搜档网
当前位置:搜档网 › 解三角形经典练习题集锦(附答案)

解三角形经典练习题集锦(附答案)

解三角形经典练习题集锦(附答案)
解三角形经典练习题集锦(附答案)

解三角形

一、选择题

1.在△ABC 中,若0

30,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32-

2.若A 为△ABC 的角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D .

A

tan 1

3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )

A .直角三角形

B .锐角三角形

C .钝角三角形

D .等腰三角形

4.等腰三角形一腰上的高是3,这条高与底边的夹角为0

60,则底

边长为( ) A .2 B .

2

3

C .3

D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( )

A .006030或

B .006045或

C .

0060120或 D .0

015030或 6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .0

90 B .0

120 C .0

135 D .0

150

二、填空题

1.在Rt △ABC 中,0

90C =,则B A sin sin 的最大值是_______________。

2.在△ABC 中,若=++=A c bc b a 则,2

2

2

_________。

3.在△ABC 中,若====a C B b 则,135,30,20

0_________。 4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则

C =_____________。 5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是

________。

三、解答题

1.在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什

么?

2.在△ABC 中,求证:

)cos cos (a

A b

B c a b b a -=-

3.在锐角△ABC 中,求证:

C B A C B A cos cos cos sin sin sin ++>++。

4.在△ABC 中,设,3

,2π

=

-=+C A b c a 求B sin 的值。

解三角形

一、选择题

1.在△ABC 中,::1:2:3A B C =,则::a b c 等于( ) A .1:2:3 B .3:2:1 C

.2 D

.2 2.在△ABC 中,若角B 为钝角,则sin sin B A -的值( ) A .大于零 B .小于零 C .等于零 D .不能确定 3.在△ABC 中,若B A 2=,则a 等于( )

A .A b sin 2

B .A b cos 2

C .B b sin 2

D .B b cos 2 4.在△ABC 中,若2lg sin lg cos lg sin lg =--C B A ,则△ABC 的形状是( )

A .直角三角形

B .等边三角形

C .不能确定

D .等腰三角形 5.在△ABC 中,若,3))((bc a c b c b a =-+++则A = ( ) A .0

90 B .0

60 C .0135 D .0

150

6.在△ABC 中,若14

13cos ,8,7=

==C b a ,则最大角的余弦是( ) A .51- B .61- C .7

1

- D .81-

7.在△ABC 中,若tan 2A B a b

a b

--=+,则△ABC 的形状是( ) A .直角三角形B .等腰三角形 C .等腰直角三角形 D .等腰三角

形或直角三角形

二、填空题

1.若在△ABC 中

060,1,ABC A b S ?∠===则

C

B A c

b a sin sin sin ++++=_______。

2.若,A B 是锐角三角形的两角,则B A tan tan _____1(填>或<)。 3.在△ABC 中,若

=+=C B C B A tan tan ,cos cos 2sin 则_________。

4.在△ABC 中,若,12,10,9===c b a 则△ABC 的形状是_________。

5.在△ABC 中,若=+=

==A c b a 则2

2

6,2,3_________。 6.在锐角△ABC 中,若2,3a b ==,则边长c 的取值围是_________。

三、解答题

1. 在△ABC

中,0

120,,ABC

A c b a S

=>==,求c b ,。

2. 在锐角△ABC 中,求证:1tan tan tan >??C B A 。

3.在△ABC 中,求证:2

cos 2cos 2cos 4sin sin sin C

B A

C B A =++。

4.在△ABC 中,若0

120=+B A ,则求证:1=+++c

a b

c b a 。

5.在△ABC 中,若2

23cos

cos 222

C A b a c +=,则求证:2a c b +=

(数学5必修)第一章:解三角形

一、选择题

1.A 为△ABC 的角,则A A cos sin +的取值围是( ) A .)2,2( B .)2,2(- C .]2,1(- D .]2,2[- 2.在△ABC 中,若,900

=C 则三边的比

c b

a +等于( ) A .

2cos

2B

A +

B .2cos 2B A -

C .2

sin 2B

A + D .2

sin 2B

A -

3.在△ABC 中,若8,3,7===c b a ,则其面积等于( ) A .12 B .

2

21

C .28

D .36 4.在△ABC 中,0

90C ∠=,0

0450<

( )

A .sin cos A A >

B .sin cos B A >

C .sin cos A B >

D .sin cos B B >

5.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( ) A .0

90 B .0

60 C .0120 D .0

150

6.在△ABC 中,若2

2

tan tan b a B A =,则△ABC 的形状是( ) A .直角三角形 B .等腰或直角三角形 C .不能确定 D .等腰三角形

二、填空题

1.在△ABC 中,若,sin sin B A >则A 一定大于B ,对吗?填_________(对或错)

2.在△ABC 中,若,1cos cos cos 2

2

2

=++C B A 则△ABC 的形状是______________。

3.在△ABC 中,∠C 是钝角,设

,cos cos ,sin sin ,sin B A z B A y C x +=+==

则z y x ,,的大小关系是___________________________。

4.在△ABC 中,若b c a 2=+,则

=+

-+C A C A C A sin sin 3

1

cos cos cos cos ______。 5.在△ABC 中,若,tan lg tan lg tan lg 2C A B +=则B 的取值围是_______________。

6.在△ABC 中,若ac b =2

,则B B C A 2cos cos )cos(++-的值是

_________。

三、解答题

1.在△ABC 中,若)sin()()sin()(2

2

2

2

B A b a B A b a +-=-+,请判断三角形的形状。

1. 如

果△ABC 接于半径为

R

的圆,且

,sin )2()sin (sin 222B b a C A R -=-

求△ABC 的面积的最大值。

3.已知△ABC 的三边c b a >>且2

,2π

=-=+C A b c a ,求::a b c

4.在△ABC

中,若()()3a b c a b c ac

++-+=,

tan tan 3A C +=+AB

边上的高为,,A B C 的

大小与边,,a b c 的长

[基础训练A 组]

一、选择题

1.C 00

tan 30,tan 302b b a c b c b a

=====-=2.A 0,sin 0A A π<<> 3.C cos sin(

)sin ,

,2

2

A A

B A B π

π

=->-都是锐角,则,,2

2

2

A B A B C π

π

π

->+<

>

4.D 作出图形

5.D 0

12sin ,sin 2sin sin ,sin ,302

b a B B A B A A ====或0150

6.B

θ

,则

22200005871

cos ,60,180601202582

θθ+-===-=??为所求

二、填空题 1.12 11sin sin sin cos sin 222

A B A A A ==≤ 2.0

120 22201

cos ,12022

b c a A A bc +-=

=-= 3.

26-

00sin 2

15,

,4sin 4sin154sin sin sin 4

a b b A A a A A B B ======? 4. 0

120 a ∶b ∶c =sin A ∶sin B ∶sin C =7∶8∶13,

7,8,13a k b k c k ===

22201

cos ,12022

a b c C C ab +-==-=

5. 4 ,,sin sin sin sin sin sin AC BC AB AC BC AB

B A

C B A C

+===+AC BC +

sin )cos

22

A B A B

A B +-=+= max 4cos 4,()42

A B

AC BC -=≤+=

三、解答题

1. 解

cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+=

sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-=

cos()cos(),2cos cos 0A B A B A B -=-+=

cos 0A =或cos 0B =,得2

A π

=

或2

B π

=

所以△ABC 是直角三角形。

2. 证明:将ac b c a B 2cos 222-+=,bc a c b A 2cos 2

22-+=代入右边

得右边22222222

22()222a c b b c a a b c abc abc ab

+-+--=-=

22a b a b ab b a

-==-=左边,

)cos cos (a

A b

B c a b b a -=- 3.证明:∵△AB

C 是锐角三角形,∴,2

A B π

+>

02

2

A B π

π

>>

->

∴sin sin(

)2

A B π

>-,即sin cos A B >;同理

sin cos B C >;sin cos C A >

∴C B A C B A cos cos cos sin sin sin ++>++

4.解:∵

2,

a c

b +=∴

sin sin 2sin A C B

+=,即

2sin

cos 4sin cos 2222

A C A C

B B

+-=,

1sin

cos 222B A C -==,而

0,22

B π

<

<

cos

2B =

∴sin 2sin

cos 22244B B B ==?=8

39 [综合训练B 组]

一、选择题

1.C

12

,,,::sin :sin :sin :1:2632222A B C a b c A B C πππ======

2.A ,A B A B ππ+<<-,且,A B π-都是锐角,

sin sin()sin A B B π<-=

3.D sin sin 22sin cos ,2cos A B B B a b B ===

4.D sin sin lg lg 2,2,sin 2cos sin cos sin cos sin A A

A B C B C B C

===

sin()2cos sin ,sin cos cos sin 0,B C B C B C B C +=-= sin()0,B C B C -==,等腰三角形

5.B 2

2

()()3,()3,a b c b c a bc b c a bc +++-=+-=

2222

2

2

01

3,cos ,6022

b c a b c a bc A A bc +-+-==

== 6.C 222

2cos 9,3c a b ab C c =+-==,B 为最大角,1cos 7

B =-

7.D 2cos sin

sin sin 22tan 2sin sin 2sin cos 22

A B A B A B a b A B A B A B

a b A B +----===+-++, tan

2tan ,tan 022tan 2

A B A B A B A B ---=

=+,或tan 12A B += 所以A B =或2

A B π

+=

二、填空题

1.3

39

2

211sin 4,13,22ABC S bc A c c a a ?======

sin sin sin sin a b c a A B C A ++===

++2.> ,22

A B A B ππ+>>-,即

sin()2tan tan()2cos()2

B A B B πππ->-=

- cos 1sin tan B B B ==,1tan ,tan tan 1tan A A B B

>> 3. 2 sin sin tan tan cos cos B C

B C B C

+=

+

sin cos cos sin sin()2sin 1cos cos sin sin 2

B C B C B C A

B C A A +++===

4. 锐角三角形 C 为最大角,cos 0,C C >为锐角

5. 060

2

2

2

823

1cos 22

b c a A bc ++

-+-====

6

2222

22222

222213,49,594a b c c a c b c c c c b a c ??+>>??+>+><<<+>??

三、解答题

1.

解:1

sin 4,2

ABC S bc A bc ?=

== 2

2

2

2cos ,5a b c bc A b c =+-+=,而c b >

所以4,1==c b

2. 证明:∵△ABC 是锐角三角形,∴,2

A B π

+>

02

2

A B π

π

>>

->

∴sin sin(

)2

A B π

>-,即sin cos A B >;同理

sin cos B C >;sin cos C A >

sin sin sin sin sin sin cos cos cos ,

1cos cos cos A B C

A B C A B C A B C

>>

∴1tan tan tan >??C B A

3.

证明

sin sin sin 2sin

cos sin()22

A B A B

A B C A B +-++=++ 2sin cos 2sin cos 2222A B A B A B A B +-++=+ 2sin (cos cos )222

A B A B A B

+-+=+ 2cos 2cos cos 222

C A B

=?

4cos cos cos 222

A B C = ∴2

cos 2cos 2cos 4sin sin sin C

B A

C B A =++

4.证明:要证1=+++c a b

c b a ,只要证222

1a ac b bc ab bc ac c +++=+++, 即222a b c ab +-= 而∵0120,A B +=∴060C =

222

2220cos ,2cos 602a b c

C a b c ab ab ab

+-=

+-==

∴原式成立。

5.证明:∵2

23cos cos 222C A b

a c +=

∴1cos 1cos 3sin sin sin 222

C A B

A C ++?+?=

即sin sin cos sin sin cos 3sin A A C C C A B +++=

∴sin sin sin()3sin A C A C B +++=

即sin sin 2sin A C B +=,∴2a c b +=

[提高训练C 组]

一、选择题

1.C sin cos ),4

A A A π

+=

+

而50,sin()144424

A A A ππ

πππ<<<+<

?-<+≤ 2.B

sin sin sin sin sin a b A B

A B c C

++==+

2sin cos 222A B A B A B

+--==

3.D 0

11cos ,60,sin 22

ABC A A S bc A ====4.D 0

90A B +=则sin cos ,sin cos A B B A ==,0

045,A << sin cos A A <,0

4590,sin cos B B B <<>

5.C 2

2

2

2

2

2

1,,cos ,1202

a c

b b

c b c a bc A A -=++-=-=-= 6.B

22

sin cos sin cos sin ,,sin cos sin cos cos sin sin cos sin A B A B A

A A

B B A B B A B

?=== sin 2sin 2,2222A B A B A B π==+=或

二、填空题

1. 对 ,sin sin B A >则22a b

a b A B R R >?>?> 2. 直角三角形

21

(1cos 21cos 2)cos ()1,2A B A B +++++= 21

(cos 2cos 2)cos ()0,2

A B A B +++= 2

cos()cos()cos ()0A B A B A B +-++=

cos cos cos 0A B C =

3.

z y x <<

,,sin cos ,sin cos ,2

2

A B A B A B B A y z π

π

+<

<

-<<<

,sin sin sin ,,c a b C A B x y x y z <+<+<<< 4

1

sin sin 2sin ,2sin cos 4sin cos 2222

A C A C A C A C

A C

B +-+++==

cos 2cos ,cos cos 3sin sin 222222

A C A C A C A C -+==

则2

21sin sin 4sin sin

3

22

A C

A C = 1

cos cos cos cos sin sin 3

A C A C A C +-+

22(1cos )(1cos )14sin sin 22

A C

A C =---++

22222sin 2sin 4sin sin 112222

A C A C

=-?++=

5.

)2

,3[π

π

2tan tan tan tan tan ,tan tan()tan tan 1

A C

B A

C B A C A C +==-+=

-

2

tan tan tan tan()tan 1A C

B A

C B +=-+=-

3tan tan tan tan 2tan B B A C B -=+≥=

3tan 3tan ,tan 0tan 3

B B B B B π

≥>?≥≥

6.1 2

2

,sin sin sin ,b ac B A C ==B B C A 2cos cos )cos(++-

2cos cos sin sin cos 12sin A C A C B B =+++-

cos cos sin sin cos 12sin sin A C A C B A C =+++-

cos cos sin sin cos 1A C A C B =-++

cos()cos 11A C B =+++=

三、解答题

1. 解:22222222sin()sin cos sin ,sin()cos sin sin a b A B a A B A

a b A B b A B B

++===--

cos sin ,sin 2sin 2,222cos sin B A

A B A B A B A B

π===+=或2 ∴等腰或直角三角形

2.

解:2sin sin 2sin sin )sin ,R A A R C C b B ?-?=-

222sin sin )sin ,,a A c C b B a c b -=--=-

2222

2

2

,cos ,4522

a b c a b c C C ab +-+-====

2222,2sin ,2,sin c

R c R C a b R C

===+-=

2

2

2

2

22,R a b ab ab =+≥≤

21sin 244S ab C ab ==≤2

max 2

12R S +=

另法:1sin 2sin 2sin 2S ab C R A R B =

==?

22sin 2sin sin sin 4

R A R B A B =

?=

21

[cos()cos()]2

A B A B =??--+

221[cos()22(122

A B =??-+≤?+

2

max 12

S R ∴=

此时A B =取得等号 3. 解

sin sin 2sin ,2sin

cos 4sin cos

2222

A C A C A C A C

A C

B +-+++==

1sin

cos 2sin cos 222222B A C B B B B -=====3,,,2

4242

B B

A C A C

B A

C π

πππ-=

+=-=

-=-

333sin sin(

)sin cos cos sin 444A B B B πππ=-=-=

sin sin()sin cos cos sin 444

C B B B πππ

=-=-=::sin :sin :sin a b c A B C ==)77(:7:)77(-+

4. 解

22201

()()3,,cos ,602

a b c a b c ac a c b ac B B ++-+=+-===

tan tan 3tan(),,1tan tan 1tan tan A C A C A C A C

+++=

=--

tan tan 2A C =+

tan tan 3A C +=

得tan 1tan 2tan 1tan 2A A C C =??=????==+????00

00

7545

4575A A C C ??==????==????

或 当

00

75,45A C ==时

1),8sin b c a A

=

=== 当0

45,75A C ==

时,1),8sin b c a A

=

=== ∴当

000

75,60,45A B C ===时

8,1),a b c ===

当000

45,60,75A B C ===

时,8,1)a b c ===。

必修五解三角形常考题型非常全面

必修五解三角形常考题型 1.1正弦定理和余弦定理 1.1.1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形 例1 在V ABC 中,已知A:B:C=1:2:3,求a :b :c. 【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。 解:::1:2:3,A . ,,, 6 3 2 1::sin :sin :sin sin :sin :sin :1 2.6 3 2 2A B C B C A B C a b A B C ππ π π π π π =++=∴= = = ∴=== =Q 而 【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。 例2在ABC 中,已知 ,C=30°,求a+b 的取值范围。 【点拨】 此题可先运用正弦定理将a+b 表示为某个角的三角函数,然后再求解。 解:∵C=30°, ,∴由正弦定理得: sin sin sin a b c A B C === ∴ )sin (150°-A ). ∴ )[sinA+sin(150° )·2sin75°·cos(75° -A)= 2 cos(75°-A) ① 当75°-A=0°,即A=75°时,a+b 取得最大值 2 ; ② ∵A=180°-(C+B)=150°-B,∴A <150°,∴0°<A <150°, ∴-75°<75°-A <75°,∴cos75°<cos(75°-A)≤1, ∴> 2 cos75° = 2 × 4 . 综合①②可得a+b 的取值范围为 ,8+ 考察点2:利用正弦定理判断三角形形状 例3在△ABC 中,2 a ·tanB=2 b ·tanA ,判断三角形ABC 的形状。 【点拨】通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC 的形状。

解三角形经典练习试题集锦(附答案)

解三角形 一、选择题 1.在△ABC 中,若0 30,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32- 2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D . A tan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为0 60,则 底边长为( ) A .2 B . 2 3 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( ) A .0 60 30或 B .0 060 45或 C .0 060120或 D .0 15030或 6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .0 90 B .0 120 C .0 135 D .0 150 二、填空题 1.在Rt △ABC 中,0 90C =,则B A sin sin 的最大值是 _______________。 2.在△ABC 中,若=++=A c bc b a 则,2 2 2 _________。 3.在△ABC 中,若====a C B b 则,135,30,20 _________。 4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则 C =_____________。 5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值 是________。 三、解答题 1.在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么? 2.在△ABC 中,求证: )cos cos (a A b B c a b b a -=- 3.在锐角△ABC 中,求证: C B A C B A cos cos cos sin sin sin ++>++。

初中几何经典培优题型(三角形)

全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等; (3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等; (4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: 1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”. 2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.

3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的 思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是 全等变换中的“平移”或“翻转折叠” 5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相 等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 常见辅助线写法: ⑴过点A作BC的平行线AF交DE于F ⑵过点A作BC的垂线,垂足为D ⑶延长AB至C,使BC=AC ⑷在AB上截取AC,使AC=DE ⑸作∠ABC的平分线,交AC于D ⑹取AB中点C,连接CD交EF于G点

解三角形的必备知识和典型例题及习题

解三角形的必备知识和典型例题及习题 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2+b 2=c 2。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =2 1ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)?S =21ab sin C =21bc sin A =21ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角. 第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换 三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

正弦定理余弦定理综合应用解三角形经典例题老师

一、知识梳理 1.内角和定理:在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 面积公式: 111 sin sin sin 222ABC S ab C bc A ac B ?= == 在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二: ?? ? ??===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 形式三:::sin :sin :sin a b c A B C = 形式四: sin ,sin ,sin 222a b c A B C R R R = == 3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2 2 2 2cos a b c bc A =+- 2 2 2 2cos b c a ca B =+- 222 2cos c a b ab C =+-(解三角形的重要工具) 形式二: 222cos 2b c a A bc +-= 222cos 2a c b B ac +-= 222 cos 2a b c C ab +-= 二、方法归纳 (1)已知两角A 、B 与一边a ,由A +B +C =π及sin sin sin a b c A B C == ,可求出角C ,再求b 、c . (2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2 -2b c cosA ,求出a ,再由余弦定理,求出角B 、C . (3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C . (4)已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a b A B = ,求出另一边b 的对角B ,由C =π-(A +B ),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a b A B = 求B 时,可能出一解,两解或无解的情况 a = b sinA 有一解 b >a >b sinA 有两解 a ≥b 有一解 a >b 有一解 三、课堂精讲例题 问题一:利用正弦定理解三角形

三角形的必备知识和典型例题及详解

三角形的必备知识和典型例题及详解 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2+b 2=c 2。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B = c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin === (R 为外接圆半径) 公式的变形:______________________ ______________ _________________ (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角. 第2、已知两边和他们的夹角,求第三边和其他两角.

解三角形典型例题

1.正弦定理和余弦定理 在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r . 1.在△ABC 中,A >B ?a >b ?sin A >sin B ?cos A c; a-b

(完整版)解三角形三类经典题型

解三角形三类经典类型 类型一 类型二 类型三 判断三角形形状 求范围与最值 求值专题 类型一 判断三角形形状 2 2 2 例1已知△ ABC 中,bsinB=csinC,且sin A sin B sin C ,试判断三角形的形状. 解:T bsinB=csinC,由正弦定理得 sin 2 B=sin 2C ,「. sinB=sinC B=C 由sin 2A sin 2 B sin 2C 得a 2 b 2 c 2 三角形为等腰直角三角形. 例2:在厶ABC 中,若E =60 ,2 b=a+c,试判断△ ABC 的形状. 解:T2 b=a+c,由正弦定理得 2sinB=sinA+sinC,由 B=60 得 sinA+sinC= . 3 由三角形内角和定理知 sinA+sin( 120 A )= 3 ,整理得sin(A+ 30 )=1 二A+30 90,即A 60 ,所以三角形为等边三角形 2bc 整理得(a 2 b 2)(a 2 b 2 c 2) 0 ? a 2 b 2或a 2 b 2 c 2 即三角形为等腰三角形或直角三角形 例4:在厶ABC 中,(1)已知sinA=2cosBsinC ,试判断三角形的形状; (2)已知sinA= sin B sinC ,试判断三角形的形状. cosB cosC 解:⑴由三角形内角和定理得 sin(B+C)=2cosBsinC 整理得sinBcosC — cosBsinC=0即sin(B — C)=0 ? B=C 即三角形为等腰三角形 (2)由已知得sinAcosB+sinAcosC=sinB+sinC ,结合正、余弦定理得 例3:在厶ABC 中,已知 tan A tan B 2 ,试判断厶ABC 的形状. b 2 解:法1:由题意得 sin AcosB sin B cos A ■ 2 A sin A ■ 2 - sin B ,化简整理得 sinAcosA=sinBcosB 即 sin2A=sin2B ??? 2A=2B 或 2A+2B=n /? A=B 或 A a 2 a 2 ,2 c b 法2:由已知得sinAcosB sin B cos A 2 a 2 结合正、余弦定理得 b 2 2ac b b 2 2 2 c a a 2 b 2 B i ,?三角形的形状为等腰三角形或直角三角形.

解三角形典型例题答案

1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+= sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-= cos()cos(),2cos cos 0A B A B A B -=-+= cos 0A =或cos 0B =,得2A π=或2B π= 所以△ABC 是直角三角形。 2. 证明:将ac b c a B 2cos 222-+=,bc a c b A 2cos 2 22-+=代入右边 得右边22222222 22()222a c b b c a a b c abc abc ab +-+--=-= 22a b a b ab b a -==-=左边, ∴)cos cos (a A b B c a b b a -=- 3.证明:∵△AB C 是锐角三角形,∴,2A B π+>即022A B ππ>>-> ∴sin sin()2 A B π >-,即sin cos A B >;同理sin cos B C >;sin cos C A > ∴C B A C B A cos cos cos sin sin sin ++>++ 4.解:∵2,a c b +=∴sin sin 2sin A C B +=,即2sin cos 4sin cos 2222 A C A C B B +-=, ∴1sin cos 222B A C -==0,22 B π<<∴cos 2B = ∴sin 2sin cos 22244B B B ==?=839 5解:22222222sin()sin cos sin ,sin()cos sin sin a b A B a A B A a b A B b A B B ++===-- cos sin ,sin 2sin 2,222cos sin B A A B A B A B A B π===+=或2 ∴等腰或直角三角形 6解:2sin sin 2sin sin )sin ,R A A R C C b B ?-?=- 222sin sin )sin ,,a A c C b B a c b -=--=-

(完整版)解三角形三类经典题型

解三角形三类经典类型 类型一 判断三角形形状 类型二 求范围与最值 类型三 求值专题 类型一 判断三角形形状 例1:已知△ABC 中,bsinB=csinC,且C B A 2 22sin sin sin +=,试判断三角形的形状. 解:∵bsinB=csinC,由正弦定理得 sin 2B=sin 2 C ,∴ sinB=sinC ∴ B=C 由 C B A 222sin sin sin += 得 2 22c b a += ∴三角形为等腰直角三角形. 例2:在△ABC 中,若B=ο 60,2b=a+c,试判断△ABC 的形状. 解:∵2b=a+c, 由正弦定理得2sinB=sinA+sinC,由B=ο 60得sinA+sinC=3 由三角形内角和定理知sinA+sin(A -ο 120)=3,整理得 sin(A+ο30)=1 ∴A+ο ο ο 60,9030==A 即,所以三角形为等边三角形. 例3:在△ABC 中,已知2 2 tan tan b a B A =,试判断△ABC 的形状. 解:法1:由题意得 B A A B B A 2 2sin sin cos sin cos sin =,化简整理得sinAcosA=sinBcosB 即sin2A=sin2B ∴2A=2B 或2A+2B=π ∴A=B 或2 π = +B A ,∴三角形的形状为等腰三角形或直角三角形. 法2:由已知得22cos sin cos sin b a A B B A =结合正、余弦定理得2 222222222b a bc a c b b a c b c a a =-+? -+? , 整理得0))((2 2 2 2 2 =-+-c b a b a ∴ 2 2222c b a b a =+=或 即三角形为等腰三角形或直角三角形 例4:在△ABC 中,(1)已知sinA=2cosBsinC ,试判断三角形的形状; (2)已知sinA= C B C B cos cos sin sin ++,试判断三角形的形状. 解:(1)由三角形内角和定理得 sin(B+C)=2cosBsinC 整理得sinBcosC -cosBsinC=0即sin(B -C)=0 ∴ B=C 即三角形为等腰三角形. (2)由已知得 sinAcosB+sinAcosC=sinB+sinC ,结合正、余弦定理得

实用文档之解三角形经典练习题集锦(附答案)

实用文档之"解三角形" 一、选择题 1.在△ABC 中,若0 30,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32- 2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D . A tan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则 △ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角 为0 60,则底边长为( ) A .2 B .23 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( ) A .006030或 B .006045或 C .0 060120或 D .0 015030或 6.边长为5,7,8的三角形的最大角与最小角的和是 ( ) A .090 B .0120 C .0135 D .0 150 二、填空题 1.在Rt △ABC 中,0 90C =,则B A sin sin 的最大值是_______________。 2.在△ABC 中,若=++=A c bc b a 则,2 2 2 _________。 3 . 在△ABC 中,若 ====a C B b 则,135,30,20 _________。 4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则 C =_____________。 5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。 三、解答题 1.在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么? 2.在△ABC 中,求证: )cos cos (a A b B c a b b a -=- 3.在锐角△ABC 中,求 证: C B A C B A cos cos cos sin sin sin ++>++。 4.在△ABC 中,设,3 ,2π =-=+C A b c a 求B sin 的 值。 解三角形 一、选择题 1.在△ABC 中,::1:2:3A B C =,则::a b c 等于 ( ) A .1:2:3 B .3:2:1 C .2 D .2 2.在△ABC 中,若角B 为钝角,则sin sin B A -的值( ) A .大于零 B .小于零 C .等于零 D .不能确定 3.在△ABC 中,若B A 2=,则a 等于( ) A .A b sin 2 B .A b cos 2 C .B b sin 2

高中数学-解三角形知识点汇总情况及典型例题1

实用标准

—tanC。

例 1 ? (1 )在 ABC 中,已知 A 32.00 , B 81.80 因为 00 v B v 1800,所以 B 640,或 B 1160. c as nC 空啤 30(cm). sin A s in400 ②当B 1160时, 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形; 对于解三角形中的复杂运算可使用计算器 题型2 :三角形面积 2 , AC 2 , AB 3,求tan A 的值和 ABC 的面积。 2 (2 )在 ABC 中,已知 a 20 cm , b 28 cm , 40°,解三角形(角度精确到 10,边长精确 到 1cm ) o 解:(1 )根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ; 根据正弦定理,b asinB 42.9sin81.80 si nA 眾厂 80.1(cm); 根据正弦定理,c 聲C 丝9也彰 74.1(cm). sin 32.0 (2 )根据正弦定理, s"B 舸 A 28sin4°0 a 20 0.8999. ,a 42.9 cm ,解三角形; ①当 B 640 时, C 1800 (A B) 1800 (40° 640) 760, C 1800 (A B) 1800 (400 116。)240 , c asinC si nA 呼 13(cm). sin 40 (2) 解法一:先解三角方程,求出角 A 的值。 例2 ?在ABC 中, sin A cos A

si nA cos A j2cos(A 45 )-—, 2 1 cos(A 45 )-. 又 0 A 180 , A 45o 60o , A 105.° o o 1 \/3 L tan A tan(45 60 ) 一字 2 J3, 1 73 42 si nA sin105 sing5 60) sin4 5 co$60 cos45 si n60 ——-—. 1 1 /2 洽 n S ABC AC AB si nA 2 3 近 46)。 2 2 4 4 解法二:由sin A cos A 计算它的对偶关系式 si nA cos A 的值。 v 2 — si nA cos A —— ① 2 2 1 (si nA cos A)2 2 1 2sin Acos A — 2 Q0o A 180o , si nA 0,cos A 0. 1 另解(si n2A —) 2 2 3 (s in A cos A) 1 2 sin Acos A —, *'6 _ si nA cos A — ② 2 $2 J6 ①+②得sin A --------------- 。 4 ①-②得 cosA <6 。 4 u 而丄 A si nA J 2 J 6 4 c 匚 从而 tan A l l 2 ~3。 cosA 4 v2 v 6

解三角形三类经典题型教学内容

解三角形三类经典题 型

解三角形三类经典类型 类型一 判断三角形形状 类型二 求范围与最值 类型三 求值专题 类型一 判断三角形形状 例1:已知△ABC 中,bsinB=csinC,且C B A 2 22sin sin sin +=,试判断三角形的形状. 解:∵bsinB=csinC,由正弦定理得 sin 2B=sin 2 C ,∴ sinB=sinC ∴ B=C 由 C B A 222sin sin sin += 得 2 22c b a += ∴三角形为等腰直角三角形. 例2:在△ABC 中,若B=ο 60,2b=a+c,试判断△ABC 的形状. 解:∵2b=a+c, 由正弦定理得2sinB=sinA+sinC,由B=ο 60得sinA+sinC=3 由三角形内角和定理知sinA+sin(A -ο 120)=3,整理得 sin(A+ο30)=1 ∴A+ο οο60,9030==A 即,所以三角形为等边三角形. 例3:在△ABC 中,已知2 2 tan tan b a B A =,试判断△ABC 的形状. 解:法1:由题意得 B A A B B A 2 2sin sin cos sin cos sin =,化简整理得sinAcosA=sinBcosB 即sin2A=sin2B ∴2A=2B 或2A+2B=π ∴A=B 或2 π = +B A ,∴三角形的形状为等腰三角形或直角三角形. 法2:由已知得22cos sin cos sin b a A B B A =结合正、余弦定理得2 222222222b a bc a c b b a c b c a a =-+? -+? , 整理得0))((2 2 2 2 2 =-+-c b a b a ∴ 2 2222c b a b a =+=或 即三角形为等腰三角形或直角三角形 例4:在△ABC 中,(1)已知sinA=2cosBsinC ,试判断三角形的形状; (2)已知sinA= C B C B cos cos sin sin ++,试判断三角形的形状. 解:(1)由三角形内角和定理得 sin(B+C)=2cosBsinC 整理得sinBcosC -cosBsinC=0即sin(B -C)=0 ∴ B=C 即三角形为等腰三角形. (2)由已知得 sinAcosB+sinAcosC=sinB+sinC ,结合正、余弦定理得

解三角形经典例题及解答

知识回顾: 4、理解定理 (1) 正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即 存在正数 k 使 a ksinA , ________________ , c ksinC ; (2)」 b J 等价于 ______________________ sin A sin B sin C (3) 正弦定理的基本作用为: 正弦、余弦定理 1、直角三角形中,角与边的等式关系:在 Rt ABC 中,设 BC=a ,AG=b , AB=c , 根据锐角三角函数中正弦函数的定义,有 -sin A ,- sin B ,又sinC 1 -,从而在直角三 c c c 角形ABC 中,-?- sin A b sin B c si nC 2、当 ABC 是锐角三角形时,设边 AB 上的高是CD 根据任意角三角函数的定义, 有 CD=asinB bsinA ,则 一- b ,同理可得一 sin A sin B sin C b sin B 从而」- sin A b sin B c sin C 3、正弦定理:在一个三角形中,各边和它所对角的 ____ 的比相等,即旦 sin A b sin B c sin C c b a c sin C sin B ' sin A sin C

① 已知三角形的任意两角及其一边可以求其他边,如 a bsinA ; b sin B ② 已知三角形的任意两边与其中一边的对角可以求其他角的正弦值, 如 sin A a sin B ; sinC . b (4) 一般地,已知三角形的某些边和角,求其它的边和角的过程叫作 解三角形? 5、知识拓展 6、 勾股定理: ___________________________________ 7、 余弦定理:三角形中 __________ 平方等于 _______________________ 减去 _____________ ______________ 的两倍,即a 2 b 2 8、余弦定理的推论: cosC ____________________________ 。 9、在 ABC 中,若a 2 b 2 c 2,则 ______________________ ,反之成立; 典型例题: a b sin A sin B c si nC 2R ,其中2R 为外接圆直径. c 2 cosA cosB

最新解三角形精典题型归纳(包括知识点)

高中数学必修5 第一章 解三角形复习 一、知识点总结 【正弦定理】 1.正弦定理:2sin sin sin a b c R A B C === (R 为三角形外接圆的半径). 2.正弦定理的一些变式: ()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a b ii A B C R R ==2c R =; ()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R C B A c b a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题: (1)已知两角和任意一边,求其他的两边及一角. (2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 【余弦定理】 1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ?=+-?=+-??=+-? 2.推论: 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ?+-= ??+-?=???+-=?? . 设a 、b 、c 是C ?AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =;②若222 a b c +>,则90C <; ③若222a b c +<,则90C >. 3.两类余弦定理解三角形的问题:(1)已知三边求三角. (2)已知两边和他们的夹角,求第三边和其他两角. 【面积公式】 已知三角形的三边为a,b,c, 1.111sin ()222 a S ah a b C r a b c ===++(其中r 为三角形内切圆半径) 2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式) 【三角形中的常见结论】

解三角形经典练习题集锦附答案

解三角形 令狐采学 一、选择题 1.在△ABC 中,若0 30,6,90===B a C ,则b c -即是( ) A .1 B .1- C .32 D .32- 2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D .A tan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝 角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底 边的夹角为0 60,则底边长为( ) A .2 B . 2 3 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 即是( ) A .006030或 B .006045或 C .0060120或 D .0015030或 6.边长为5,7,8的三角形的最年夜角与最小角的和是( ) A .090 B .0120 C .0135 D .0150 二、填空题 1.在Rt △ABC 中,090C =,则B A sin sin 的最年夜值是_______________。 2 . 在 △ABC 中 , 若 =++=A c bc b a 则,222_________。 3.在△ABC 中 , 若 ====a C B b 则,135,30,200_________。 4.在△ABC 中, 若 sin A ∶sin B ∶sin C =7∶8∶13,则 C =_____________。 5.在△ABC 中,,26-=AB 030C =,则AC BC +的最年夜值是________。 三、解答题 1.在△ABC 中,若,cos cos cos C c B b A a =+则 △A BC 的形状是什么? 2.在△ABC 中,求证:)cos cos (a A b B c a b b a -=- 3.在锐角△ABC 中,求证: C B A C B A cos cos cos sin sin sin ++>++。 4.在△ABC 中,设,3 ,2π =-=+C A b c a 求B sin 的 值。 解三角形 一、选择题 1.在△ABC 中,::1:2:3A B C =,则::a b c 即是 ( ) A .1:2:3 B .3:2:1 C .1:2 D .2 2.在△ABC 中,若角B 为钝角,则sin sin B A -的值( ) A .年夜于零 B .小于零 C .即是零 D .不克不及确定 3.在△ABC 中,若B A 2=,则a 即是( ) A .A b sin 2 B .A b cos 2 C .B b sin 2 D .B b cos 2 4.在△ABC 中,若2lg sin lg cos lg sin lg =--C B A ,则△ABC 的形状是( ) A .直角三角形 B .等边三角形 C .不克不 及确定 D .等腰三角形 5.在△ABC 中,若,3))((bc a c b c b a =-+++则A = ()

全等三角形经典题型50题(含答案)

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

证明:连接BF 和EF 。因为 BC=ED,CF=DF,∠BCF=∠EDF 。所以 三角形BCF 全等于三角形EDF(边角边)。所以 BF=EF,∠CBF=∠DEF 。连接BE 。在三角形BEF 中,BF=EF 。所以 ∠EBF=∠BEF 。又因为 ∠ABC=∠AED 。所以 ∠ABE=∠AEB 。所以 AB=AE 。在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。所以 三角形ABF 和三角形AEF 全等。所以 ∠BAF=∠EAF (∠1=∠2)。 4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则 ∠DEG=∠DCA , ∠DGE=∠2 又 ∵CD=DE ∴⊿ADC ≌⊿GDE ( AAS ) ∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C B A C D F 2 1 E

解三角形经典例题

解三角形 一、 知识点梳理: 1、正弦定理:在△ABC 中, R C c B b A a 2sin sin sin === 注:①R 表示△ABC 外接圆的半径 ②正弦定理可以变形成各种形式来使用 2、余弦定理:在△ABC 中, A bc c b a cos 2222-+= B ac c a b cos 2222-+= C ab b a c cos 2222-+= 也可以写成第二种形式: bc a c b A 2cos 222-+=,ac b c a B 2cos 222-+=,ab c b a C 2cos 2 22-+= 3、△ABC 的面积公式,B ac A bc C ab S sin 2 1sin 21sin 21=== 二、题组训练: 1、在△ABC 中, a=12,A=060,要使三角形有两解,则对应b 的取值范围为 2、判定下列三角形的形状 在△ABC 中,已知38,4,3===c b a ,请判断△ABC 的形状。 在△ABC 中,已知C B A 222sin sin sin <+,请判断△ABC 的形状。 在△ABC 中,已知bc a A == 2,2 1cos ,请判断△ABC 的形状。 在△ABC 中,已知C B bc B c C b cos cos 2sin sin 2222=+,请判断△ABC 的形状。 在△ABC 中,,sin sin 3)sin sin )(sin sin sin (sin C B A C B C B A =-+++请判断△ABC 的形状。 3、在△ABC 中,已知030,4,5===A b a ,求△ABC 的面积。

九年级数学下册《解直角三角形》典型例题(含答案)

《解直角三角形》典型例题 例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形. 分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决. 解 (1) ; (2)由a b B =tan ,知 ; (3)由c a B = cos ,知860cos 4cos =?==B a c . 说明 此题还可用其他方法求b 和c . 例 2 在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形. 解法一 ∵ ∴ 设 ,则 由勾股定理,得 ∴ . ∴ . 解法二 133330tan =?=?=b a 说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题. 例 3 设 中, 于D ,若 ,解三 角形ABC .

分析“解三角形ABC”就是求出的全部未知元素.本题CD不是的边,所以应先从Rt入手. 解在Rt中,有: ∴ 在Rt中,有 说明(1)应熟练使用三角函数基本关系式的变形,如: (2)平面几何中有关直角三角形的定理也可以结合使用,本例中 “”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值: 所以解直角三角形问题,应开阔思路,运用多种工具. 例4在中,,求. 分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差; (2)不是直角三角形,可构造直角三角形求解.

解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有,且有 ; 在中,,且 , ∴; 于是,有, 则有 说明还可以这样求:

解三角形知识点汇总和典型例题(新)

中小学1对1课外辅导专家 文成教育学科辅导教案讲义 授课对象 授课教师 徐老师 授课时间 3月11日 授课题目 解三角形复习总结 课 型 复习课 使用教具 人教版教材 教学目标 熟练掌握三角形六元素之间的关系,会解三角形 教学重点和难 点 灵活解斜三角形 参考教材 人教版必修5第一章 教学流程及授课详案 解三角形的必备知识和典型例题及详解 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2 +b 2 =c 2 。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B = c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =2 1 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);

相关主题