搜档网
当前位置:搜档网 › 固井复杂问题

固井复杂问题

固井复杂问题
固井复杂问题

固井复杂问题

固井作业不仅关系到油气井能否顺利完成,影响投产后油气井质量的好坏、油气井寿命的长短及油气井产量的高低,而且其成本在整个钻井工程中也占有很大的密度(占20%~30%)。固井技术发展的目标一直围绕如何进一步提高固井质量及减少固井事故等。固井又是一个系统工程,影响因素复杂多样,具有其特殊性,主要表现在以下

几个方面:

(1)固井作业是一个一次性工程,如质量不合格,即使采用挤水泥等补救方法也难以取得良好的效果。

(2)固井作业是一项系统工程、隐蔽性作业,涉及到材料、流体、化学、机械、力学等多种学科,施工时未知因素多,风险大。

(3)固井作业施工时间短,工作量大,技术性强,费用高。

因此,要求固井作业要精心设计、精心准备、精心施工,并要有较完备的预防固井复杂情况的预处理方案,确保优质高效地完成固井作

业。

固井作业涉及套管、水泥浆浆体性能设计、注水泥现场施工、水泥胶结质量等方面,为此,固井复杂问题和事故也可以分为以下几类。第一类:套管及下套管复杂情况,包括下套管阻卡、套管断裂、套管泄漏、套管挤毁、套管附件和工具失败、下套管后漏失或循环不通

等。

第二类:水泥浆浆体性能事故,包括水泥浆闪凝、水泥浆触变性、

水泥浆过度缓凝等。

第三类:注水泥现场施工复杂情况,包括注水泥漏失、环空堵塞、

注水泥替空等复杂情况和事故。

第四类:水泥胶结质量复杂情况,包括油气水层漏封、水泥胶结质

量差、环空气(水)窜等。

下面就上述固井复杂情况及事故发生的主要原因及预防、处理方法

分别加以论述。

1、下套管复杂情况

1、1套管阻卡

套管阻卡一般可分为以下三类:一是套管粘吸卡,二是井眼缩经卡,

三是井眼坍塌或砂桥卡。

1)管阻卡的原因及影响因素

1.套管粘吸卡是由于套管的外径往往大于钻杆的外径,套管与井壁的接触面积大于钻杆的接触面积,上扣时间要大于钻杆的上扣时间,且下套管时又难以旋转,因此,卡套管的发生机率较大。

2.井眼缩径卡套管是由于井眼不稳定,特别是钻遇蠕动性岩盐层或由于钻井夜性能不好形成较厚的假泥饼,导致井眼缩径,造成缩径卡

套管事故。

3.井眼坍塌或砂桥卡套管是在下套管过程中或下套管结束后发生井

眼坍塌或形成砂桥造成卡套管事故。

4.下套管前没有认真通井,对缩径段没有很好地划眼,易造成卡套

管事故。

5.下套管作业没有认真准备(包括组织、工具等),造成下套管时间

过长或中间停顿等,易发生卡套管事故。

6.中途测试、取心、电测后没有通井而直接下套管易发生卡套管事

故。

7.钻井液性能不好,没有形成很好的滤饼,井眼摩阻系数大,尤其

是高密度、分散型钻井液,发生卡套管的机率大。

8.下套管前对漏失层没有很好地堵漏,加之下套管时速度过快,易

压漏地层,造成井塌引起卡套管事故。

9.高压层下套管前没有压稳,在下套管过程中发生溢流,环空夜柱

压力下降,易发生井塌,

造成卡套管事故。

10.井口不,下套管上扣时反复错扣,下套管时井下套管静止时间

长且没有活动套管,易发生卡套管事故。

11.钻井液密度设计不合理,如密度设计较低,造成井眼坍塌或没有

压稳蠕动性地层引起井眼缩径,造成卡套管事故。

12.下套管时遇阻,盲目下压,造成下套管由遇阻演变成套管卡死。

2)防发生套管阻卡的技术措施

1.下套管前认真通井,对缩径段反复划眼。

2.设计合理的钻井液密度,保证压稳地层,防止井眼坍塌,减少蠕动

性地层的蠕动速度和井眼缩径。

3.中途测试、取心及电测后要求认真通井才能下套管。

4.下套管前认真处理好钻井液性能,降低钻井液粘度、切力和失水,

并充分循环处理钻井液,方可下套管。

5.对于深井、长裸眼井和定向井、水平井等,必要时在下套管前要求

加入塑料小球或混入5%~10%的原油,降低井眼摩阻系数。

6.下套管作业要认真准备(包括人员组织、工具等),仅可能减少下

套管时间和中间停待。

7.下套管前对漏失层要求很好地堵漏,并控制下套管的速度,防止压

漏地层。

8.在高压层下套管前要求压稳,防止在下套管过程中发生溢流,保持

井内压力平衡。

9.在下套管过程中如发生井漏、井塌等复杂情况,一般要求起出套管,

下载处理井眼,正常后再重新下套管。

10.下套管时如遇阻,应反复活动套管,并接方钻杆或循环头循环处

理钻井液,不能盲目下压,防止套管卡死。

11.下套管前要校正井口,做到天车、转盘和井口三点一线,防止下

套管上扣时错扣。

12.必要时使用套管扶正台,采用人工或机械扶正套管,防止下套管

上扣时错扣并加快下套管速度。

13.尽可能使用自动灌浆设备,减少因灌浆造成的下套管停顿时间,使用自动灌浆设备时要及时注意其工作状况,如失败要采用人工灌

浆。

14.下完套管后要求先灌满钻井液后再慢慢开泵循环,等循环畅通后

慢慢提高循环排量,防止混入空气造成开泵困难和压漏地层。15.采用人工灌浆时,在灌浆间隙要不停地活动套管,上下活动套管

距离不小于2米,发现井下有遇阻迹象时要停止灌浆,并采用大距离活动套管或接方钻杆循环等措施,等正常后再灌浆和下套管。16.下套管过程中要及时注意井口返浆,如发现异常应立即停止下套

管进行处理,待正常后方可继续下套管。

3)套管阻卡的处理方法

套管遇卡后,应在保证套管串不被破坏的前提下开展处理工作,而且,应根据不同的卡套管类型采用不同的处理方法较卡钻相比,套管遇卡

处理难度更大,手段也相对较少。

(1)套管粘卡

发生套管粘卡后,推荐采用以下步骤进行处理:

1.强力活动套管;发生套管粘卡后一般是先接方钻杆或循环头开泵循环,后在套管和设备(井架、提升系统)安全的条件下,尽最大可能上下活动套管,采用此种方法一般可以消除套管粘卡。

如果强力活动次数后(通常为10次左右)仍不能解卡,一般要停止强力活动。此后,在一定范围内活动没有卡住的套管,防止卡点上移。

2. 泡解卡剂;在强力活动套管无效后,处理套管粘卡的主要方法是通过泡解卡剂的方法来处理套管粘吸卡。其基本步骤一般如下:第一:选择合适的解卡剂。解卡剂一般分为水基、油基两种,其密度要根据井内地层压力选定,对于高压井,要选择高密度的解卡剂。一般油基解卡剂适合大多数地区,但在个别地区,水基解卡剂也取得了

较好的应用效果。

第二;计算卡点位置。现场一般采用计算在一定拉力条件下的套管伸

长来计算卡点位置。计算公式如下:

L=ESI/F

式中L——自由套管的长度,m;

E——钢的弹性系数,2.1×105MPa;

I——自由套管在力F作用下的伸长,m;

F——自由套管所受超过自身质量的拉力,N;

S——套管截面积,m2。

第三:计算解卡剂的用量。根据计算的卡点位置,在卡点位置及其以下部分注入合适的解卡剂。要求具有一定的附加量,一般在20%左

右。

第四:井内压力平衡计算。根据井内地层压力、钻井液密度、地层岩性、解卡剂的密度和用量,进行井内压力平衡计算,确保不会发生井

涌、井喷和井塌事故。

第五:解卡。根据不同的解卡剂的类型、地层特性和现场的实际卡套管的情况,在解卡剂注入一定时间后采用类似强力活动套管处理方法

解卡。

(2)套管缩径卡和井眼坍塌或砂桥卡

1.套管缩径卡时,井内一般可以循环钻井液,可以通过类似套管粘卡

的处理方法进行处理。

2.井眼坍塌或砂桥卡时,如可以循环钻井液且井口尚能返浆,应坚持先小批量低压循环钻井液,后逐步提高钻井液的密度、切力,正常后

固井。

3.如果套管已经下到井底,且循环钻井液漏失,应根据现场实际情况进行处理。大多数情况下选择小批量固井的方法,争取把下部地层封固,必要时再对上部地层进行挤水泥作业补救。

4.如果套管没有下到井底,可选择先固井,后采用增加一层尾管固井

封固下部地层的方法补救。

1. 2套管断裂

1)套管断裂的原因及影响因素

1.套管设计时安全系数设计偏低,没有考虑如温度变化、套管弯曲等因素对套管强度的影响,造成套管强度不够而发生套管断裂。

2.套管本身质量问题,特别是丝扣加工质量不过关,造成丝扣处脱落。

3.套管浮箍以上由于没有对套管丝扣联接处加以固定,在钻水泥塞时

造成套管脱落。

4.钻遇硫化氢气层,钻井液中含有硫化氢而产生氢脆作用,造成套

管断裂。

5.在技术套管中钻进,没有采取有效的防护措施,钻杆接头将套管磨

穿,造成套管断裂。

6.地层水含有腐蚀性物质,如水泥环封固质量不好,易造成套管腐蚀

破坏断裂。

7.套管遇卡后,施加拉力太大,造成套管脱落。

8.在压裂和注水泥施工时,由于施工压力太高,超过了套管的抗压强

度,造成套管断裂破坏。

9.在热采井内,套管受热膨胀,但由于套管外面又有水泥固结,限制

了套管的自由伸长,在套管内部产生压应力,当压应力超过材料的屈

服极限时,套管就会断裂。

2)防止套管断裂的技术措施

1. 下套管时防止套管错扣,不允许在错扣焊接。

2. 套管遇阻卡后,不能强拉强提,上提拉力不能大于套管本体和

丝扣抗拉强度的80%。

3.表层套管和技术套管下部的留水泥塞套管应用防止螺纹松扣脂或

在松扣处采用铆钉固

定,防止在钻水泥塞或下部钻进过程中造成套管脱落。

4.对于含有硫化氢的井,下套管前必须充分循环钻井液,压稳产层,

清除钻井液中的硫

化氢。同时,应采用访硫套管和井口装置。

5.应尽可能提高表层和技术套管鞋处的固井质量。

6.在已下套管的井内钻进,要控制转盘的转速。钻铤未出套管鞋时,转速不大于60r/min,钻铤出套管鞋后也不要超过150r/min.对于深井和复杂井,钻井周期长,对套管要采取相应的保护措施。

7.对于热采井固井,应采用优质钢材,在固井时要提拉一定的预应力,

消除因温度升高,钢材受热膨胀产生的压应力。

1、3 套管挤毁

1)管挤毁的原因及影响因素

1.套管强度设计不合理,造成套管挤毁。

2.灌钻井液不及时,造成在下套管过程中掏空太长,引起套管挤

毁。

3. 套管加工质量不好,如壁厚不均匀或椭圆度太长或钢材性能达

不到标准。

4. 在挤水泥时,没有下挤水泥封隔器,挤水泥施工压力超过上部

套管的抗内压强度,造成上部大直径套管挤毁。

5. 存在特殊地层,如岩盐层,由于岩盐层蠕动,蠕变压力大于套

管的抗外挤强度,就会造成套管挤毁。

2)防止套管挤毁的技术对策

1.下套管时要及时灌浆,控制套管掏空深度。

2.在岩盐层等蠕动性特殊地层段套管强度设计应采用蠕变压力设计,

并考虑不均匀载荷的影响。

3.挤水泥作业设计时要考虑套管抗压和抗外挤强度的影响。

4.控制下如套管的质量,防止不合格的套管入井。

6. 尽可能提高封固段的水泥石胶结质量,尤其是蠕动性特殊地层,

提高套管抗外挤能力。

1、4管附件和工具复杂情况

1)浮箍、浮鞋复杂情况

1.浮箍、浮鞋堵塞:下完套管后,循环不通,开泵压力持续上升,井口不反浆。预防措施:对入井套管进行严格通径,并严格防止套管内落物。解决措施是在浮箍、浮鞋以上套管射孔,重新建立循环后固

井。

2.浮箍、浮鞋失效:下完套管或注水泥结束后,浮箍、浮鞋失效或密

封不严。预防措施:a.对入井套管进行严格通径,并严格防止套管内落物对浮箍浮鞋的损害;b.如果浮箍浮鞋已经失效,对于常规固井可以采用关井候凝的方式,对于尾管固井或双极固井,则采用管内外液

柱平衡压力固井方式。

2)双极箍复杂情况

1. 双级箍打不开

双级箍打不开是指一级固井结束后,不能顺利打开双级箍的二级固井循环孔,造成二级固井无法正常进行。

造成双级箍不能顺利打开的可能原因有:①非连续式双级箍打开塞与打开塞座密封不严,无法施加压力,造成无法打开双级箍;②双级箍本身加工质量和设计有缺陷,双级箍在重力作用下本体变形或双级箍本体与打开套配合间隙过小,造成双级箍打开套下行阻力大,无法打开双级箍;③一级固井水泥浆性能设计不当,如稠化时间短,返到双级箍以上时水泥浆已经稠化,或是水泥浆与钻井液相容性差,造成双级箍处的水泥浆胶凝,无法顺利打开双级箍;④一级固井后发生环空堵塞,造成双级箍无法打开;⑤双级箍放置位置不合适,井斜角大且狗腿度大,打开塞未座牢,造成双级箍无法打开;⑥井口连接双级箍时打钳位置不对,双级箍内外套发生微变形。

防止双级箍打不开的技术措施有:①禁止在双级箍本体上打钳,防止双级箍本体变形;②选择质量好,设计合理的双级箍产品;③尽可能设计水泥浆不要返到双级箍以上位置,如一级固井水泥浆必须返到双级箍以上,其稠化时间要附加重力塞的下落时间,且选用性能良好的

固井隔离液防止双级箍处的水泥浆胶凝;④双级固井前要充分循环处理钻井液,确保井眼稳定;⑤选择合适的双级箍放置位置,对于常规的机械打开双级箍,其井斜角一般不要大于60~80;对于大斜度井

采用液压式双级箍。

双级箍打不开的处理方法有:①如果水泥浆没有返到双级箍,在套管内下入小钻具,下压双级箍的打开套,靠机械式打开双级箍;②如果水泥浆已经返到双级箍以上,先测声幅,在水泥浆面以上50m左右射孔,建立循环,进行二级固井;③如果双级箍以上没有特殊地层且没有高压地层,可下入专用工具关闭双级箍,再钻开内套,进行试压,如满足下次开钻要求或油气生产测试要求,可从井口反注水泥浆

固井。

2. 双级箍关闭不上

双级箍关闭不上是指在二级固井后,关闭塞不能顺利关闭双级箍的二级固井循环孔,造成双级箍处密封不严。

造成双级箍不能顺利关闭的可能原因有:①管内外静压差大,造成关闭双级箍压力高;②双级箍本身加工质量和设计有缺陷,双级箍在重力作用下本体变形或双级箍本体与关闭套配合间隙过小,造成双级箍关闭套下行阻力大,无法关闭双级箍;③连接双级箍打钳位置不对,双级箍本体发生微变形,造成双级箍无法关闭;④第一次施加的关闭压力不够,再施加关闭压力时,关闭塞与塞座密封不严。

防止双级箍关不住的技术措施有:①禁止在双级箍本体上打钳,防止双级箍本体变形;②提高双级箍本身加工质量,设计合理的关闭套配

合间隙;③采用重浆替浆,尽可能减少管内外压差,减少最终关闭压力值;④在双级固井二级固井投关闭塞后尾随0.5~1.0方水泥浆,万一双级箍不能正常关闭,提高双级箍关闭套密封能力;⑤提高第一

次关闭压力。

双级箍关不住的处理方法有:①继续增加关闭压力试关闭双级箍;②如果高压下仍然关闭不上,关井候凝;③对于双级箍没有关闭的井,在下钻钻双级箍附件时注意用钻具尝试关闭双级箍关闭套。

3)尾管复杂情况

尾管固井工艺对尾管悬挂器的要求是“下的去、挂的住、密封严、倒的开、提的出”。其复杂情况主要包括以下几种:

⑴下尾管中途遇阻

下尾管中途遇阻一般分两种情况,一种是在上层套管内遇阻,二是在裸眼段遇阻。如果在上层套管内遇阻,一般是由于尾管悬挂器的卡瓦提前座挂引起的,在裸眼段遇阻除悬挂器原因外还可能是地层的原

因。

尾管悬挂器(液压式)的卡瓦提前座封的原因有:①对于液压尾管悬挂器由于尾管遇阻,开泵循环泵压超过悬挂器座封销钉剪切压力,造成尾管悬挂器的卡瓦提前座封;②下尾管速度太快,也可能造成卡瓦提前座挂而遇阻;③尾管悬挂器本体锥体本位外径设计太大,如上层套管内壁不干净、稍有变形或井眼缩径,就可能引起下尾管中途遇阻。防止尾管悬挂器的卡瓦提前座挂的技术措施有:①如果下尾管遇阻,需要循环钻井液,控制开泵循环泵压不超过悬挂器座挂销钉剪切压

力;②控制下尾管速度,一般一根套管下放时间不少于20s,一个立柱下放时间不少于45s;③在尾管悬挂器本体锥体上下各加一个外径大于锥体的刚性扶正器;④适当提高悬挂器的座挂剪钉压力。

尾管悬挂器的卡瓦提前座挂的处理方法是:一般液压尾管都带有复位弹簧,上提尾管使其复位,后慢慢下尾管,并注意指重表悬重变化。

⑵尾管悬挂器座挂不上

尾管悬挂器座挂不上是指在尾管悬挂器不能有效地将尾管重量悬挂

在上层套管上。

尾管悬挂器座封不上的原因有:①上层套管内壁没有刮壁不干净、套管内壁磨损严重、或套管壁厚小强度低或座挂位置正好处于接箍等原因可能造成悬挂不上;②悬挂器本身设计缺陷,如:座挂卡瓦锥度设计不当,不能实现自锁,尾管悬挂器座封液压缸设计间隙不合适,造成活塞不能有效上行等;③尾管悬挂器座挂卡瓦在下尾管过程中被损坏;④悬挂重量大,悬挂器本体发生变形,活塞上行阻力大;⑤钻井液固相含量高,性能不稳定,造成座挂液压缸堵塞。

防止尾管悬挂器座封不上的技术措施有:①下尾管前对上层套管内壁刮壁,尤其是钻井周期长或老井侧钻的井;②选择合理的座挂位置,应避开套管内壁磨损严重和套管接箍等位置;③控制尾管下放速度,防止尾管悬挂器座挂卡瓦在下尾管过程中被损坏;④合理的尾管悬挂器座挂液压缸设计间隙,并在地面做拉伸试压座挂试验;⑤提高钻井液稳定性能,并设计合理的液压缸防堵塞结构;⑥悬挂器一经座挂不宜再上提解挂,重新座挂;⑦液压尾管悬挂器下部的浮鞋应设计有旁

通孔,万一座挂不上可以座井底倒扣完成固井施工。

尾管悬挂器座挂不上的处理方法有:①尾管悬挂器在设计压力不能有效座挂,首先要校对悬挂器座挂位置,如座挂位置处于套管内壁磨损严重和套管接箍等位置,应放压,改变座挂位置,重新憋压座挂;②如果尾管悬挂器在设计压力不能有效座挂,应采取逐步升高座挂压力的方式反复尝试座挂,不可盲目升压,以免一次将座挂球座打通;③如座挂球座已经打通还没有座挂成功,可采用大排量循环钻井液的方法座挂尾管悬挂器;④如最终悬挂器座挂不上,且下部尾管重量不是很大,可选择座井底倒扣注水泥方式固井,否则,只好提套管。

⑶尾管悬挂器密封失效

尾管悬挂器密封失效是指尾管悬挂器中心管与密封芯子之间的密封件失去密封能力,造成尾管注水泥“短路”。

尾管悬挂器密封失效的原因有:①密封芯中密封圈在组装时损坏;②密封圈不耐高温;③在判断是否已经倒开扣时上下提中心管造成密封

圈损坏。

防止尾管悬挂器密封失效的技术措施有:①精心组装密封圈,防止在组装时发生反转或损坏;②提高中心管的光洁度,防止在倒扣或判断是否倒开扣时造成密封圈损害;③尾管悬挂器入井前必须进行密封性

能试压;④密封圈要耐高温。

尾管悬挂器密封失效后的处理方法:一般只能将送放工具提出,在尾

管内下封隔器注水泥。

⑷尾管悬挂器倒不开、提不出

尾管悬挂器倒不开、提不出是指尾管下到井底后,悬挂器倒扣装置和尾管连接的反扣部位倒不开扣,或者倒开后无法提出送放工具,造成

悬挂器无法脱手。

尾管悬挂器倒不开的原因有:①倒扣时,倒扣螺母处受力,造成倒扣困难;②倒扣螺母处有脏物,造成粘扣;③倒扣螺母设计强度低,在下尾管时已经变形;④井斜角大,且井眼狗腿度大,倒扣时倒扣扭矩

无法正常传到井底。

防止尾管悬挂器倒不开的技术措施有:尾管悬挂器在入井前要进行严

格仔细的检查。

尾管悬挂器倒不开的处理方法有:如倒扣时,反转严重,应仔细计算中和点,保证倒扣螺母处不受力,并较少倒扣摩阻;在增加倒扣扭矩时,注意一次倒扣的圈数不要超过钻杆的允许的抗扭强度,防止钻杆扭断;如判断扣已经倒开,则通过适当迅速上提下放的方法,使悬挂

器脱手。

2水泥浆性能复杂情况

固井水泥浆性能复杂情况是指由于水泥浆性能设计不当或水泥浆性能发生变化造成固井施工复杂情况。主要包括:水泥浆闪凝、水泥浆

过度缓凝、水泥石强度衰退等。

2.1水泥浆闪凝

水泥浆闪凝是指在注水泥或替浆过程中由于水泥浆性能发生突变,水泥浆提前发生稠化或凝固,造成固井失败。

⑴水泥浆闪凝的原因

①材料方面的原因。用于配置水泥浆的水泥、外加剂或配浆用水与实验室实验用的不一致或由于材料质量控制不好,造成水泥浆稠化时间或凝固时间与实验室测试结果不一致。

②实验条件不同造成的。由于实验室测试条件与现场实际情况不符,尤其是温度对水泥浆稠化时间和凝固时间影响很大,如果实验温度远小于实际温度或遇到异常高温层则易发生水泥浆闪凝。

③现场施工的原因。在现场施工过程中配置的水泥浆密度远高于设计值可能导致水泥浆闪凝。另一方面,水泥浆外加剂混配不匀也可

能造成水泥浆闪凝。

④井内流体混入水泥浆中,尤其是高矿化度盐水会严重缩短水泥

浆稠化时间和凝固时间。

⑤固井水泥浆与钻井液相溶性差,钻井液混入水泥浆中。

⑵防止水泥浆闪凝的技术措施

①控制固井材料质量和稳定性。用于配置水泥浆的水泥、外加剂或配浆用水与实验室实验用的材料要求一致,外加剂要求混配均匀。

②准确求取现场施工的固井参数,尤其是井底循环温度值。

③在现场施工过程中控制水泥浆密度在设计值的上下0.03kg/L范围

内。

④注水泥作业过程中要注意压力平衡,确保压稳地层流体。

⑤采用优质冲洗液、隔离液有效分隔钻井液和固井水泥浆。

⑥做好水泥浆配浆水陈化实验和现场大样复查工作。

⑶水泥浆闪凝后的处理方法

水泥浆发生闪凝后要立即根据现场施工情况,在保证设备和井下安全的条件下用高泵压顶替,如果可能,应迅速接水泥车顶替,尽可能多将水泥浆替到环空内,后采用挤水泥的方法补注水泥。

2.2 水泥浆触变性

水泥浆触变性是指由于水泥浆在流动时具有较好的流动性能,但稍静止其迅速形成胶凝结构,水泥浆失去流动能力。

⑴水泥浆形成触变性的原因

①材料方面的原因。如水泥浆中添加了超细材料或钙质含量较高的外

加剂,易形成较强的网状结构,造成水泥浆触变性强。

②井内流体混入水泥浆中,尤其是高含钙离子的地层水也会引起水泥

浆触变性。

③高密度钻井液中固相含量高,水灰比小,也易形成触变性

④水泥车混合能力偏低,混合能小,混配的水泥浆的触变性一般较强。

⑵防止水泥浆触变性的技术措施

①采用高效的分散剂,改善水泥浆流变性。

②注水泥作业过程中要注意压力平衡,确保压稳地层流体,防止

地层流体侵入水泥浆中。

③采用大功率、高混合能力的水泥车施工。

④保持注水泥施工连续,防止停泵。

⑶水泥浆发生触变后的处理办法

水泥浆发生触变性后要根据现场施工情况,可在配浆水中加入分散

剂,并确保连续施工。

2.3水泥浆过度缓凝

水泥浆过度缓凝是指由于水泥浆稠化时间过长,造成水泥石强度发展缓慢甚至不凝固,造成无法有效封固油气水层。

⑴水泥浆过度缓凝的原因

①水泥浆中添加了过量混凝剂。

②施工时混配的水泥浆密度远低于设计密度。

③井下实际温度远低于实验温度,由于温度对水泥浆强度发展影

响很大,温度愈低,水泥浆强度发展愈缓慢。

④水泥浆顶替效率低,水泥浆中混入钻井液,造成水泥浆过度缓

凝。

⑵防止水泥浆过度缓凝的技术措施

①添加合适的水泥浆缓凝剂,在保证施工安全的条件下,稠化时间在

施工时间的基础上一般附加30~60min.

②采用水泥浆促凝剂或水泥浆早强剂加快水泥浆早期强度的发

展。

③在现场施工过程中控制水泥浆密度在设计值的上下0.03Kg/L

范围内。

④采取有效措施,提高水泥浆顶替效率。

⑤准确求取现场施工的固井参数,尤其是井底循环温度值,按实

际温度进行室内水泥浆实验。

⑥做好水泥浆配浆水陈化实验和现场大样复查工作,大样不合格

的水泥浆不允许入井。

⑶水泥浆过度缓凝后的处理办法

水泥浆过度缓凝后只能延长水泥浆候凝时间,待水泥浆凝固后才能进

行下步作业。

2.4水泥石强度衰退

水泥石强度衰退是指在井下条件下,水泥石发生强度退化,封隔能力降低的现象。在高温下,常规的油井水泥在大于110℃条件下一般会

发生强度衰退。

⑴水泥石强度衰退的原因

①常规水泥浆一般在110℃以下,水化后形成低渗透率、高强度的雪硅钙石,当温度进一步升高,其强度降低,渗透率增加,封隔能

力下降。

②水泥石渗透率较高,遇到高腐蚀的地层流体侵入水泥石,造成

强度衰退。

③在高温热采内,由于注入蒸汽,造成井下水泥石受高温发生强

度衰退。

⑵防止水泥石强度衰退的技术措施

①当井底静止温度大于110℃时,添加水泥浆高温强度稳定剂(硅粉),110~130℃时,其加量为35%,当温度大于130℃时,加量为35%~

45%,温度愈高,硅粉加量愈大。

②当地层流体腐蚀性强时,加入如非渗透剂、超细材料等降低水泥石

的渗透率。

③在高温热采井水泥浆中要加入适量的高温强度稳定剂。

⑶水泥石高温强度衰退后的处理办法

水泥石发生高温强度衰退后,其封隔能力严重下降,目前没有较好的处理办法,应注意井下作业的安全性。

3注水泥施工复杂情况

注水泥施工复杂情况是指在注水泥施工中,由于水泥浆性能、井下复杂地层或施工工艺等方面的原因,造成注水泥作业复杂情况或失败。主要包括注水泥漏失、灌香肠、注水泥替空等复杂情况和事故。

3. 1注水泥漏失

注水泥漏失是指在注水泥或替浆过程中,由于环空液柱压力和环空摩阻之和超过地层破漏压力,水泥浆漏失到地层,造成水泥浆返高不够、油气水层漏封和水泥胶结质量差。

⑴注水泥漏失的原因

①地层方面的原因有地层渗透率高,发生水泥浆渗漏;地层胶结差,地层承压能力低,破漏压力低;地层裂隙、断层发育,造成水泥浆漏

失;

②套管与井眼环空间隙小,循环摩阻大,造成注水泥漏失;

③水泥浆密度设计高、水泥浆封固段长,造成环空液柱压力高,易发

生注水泥漏失;

④钻井液密度、粘度大,循环摩阻大,造成注水泥漏失;

⑤注水泥和替浆排量大,循环摩阻大。

⑵防止注水泥漏失的技术措施

①适当加入堵漏材料,提高地层承压能力;

固井质量资料简介

-油气井固井质量评价 固井声波测井的主要任务是检查套管和地层间水泥环的胶结质量,包括第一胶结面的胶结质量—水泥环和套管间的胶结情况、第二胶结面的胶结质量—水泥环和地层间的胶结情况。同时,水泥返高、水泥抗压强度和套管破裂等有关固井工程质量问题都是十分重要的评价内容。由于固井声波测井的井眼条件和测量目的都与裸眼井声波测井不同,因此在方法原理和仪器设计上也有其自身特点。 目前常见的固井质量评价测井仪有声幅测井仪和声波全波变密度测井仪,近几年发展起来的还有SBT扇区水泥绞结成像测井新技术。 .常规的声幅测井(CBL):检测水泥环与套管(第一界面)的封固质量。 .声幅变密度测井(CBL/VDL):同时检测第一界面和第二界面胶结的质量。 .扇段水泥胶结测井(SBT):在实时监测第一、二界面封固质量的同时,测量整个水泥环内部的封固情况,并通过相对方位的资料确定水泥沟槽的相对方位和确定油气水窜槽的具体位置和原因。 .伽玛密度测井(SGDT):分别探测来自套管、水泥环、泥浆液等介质产生非弹性碰撞的次生伽玛射线记数率,进而计算出水泥环平均密度、套管厚度、套管偏心等参数。 一、声幅测井 1. 声幅测井原理 声幅测井的基本原理是利用水泥和泥 浆(或水)声阻抗差异对沿套管轴向传播的声 波的衰减影响来反映水泥与套管间的胶结质 量。声幅测井仪的声探测装置是由位于井轴上 相隔一段距离的一对声发射器和声接收器构 成。当发射器发出声波后,接收器上接收到的 声信号包括有套管波、水泥波、地层波和泥浆 波的贡献。上述几种波在井中的传播路径见右 图。由于水泥对声波具有较大的吸收系数,实 际到达接收器的水泥波相对很微弱,一般可认 为接收信号中无水泥波的贡献。

完井技术国内外发展现状分析

完井技术国内外发展现状分析 第1章前言 1.1 现代完井技术发展现状 完井工程是衔接钻井和采油工程而又相对独立的工程,是从钻开油气层开始,到下套管注水泥固井、射孔、下生产管柱、排液,直至投产的一项系统工程。完井设计水平的高低和完井施工质量的优劣,对油气井生产能否达到预期指标和油田开发的经济效益有决定性的影响。 近十多年来,国内外完井均有了较快发展,并已发展成为独立的学科。除常规井完井技术日益完善外,其他特殊井完井也得到了很大发展,如水平井完井、复杂地质条件下的完井、小井眼完井、分支井完井、深井超深井完井、现代智能完井、膨胀管完井等。国内在完井技术方面虽然取得了一些进步,但是与国外相比,完井技术还有很大差距,特别是在不同储层选择合适的完井方式、水平井完井、欠平衡井完井、小井眼完井、分支井完井,从而影响了油气井的产量及经济效益。 1.2 本文的主要研究内容 1.查阅现代完井技术方面的文献,对各种完井技术现状进行综合性分析: (1)射孔完井技术; (2)割缝衬管完井技术; (3)砾石充填完井技术; (4)膨胀管完井技术; (5)封隔器完井技术; (6)智能完井技术。 2. 调研国内外最新完井技术现状,重点分析国内外现代完井技术现状、最新进展、应用成果以及发展趋势等,并对国内完井技术方案实施的可行性和完井技术的研究方向作初步预测和探讨。

第2章常规完井技术 完井方式的选择主要是针对单井而言。虽单井属于同一油藏类型,但是所处构造位置不同,所选定的完井方式也不尽相同,如油藏有气顶、底水,若采用裸眼完成,技术套管则应将气顶封隔住,再钻开油层,而不钻开底水层。若采用射孔完成,则应避射气顶和底水。又如油藏有边水,套管射孔完成时,油田开发要充分利用边水驱动作用,避射开油水过渡带。下面主要介绍常用的几种常规完井方式[1]。 2.1 裸眼完井技术 裸眼完井方式分先期裸眼完井方式、复合型完井方式和后期裸眼完井方式三种。 先期裸眼完井方式(如图2-1)是钻头钻至油层顶界附近后,下套管柱水泥固井。水泥浆上返至预定设计高度后,再从套管中下入直径较小的钻头,钻穿水泥塞,钻开油层至设计井身完井。 复合型完井方式(如图2-2)是指适合于裸眼完井的厚油层,但上部有气顶或顶界邻近又有水层时,可以将技术套管下过油气界面,使其封隔油层的上部,然后裸眼完井,必要时再射开其中的含油段。 后期裸眼完井方式(如图2-3)是不更换钻头,直接钻穿油层至设计井深,然后下套管至油层顶界附近,注水泥固井。固井时,为防止水泥浆损害套管鞋以下的油层,通常在油层段垫砂或者换入低失水、高粘度的钻井液,以防水泥浆下沉。 图2-1 先期裸眼完井示意图 1—表层套管 2—生产套管 3—水泥环 4—裸眼井壁 5—油层

固井工艺技术

固井工艺技术 常规固井工艺 内管法固井工艺 尾管固井工艺 尾管回接固井工艺 分级固井工艺 选择式注水泥固井工艺 筛管(裸眼)顶部注水泥固井工艺 封隔器完井及水泥充填封隔器固井工艺 注水泥塞工艺 预应力固井工艺 挤水泥补救工艺技术 漏失井固井技术 高压井固井技术 大斜度井固井技术 深井及超深井固井技术 长封固段井固井技术 小间隙井固井技术 糖葫芦井眼固井技术 气井固井技术

(一)常规固井工艺 常规固井工艺是指在井身质量较好,且井下无特殊复杂情况,封固段较短的封固要求下,将配制好的水泥浆,通过前置液、下胶塞(隔离塞)与钻井液隔离后,一次性地通过高压管汇、水泥头、套管串注入井内,从管串底部进入环空,到达设计位置,以达到设计井段的套管与井壁间的有效封固。套管串结构:引鞋+旋流短节+2根套管+浮箍+套管串。 施工流程:注前置液→注水泥浆→压碰压塞(上胶塞)→替钻井液→碰压→候凝。 保证施工安全和固井质量的基本条件: (1)井眼畅通。 (2)井底干净。 (3)井径规则,井径扩大率小于15%。 (4)固井前井下不漏失。 (5)钻井液中无严重油气侵,油气上窜速度小于10m/h。 (6)套管居中,居中度不小于75%。 (7)套管与井壁环形间隙大于20mm。 (8)钻井液性能在不影响井壁稳定、保证井下压稳的情况下,应保证低粘度、低切力、低密度,具有良好的流动性能。 (9)水泥浆稠化时间、流动度等物理性能应满足施工要求。 (10)水泥浆和钻井液要有一定密度差,一般要大于0.2。 (11)下灰设备、供水设备、注水泥设备、替泥浆设备及高低

压管汇等,性能满足施工要求。 (二)内管法固井工艺 内管法固井工艺是用下部连接有浮箍插头的小直径钻杆插入套管的插座式浮箍(或插座式浮鞋),与环空建立循环,用水泥车通过钻杆向套管外环空注水泥。采用该工艺注水泥能减少水泥浆在套管内与钻井液的掺混,缩短顶替钻井液时间。用该工艺进行表层时,水泥浆可提前返出,从而减少因附加水泥量过大而造成的浪费和环境污染。该工艺一般用于大直径套管固井。 套管串结构:插入式浮鞋+套管串(或:引鞋+1根套管+插入式浮箍+套管串)。 钻杆串结构:插头+钻杆扶正器+钻杆串。 工艺流程:注入前置液→注水泥浆→替钻井液(替入量比钻杆内容积少0.5m3)→放回压检查回压凡尔是否倒流→上提钻杆循环出多余的水泥浆。 (三)尾管固井工艺 尾管固井是指不延伸至井口的套管固井,这段不到井口的套管称做尾管。较短的尾管可座于井底,但绝大部分必须要求实施尾管悬挂,这样管柱不至于大幅度弯曲,利于保证固井质量,便于进行增产作业。悬挂器装在尾管顶部,尾管由尾管悬挂器悬挂于上层套管内壁。尾管固井的主要目的有:经济性;满足使用复合钻具或复合油管;改善钻井或注水泥环空水力条件等。 最常用的尾管悬挂器是液压式尾管悬挂器。

浅析我国石油固井技术进展及面临的问题

浅析我国石油固井技术进展及面临的问题 现阶段我国社会经济发展速度较为稳定,并且现阶段我国所处的时代是一个知识经济的时代,各项科学技术发展和应用的速度比较快,各个领域中的相关企业在崭新的发展机遇之下得以快速发展,从而就从数量和质量这个层面上对能源提出了更高的要求,在上文中提及到的这种情况之下,石油开采企业只有对固井技术进行研究,才能够满足社会提出的能源方面的要求,在巨大的市场压力的促进下,我国石油固井技术取得了长足的发展,但是还是存在着一些问题有待解决,作者依据实际工作经验首先对石油固井技术现状进行分析,然后再对现阶段我国石油固井相关工作进行的过程中面临的问题进行分析。 标签:石油固井;技术;进展、问题;现阶段 1 概述 固井是油气井建设的过程中涉及到一个极为重要的环节,也是联结钻井和采油工程的一个较为独立的系统性工程,固井质量水平的高低,不单单是会对石油井生产相关工作的顺利开展造成一定程度的影响,也是会对石油井寿命和油气储藏量造成一定程度的影响的。为了能够满足勘探开发复杂深层油气藏。高酸性油气藏以及稠油油气藏等油田的过程中提出的要求,在经过了过年的技术攻关之后,在固井材料、固井工具以及与之相对应的固井工艺技术上取得了长足的进步。 2 現阶段我国石油固井技术的实际情况 2.1 固井液技术得到的发展和在石油固井工作进行的过程中的实际应用情况 固井液技术是以以往石油固井工作进行的过程中使用到的钻井液的配方为基础的,在钻井液调配工作进行的过程中添加不多的高炉淬渣或者其它的水化材料,在使用固井液技术调配钻井液的过程中基本上是不会对钻井液其它方面的性能造成影响的。固井液技术研发工作进行的过程中使用到了UF钻井、MTC固井技术原理,从而使得钻井液和固井液之间的相互融合性得到了一定程度的提升,使得以往石油固井相关工作进行的过程中面临着的固井液和钻井液不相容这个问题得到了有效的解决,从而就能够使得第一二界面之间的胶结程度得到一定程度的保证,尤其是能够使得第二界面的胶结质量得到一定程度的提升,最大限度的组织油气、水流体等在各个层面之前的流动,并且因为激活剂是能够起到一定程度的扩散和渗透作用的,从而就会使得泥饼逐渐演变为固态的密度比较高的泥浆,以此为基础在石油固井相关工作进行的过程中,循环漏失以及水泥浆液柱回落这些问题出现的几率就比较低了。将固井液和普通油井固井相关工作进行的过程中使用到的水泥浆进行一定程度的相互比较,调配工作进行的过程中使用到的外加剂是比较便宜的,与此同时也具有失水量低、强度提升快以及沉降稳定性强等特点,固井液技术的出现使得以往石油固井工作进行的过程中需要使用到的顶替机理和顶替技术逐渐被人们遗忘,并且也使得以往石油固井工作进行的过程

影响水平井固井质量因素分析及对策

影响水平井固井质量因素分析及对策 发表时间:2019-08-29T14:28:31.763Z 来源:《基层建设》2019年第16期作者:李春锋 [导读] 摘要:伴随着井下随钻测量仪器和井下动力钻具制造技术的不断发展与进步,水平井钻井技术也得了前所未有的发展,因其单井产能高、开发成本低,无论是国内,还是国外的大油田都进行了非常广泛的应用。 大庆钻探钻井生产技术服务二公司固井分公司吉林松原 138000 摘要:伴随着井下随钻测量仪器和井下动力钻具制造技术的不断发展与进步,水平井钻井技术也得了前所未有的发展,因其单井产能高、开发成本低,无论是国内,还是国外的大油田都进行了非常广泛的应用。但是水平井的固井质量问题一直是广大科技工作者关注与研究的重点领域,水平井固井质量的好坏直接关系到水平井生产原油的寿命,而水平井因其自身的施工工艺特点,与直井在固井工艺和技术上又有非常大的差别,所以固井质量优质率和合格率多年来一直都比较低,因此需要对水平井固井质量的影响因素进行深入、细致地分析,才能制定出相应的技术对策来提高水平井的固井质量。 关键词:水平井固井质量;固井难点;技术对策 随着人类对石油资源消耗量的不断增加,石油开采也越来越受到重视,如何进行石油的有效开采,降低石油开采成本也成为重要的话题。目前国际上普遍认为应用水平井钻井技术可以对那些低地层压力、单井产量低和油层低渗透的油气藏进行有效的开采,降低石油的开采成本,但是由于水平井自身井身结构的特殊性,使应用水平井技术初期的固井质量一直都没有直井固井质量高,造成了水平井开采寿命短问题的出现,也就难以实现低成本、高效率进行石油开采的目的。为了提高水平井固井质量,广大石油科技者进行了深入的研究,并发现了影响水平井固井质量的因素,制定了相关的技术对策,使水平井固井质量有了非常大的提升。 1影响水平井固井质量因素分析 1.1套管下放过程中存在的问题 水平井施工作业形成的井眼轨迹具有特殊性,套管在下放作业时会承受比普通井更大的摩擦力。特别在大斜度井段和水平段,井壁会承受很大的侧向压力,所以,套管在下放作业时必须会受到较大的阻力。和垂直井进行比较来看,为了使套管处于井眼的中间位置,水平井在下放套管时会应用更多的扶正器,同样会引起套管在下放作业时承受更多的阻力。在摩擦阻力的条件下,套管可能无法到达目标位置,这种问题在浅层水平井中更为常见。在重力施加的影响力之下,套管在井身当中会出现偏心问题,使其与井壁下侧间隙过小,在水平井段或者斜度较大的井段,套管很难实现居中。这样就会影响固井质量。 1.2井眼不规则 在水平井的钻井施工过程中,由于油层的实际深度和设计的深度之间往往会存在一定的误差,因此为了找到油层,必须要进行实际井眼轨迹的调整,这样就会使得有的地方井眼的全角变化率大,有的地方全角变化率小,这样如此反复几次调整以后,使实际钻得的井眼轨迹呈现出上下反复的波浪线形状,造成井眼的不规则,为套管安全下入和注水泥过程中的水泥浆注入量计算带来困难。 1.3顶替效率低 水平井由于大斜度井段和水平井段都比较长,这么长的井段在套管下入过程中必然套管会贴向下井壁,这样的结果就是形成了比较大的偏心环空,在井眼的低边位置套管与井壁之间的环空间隙比较小,当水泥浆流经这一位置的时候流速特别慢,因此难以把钻井液和隔离液进行有效的顶替,导致这一位置胶结质量差,影响固井质量。 1.4存在岩屑床、胶结质量差 岩屑床不仅对水平井钻井影响大,对水平井固井的影响也是非常大的,虽然在下套管固井之前我们采取了一系列的技术措施,但是依然没有完全破坏岩屑床,这些没有被破坏携带出井筒的岩屑床和岩屑颗粒不仅会影响水泥浆的顶替效率,同时也会影响水泥浆与井壁之间的胶结质量,影响水平井固井的质量。 2提升水平井固井质量技术对策 2.1进行井眼准备 在进行下套管之前要做一系列的准备工作,而井眼的准备工作是不可缺少的,是非常关键的技术环节,井眼准备的好坏直接影响着套管串是否能够安全、顺利下入,以及固井顶替效率,因此需要采取以下几个方面的技术措施。(1)根据软件计算得出的管串结构,对管串进行模拟通井,一般根据不同井眼的质量情况,要进行单扶正器模拟通井、双扶正器的模拟通井,进行上述2次通井后如果井眼依然不够顺畅,那么就有必要三扶正器的模拟通井,并在井眼不够畅通的井段进行反复划眼,直至井眼畅通,起下钻无阻卡为止。并且在模拟通井结束后要及时进行钻井液性能的调节,大排量洗井,直到振动筛无砂子返出才能进行起钻作业。(2)在模拟通井还没有结束的时候还需要进行一项工作的测定,主要是将钻井液性能调整好后对循环周期进行测量,根据测量出的结果对整个井筒容积进行计算,这样做的主要目的是根据井筒的总容积来计算水泥浆的注入量,为固井水泥浆的准备提高依据。(3)在最后一次通井调整钻井液性能的时候要在钻井液中加入足够的润滑剂,使钻井液具有良好的润滑性能,为套管安全下入,降低下套管的摩擦阻力做好准备,有必要的情况下可以在钻井液中加入空心塑料小球来降低下套管的难度。 2.2进行管串结构优化 管串结构的优化即会影响套管的安全下入,也会影响整个固井的顶替效率。在管串结构优化中主要对扶正器的种类、数量和间距进行优化。如果扶正器加入数量过多,那么套管的居中度就会有所提高,但是同时下套管的摩擦阻力也会增大,因此需要应用固井管串软件对管串结构进行深入优化,以保证套管居中度在67%以上,套管安全下入的摩擦阻力最小为目标进行系统优化设计。同时对于具备条件的单位可以应用漂浮接箍下套管工具,减小下套管的阻力,保证套管的安全下入。 2.3进行前置液设计 对于固井前置液我们在以往的设计中要让它能够满足下面几项要求:一是前置液要具有非常好的润湿性能,能够快速改变井壁润湿环境,让润湿后的井壁亲水性更强,更容易与水泥胶结在一起。二是要保证前置液触变性良好,同时还要有很好地悬浮性,性能上还有非常地稳定,这样才能最大限度地悬浮其中的岩屑颗粒,保证其性能优良。 2.4进行水泥浆设计 水泥浆是固井中不可缺少的,因此要想有良好的固井质量,必须要对水泥浆性能进行研究。对于水平井固井水泥浆来说,一个是要求

固井工艺简介

固井工艺简 井深结构图 固井按井深结构可分为:1·表层套管固井 2·技术套管固井 3·油层套管固井 4.回接套管固井 1表层套管固井:一般通俗指20 ”133/8”或95/8”套管的固井,其目的是为了封固松软,易垮塔地层,为下部继续钻进作准备。 固井工艺一般采用单级固井或内插管固井 A)单级固井指一次性注完设计水泥浆并按设计替浆到位。 B)内插管固井指用专用工具内插管插入插入座后,注浆按设计 量返出后,按设计量替浆,起钻循环 固井工序

2技术套管固井 一般通俗指7”133/8”或95/8”套管的固井,其目的是为了封固下部复杂地层,为下部钻开油气层,做好准备。 固井工艺一般采用单级固井,双级固井,悬挂固井。 A)单级固井与表层单级固井相同。 B)双级固井:指由于所封固地层的地层压力相差较大或由于封 固断较长所采用的一种特殊固井工艺。采用分级箍分两次注浆的固井工艺。

C)悬挂固井:指由于封固段较长,所下套管悬重较大或由于钻 井成本考虑。所采用的一种特殊固井工艺,采用固井专用工具-悬挂器与上层套管下部的连接达到技术固井的目的 固井工序

3油层套管固井 一般通俗指7”,5”,51/2”或41/2”套管的固井,其目的是为了分隔下部各油气层或油水层,为下部分层开采做好准备。 固井工艺一般采用单级固井,双级固井,悬挂固井。 其固井工艺过程与技术套管固井相同,但技术措施不同。 4回接固井 一般川内常见的是7”回接,其目的是为满足下部油气层开发所需要的套管强度。其固井过程采用固井专用工具-插入筒插入到回接筒内,在固井时必须上提套管建立循环通道。按设计注浆,替浆完后下放套管插入回接筒形成密封。 固井工序

固井工艺技术

固井工艺技术 常规固井工艺内管法固井工艺尾管固井工艺尾管回接固井工艺分级固井工艺选择式注水泥固井工艺筛管(裸眼)顶部注水泥固井工艺封隔器完井及水泥充填封隔器固井工艺注水泥塞工艺预应力固井工艺挤水泥补救工艺技术漏失井固井技术高压井固井技术大斜度井固井技术深井及超深井固井技术长封固段井固井技术小间隙井固井技术糖葫芦井眼固井技术气井固井技术

(一) 常规固井工艺 常规固井工艺是指在井身质量较好,且井下无特殊复杂情况, 封固段 较短的封固要求下,将配制好的水泥浆,通过前置液、下胶 塞(隔离塞)与钻井液隔离后,一次性地通过高压管汇、水泥头、 套管串注入井内,从管串底部进入环空,到达设计位置,以达到设 计井段的套管与井壁间的有效封固。套管串结构:引鞋 +旋流短节 +2根套管+浮箍+套管串。 施工流程:注前置液7注水泥浆7压碰压塞(上胶塞)7替钻井液 保证施工安全和固井质量的基本条件: 井眼畅通。 井底干净。 井径规则,井径扩大率小于15% 固井前井下不漏失。 套管居中,居中度不小于 75% 钻井液性能在不影响井壁稳定、保证井下压稳的情况下,应 保证低粘度、低切力、低密度,具有良好的流动性能。 (9)水泥浆稠化时间、流动度等物理性能应满足施工要求。 (11 )下灰设备、供水设备、注水泥设备、替泥浆设备及高低压管 钻井液中无严重油气侵,油气上窜速度小于 10m/h 。 (7) 套管与井壁环形间隙大于 20mm (8) (10)水泥浆和钻井液要有一定密度差,一般要大于 0.2。

汇等,性能满足施工要求。 (二)内管法固井工艺 内管法固井工艺是用下部连接有浮箍插头的小直径钻杆插入套管的插座式浮箍(或插座式浮鞋),与环空建立循环,用水泥车通过钻杆向套管外环空注水泥。采用该工艺注水泥能减少水泥浆在套管内与钻井液的掺混,缩短顶替钻井液时间。用该工艺进行表层时,水泥浆可提前返出,从而减少因附加水泥量过大而造成的浪费和环境污染。该工艺一般用于大直径套管固井。 套管串结构:插入式浮鞋+套管串(或:引鞋+1根套管+插入式浮箍+套管串)。 钻杆串结构:插头+钻杆扶正器+钻杆串。 工艺流程:注入前置液T注水泥浆T替钻井液(替入量比钻杆内容积少 0.5m3)T放回压检查回压凡尔是否倒流T上提钻杆循环出多余的水泥浆。 (三)尾管固井工艺 尾管固井是指不延伸至井口的套管固井,这段不到井口的套管称做尾管。较短的尾管可座于井底,但绝大部分必须要求实施尾管悬挂,这样管柱不至于大幅度弯曲,利于保证固井质量,便于进行增产作业。悬挂器装在尾管顶部,尾管由尾管悬挂器悬挂于上层套管内壁。尾管固井的主要目的有:经济性;满足使用复合钻具或复合油管;改善钻井或注水泥环空水力条件等。 最常用的尾管悬挂器是液压式尾管悬挂器。 套管串结构:引鞋+1根套管+ 浮箍+1根套管+浮箍+1根套管+球座短节(含托篮)+尾管串+尾管悬挂器总成+送入钻杆。 工艺流程:按作业规程下入尾管及送入钻杆到设计位置T开泵循环 7投球7憋压剪断座挂销钉悬挂器座挂7倒扣7憋压剪断球座销 钉循环钻井液T注前置液T注水泥浆T释放钻杆胶塞T替钻井液 7碰压7上提中心管循环出多余的水泥浆7起钻候凝。 (四)尾管回接固井工艺

固井复杂问题

固井复杂问题 固井作业不仅关系到油气井能否顺利完成,影响投产后油气井质量的好坏、油气井寿命的长短及油气井产量的高低,而且其成本在整个钻井工程中也占有很大的密度(占20%~30%)。固井技术发展的目标一直围绕如何进一步提高固井质量及减少固井事故等。固井又是一个系统工程,影响因素复杂多样,具有其特殊性,主要表现在以下几个方面: (1)固井作业是一个一次性工程,如质量不合格,即使采用挤水泥等补救方法也难以取得良好的效果。 (2)固井作业是一项系统工程、隐蔽性作业,涉及到材料、流体、化学、机械、力学等多种学科,施工时未知因素多,风险大。 (3)固井作业施工时间短,工作量大,技术性强,费用高。 因此,要求固井作业要精心设计、精心准备、精心施工,并要有较完备的预防固井复杂情况的预处理方案,确保优质高效地完成固井作业。 固井作业涉及套管、水泥浆浆体性能设计、注水泥现场施工、水泥胶结质量等方面,为此,固井复杂问题和事故也可以分为以下几类。第一类:套管及下套管复杂情况,包括下套管阻卡、套管断裂、套管泄漏、套管挤毁、套管附件和工具失败、下套管后漏失或循环不通等。 第二类:水泥浆浆体性能事故,包括水泥浆闪凝、水泥浆触变性、水泥浆过度缓凝等。

第三类:注水泥现场施工复杂情况,包括注水泥漏失、环空堵塞、注水泥替空等复杂情况和事故。 第四类:水泥胶结质量复杂情况,包括油气水层漏封、水泥胶结质量差、环空气(水)窜等。 下面就上述固井复杂情况及事故发生的主要原因及预防、处理方法分别加以论述。 1、下套管复杂情况 1、1套管阻卡 套管阻卡一般可分为以下三类:一是套管粘吸卡,二是井眼缩经卡,三是井眼坍塌或砂桥卡。 1)管阻卡的原因及影响因素 1.套管粘吸卡是由于套管的外径往往大于钻杆的外径,套管与井壁的接触面积大于钻杆的接触面积,上扣时间要大于钻杆的上扣时间,且下套管时又难以旋转,因此,卡套管的发生机率较大。 2.井眼缩径卡套管是由于井眼不稳定,特别是钻遇蠕动性岩盐层或由于钻井夜性能不好形成较厚的假泥饼,导致井眼缩径,造成缩径卡套管事故。 3.井眼坍塌或砂桥卡套管是在下套管过程中或下套管结束后发生井眼坍塌或形成砂桥造成卡套管事故。 4.下套管前没有认真通井,对缩径段没有很好地划眼,易造成卡套管事故。 5.下套管作业没有认真准备(包括组织、工具等),造成下套管时间

中海油在海上油田开发中的钻完井技术现状和展望

中海油在海上油田开发中的钻完井技术现状和展望 姜伟 中国海洋石油总公司 摘要:本文总结中国海洋石油总公司在海上油田勘探、开发和生产中,结合海上油田开发的需要和特点,通过不断的探索和实践,逐步的掌握了在中国近海开发油田的关键技术及其特点。同时根据目前国外的开发技术发展现状,结合中海油自身的特点,针对海上油田开发的具体不同的需求。经过改革开放20多年来的不断努力,中海油已经掌握并形成了一整套的海上油气田开发的钻完井工程技术。并且形成了以海上油田开发为目标的优快钻完井技术体系;大位移钻井技术体系;稠油开发钻完井技术体系;海上丛式井和加密井网钻完井技术体系;海上疏松砂岩油田开发储层保护技术体系;海上平台模块钻机装备技术体系等八大技术特色和体系;在海上油田的开发和生产中发挥了巨大的作用,同时也在为海洋石油未来的发展产生了积极的推动作用。 关键词:海洋石油海上油气开发技术挑战钻完井工程关键技术体系 中国海洋石油工业的发展源于上世纪60年代初期,进入到上个世纪80年代初期,随着中国的改革开发,海洋石油总公司成立28年来,海洋石油工业在对外合作开发海上油气资源的过程中,遵循一条引进、消化、吸收、再创新的道路,并且成功的实现了由浅水向深水、上游向下游、单一的勘探开发向综合能源公司发展的三个跨越。并且逐步形成和建设了一个现代化的海洋石油工业体系。 1.中国海上油气开发的概况和挑战 在中国近海开发油气资源,在技术、资金、自然环境等方面面临诸多的困难和挑战,对于钻完井工程而言,我们主要面临三大挑战: 首先是海洋环境的挑战,在海上钻井,除了我们通常的地下各种工程地质问题以外,海洋自然环境条件大大的增加了我们工作的难度。北冰南风是我们要面临的海洋开发的自然环境条件中的最大难题和挑战。 第二个挑战是海上油田开发,钻完井工程投资高、风险大,昂贵的海上开发费用和海上钻完井作业成本与经济有效的开发海上油田的挑战。 第三个挑战是以渤海稠油开发、南海西部高温高压地层的钻探、南海东部深水生产装臵周边油田的经济开发为代表的海洋钻完井技术的和安全风险控制的挑战。

固井水泥浆技术体系探讨

龙源期刊网 https://www.sodocs.net/doc/9b6417948.html, 固井水泥浆技术体系探讨 作者:沈广明 来源:《中国新技术新产品》2013年第12期 摘要:随着钻井技术的不断发展以及油田的勘探开发的持续深入,探井和生产井的深度 不断增加,深井面临着深、多、长以及高等高难度的挑战。深,指的是产层埋藏的比较深,井深一般都在5000米以上;多,指的是显示的层位多,一个井眼有许多个压力体系,多个的油、气、水、等等;长,指的是裸眼井段比较长,在长的裸眼中,井下的复杂层多;高,指的是井的温度高,压力高,腐蚀性的介质在高温、高压的情况下活性比较高。深井固井不仅要有相应的机制以及相应的工艺,同时还要有高性能的水泥浆体系来配套,在国际,高温井段的固井费用一般都是要比常规井段的价格要高出几倍甚至是几十倍,所以这也从另一方面给反映出来了复杂井体固井的难度和风险性。 关键词:固井水泥浆;技术体系;深气井固井 中图分类号:TE25 文献标识码:A 固井水泥浆体系的设计出了要满足一般的固井性能要求,还应该老驴温度,体系的稳定性、水泥石的高温的稳定性等等。保证在任何情况下都能顺利的实施和以及固井的质量。同时要对弹性材料以及增韧材料进行严格的研究记忆优选,分析水泥浆外加剂以及外掺料的加量对水泥浆的各项性能的影响。 深层的气井的深度一般都在3450米到5500米之间,所以固井的封固断比较长、低温的梯度高,还要对气层进行试气、压裂等作业,这就要对水泥浆的性能和固井的施工提出了更高的要求,就是必须要保证全井段的封固的质量必须过关。但是现在国内的深层气井固井的质量不是特别理想,自2005年以来,相继发生了升深8井、徐深10井等在试气之前就发生环空窜气的问题,影响了油气的测试以及产能的建设。 1 常规的固井水泥浆的体系 中温的固井水泥浆体系的适用温度一般在小于或者等于120℃;高温的固井水泥浆体系的抗高温的性能十分优秀,适用的温度是不超过160℃;超高温的固井水泥浆体系抗高温的性能更加的突出,是目前比较少的使可控温度达到200℃的水泥浆体系,适用的温度一般都不超过200℃。这中体系适用在淡水的水泥浆固井,同时也可以用于矿化度比较高的水泥浆固井;它可用于常规的一般条件的固井,同时也可以用于低密度、高密度的特殊条件的比较复杂的固井;应该具有优良的水泥浆体系性能,可以广泛的使用水泥浆体系;具有良好的可调控性、浆体的各个性能比较稳定。各种性能都非常容易调节的特点。 2 深层井固井水泥浆体系研究

预应力固井工艺技术优点及必要性

预应力固井工艺技术优点及必要性 一、预应力固井技术: 预应力固井概念:预应力固井就是给套管施加一定强度的拉应力,使套管在此状态下被水泥凝结,当温度升高时,就可抵消一部分套管受热产生的压应力。从而提高套管的耐温极限,减缓或避免注蒸汽造成的套管破坏。 预应力固井技术是国内外稠油开采普遍采用的技术。由于注蒸汽热采,随着温度变化,套管内的应力亦反复变化,致使本体与螺纹联结受到破坏。在中原内蒙油田稠油开采条件下,油层套管所受热应力都在550Mpa以上,所施加的预应力就是要部分抵消注蒸汽后套管所产生的巨大热应力(压应力),保持套管处于弹性受力范围内,而不发生塑性变形而损坏。 管柱由于温度变化其压缩应力是2.482Mpa/℃,应力计算的经验 公式如下: σ压=2.482ΔT; 式中:σ压-----因温度增加形成的压应力,Mpa; ΔT——增加的温度,℃

现在国内胜利油田、辽河油田和新疆油田均采用一次地锚提拉预应力固井技术。 二、稠油热采井预应力固井优点及必要性 注蒸汽热采是开发稠油的主要手段,在注蒸汽井中,套管需要承受300--350℃的高温,而N80套管允许的温度变化只有222℃,P110套管允许温度变化值为305℃。在干度较高的情况下,井底温度更高,特别是油层部位的套管直接裸露在热蒸汽中,严重影响套管寿命。温度引起轴向载荷以及形成弯曲破坏是套管柱方面的主要问题,温升超过套管的耐温极限就能使套管产生弯曲变形及错断。解决方法是应尽可能保持管外水泥返地面。在套管选择方面,使用具有较大拉力强度的梯形螺纹,同时采用预应力固井施工。 另外,套管受热伸长,在套管与水泥石之间产生间隙,破坏水泥环质量,形成窜槽段,致使地层封隔不严,增大热损失,加剧套管损坏,严重降低油井的使用寿命,并会影响稠油产量,增加油田成本。 应用预应力固井技术可以减缓套管的损坏速度,延长油井的使用寿命,提高稠油产量。所以预应力固井技术是稠油热采中必不可少的关键技术。预应力可抵抗高温的变化,减少热应力及套管的蠕动(由于套管和水泥环受热膨胀率不同,套管变形大时易对水泥环造成破坏,形成窜槽),保护套管和水泥环不受破坏。河南油田泌浅67区块2004年至2005年投产88口井,其中预应力施工43口,没有进行预应力

固井工艺技术

固井工艺技术(张明昌) 第一章概念:常用固井方法,固井的主要目的,固井的重要性。 第二章各套管的作用:表层套管,技术套管,油层套管 第三章常用注水泥工艺 一、常规固井工艺 [一]概念 [二]常规固井基本条件 [三]水泥量的计算 [四]环空液柱压力的计算1.静液柱压力计算;2.动液柱压力计算3.固井压力平衡设计的基本条件 [五]下套管速度的计算 [六]地面及井下管串附件(常规注水泥的~附件表) 二、插入法固井工艺 [一]概述 [二]插入法固井工艺流程 [三]插入法固井的有关计算:1.套管串浮力计算;2.钻柱做封压力的计算 三、尾管固井工艺 [一]概述 [二]尾管悬挂器类型 [三]尾管固井工艺流程(以液压式尾管悬挂器类型为例) [四]尾管送入钻杆回缩距的计算:1.回缩距计算公式 2.方余的计算 [五]各类尾管的特点及使用目的 [六]常用尾管与井眼和上层套管尺寸的搭配 [七]提高尾管固井质量的主要技术措施13条 [八]尾管的回接固井工艺;1.回接套管贯串结构;2尾管回接固井工艺流程。 四、分级固井工艺 [一]概述 [二]分级箍分类 [三]分级固井适用范围 [四]分级固井工艺分类 [五]双级固井工艺流程:1.非连续打开式双级注水泥工艺; 2.连续打开式双级注水泥工艺:(1)机械式分级箍(用打开塞或重力塞);(2)压差式分级箍。 3.双级连续注水泥工艺:(1)机械式分级箍;(2)压差式分级箍。 [六]分级固井注意事项 五、预应力固井工艺 [一]概述 [二]热应力计算[三]预应力计算[四]预拉力计算[五]套管伸长的计算 [六]预应力固井的水泥及材料[七]预应力的固件方法及特点[八]预应力固井的技术要点 六、外插法固井工艺:[一]概述[二]特点 七、先注水泥后下套管固井工艺:[一]概述[二]特点 八、反注水泥法固井工艺:[一]概述[二]特点 九、选择式注水泥固井工艺:[一]概述特点[二]选择式注水泥施工流程。 十、筛管顶部注水泥固井工艺:[一]概述特点[二]选择式注水泥施工流程。 十一、封隔器完井及水泥填充封隔器工艺:[一]概述特点[二]选择式注水泥施工流程。 十二、注水泥塞工艺:[一]概述[二]注水泥塞施工程序:1.普通注水泥塞施工程序; 2.用水泥塞定位器注水泥塞施工程序:水泥塞定位器结构组成、使用方法与施工程序; 3.水泥塞施工要点。 十三、实体膨胀管在固井施工中的应用:[一]概述[二]膨胀管技术的优点:优化井身结构·封堵复杂地层·进行套管补贴·用于老井补贴。

影响固井质量评价效果的因素分析

第3卷第2期2006年4月 工程地球物理学报 CHIN ESE JO U RN A L O F EN GI NEERIN G G EOP HY SICS V ol 3,N o 2Apr ,2006 文章编号:1672 7940(2006)02 0103 05 作者简介:李维彦(1965 ),男,湖北荆门人,在长江大学地球物理与石油资源学院从事教学与研究工作。 E -m ail:liw eiyan@yangtz https://www.sodocs.net/doc/9b6417948.html, 影响固井质量评价效果的因素分析 李维彦1,章成广1,江万哲1,李国利2,柳建华3,贺铎华3,马 勇3 (1 长江大学地球物理与石油资源学院,湖北荆州,434023;2 中国石油集团测井有限公司技术中心,西安,710021;3 中石化西北局勘探开发研究院,乌鲁木齐,830000) 摘 要:现在我国绝大部分油田利用声波信号(声幅/变密度)评价固井质量,但声波信号受井眼状况、岩性、 套管性质等诸多因素的影响,评价结果难以令人满意。本文根据大量测井资料和实验研究详细分析套管井中影响声波信号的一些因素以及对固井质量评价产生的影响,指出在利用声波信号(声幅/变密度)评价固井质量时,必须充分考虑这些影响因素,才能得到有效评价结果。 关键词:影响因素;固井质量;评价效果;声波 中图分类号:P631 8文献标识码:A 收稿日期:2006 02 15 ANALYSIS OF INFLUENCING FACTORS OF CEMENTING QUALITY EVALUATION LI We-i yan 1 ,ZHANG Cheng -g uang 1 ,JIANG Wan -zhe 1 ,LI Guo -li 2 , LIU Jian -hua 3,H E Duo -hua 3,M A Yong 3 (1 Yang tz e Univer sity ,J ingz hou H ubei ;434023,China 2 T echnology Center ,China Petroleum Log ging ,L T D.,X i an 710021,China; 3 A cademe of N or thwest Oil Bur eau of S inop ec,Ur umqi 83000,China) Abstract:Now acoustic sig nal is o ften used to ev aluate cementing quality in mo st domestic oil field H ow ev er,aco ustic signal is affected by many factors ,such as bo reho le shape,litho logic section,casing character etc,and the ev aluating result is often disappointed .In this paper, som e influencing facto rs are analyzed deeply to find how they influence cementing quality on the basis of log ging data analysis and ex perim ent study This paper po ints out that tho se influ -encing factor s must be co nsidered so as to g et effective result w hen aco ustic signal is used to e -v aluate cementing quality. Key words:influencing factor;cementing quality;evaluating effect;acoustic w ave

国内复杂深井固井现状及技术需求分析

国内复杂深井固井现状及技术需求分析 齐奉忠 刘硕琼 袁进平 (中国石油集团钻井工程技术研究院完井固井所,北京海淀 100195) 摘要:随着国内油气田勘探和开发工作的不断深入,深井超深井的数量也越来越多,通过联合攻关及技术引进,固井质量得到了较好保证。本文全面总结了国内近年来复杂深井固井技术发展情况,特别是在深井超深井、复杂气井、抗高温水泥浆体系等方面的进展情况,分析了目前存在的主要问题及与国外的技术差距,结合国内目前普遍存在的问题,提出了今后复杂深井固井研究的主攻方向。 关键词:固井 深井 气井 外加剂 水泥浆体系 固井质量 气窜 近年来,随着国内油气田勘探和开发工作的不断深入,深井超深井数量也越来越多。深井超深井固井在井眼准备、套管下入、抗高温水泥浆体系选择、抗高温隔离液、固井工具及现场施工工艺等方面提出了更高的要求。通过技续攻关及技术引进,形成了较完善的固井配套技术,固井质量得到基本保证。近年来,国内深井固井技术取得的进步主要表现在以下几个方面。 一、近年来国内复杂深井固井技术取得的主要进展 1.超深井固井取得突破 近年来,国内在超深井固井方面取得突破。新疆风险探井莫深1井Ф339.7mm套管下深4463m,裸眼段长达近4000m,套管重量达516t;Ф244.5mm套管下深6404m,重量达521吨,均创国内新纪录。中石化塔深1井Ф206.4mm无接箍尾管下深6800m,Ф127.0mm尾管下深8405m,井底温度180℃。塔里木油田古城4井完钻井深6550 m,Ф127.0mm尾管下深6430 m,井底最高温度达185℃;塔中88井完钻井深7260m,Ф127.0mm尾管下深达7189.2m,井底温度152℃。吉林长深气田的长深5井Ф139.7mm 生产套管下深5321m,井底静止温度达180℃,该井全部采用国产油井水泥、外掺料和外加剂,固井质量合格井段100%,优质井段98.87%。 2.复杂深气井固井质量基本得到保证 针对塔里木油田的窄安全密度窗口高压气井固井,川渝地区的高含H2S气井固井,大庆、吉林油田的高含CO2深气井固井等技术难题,近几年来国内加强了对气窜失重机理的研究,总结了影响气窜的主要因素,提出了综合防气窜、防漏失的配套技术措施,在固井工艺、固井工具、水泥外加剂、高密度隔离液、防漏固井材料等方面取得了一些进步,对于保证这些复杂气井的固井质量起到了积极的作用。 吉林长深气田生产套管固井质量合格井段平均达到97.75%,优质井段达到81.13%。大庆庆深气田、塔里木迪那及克拉气田、川渝地区深气井的固井质量也基本满足了生产要求,为国内天然气的稳产增产起到了积极的作用。 3.复杂深水平井及特殊工艺井固井日益完善 近年来国内加大了水平井的应用力度,如中石油2006年完成水平井522口,2007年完成806口,

固井基础知识

第二部分固井基础知识 第一章基本概念 1、什么叫固井? 固井是指向井内下入一定尺寸的套管串,并在其周围注以水泥浆,把套管与井壁紧固起来的工作。 2、什么叫挤水泥? 是水泥浆在压力作用下注入井中某一特定位置的施工方法。 3、固井后套管试压的标准是什么? 5英寸、5 1/2英寸试压15MPa,30分钟降压不超过?,7英寸,9 5/8英寸分别为10MPa 和8MPa,30分钟不超过;10 3/4—13 3/8英寸不超过6MPa,30分钟压降不超。 4、什么叫调整井? 为挽回死油区的储量损失,改善断层遮挡地区的注水开发效果以及调整平面矛盾严重地段的开发效果所补钻井叫调整井。 5、什么叫开发井? 亦属于生产井的一种,是指在发现的储油构造上第一批打的生产井。 6、什么叫探井? 在有储油气的构造上为探明地下岩层生储油气的特征而打的井。 7、简述大庆油田有多少种不同井别的井? 有探井、探气井、资料井、检查井、观察井、标准井、生产井、调整井、更新井、定向井、泄压井等。 8、什么叫表外储层?

是指储量公报表以外的储层(即未计算储量的油层)。包括:含油砂岩和未划含油砂岩的所有含没产状的储层。 9、固井质量要求油气层底界距人工井底不少于多少米?探井不少于多少米? 固井质量要求,调整井、开发井油、气层底界距人工井底不少于25米(探井不少于15米)。 10、调整井(小于等于1500米)按质量标准井斜不大于多少度?探井(小于等于3000米)按质量标准井斜不大于多少度? 调整井按质量标准井斜不大于3度。探井按质量标准井斜不大于5度。 11、调整井(小于等于1500米)井底最大水平位移是多少?探井(小于等于3000米)井底最大水平位移是多少? 调整井井底最大水平位移是40米。探井井底最大水平位移80米。 12、目前大庆油田常用的固井方法有哪几种? (1)常规固井(2)双密度固井(变密度固井)(3)双级注固井(4)低密度固井(5)尾管固井 13、目前大庆油田形成几套固井工艺? (1)多压力层系调整井固井工艺技术。 (2)水平井固井工艺技术。 (3)斜直井固井工艺技术。 (4)小井眼固井工艺技术。 (5)深井及长封井固井工艺技术。 (6)欠平衡固井工艺技术。

如何提高固井质量

渤海石油职业学院石油工程系钻井专业 毕业论文 题目: 影响固井质量的主要因素与对策姓名: 年级专业: 07级钻井3-6班 指导教师:王建云 完稿日期: 2010年4月28日

目录 摘要 (3) 关键词 (3) 引言 (4) 一、固井的概述 (5) 二、提高天然气井注水泥质量的主要工艺技术 (7) 三、套管防腐技术 (11) 四、固井质量的综合评价 (13) 结论 (15) 参考文献 (15)

摘要 论述了长庆油田固井过程中存在的主要生产难题—水泥返高不足和注水泥井段胶结质量不理想;分析了影响固井质量的主要因素—水泥浆体系质量较差、井漏、长裸眼井段顶替效率不高、水泥浆凝结过程中油气水侵;提出了提高全井封固质量的技术对策、提高天然气井注水泥质量的主要工艺技术以及套管防腐技术。这套技术大幅度提高了低温易漏井段和油气水活跃产层的注水泥质量,并取得了显著的经济效益。 关键词固井质量;套管;防腐;经济效益;长庆油田

引言 陕甘宁盆地地跨陕、甘、宁、晋、内蒙五省区,总面积约32万km2。盆地内陇东油田以甘肃庆阳马岭为中心,自70年代初开发已建成年产百万吨原油生产规模;中部以陕北靖边为中心已探明地质储量3000亿m3以上整装气田。如何保证老油田稳产和新气田顺利投入开发,将对石油工业油气并举战略方针,稳定东部发展西部战略布署及改善国内能源结构产生重要影响。 鉴于盆地内油气富集区属低压、低孔渗、中低产油气藏,为实现经济开发,选择并采用了钻井速度快、建井周期短、综合成本低的双层套管井身结构方案和射孔完井与酸化压裂强化改造生产方式。然而,这套方案对固井质量要求很高,固井质量不理想使得套损井生产寿命严重下降,造成了大量的油气资源散失[1]。显然,提高固井质量已成为简化井身结构实现经济开发、防止套外腐蚀延长油气井生产寿命、保护产层提高产能的迫切要求和上述目的能否实现的关键所在。 长庆油田高度重视固井质量问题,与西南石油学院等单位合作攻关。在坚持保证水泥返高的前提下,开展了以隔绝腐蚀源防止套外腐蚀,提高全井封固质量为主要内容的综合治理。采用治漏堵水、优质防腐水泥体系、平衡固井和提高低压易漏长封固井段顶替效率的综合配套技术,经三年努力,使固井质量大幅度提高。水层段合格率由攻关前的25%~50%提高到80%以上,油气层合格率由攻关前的80%提高到99%;油气井优质率分别达到70%和60%以上。不但为简化井身结构开发方案提供了技术保障,而且为低压易漏长封固井段提高注水泥质量提供了宝贵经验。

相关主题