搜档网
当前位置:搜档网 › 同余的几个实际应用_曹宏举

同余的几个实际应用_曹宏举

同余的几个实际应用_曹宏举
同余的几个实际应用_曹宏举

圆的基本概念和性质教学设计

圆的基本概念和性质教学设计 教学设计思想 圆是初中几何中重要的内容之一。本节通过第一课时建立圆的基本概念,认识圆的轴对称性与中心对称性。讲解时将观察与思考、操作与实践等活动贯穿于教学全过程,使学生积累一定的数学活动经验;第二课时在第一课时的基础上,掌握垂径定理及其逆定理;第三课时加深学生对弦、弧、圆心角之间关系的认识;第四课时的重点是圆周角,通过圆周角定理及其推理的推理论证,从而把圆周角、圆心角、弧和弦之间的关系展现出来,从而使学生全面了解和掌握圆的基本性质。教学时先让学生动手操作来发现结论,再通过推理的方式说明结论的正确性。 数学源于生活,又服务于生活,最终要解决生活中的问题。利用电子白板教学帮助学生理解和学习数学,探索与分析,讨论与归纳等数学活动是学习的主要方式。 教学目标 圆的基本概念和性质总目标: 1、理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念,理解弧、弦、圆心角、圆周角之间的关系; 2、掌握垂径定理及推论的意义及应用,掌握圆心角与弧、弦关系定理意义及应用,掌握圆周角定理及推论的意义和应用; 3、探索圆周角与圆心角、弧、弦的关系,理解并会证明圆周角定理及其推论,理解圆内接四边形的对角互补。 第一课时教学目标 知识与技能: 1、经历圆的形成过程,理解圆的概念, 2、能在图形中准确识别圆、圆心、半径、直径、圆弧、半圆、等圆、等弧等; 3、认识圆的对称性,知道圆既是轴对称图形,又是中心对称图形; 过程与方法: 1、经历抽象和建立圆的概念、探究圆的对称性及相关性质的过程,熟记圆及有关概念; 2、通过折叠、旋转的动手实验,多观察、探索、发现圆中圆心、弧、弦之间的关系,体会研究几何图形的各种方法; 情感态度价值观: 经历探索圆及其有关结论的过程,发展学生的数学观察及思考能力以及问题的提出能力。 教学重难点 重点:(1)了解圆的概念的形成过程;(2)揭示与圆有关的本质属性。 难点:圆的概念的形成过程和圆的定义。 学情分析

余数性质及同余定理(B级) 1

一、 带余除法的定义及性质 1. 定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r , 0≤r <b ;我们称上面的除法算式为一个带余除法算式。这里: (1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商 (2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商 一个完美的带余除法讲解模型:如图 这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。 这个图能够让学生清晰的明白带余除法算式中4个量的关系。并且可以看出余数一定要比除数小。 2. 余数的性质 ⑴ 被除数=除数?商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数; ⑵ 余数小于除数. 二、 余数定理: 1.余数的加法定理 a 与 b 的和除以 c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。 例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1. 当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。 例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为 2 2.余数的加法定理 a 与 b 的差除以 c 的余数,等于a ,b 分别除以c 的余数之差。 知识框架 余数性质及同余定理

例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1= 2. 当余数的差不够减时时,补上除数再减。 例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=4 3.余数的乘法定理 a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。 例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。 例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2. 乘方:如果a与b除以m的余数相同,那么n a与n b除以m的余数也相同. 一、同余定理 1、定义 整数a和b,除以一个大于1的自然数m所得余数相同,就称a和b对于模m同余或称a和b在模m下同余,即a≡b(modm) 2、同余的重要性质及举例。 〈1〉a≡a(modm)(a为任意自然); 〈2〉若a≡b(modm),则b≡a(modm) 〈3〉若a≡b(modm),b≡c(modm)则a≡c(modm); 〈4〉若a≡b(modm),则ac≡bc(modm) 〈5〉若a≡b(modm),c≡d(modm),则ac=bd(modm); 〈6〉若a≡b(modm)则an≡bm(modm) 其中性质〈3〉常被称为"同余的可传递性",性质〈4〉、〈5〉常被称为"同余的可乘性,"性质〈6〉常被称为"同余的可开方性" 注意:一般地同余没有"可除性",但是:如果:ac=bc(modm)且(c,m)=1则a≡b(modm)3、整数分类: 〈1〉用2来将整数分类,分为两类: 1,3,5,7,9,……(奇数); 0,2,4,6,8,……(偶数) 〈2〉用3来将整数分类,分为三类: 0,3,6,9,12,……(被3除余数是0) 1,4,7,10,13,……(被3除余数是1) 2,5,8,11,14,……(被3除余数是2)

初等数论 第五章 同余方程

第五章同余方程 本章主要介绍同余方程的基础知识,并介绍几类特殊的同余方程的解法。 第一节同余方程的基本概念 本节要介绍同余方程的基本概念及一次同余方程。 在本章中,总假定m是正整数。 定义1设f(x) = a n x n a1x a0是整系数多项式,称 f(x) 0 (mod m) (1)是关于未知数x的模m的同余方程,简称为模m的同余方程。 若a n≡/0 (mod m),则称为n次同余方程。 定义2设x0是整数,当x= x0时式(1)成立,则称x0是同余方程(1)的解。凡对于模m同余的解,被视为同一个解。同余方程(1)的解数是指它的关于模m互不同余的所有解的个数,也即在模m的一个完全剩余系中的解的个数。 由定义2,同余方程(1)的解数不超过m。 定理1下面的结论成立: (ⅰ) 设b(x)是整系数多项式,则同余方程(1)与 f(x) b(x) b(x) (mod m) 等价; (ⅱ) 设b是整数,(b, m) = 1,则同余方程(1)与 bf(x) 0 (mod m) 等价; (ⅲ) 设m是素数,f(x) = g(x)h(x),g(x)与h(x)都是整系数多项式,又设x0是同余方程(1)的解,则x0必是同余方程 g(x) 0 (mod m) 或h(x) 0 (mod m)

的解。 证明 留做习题。 下面,我们来研究一次同余方程的解。 定理2 设a ,b 是整数,a ≡/0 (mod m )。则同余方程 ax b (mod m ) (2) 有解的充要条件是(a , m )b 。若有解,则恰有d = (a , m )个解。 证明 显然,同余方程(2)等价于不定方程 ax my = b , (3) 因此,第一个结论可由第四章第一节定理1得出。 若同余方程(2)有解x 0,则存在y 0,使得x 0与y 0是方程(3)的解,此时,方程(3)的全部解是 ??? ????-=+=t m a a y y t m a m x x ),(),(00,t Z 。 (4) 由式(4)所确定的x 都满足方程(2)。记d = (a , m ),以及 t = dq r ,q Z ,r = 0, 1, 2, , d 1, 则 x = x 0 qm r d m x r d m +≡0(mod m ),0 r d 1。 容易验证,当r = 0, 1, 2, , d 1时,相应的解 d m d x d m x d m x x )1(20000-+++,,,,Λ 对于模m 是两两不同余的,所以同余方程(2)恰有d 个解。证毕。 在定理的证明中,同时给出了解方程(2)的方法,但是,对于具体的方程(2),常常可采用不同的方法去解。 例1 设(a , m ) = 1,又设存在整数y ,使得a b ym ,则 x a ym b +(mod m ) 是方程(2)的解。 解 直接验算,有 ax b ym b (mod m )。

圆的基本概念和性质—知识讲解(提高)

圆的基本概念和性质—知识讲解(提高) 【学习目标】 1.知识目标:理解圆的有关概念和圆的对称性; 2.能力目标:能应用圆半径、直径、弧、弦、弦心距的关系,?圆的对称性进行计算或证明; 3.情感目标:养成学生之间发现问题、探讨问题、解决问题的习惯. 【要点梳理】 要点一、圆的定义及性质 1.圆的定义 (1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”. 要点诠释: ①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可; ②圆是一条封闭曲线. (2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合. 要点诠释: ①定点为圆心,定长为半径; ②圆指的是圆周,而不是圆面; ③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面. 2.圆的性质 ①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心; ②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴. 要点诠释: ①圆有无数条对称轴; ②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”. 3.两圆的性质 两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线). 要点二、与圆有关的概念 1.弦 弦:连结圆上任意两点的线段叫做弦. 直径:经过圆心的弦叫做直径. 弦心距:圆心到弦的距离叫做弦心距.

余数性质及同余定理(B级)

一、 带余除法的定义及性质 1. 定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r , 0≤r <b ;我们称上面的除法算式为一个带余除法算式。这里: (1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商 (2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商 一个完美的带余除法讲解模型:如图 这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。 这个图能够让学生清晰的明白带余除法算式中4个量的关系。并且可以看出余数一定要比除数小。 2. 余数的性质 ⑴ 被除数=除数?商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数; ⑵ 余数小于除数. 一、 余数定理: 1.余数的加法定理 a 与 b 的和除以 c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。 例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1. 当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。 例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为 2 2.余数的加法定理 a 与 b 的差除以 c 的余数,等于a ,b 分别除以c 的余数之差。 例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1= 2. 当余数的差不够减时时,补上除数再减。 余数性质及定理 知识框架

数论算法讲义 3章(同余方程)

第 3 章 同余方程 (一) 内容: ● 同余方程概念 ● 解同余方程 ● 解同余方程组 (二) 重点 ● 解同余方程 (三) 应用 ● 密码学,公钥密码学 3.1 基本概念及一次同余方程 (一) 同余方程 (1) 同余方程 【定义3.1.1】(定义1)设m 是一个正整数,f(x)为n 次多项式 ()0111a x a x a x a x f n n n n ++++=--Λ 其中i a 是正整数(n a ≠0(mod m )),则 f (x)≡0(mod m ) (1) 叫做模m 的(n 次)同余式(或模m 的(n 次)同余方程),n 叫做f(x)的次数,记为deg f 。 (2) 同余方程的解 若整数a 使得 f (a)≡0(mod m )成立,则a 叫做该同余方程的解。 (3) 同余方程的解数 若a 是同余方程(1)的解,则满足x ≡a (mod m )的所有整数都是方程(1)的解。即剩余类

a C ={x |x ∈Z ,x ≡a (mod m )} 中的每个剩余都是解。故把这些解都看做是相同的,并说剩余类a C 是同余方程(1)的一个解,这个解通常记为 x ≡a (mod m ) 当21,c c 均为同余方程(1)的解,且对模m 不同余时,就称它们是同余方程(2)的不同的解,所有对模m 的两两不同余的解的个数,称为是同余方程(1)的解数,记作()m f T ;。显然 ()m f T ;≤m (4) 同余方程的解法一:穷举法 任意选定模m 的一组完全剩余系,并以其中的每个剩余代入方程(1),在这完全剩余系中解的个数就是解数()m f T ;。 【例1】(例1)可以验证,x ≡2,4(mod 7)是同余方程 15++x x ≡0(mod 7) 的不同的解,故该方程的解数为2。 50+0+1=1≡3 mod 7 51+1+1=3≡3 mod 7 52+2+1=35≡0 mod 7 53+3+1=247≡2 mod 7 54+4+1=1029≡0 mod 7 55+5+1=3131≡2 mod 7 56+6+1=7783≡6 mod 7 【例2】求同余方程122742 -+x x ≡0(mod 15)的解。 (解)取模15的绝对最小完全剩余系:-7,-6,…,-1,0,1,2,…,7,直接计算知x =-6,3是解。所以,该同余方程的解是 x ≡-6,3(mod 15)

《数论算法》教案4章(二次同余方程与平方剩余)

第 4 章 二次同余方程与平方剩余 内容 1. 二次同余方程,平方剩余 2. 模为奇素数的平方剩余 3. 勒让德符号、雅可比符号 4. 二次同余方程的求解 要点 二次同余方程有解的判断与求解 4.1 一般二次同余方程 (一) 二次同余方程 2ax +bx +c ≡0(mod m ),(a 0(mod m )) (1) (二) 化简 设m =k k p p p α ααΛ2121,则方程(1)等价于同余方程 ??? ????≡++≡++≡++) () ()(k k p c bx ax p c bx ax p c bx ax αααmod 0mod 0mod 0222 1221Λ Λ 问题归结为讨论同余方程 2ax +bx +c ≡0(mod αp ), (p a ) (2) (三) 化为标准形式 p ≠2,方程(2)两边同乘以4a , 422x a +4abx +4ac ≡0(mod αp ) ()22b ax +≡2b -4ac (mod αp )

变量代换, y =2ax +b (3) 有 2y ≡2b -4ac (mod αp ) (4) 当p 为奇素数时,方程(4)与(2)等价。即 ● 两者同时有解或无解;有解时,对(4)的每个解 ()p y y mod 0≡, 通过式(3)(x 的一次同余方程,且(p , 2a )=1,所以解数为1)给出(2)的一个解()p x x mod 0≡,由(4)的不同的解给出(2)的不同的解;反之亦然。 ● 两者解数相同。 结论:只须讨论以下同余方程 2x ≡a (mod αp ) (5) 【例】化简方程7x 2+5x -2≡0(mod 9)为标准形式。 (解)方程两边同乘以4a =4×7=28,得 196x 2+140x -56≡0(mod 9) 配方 (14x +5) 2-25-56≡0(mod 9) 移项 (14x +5) 2≡81(mod 9) 变量代换 y =14x +5 得 y 2≡0(mod 9) (解之得y =0, ±3,从而原方程的解为 x ≡114-(y -5)≡15- (y -5) ≡2(y -5)≡2y -10≡2y -1 ≡-7, -1, 5≡-4, -1, 2(mod 9))

1.同余的概念及基本性质

第三章 同余 §1 同余的概念及其基本性质 定义 给定一个正整数m ,若用m 去除两个整数a 和b 所得的余数相同,则称,a b 对模m 同余,记作()mod .a b m ≡若余数不同,则称,a b 对模m 不同余,记作 ()\mod a b m ≡. 甲 ()mod . a a m ≡ (甲:jia 3声调; 乙:yi 3声调; 丙:bing 3声调; 丁:ding 1声调; 戊:wu 声调; 己:ji 3声调; 庚:geng 1声调; 辛: xin 1声调 天; 壬: ren 2声调; 癸: gui 3声调.) 乙 若()mod ,a b m ≡则()mod .b a m ≡ 丙 若()()mod ,mod ,a b m b c m ≡≡则()mod .a c m ≡ 定理1 ()mod |.a b m m a b ≡?- 证 设()mod a b m ≡,则12,,0.a mq r b mq r r m =+=+≤<于是, ()12,|.a b m q q m a b -=-- 反之,设|.m a b -由带余除法,111222,0,,0a mq r r m b mq r r m =+≤<=+≤<,于是, ()()1221. r r m q q a b -=-+- 故,12|m r r -,又因12r r m -<,故()12,mod .r r a b m =≡ 丁 若()()1122mod ,mod ,a b m a b m ≡≡则,()1212mod .a a b b m ±≡± 证 只证“+”的情形.因()()1122mod ,mod a b m a b m ≡≡,故1122,m a b m a b --,于是()()()()11221212|m a b a b a a b b -+-=+-+,所以()1212mod .a a b b m +≡+ 推论 若()mod ,a b c m +≡则()mod .a c b m ≡-

《数论算法》教案5章(二次同余方程与平方剩余)

第5章 二次同余方程与平方剩余 内容 1. 二次同余方程,平方剩余 2. 模为奇素数的平方剩余 3. 勒让德符号、雅可比符号 4. 二次同余方程的求解 要点 二次同余方程有解的判断与求解 5.1 一般二次同余方程 (一) 二次同余方程 2ax +bx +c ≡0(mod m ),(a 0(mod m ))(1) (二) 化简 设m =k k p p p αααΛ2 121,则方程(1)等价于同余方程组 ??? ????≡++≡++≡++) () ()(k k p c bx ax p c bx ax p c bx ax αααmod 0mod 0mod 0222 1221Λ Λ ?2ax +bx +c ≡0(mod αp ), (p a ) (2) (三) 化为标准形式 p ≠2,方程(2)两边同乘以4a , 422x a +4abx +4ac ≡0(mod αp ) ()22b ax +≡2b -4ac (mod αp ) 变量代换, y =2ax +b (3) 有

2y ≡2b -4ac (mod αp ) (4) 当p 为奇素数时,方程(4)与(2)等价。即 ● 两者同时有解或无解;有解时,对(4)的每个解 ()p y y mod 0≡, 通过式(3)(x 的一次同余方程,且(p , 2a )=1,所以解数为1)给出(2)的一个解()p x x mod 0≡,由(4)的不同的解给出(2)的不同的解;反之亦然。 ● 两者解数相同。 结论:只须讨论方程2x ≡a (mod αp ) (5) 【例5.1.1】化简方程7x 2+5x -2≡0(mod 9)为标准形式。 (解)方程两边同乘以4a =4×7=28,得 196x 2+140x -56≡0(mod 9) 配方 (14x +5) 2-25-56≡0(mod 9) 移项 (14x +5) 2≡81(mod 9) 变量代换y =14x +5 得 y 2≡0(mod 9) (解之得y =0, ±3,从而原方程的解为 x ≡114-(y -5)≡15- (y -5) ≡2(y -5)≡2y -10≡2y -1 ≡-7, -1, 5≡-4, -1, 2(mod 9)) (四) 平方剩余 【定义5.1.1】设m 是正整数,a 是整数,m a 。若同余方程 2x ≡a (mod m ) (6) 有解,则称a 是模m 的平方剩余(或二次剩余);若无解,则称a 是模m 的平方非剩余(或二次非剩余)。

圆的基本概念与性质

圆的有关概念和性质 一 本讲学习目标 1、理解圆的概念及性质,能利用圆的概念和性质解决有关问题。 2、理解圆周角和圆心角的关系;能运用几何知识解决与圆周角有关的问题。 3、了解垂径定理的条件和结论,能用垂径定理解决有关问题。 二 重点难点考点分析 1、运用性质解决有关问题 2、圆周角的转换和计算问题 3、垂径定理在生活中的运用及其计算 三 知识框架 圆的定义 确定一个圆 不在同一直线上的三点点与圆的位置关系 圆的性质 圆周角定理及其推论 垂径定理及其推论距关系定理及其推论圆心角、弦、弧、弦心对称性 四 概念解析 1、 圆的定义,有两种方式: 错误!未找到引用源。在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,一个端点A 随之旋转说形成的图形叫做圆。固定端点O 叫做圆心,以O 为圆心的圆记作O ,线段OA 叫做半径; 错误!未找到引用源。圆是到定点的距离等于定长的点的集合。注意:圆心确定圆的位置,半径决定圆的大小。 2、 与圆有关的概念: 错误!未找到引用源。弦:连接圆上任意两点的线段叫做弦;如图1所示 线段AB ,BC ,AC 都是弦; 错误!未找到引用源。直径:经过圆心的弦叫做直径;如AC 是O 的直径,直径是圆中最长的弦; 错误!未找到引用源。弧:圆上任意两点之间的部分叫做圆弧,简 称弧,如曲线BC,BAC 都是O 中的弧,分别记作BC 和BAC ; 错误!未找到引用源。半圆:圆中任意一条直径的两个端点分圆成

两条弧,每条弧都叫做半圆,如AC 是半圆; 错误!未找到引用源。劣弧和优弧:像BC 这样小于半圆周的圆弧叫做劣弧,像BAC 这样大于 半圆周的圆弧叫做优弧; 错误!未找到引用源。同心圆:圆心相同,半径不等的圆叫做同心圆; 错误!未找到引用源。弓形:由弦及其说对的弧所组成的图形叫做弓形; 错误!未找到引用源。等圆和等弧:能够重合的两个圆叫做等圆,在同圆或等圆中,能够重合的弧叫做等弧; 错误!未找到引用源。圆心角:定点在圆心的角叫做圆心角如图1中的∠AOB,∠BOC 是圆心角,圆心角的度数:圆心角的读书等于它所对弧的度数;∠ 错误!未找到引用源。 圆周角:定点在圆上,两边都和圆相交的角叫做圆周角;如图1中的∠BAC,∠ACB 都是圆周角。 3、 圆的有关性质 ①圆的对称性 圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条。圆是中心对称图形,圆心是对称中心,优势旋转对称图形,即旋转任意角度和自身重合。 错误!未找到引用源。垂径定理 A. 垂直于弦的直径平分这条弦,且评分弦所对的两条弧; B. 平分弦(不是直径)的直径垂直于弦,并且评分弦所对的两条弧。如图2 所示。 注意 (1)直径CD ,(2)CD ⊥AB,(3)AM=MB,(4)BD AC =BC ,(5)AD =BD .若 上述5个条件中有2个成立,则另外3个业成立。因此,垂径定理也称五二三定理,即推二知三。(以(1),(3)作条件时,应限制AB 不能为直径)。 错误!未找到引用源。弧,弦,圆心角之间的关系 A. 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等; B. 同圆或等圆中,两个圆心角,两条弧,两条弦中有一组量相等,他们所对应的其余各组量也相等; 错误!未找到引用源。圆周角定理及推论 A.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半; B.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径。 五 例题讲解 例1. 如图所示,C 是⊙O 上一点,O 是圆心,若80AOB =∠,求B A ∠+∠ 的值. 例1题图 A B C O

4.1基本概念及一次同余式

1. 同余方程15x ≡12(mod99)关于模99的解是__ x ≡14,47,80(mod99)_。 2. 同余方程12x+7≡0 (mod 29)的解是__ x ≡26 (mod 29)_____. 3. 同余方程41x≡3(mod 61)的解是__ _ . 4. 同余方程9x+12≡0(mod 37)的解是___ x ≡11(mod 37)______ 5. 同余方程13x ≡5(mod 31)的解是_ x ≡ 29(mod 31)__ 6. 同余方程24x ≡6(mod34)的解是__ x ≡13,30(mod34)__ 7. 同余方程26x+1≡33 (mod 74)的解是__ x ≡24,61 (mod 74)_ 8. 同余方程ax +b ≡0(mod m )有解的充分必要条件是__()b m a ,_ 9. 21x ≡9 (mod 43)的解是_ x ≡25 (mod 43)__ 10. 设同余式()m b ax mod ≡有解()m x x mod 0≡,则其一切解可表示为_ _ . 11. 解同余式()15mod 129≡x 12. 同余式()111mod 1227≡x 关于模11有几个解?( ) A 1 B 2 C 3 D 4 13. 同余式3x ≡2(mod20)解的个数是( B ) A.0 B.1 C.3 D.2 14. 同余式72x ≡27(mod81)的解的个数是_9_个。 15. 同余方程15x ≡12(mod27) 16. 同余方程6x ≡4(mod8)有 个解。 17. 同余式28x ≡21(mod35)解的个数是( B ) A.1 B.7 C.3 D.0 18. 解同余方程:63x ≡27(mod72) 19. 同余方程6x≡7(mod 23)的解是__ _ . 20. 以下同余方程或同余方程组中,无解的是( B ) A.6x ≡10(mod 22) B.6x ≡10(mod 18) C.???≡≡20) 11(mod x 8) 3(mod x D. ???≡≡9) 7(mod x 12) 1(mod x 21. 同余方程12x ≡8(mod 44)的解是x ≡8,19,30,41(mod 44)____ 22. 同余方程20x ≡14(mod 72)的解是 ___ 23. 下列同余方程无解的是( A ) A.2x ≡3(mod6) B.78x ≡30(mod198) C.8x ≡9(mod11) D.111x ≡75(mod321) 24. 解同余方程 17x+6≡0(mod25) 25. 同余方程3x ≡5(mod16) 的解是___ x ≡7(mod16)____ 26. 同余方程3x ≡5(mod14)的解是_ x ≡11(mod14)的解是__。 27. 同余方程3x ≡5(mod13)的解是__ x ≡6(mod13)_________。 28. 下列同余方程有唯一解的是( C )

线性同余方程组的解

线性同余方程组的解 学生:罗腾,江汉大学数计学院(数学与应用数学系) 指导老师:许璐,江汉大学 摘要 “孙子算经”一书中写于公元前三世纪,这个谜题如下:有堆东西不知道有多少,如果三个三地数,最后余下两个;五个五个的数,最后余下三个;七个七个的数,最后余下二个,问这堆东西共有多少?我们可以把这个问题用数学符号表示成同余式的形式: ()()().7mod 3,5mod 2,3mod 1≡≡≡x x x 定理1 设,,,,,a b c d e f 和m 均为整数,0m >,若(,)1m ?=,其中ad bc ?=-.则 线性同余方程组(mod ) (mod )ax by e m cx dy f m +≡??+≡? ,有唯一一组关于模m 的解为 ()(mod ) ()(mod ) x de bf m y af ce m ?≡?-?? ≡?-??, 其中?是?关于模m 的逆,即1(mod )m ??≡. 证 首先,将同余式(mod )ax by e m +≡两边都乘以d ,将同余式(mod )cx dy f m +≡两边都乘以b ,得到 (mod )(1) (mod )(2)adx bdy de m bcx bdy bf m +≡?? +≡? ()()12-得到 ()()mod ad bc x de bf m -≡- 令ad bc ?=-,则()mod x de bf m ??≡-.下面我们把同余式两边都乘以?,其中 1(mod ) m ??≡ ∴()()mod x de bf m ≡?- 同理,将同余式(mod )ax by e m +≡两边都乘以c ,将同余式(mod )cx dy f m +≡两边

二次互反律

高斯二次互反律 主讲:李宗儒 在正式介绍高斯二次互反律之前,我们先简单的介绍一下同余方程式 同余方程式 给定正整数m 及n 次整系数多项式 1 110 ()...n n n n f x a x a x a x a --=++++ 我们讨论这样的问题:求出所有的整数x ,使同余式 ()0f x ≡ (mod m ) (1) 成立,这就是所谓的解同余方程式。而上式称为模m 的同余方程式。若(1)式在x=c 时同余式成立,称c 是(1)式的解。显然,这时剩余类 c (mod m ) 中的任意整数也都是解,我们把这些解看作是相同的,并说剩余类 c (mod m ) 是(1)中的一个解,我们把它记为 x c ≡ (mod m ) 当12,c c 均为(1)式的解,且模m 不同余,我们就称它是同余方程式(1)的不同解,所有模m 两两不同余的解的个数,称为是同余方程式(1)的解数。 模为质数的二次同余方程 在此节,由于2p =的情形是显然的,所以下面我们假定p 是奇质数。假设p 不整除a ,二次同余方程的一般形式是 2 0a x b x c ++≡ (mo d p ) (2) 但是因为p 不整除a ,所以p 不整除4a ,所以(2)的解跟 ()240a ax bx c ++≡ (mod p ) (3) 的解相同,上式可以改为 ()2 2 24ax b b ac +≡- (mod p) (4) 透过变量变换,我们可以得到下列式子 224y b ac ≡- (mod p ) (5) (4)与(5)是等价的,也就是说,两者同时无解或有解。若有解,对于(5)的每个解 0y y ≡ (mod p ),通过变数变换2y ax b =+(因为这是x 的一次同余方程, (,2)1p a =,所以解数为1),我们可以解出一个0x x ≡ (mod p ),由以上的讨论可

小学奥数精讲:带余除法(同余式和同余方程)知识点及典型例题

小学奥数精讲:带余除法(同余式和同余方程) 一、基本性质的复习 1、带余数除法算式:a÷b=q……r(a、b、q、r 均为整数) 从中我们应该得到: (1)b>r 除数大于余数 (2)a-r=b×q 被除数减去余数则会出现整除关系, 则带余数问题就可以转化为整数问题。 2、余数的性质: (1)可加性:和的余数等于余数的和。 即:两数和除以m 的余数等于这两个数分别除以m 的余数和。 例:7÷3=2……1 5÷3=1……2, 则(7+5)÷3 的余数就等于(1+2)÷3 的余数0。 (2)可减性:差的余数等于余数的差。 即:两数差除以m 的余数等于这两个数分别除以m 的余数差。 例:17÷3=5……2 5÷3=1……2, 则(17-5)÷3 的余数就等于(2-2)÷3 的余数0。 (3)可乘性:积的余数等于余数的积。 即:两数积除以m 的余数等于这两个数分别除以m 的余数积。 例:64÷7=9……1 45÷7=6……3, 则(64×45)÷3 的余数就等于(1×3)÷7 的余数3。 二、同余式 在生活中,若两个自然数 a 和 b 都除以同一个除数m 时,余数相同该如何表示呢?在代数中我们称之为同余。即:a 与b 同余于模m。意思就是自然数a 和b 关于m 来说是余数相同的。用同余式表达为:a≡b(modm).

注:若a 与b 同余于模m,则a 与b 的差一定被m 整除。(余数的可减性) 三、例题。 例1、当2011 被正整数N 除时,余数为16,请问N 的所有可能值有多少个? 例2、(1)求多位数1234567891011…20102011除以9的余数? (2)将1开始到103的连续奇数依次写成一个多位数:a=135791113…9799101103,则数a共有多少位?数a除以9 的余数为几? (3)一个多位数1234567……979899,问除以11 的余数是多少? 例3、(1)用一个数除200 余5,除300 余1,除400 余10,求这个数? (2)甲、乙、丙、丁四个旅行团分别有游客69 人,85 人、93 人、97 人。现在要把这四个旅行团分别进行分组,使每组有A名游客,以便乘车前往参观游览,已知甲、乙、丙三个旅行团分成每组A人的若干组后,所剩的人数都相同,问丁旅行团分成每组A人的若干组后还剩几人?

同余的概念与性质

同余的概念与性质 同余:设m 是大于1的正整数,若用m 去除整数b a ,,所得余数相同,则称a 与b 关于模m 同余,记作)(mod m b a ≡,读作a 同余b 模m ;否则称a 与b 关于模m 不同余记作)(mod m b a ≠。 性质1:)(mod m b a ≡的充要条件是Z t mt b a ∈+=,,也即)(|b a m -。 性质2:同余关系满足下列规律: (1)自反律:对任何模m 都有)(mod m a a ≡; (2)对称律:若)(mod m b a ≡,则)(mod m a b ≡; (3)传递律:若)(mod m b a ≡,)(mod m c b ≡,则若)(mod m c a ≡。 性质 3:若,,,2,1),(mod s i m b a i i =≡则 ).(mod ), (mod 21212121m b b b a a a m b b b a a a s s s s ≡+++≡++ 推论: 设k 是整数,n 是正整数, (1)若)(mod m c b a ≡+,则)(mod m b c a -≡。 (2)若)(mod m b a ≡,则)(mod m a mk a ≡+;)(mod m bk ak ≡;)(mod m b a n n ≡。 性质4:设)(x f 是系数全为整数的多项式,若)(mod m b a ≡,则 ))(mod ()(m b f a f ≡。 性质5:若)(mod m bd ad ≡,且1),(=m d ,则)(mod m b a ≡。 性质6:若)(mod m b a ≡,且m d b d a d |,|,|,则)(mod d m d b d a ≡。

第5讲同余的概念和性质

第5讲同余的概念和性质 解题思路:理解并熟记同余的性质,运用同余性质把数化小、化易。 同余定义:若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为: a≡b(modm). 性质1:若a≡b(mod m),b≡c(mod m),那么a≡c(mod m),(传递性)。 ★性质2:若a≡b(mod m),c≡d(mod m),那么a±c≡b±d(mod m),(可加减性)。 ★性质3:若a≡b(mod m),c≡d(mod m),那么ac≡bd(mod m)(可乘性)。 性质4:若a≡b(mod m),那么a n≡b n(mod m),(其中n为自然数)。 性质5:若ac≡bc(mod m),(c,m)=1,那么a≡b(mod m),(记号(c,m)表示c与m的最大公约数)。 例1 判定288和214对于模37是否同余,74与20呢 例2 求乘积418×814×1616除以13所得的余数。 例3 求14389除以7的余数。

例4 四盏灯如图所示组成舞台彩灯,且每30秒钟灯的颜色改变一次,第一次上下两灯互换颜色,第二次左右两灯互换颜色,第三次又上下两灯互换颜色,…,这样一直进行下去.请问开灯1小时四盏灯的颜色如何排列 十位,…上的数码,再设M=0a +0a +…+n a ,求证:N ≡M (mod 9) 例6 求自然数1002+1013+1024的个位数字。 习题 1.验证对于任意整数a 、b ,式子a ≡b (mod1)成立,并说出它的含义。 2.已知自然数a 、b 、c ,其中c ≥3,a 除以c 余1,b 除以c 余2,则ab 除以c 余多少 年的六月一日是星期二,这一年的十月一日是星期几 4.求+被7除的余数。

《数论算法》教案 4章(二次同余方程与平方剩余)

第 4 章 二次同余方程与平方剩余 4.1 一般二次同余方程 (一) 二次同余方程 2ax +bx +c ≡0(mod m ),(a 0(mod m )) (1) (二) 化简 设m =k k p p p α αα 2 121,则方程(1)等价于同余方程 ??? ????≡++≡++≡++) () ()(k k p c bx ax p c bx ax p c bx ax αααmod 0mod 0mod 0222 1221 问题归结为讨论同余方程 2ax +bx +c ≡0(mod αp ), (p a ) (2) (三) 化为标准形式 p ≠2,方程(2)两边同乘以4a , 422x a +4abx +4ac ≡0(mod αp ) ()22b ax +≡2b -4ac (mod αp )

变量代换, y =2ax +b (3) 有 2y ≡2b -4ac (mod αp ) (4) 当p 为奇素数时,方程(4)与(2)等价。即 ● 两者同时有解或无解;有解时,对(4)的每个解 ()p y y mod 0≡, 通过式(3)(x 的一次同余方程,且(p , 2a )=1,所以解数为1)给出(2)的一个解()p x x mod 0≡,由(4)的不同的解给出(2)的不同的解;反之亦然。 ● 两者解数相同。 结论 2x ≡a (mod αp ) (5) 【例】化简方程7x 2+5x -2≡0(mod 9)为标准形式。 (解)方程两边同乘以4a =4×7=28,得 196x 2+140x -56≡0(mod 9) 配方 (14x +5) 2-25-56≡0(mod 9) 移项 (14x +5) 2≡81(mod 9) 变量代换 y =14x +5 得 y 2≡0(mod 9) (解之得y =0, ±3,从而原方程的解为 x ≡114-(y -5)≡15- (y -5) ≡2(y -5)≡2y -10≡2y -1 ≡-7, -1, 5≡-4, -1, 2(mod 9))

初三数学圆的基本概念和性质知识点、

B C 鸣 人 教 育 学 科 教 师 讲 义 【考纲说明】 1、理解圆及其有关概念, 知道圆的对称性,了解弧﹑弦﹑圆心角的关系。 2、了解圆周角与圆心角的关系,了解直径所对的圆周角是直角,会在相应的图形中确定垂径定理的条件和结论。 3、本部分在中考中占5分左右。 【知识梳理】 1.圆的基本概念 定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆。固定点O 叫做圆心;线段OA 叫做半径;圆上各点到定点(圆心O )的距离都等于定长(半径r);反之,到定点的距离 等于定长的点都在同一个圆上(另一定义); 以O 为圆心的圆,记作“⊙O ”,读作“圆O ” 2.圆的对称性及特性: (1)圆是轴对称图形,圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴; (2)圆也是中心对称图形,它的对称中心就是圆心. (3)一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.这是圆特有的一个性质:圆的旋转不变性 3.弦:连接圆上任意两点的线段叫做弦。 4.直径:经过圆心的弦叫直径。 注:圆中有无数条直径 5.圆弧: (1)圆上任意两点间的部分,也可简称为“弧” 以A,B 两点为端点的弧.记作AB ,读作“弧AB ”.

(2)圆的任意一条直径的两个端点把圆分成两条弧,其中每一条弧都叫半圆。如弧AD. (3)小于半圆的弧叫做劣弧,如记作AB ? (用两个字母). (4)大于半圆的弧叫做优弧,如记作ACB ? (用三个字母). 6.垂径定理及其推论: (1)定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧; (2)推论:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两条弧。 垂径定理归纳为:一条直线,如果具有:①经过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所 对的劣弧。这五条中可以“知二推三” 7.垂径定理的推论:圆的两条平行弦所夹的弧相等. 8.圆心角:顶点在圆心的角叫圆心角; 9.圆周角:顶点在圆上,并且两边都与圆相交的角,叫做圆周角; 10.弦心距:过圆心作弦的垂线,圆心与垂足之间的距离. 11.弧﹑弦﹑圆心角之间的关系 (1)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。 (2)在同圆或等圆中,如果①两个圆心角,②两条弧,③两条弦,④两条弦心距,如果有一组量相等,那么它们所对应的其余各组量都分别相等. 12.圆周角定理及其推论 (1)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半; (2)圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。 【经典例题】 【例1】下列判断中正确的是( ) A. 平分弦的直线垂直于弦 B. 平分弦的直线也必平分弦所对的两条弧 C. 弦的垂直平分线必平分弦所对的两条弧 D. 平分一条弧的直线必平分这条弧所对的弦 【例2】如果两条弦相等,那么( ) A .这两条弦所对的弧相等 B .这两条弦所对的圆心角相等 C .这两条弦的弦心距相等 D .以上答案都不对 【例3】如图,已知AB 为⊙O 的直径,∠ E =20°,∠DBC =50°,则∠CBE =______. 【例4】(08山东滨州)如图所示,AB 是⊙O 的直径,AD=DE ,AE 与BD 交于点C ,则图

相关主题