厂或工业生产中使用的工业大厦,而那些居住,就业,教育和其他社会活动的人使用的民用建筑。 工业楼宇厂房可用于加工和制造各类采矿业,冶金工业,机械制造,化学工业和纺织工业等领域。可分为两种类型的单层和多层的厂房,民用建筑,工业建筑是相同的。然而,工业与民用建筑中使用的材料,在使用它们的方式不同。 民用建筑分为两大类:住宅建筑和公共建筑,住宅建筑应满足家庭生活应包括至少有三个必要的房间:每个单位。一个客厅,一个厨房和厕所,公共建筑,可以在政治文化活动,管理工作和其他服务,如学校,写字楼,公园,医院,商店,车站,影剧院,体育场馆,宾馆,展览馆,洗浴池,等等,他们都有不同的功能,这在需要以及不同的设计类型。 房屋是人类居住。房屋的基本功能是提供遮风挡雨,但今天人们需要更他们的住房,一个家庭迁入一个新的居民区知道,如果现有住房符合其标准安全,健康和舒适。附近的房屋是如何粮店,粮食市场,学校,商店,图书馆,电影院,社区中心,家庭也会问。 在60年代中期最重要的住房价值足够空间的内部和外部。多数首选的一半左右1英亩的土地,这将提供业余活动空间单户住宅的家庭。在高度工业化的国家,许多家庭宁愿住尽量尽可能从一个大都市区的中心,“打工仔”,即使行驶一段距离,他们的工作。不少家庭的首选国家住房郊区住房的大量的,因为他们的主要目的是远离噪音,拥挤,混乱。无障碍公共交通已不再是决定性因素,在住房,因为大多数工人开着自己的车上班的人。我们主要感兴趣的安排和房间的大小和卧室数目。 在建筑设计中的一个重要的一点是,房间的布局,应提供有关它们目的,最大可能的便利,在住宅,布局可根据三类认为:“天”,“夜必须注意“和”服务“。支付提供这些地区之间容易沟通。”天“的房间,一般包括用餐室,起居室和厨房,但其他房间,如一项研究,可能会补充说,可能有一个大厅,客厅,通常是最大的,往往是作为一个餐厅,也或厨房,可有一个用餐凉亭。“夜”的房间,卧室组成。“服务”,包括厨房,卫生间,储藏室,厨房和储藏室的水厕。连接天与客房的服务。 这也是必须考虑的前景问题,从不同的房间,和那些在使用中最应该尽可能最好朝

建筑外文翻译--建筑类型和设计

building types and design A building is closely bound up with people,for it provides with the necessary space to work and live in . As classified by their use ,buildings are mainly of two types :industrial buildings and civil buildings .industrial buildings are used by various factories or industrial production while civil buildings are those that are used by people for dwelling ,employment ,education and other social activities . Industrial buildings are factory buildings that are available for processing and manufacturing of various kinds ,in such fields as the mining industry ,the metallurgical industry ,machine building ,the chemical industry and the textile industry . factory buildings can be classified into two types single-story ones and multi-story ones .the construction of industrial buildings is the same as that of civil buildings .however ,industrial and civil buildings differ in the materials used and in the way they are used . Civil buildings are divided into two broad categories: residential buildings and public buildings .residential buildings should suit family life .each flat should consist of at least three necessary rooms : a living room ,a kitchen and a toilet .public buildings can be used in politics ,cultural activities ,administration work and other services ,such as schools, office buildings, parks ,hospitals ,shops ,stations ,theatres ,gymnasiums ,hotels ,exhibition halls ,bath pools ,and so on .all of them have different functions ,which in turn require different design types as well. Housing is the living quarters for human beings .the basic function of housing is to provide shelter from the elements ,but people today require much more that of their housing .a family moving into a new neighborhood will to know if the available housing meets its standards of safety ,health ,and comfort .a family will also ask how near the housing is to grain shops ,food markets ,schools ,stores ,the library ,a movie theater ,and the community center . In the mid-1960’s a most important value in housing was sufficient space both inside and out .a majority of families preferred single-family homes on about half an acre of land ,which would provide space for spare-time activities .in highly industrialized countries ,many families preferred to live as far out as possible from the center of a metropolitan area ,even if the wage earners had to travel some distance to their work .quite a large number of families preferred country housing to suburban housing because their chief aim was to get far away from noise ,crowding ,and confusion .the accessibility of public transportation had ceased to be a decisive factor in housing because most workers drove their cars to work .people we’re chiefly interested in the arrangement and size of rooms and the number of bedrooms . Before any of the building can begin ,plans have to be drawn to show what the building will be like ,the exact place in which it is to go and how everything is to be done.

51单片机汇编程序范例

16位二进制数转换成BCD码的的快速算法-51单片机2010-02-18 00:43在做而论道上篇博文中,回答了一个16位二进制数转换成BCD码的问题,给出了一个网上广泛流传的经典转换程序。 程序可见: http: 32.html中的HEX2BCD子程序。 .说它经典,不仅是因为它已经流传已久,重要的是它的编程思路十分清晰,十分易于延伸推广。做而论道曾经利用它的思路,很容易的编写出了48位二进制数变换成16位BCD码的程序。 但是这个程序有个明显的缺点,就是执行时间太长,转换16位二进制数,就必须循环16遍,转换48位二进制数,就必须循环48遍。 上述的HEX2BCD子程序,虽然长度仅仅为26字节,执行时间却要用331个机器周期。.单片机系统多半是用于各种类型的控制场合,很多时候都是需要“争分夺秒”的,在低功耗系统设计中,也必须考虑因为运算时间长而增加系统耗电量的问题。 为了提高整机运行的速度,在多年前,做而论道就另外编写了一个转换程序,程序的长度为81字节,执行时间是81个机器周期,(这两个数字怎么这么巧!)执行时间仅仅是经典程序的!.近来,在网上发现了一个链接: ,也对这个经典转换程序进行了改进,话是说了不少,只是没有实质性的东西。这篇文章提到的程序,一直也没有找到,也难辩真假。 这篇文章好像是选自某个著名杂志,但是在术语的使用上,有着明显的漏洞,不像是专业人员的手笔。比如说文中提到的:

“使用51条指令代码,但执行这段程序却要耗费312个指令周期”,就是败笔。51条指令代码,真不知道说的是什么,指令周期是因各种机型和指令而异的,也不能表示确切的时间。 .下面说说做而论道的编程思路。;----------------------------------------------------------------------- ;已知16位二进制整数n以b15~b0表示,取值范围为0~65535。 ;那么可以写成: ; n = [b15 ~ b0] ;把16位数分解成高8位、低8位来写,也是常见的形式: ; n = [b15~b8] * 256 + [b7~b0] ;那么,写成下列形式,也就可以理解了: ; n = [b15~b12] * 4096 + [b11~b0] ;式中高4位[b15~b12]取值范围为0~15,代表了4096的个数; ;上式可以变形为: ; n = [b15~b12] * 4000 + {[b15~b12] * (100 - 4) + [b11~b0]} ;用x代表[b15~b12],有: ; n =x * 4000 + {x * (100 - 4) + [b11~b0]} ;即: ; n =4*x (千位) + x (百位) + [b11~b0] - 4*x ;写到这里,就可以看出一点BCD码变换的意思来了。 ;;上式中后面的位:

51单片机外文文献

The Introduction of AT89C51 Description The AT89C51 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash programmable and erasable read only memory (PEROM). The device is manufactured using Atmel’s high-density nonvolatile memory technology and is compatible with the industry-standard MCS-51 instruction set. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C51 is a powerful microcomputer which provides a highly-flexible and cost-effective solution to many embedded control applications. Function characteristic The AT89C51 provides the following standard features: 4K bytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16-bit timer/counters, one 5 vector two-level interrupt architecture, a full duplex serial port, one-chip oscillator and clock circuitry. In addition, the AT89C51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The Power-down Mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset. Pin Description VCC:Supply voltage. GND:Ground.

建筑类外文文献及中文翻译

forced concrete structure reinforced with an overviewRein Since the reform and opening up, with the national economy's rapid and sustained development of a reinforced concrete structure built, reinforced with the development of technology has been great. Therefore, to promote the use of advanced technology reinforced connecting to improve project quality and speed up the pace of construction, improve labor productivity, reduce costs, and is of great significance. Reinforced steel bars connecting technologies can be divided into two broad categories linking welding machinery and steel. There are six types of welding steel welding methods, and some apply to the prefabricated plant, and some apply to the construction site, some of both apply. There are three types of machinery commonly used reinforcement linking method primarily applicable to the construction site. Ways has its own characteristics and different application, and in the continuous development and improvement. In actual production, should be based on specific conditions of work, working environment and technical requirements, the choice of suitable methods to achieve the best overall efficiency. 1、steel mechanical link 1.1 radial squeeze link Will be a steel sleeve in two sets to the highly-reinforced Department with superhigh pressure hydraulic equipment (squeeze tongs) along steel sleeve radial squeeze steel casing, in squeezing out tongs squeeze pressure role of a steel sleeve plasticity deformation closely integrated with reinforced through reinforced steel sleeve and Wang Liang's Position will be two solid steel bars linked Characteristic: Connect intensity to be high, performance reliable, can bear high stress draw and pigeonhole the load and tired load repeatedly.

51单片机实用汇编程序库(word)

51 单片机实用程序库 4.1 流水灯 程序介绍:利用P1 口通过一定延时轮流产生低电平 输出,以达到发光二极管轮流亮的效果。实际应用中例如:广告灯箱彩灯、霓虹灯闪烁。 程序实例(LAMP.ASM) ORG 0000H AJMP MAIN ORG 0030H MAIN: 9 MOV A,#00H MOV P1,A ;灭所有的灯 MOV A,#11111110B MAIN1: MOV P1,A ;开最左边的灯 ACALL DELAY ;延时 RL A ;将开的灯向右边移 AJMP MAIN ;循环 DELAY: MOV 30H,#0FFH D1: MOV 31H,#0FFH D2: DJNZ 31H,D2 DJNZ 30H,D1 RET END 4.2 方波输出 程序介绍:P1.0 口输出高电平,延时后再输出低电 平,循环输出产生方波。实际应用中例如:波形发生器。 程序实例(FAN.ASM): ORG 0000H MAIN: ;直接利用P1.0 口产生高低电平地形成方波////////////// ACALL DELAY SETB P1.0 ACALL DELAY 10 CLR P1.0 AJMP MAIN ;////////////////////////////////////////////////// DELAY: MOV R1,#0FFH DJNZ R1,$ RET

五、定时器功能实例 5.1 定时1 秒报警 程序介绍:定时器1 每隔1 秒钟将p1.o 的输出状态改变1 次,以达到定时报警的目的。实际应用例如:定时报警器。程序实例(DIN1.ASM): ORG 0000H AJMP MAIN ORG 000BH AJMP DIN0 ;定时器0 入口 MAIN: TFLA G EQU 34H ;时间秒标志,判是否到50 个 0.2 秒,即50*0.2=1 秒 MOV TMOD,#00000001B;定时器0 工作于方式 1 MOV TL0,#0AFH MOV TH0,#3CH ;设定时时间为0.05 秒,定时 20 次则一秒 11 SETB EA ;开总中断 SETB ET0 ;开定时器0 中断允许 SETB TR0 ;开定时0 运行 SETB P1.0 LOOP: AJMP LOOP DIN0: ;是否到一秒//////////////////////////////////////// INCC: INC TFLAG MOV A,TFLAG CJNE A,#20,RE MOV TFLAG,#00H CPL P1.0 ;////////////////////////////////////////////////// RE: MOV TL0,#0AFH MOV TH0,#3CH ;设定时时间为0.05 秒,定时 20 次则一秒 RETI END 5.2 频率输出公式 介绍:f=1/t s51 使用12M 晶振,一个周期是1 微秒使用定时器1 工作于方式0,最大值为65535,以产生200HZ 的频率为例: 200=1/t:推出t=0.005 秒,即5000 微秒,即一个高电

单片机外文翻译--STC89C52处理芯片

外文资料翻译 STC89C52 processi ng chip Prime features: With MCS - 51 SCM product compatibility, 8K bytes in the system programmable Flash memory, 1000 times CaXie cycle, the static operation: 0Hz ~ 33Hz, triple encryption program memory, 32 programmed I/O port, three 16 timer/counter, the eight uninterrupted dual-career UART serial passage, low power consumption, leisure and fall after fall electric power mode can be awakened and continuous watchdog timer and double-number poin ter, power ide ntifier. Efficacy: characteristics STC89C52 is one kind of low power consumption, high CMOS8 bit micro-co ntroller, 8K in system programmable Flash memory. Use high-de nsity nonv olatile storage tech no logy, and in dustrial 80C51 product in structi on and pin fully compatible. The Flash memory chips allows programs in the system, also suitable for programmable conventional programming. In a single chip, have clever 8 bits CPU and on li ne system programmable Flash, in crease STC89C52 for many embedded control system to provide high vigorous application and useful solutions. STC89C52 has following standard efficacy: 8k byte Flash RAM, 256 bytes, 32 I/O port, the watchdog timer, two, three pointer numerical 16 timer/counter, a 6 vector level 2 continuous structure, the serial port, working within crystals and horological circuit. In addition, 0Hz AT89S52 can drop to the static logic operation, support two software can choose power saving mode. Idle mode, the CPU to stop working, and allows the RAM, timer/c oun ters, serial, continu ous to work. Protectio n asa na patter n, RAM content is survival, vibrators frozen, SCM, until all the work under a continuous or hardware reset. 8-bit microcontrollers 8K bytes in the system programmable Flash AT89S52 devices. Mouth: P0 P0 mouth is a two-way ope n drain I/O. As export, each can drive eight TTL logic level. For P0 port to write "1", foot as the high impeda nee in put. When access to exter nal programs and nu merical memory, also known as

外文翻译---建筑的组成部分

Literature translation. Construction constituent Materials and structural forms are combined to make up the various parts of a building, including the load-carrying frame, skin, floors, and partitions. The building also has mechanical and electrical systems, such as elevators, heating and cooling systems, and lighting systems. The superstructure is that part of a building above ground, and the substructure and foundation is that part of a building below ground. The skyscraper owes its existence to two developments of the 19th century: steel skeleton construction and the passenger elevator. Steel as a construction material dates from the introduction of the Bessemer converter in 1885.Gustave Eiffel (1832-1932) introduced steel construction in France. His designs for the Galerie des Machines and the Tower for the Paris Exposition of 1889 expressed the lightness of the steel framework. The Eiffel Tower, 984 feet (300 meters) high, was the tallest structure built by man and was not surpassed until 40 years later by a series of American skyscrapers. Elisha Otis installed the first elevator in a department store in New York in 1857.In 1889, Eiffel installed the first elevators on a grand scale in the Eiffel Tower, whose hydraulic elevators could transport 2,350 passengers to the summit every hour. Load-Carrying Frame Until the late 19th century, the exterior walls of a building were used as bearing walls to support the floors. This construction is essentially a post and lintel type, and it is still used in frame construction for houses. Bearing-wall construction limited the height of building because of the enormous wall thickness required;for instance, the 16-story Monadnock Building built in the 1880’s in Chicago had walls 5 feet (1.5 meters) thick at the lower floors. In 1883, William Le Baron Jenney (1832-1907) supported floors on cast-iron columns to form a cage-like construction. Skeleton construction, consisting of steel beams and columns, was first used in 1889. As a consequence of skeleton con struction, the enclosing walls become a “curtain wall” rather than serving a supporting function. Masonry was the curtain wall material

51单片机中的汇编语言与C语言.

51单片机中的汇编语言与 C 语言 C 语言, 更多的是为了掌握单片机的应用, C 语言是高效的应用程序开发工具, 与汇编语言比却不是开发高效应用程序的工具。就目前而言, 更多的是为了应用单片机, 开发应用程序, 更多的是强调开发效率, 而不是程序的运行效率 (相对而言。再就是应用程序对单片机内部资源的使用效率, 这在过去, 单片机内部资源紧缺的年代, 特别的强调, 现在已经不是特别重要了。所以, 大多数人都认为,只用 C 语言,就可以应对大多数单片机的应用开发了。 其实,汇编语言跟 C 语言在本质上一样的,只是语言形式不同而已,一个接近底层逻辑, 一个接近人类语言, 本质上都是对寄存器或存储器的读写操作而已。 汇编语言中,用 MOV 来回传送数据, C 语言里,用等号表示数据传送。汇编语言中,用 call 转去执行子过程程序, C 语言里,用个函数名调用子程序。汇编语言中,用 JMP 完成分支转移, C 语言里用 if 、 switch 、 while 、 for 来判断跳转。汇编语言跟 C 一样可以给寄存器指定命名,然后对定义的名称进行操作。汇编语言提供了对很多标志位的操作, C51根据需要也进行了改进, C 语言可以通过 #include给存储器命名来简化操作。 我觉得, C 语言是最接近汇编语言的一种高级语言, 要说不同, 也许具有大量函数的函数库,是 C 语言与汇编语言的最大区别,也是 C 语言比汇编语言有更大开发效率的原因。 在应用汇编语言进行应用程序开发时, 如果精心规划好程序结构, 设计好各种数据结构、子程序、中断程序,积累大量的算法程序(相当于函数库,也可以高效率的用汇编语言进行单片机开发。倒是兼容性、可移植性是汇编语言的最大限制,因为不同单片机有不同的指令系统,而 C 语言把这个问题,交给了机器也就是编译器去解决了。其实, 计算机的发展, 就是把尽可能多的事情交个机器去解决。

(完整版)建筑外文翻译毕业设计论文

随着我国经济的发展,建筑行业已经朝着多元化方向发展,建筑行业在我国经济发展中起着非常重要的作用。而建筑工程管理工作直接关系到工程的质量、成本管理、人员的安全、企业的经营效益,甚至关系到企业的生死存亡,但是我国建筑工程管理在现阶段存在许多的不足:管理体制不健全。我国大部分的建筑工程为了节约人员开支,减少了建筑工程管理机构的人员数量和质量。管理制度深入性不足。建筑行业的相关管理制度都是由一些著名的建筑行业专家等共同研究制定的,但是在各建筑单位中就只是一张纸,他们也都只是为了应付上级的检查,并不能应用到建筑工程管理上。 在我国建筑工程管理工作中,难以全面确立我国建筑工程管理思路体系,主要是因为我国缺乏管理理论和经验。建立建筑工程管理思路体系是专业性较强的问题,其实施必须由资深的建筑学科专家和具有丰富工作经验的管理人员来组织,只有这样才能实现。国外建筑行业无论是技术还是理论都比较先进,因此我国在建筑工程管理思路体系的建立过程中,必须借鉴国外的先进理念,另外,还必须吸取先进的建筑工程管理方法,并对各方面的资料加以综合和整体。总之,要想确保我国建筑工程管理工作的有序进行,必须以健全的工程管理思路体系作为建筑工程总体管理水平提升的基本保障。加强施工质量管理,建立合理可行的质量保证体系,将工程的质量工作落到实处。工程施工企业要根据质量保证体系,形成行之有效的质量保证系统,树立质量方针,从而让其更加有指令性、系统性及可操作

性。要将人、材料和机械各个要素有效结合起来。 首先,人是质量控制的核心,要把人作为控制的推动力,充分调动人的积极性,树立工程质量第一的观念。其次,施工材料作为建筑产品的主体,对材料质量的控制是工程质量控制的关键。最后,工程施工的机械是进行施工机械化的主要标志,对现代化项目施工起到不可缺少的作用,它直接影响了施工项目的进度和质量,所以,选好用好工程机械设备非常重要。所以,应该根据工程项目的具体特点,综合考虑各种环境因素,实施有效的施工现场控制,为保证施工质量及安全创造良好的外部条件。 现阶段建筑工程管理越来越受到人们的重视,项目成本管理是工程管理不可或缺的内容。工程管理本质特征可以由项目成本管理体现出来。首先,建立项目成本管理责任制。项目管理人员的成本责任,不同于工作责任,工作责任完成不等于成本责任完成。在完成工作责任的同时,还应考虑成本责任的实施,进一步明确成本管理责任,使每个管理者都有成本管理意识,做到精打细算。其次,对施工队实行分包成本控制。项目部与施工队之间建立特定劳务合同关系,项目部有权对施工队的进度、质量、安全和现场管理标准进行监督管理,同时按合同支付劳务费用。再次,施工队成本的控制,由施工队自身管理,项目部不应该过多干预。 为了保证政府监督工作的有效性和权威性,应该提高监督队伍的整体素质。因此,加强建筑工程质量监督机构的质量管理的学习,从而使得监督队伍的业务素质得以提高。另外,质量监督手段也要不断进行完善,增加检测设备,使得监督工作具有较大科技的含量,实现监督工作的现代化。从建设市场的整体来看,市场运行的规则不够完善。执法不严,违法不究的现象常常会出现。工程质量受到危害在很大程度上都是由于建设市场的混乱所造成的。因此,政府必须建立健全的运行规则,保证这些规则能够真正落实处。

外文翻译---51系列单片机的结构和功能

外文翻译---51系列单片机的结构和功能

外文资料翻译 英文原文: Structure and function of the MCS-51 series Structure and function of the MCS-51 series one-chip computer MCS-51 is a name of a piece of one-chip computer series which Intel Company produces. This company introduced 8 top-grade one-chip computers of MCS-51 series in 1980 after introducing 8 one-chip computers of MCS-48 series in 1976. It belong to a lot of kinds this line of one-chip computer the chips have such as 8051, 8031, 8751, 80C51BH, 80C31BH,etc., their basic composition, basic performance and instruction system are all the same. 8051 daily representatives- 51 serial one-chip computers . An one-chip computer system is made up of several following parts: (1) One microprocessor of 8 (CPU). (2) At slice data memory RAM (128B/256B),it use not depositing not can reading /data that write, such as result not middle of operation, final result and data wanted to show, etc. (3) Procedure memory ROM/EPROM (4KB/8KB ), is used to preserve the procedure , some initial data and form in slice. But does not take ROM/EPROM within some one-chip computers, such as 8031 , 8032, 80C ,etc.. (4) Four 8 run side by side I/O interface P0 four P3, each mouth can use as introduction, may use as exporting too. (5) Two timer / counter, each timer / counter may set up and count in the way, used to count to the external incident, can set up into a timing way too, and can according to count or result of timing realize the control of the computer. (6) Five cut off cutting off the control (universal asynchronous receiver/transmitter (UART) ), is it realize one-chip computer or one-chip computer and serial communication of computer to use for. (8) Stretch oscillator and clock produce circuit, quartz crystal finely tune electric capacity need outer. Allow oscillation frequency as 12 megahertz now at most. Every the above-mentioned part was joined through the inside data bus .Among them, CPU is a core of the one-chip computer, it is the control of the computer and command center, made up of such parts as arithmetic unit and controller , etc.. The arithmetic unit can carry on 8 persons of arithmetic operation and unit ALU of logic operation while including one, the 1 storing devices temporarily of 8, storing device 2 temporarily, 8's accumulation device ACC, register B and procedure state register PSW, etc. Person who accumulate ACC count by 2 input ends entered of checking etc. temporarily as one operation often, come from person who store 1 operation is it is it make operation to go on to count temporarily , operation result and loop back ACC with another one. In addition, ACC is often regarded as the transfer station of data transmission on 8051 inside. The same as general microprocessor, it is the busiest register. Help remembering that agreeing with a expresses in the order. The controller includes the procedure counter, the order is deposited, the

相关主题