搜档网
当前位置:搜档网 › 浅谈石灰石粉对水泥强度的影响

浅谈石灰石粉对水泥强度的影响

浅谈石灰石粉对水泥强度的影响
浅谈石灰石粉对水泥强度的影响

浅谈石灰石粉对水泥强度的影响

【摘要】随着城市建设进程不断加快,混凝土的用量逐年增加。水泥作为混凝土的基本组分之一,因其生产过程的高能耗和高排放,一直控制着混凝土的生产成本,影响混凝土绿色化发展的进程。为了进一步降低水泥生产成本且使其更加环保,利用工业废渣和其它新型低成本的混合料——石灰石粉,来生产少熟料和无熟料水泥,从而达到大幅度降低能耗和二氧化碳的排放的目的。本文针对石灰石粉对水泥强度的影响进行了分析研究。

【关键词】石灰石粉;水泥;强度;环保

强度是衡量混凝土质量最重要的指标之一。与许多其他材料一样,在水泥基材料诸性能中,传统上都将强度放在首位。而水泥强度则是指水泥试块在单位面积上所能承受的外力,它是水泥力学性能的主要指标。石灰石粉对混凝土性能特别是强度的影响,主要通过三大效应来表现,即加速水化效应、活性效应和颗粒形貌效应。其中加速水化效应和活性效应的贡献主要表现在早期,颗粒形貌效应中的形态效应对混凝土拌合物的流动性和保水性等产生影响,填充效应会对粉体材料的堆积密度产生影响,从而影响混凝土拌合物的流动性、密实度,表现为对孔隙率和强度的影响。石灰石粉的加速水化效应由其颗粒大小决定,细颗粒越多,加速水化效应越明显;活性效应除了与颗粒大小有关以外更主要受其成分影响;颗粒形貌效应则主要受其颗粒大小影响。这三大效应的直接表现是混凝土强度的变化。石灰石粉的细度和掺量将直接影响其三大效应的发挥,从而对混凝土强度发展产生影响。因此,我们首先研究石灰石粉掺量对水泥强度的影响。

一、石灰石粉掺量对水泥强度的影响

国内外将石灰石粉应用于混凝土的方式主要有三种:一是石灰石粉取代部分细骨料;二是石灰石粉外掺;三是石灰石粉取代部分水泥单掺或复掺。许多学者研究了石灰石粉不同的应用方式、掺量和细度对混凝土性能的影响,一般认为,石灰石粉对混凝土性能的影响主要与其加速水化效应、活性效应和颗粒形貌效应有关。

(1)石灰石粉取代部分细骨料的方式

以往在国内外大多数水利工程建设中,都把混凝土细骨料中0.075-0.16mm 的微粒冲洗掉,费时费力。研究表明,人工砂中含有适量的石灰石粉微细颗粒可以增加碾压混凝土的密实性和可碾性,对碾压混凝土的性能有一定程度的改善作用,还可以降低工程造价。适宜的石灰石粉含量能改善碾压混凝土的拌合性能,提高拌合物的粘聚性、抗分离性,降低混凝土的孔隙率,提高碾压混凝土的密实性、抗渗性,有利于提高碾压混凝土的振动液化效果,并且能提高碾压混凝土的强度。研究发现:人工砂中的石灰石粉含量在24%以内时,其含量越高,混凝土强度越高,抗冻性和抗渗性越好;含有石灰石粉的石屑混凝土收缩变形、抗碳化和钢筋抗锈蚀能力与普通混凝土相当。外掺石灰石粉可以增大混凝土的流动性,

影响水泥强度检验的主要因素_百度文库.

影响水泥强度检验的主要因素.. 目录 一、仪器因素.. 二、试验条件因素.. 三、操作因素.. 所谓水泥强度是指水泥胶砂硬化试体所能承受外力破坏的能力。水泥强度是水泥重要的物理力学性能之一,根据受力形式的不同,水泥强度通常分为抗压、抗折、抗拉三种。强度检验的规范性和准确性直接影响到水泥产品的品质指标。..所谓水泥强度是指水泥胶砂硬化试体所能承受外力破坏的能力。水泥强度是水泥重要的物理力学性能之一,根据受力形式的不同,水泥强度通常分为抗压、抗折、抗拉三种。强度检验的规范性和准确性直接影响到水泥产品的品质指标。 、仪器设备的影响..计量器具的影响..GB/17671—1999规定,称量天平的精度为±1g,加水器精度±1ml,如检验用天平和加水器的精度不够,会使水泥用量和加水量不准确,导致水泥胶砂的水灰比和灰砂比误差较大,必然影响水泥强度检验结果,试验表明,加水量波动1%,抗压强度相应波动2%左右。 仪器设备的影响 ..下表为加水量波动对抗压强度的影响:加水量三天抗压强度MPa 二十八天抗压强度MPa 221ml 33.2 59.6 223ml 32.7 59.4 225ml 31.1 57.4 227ml 30.8 57.4 229ml 30.2 5 一、、仪器设备的影响..行星式水泥胶砂搅拌机..JC/T681—1997规定,叶片与 锅底、锅壁之间的间隙为3±1mm,也就是说必须执行“2过4不过”原则。 ISO679: 1989《水泥试验方法—强度测定》要求标准砂的粒度范围0.08~2.0 mm,间隙<

2 mm,搅拌机会挤压砂粒,使水泥抗压强度偏高;间隙>4 mm时,胶砂浆体不 均匀,试体强度跳差大。、仪器设备的影响..行星式水泥胶砂搅拌机..JC/T681—1997规定,叶片与锅底、锅壁之间的间隙为3±1mm,也就是说必须执行“2过4不过”原则。ISO679:1989《水泥试验方法—强度测定》要求标准砂的粒度范围0.08~2.0 mm,间隙<2 mm,搅拌机会挤压砂粒,使水泥抗压强度偏高; 间隙>4 mm时,胶砂浆体不均匀,试体强度跳差大。 二、、仪器设备的影响..GB/17671GB/17671GB/17671GB/17671———— 1999199919991999要求行星式水泥胶砂搅拌机伴随着慢速和快速旋转完成搅拌过程,搅拌叶片高速与低速时的自转和公转速度高低直接影响水泥胶砂拌和的均匀程度,所以水泥胶砂搅拌机要定期计量检定和校验。、仪器设备的影 响..GB/17671GB/17671GB/17671GB/17671————1999199919991999要求行星式水泥胶砂搅拌机伴随着慢速和快速旋转完成搅拌过程,搅拌叶片高速与低速时的自转和公转速度高低直接影响水泥胶砂拌和的均匀程度,所以水泥胶砂搅拌机要定期计量检定和校验。 三、、仪器设备的影响..振实台..振实台的振动部分重量是影响振幅大小的主 要因素,“台盘上装上空试模后包括臂杆、模套和卡具的总质量”要求符合 JC/T682—1997规定:(20±0.5kg,振幅大小又直接影响到试体的密实程度,从而影响水泥强度检验结果。振动部分重量增加,会使振幅变小,使试体中的空气不能充分排出,致使试体不密实,导致强度检验结果偏低,反之会偏高。 所以振实台必须定期计量检定和校验。..振实台的安装若不按标准要求进行,也不能正确反应水泥强度检验结果。、仪器设备的影响..振实台..振实台的振动部分重量是影响振幅大小的主要因素,“台盘上装上空试模后包括臂杆、模套和卡具的总质量”要求符合JC/T682—1997规定:(20±0.5kg,振幅大小又

金属材料屈服强度的影响因素

材料屈服强度及其影响因素 1. 屈服标准 工程上常用的屈服标准有三种: (1)比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp表示,超过σp时即认为材料开始屈服。 (2)弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。国际上通常以σel表示。应力超过σel时即认为材料开始屈服。 (3)屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。 2. 影响屈服强度的因素 影响屈服强度的内在因素有: 结合键、组织、结构、原子本性。如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:(1)固溶强化; (2)形变强化; (3)沉淀强化和弥散强化; (4)晶界和亚晶强化。 沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。 影响屈服强度的外在因素有: 温度、应变速率、应力状态。随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化。应力状态的影响也很重要。虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度。 3.屈服强度的工程意义 传统的强度设计方法,对塑性材料,以屈服强度为标准,规定许用应力[σ]=σys/n,安全系数n一般取2或更大,对脆性材料,以抗拉强度为标准,规定许用应力[σ]=σb/n,安全系数n一般取6。 需要注意的是,按照传统的强度设计方法,必然会导致片面追求材料的高屈服强度,但是随着材料屈服强度的提高,材料的抗脆断强度在降低,材料的脆断危险性增加了。 屈服强度不仅有直接的使用意义,在工程上也是材料的某些力学行为和工艺性能的大致度量。例如材料屈服强度增高,对应力腐蚀和氢脆就敏感;材料屈服强度低,冷加工成型性能和焊接性能就好等等。因此,屈服强度是材料性能中不可缺少的重要指标。 材料开始屈服以后,继续变形将产生加工硬化。 4.加工硬化指数n的实际意义 加工硬化指数n反应了材料开始屈服以后,继续变形时材料的应变硬化情况,它决定了材料开始发生颈缩时的最大应力。n还决定了材料能够产生的最大均匀应变量,这一数值在冷加工成型工艺中是很重要的。 对于工作中的零件,也要求材料有一定的加工硬化能力,否则,在偶然过载的情况下,会产生过量的塑性变形,甚至有局部的不均匀变形或断裂,因此材料的加工硬化能力是零件安全使用的可靠保证。 形变硬化是提高材料强度的重要手段。不锈钢有很大的加工硬化指数n=0.5,因而也有很高的均匀变形量。不锈钢的屈服强度不高,但如用冷变形可以成倍地提高。高碳钢丝经过

影响水泥混凝土强度的因素

影响水泥混凝土强度的因素 商品混凝土是目前世界上用途最广、用量最大的建筑材料。它在建筑工程、公路工程、桥梁和隧道工程、水利及特种结构的建设领域中发挥着不可替代的作用。任何商品混凝土结构物主要都是用于承受荷载或抵抗各种作用力,强度是商品混凝土最重要的力学性能。通常用强度来评定和控制商品混凝土的质量以及评价各种因素影响程度的指标。本文就影响水泥商品混凝土强度的因素做简单的分析。 1、水泥对商品混凝土强度的影响 水泥商品混凝土中的活性成分,其强度大小直接影响着商品混凝土强度的高低。商品混凝土抗压强度与商品混凝土使用的水泥强度成正比,在配合比相同的情况下,所使用的水泥强度越高,制成的商品混凝土强度越高。水泥商品混凝土的影响取决于水泥的化学成分及细度。水泥强度主要来自于早期强度及后期强度,而且这些影响贯穿于商品混凝土中。用早期强度较高的水泥来制作商品混凝土,其强度增长较快,但在后期可能以较低的强度而告终。而无论通过改变成分、养护条件或者利用外加剂而比较缓慢地水化,都可使水泥产生较高的最终强度。 水泥细度对商品混凝土强度的影响也很大。随着细度增加,水化速率增大,就导致较高的强度增长率。但应避免细磨粉的含量。因为当颗粒很细时,间隙水可引起一些高W/C区域。 而水泥质量的波动对商品混凝土强度的影响,应引起注意。水泥厂生产的同一品种同一标号的水泥,不可避免地会在质量上有波动。水泥质量的波动,毫无疑问地在商品混凝土强度上反映出来。采用具有相同平均强度而离散系数小的水泥,可以降低商品混凝土的水泥用量。水泥质量波动大多是由于水泥细度和早期强度的差异引起的。而这些因素在早期的影响最大。随着时间的延长其影响就不再是最重要的了。即水泥质量波动引起的商品混凝土强度的标准离差,不随龄期

屈服强度

概览 屈服强度:大于此极限的外力作用,将会是零件永久失效,没法恢复。这个压强叫做屈服强度。如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。 (1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值); (2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的原始标距)时的应力。通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。因为在应力超过材料屈服极限后产生颈缩,应变增大,使材料破坏,不能正常使用。 当应力超过弹性极限后,进入屈服阶段后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,应力应变出现微小波动,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(ReL或Rp0.2)。 有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度(yield strength)。 首先解释一下材料受力变形。材料的变形分为弹性变形(外力撤销后可以恢复原来形状)和塑性变形(外力撤销后不能恢复原来形状,形状发生变化,伸长或缩短)。 建筑钢材以屈服强度作为设计应力的依据。 屈服强度标准 建设工程上常用的屈服标准有三种:

1、比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp表示,超过σp时即认为材料开始屈服。 2、弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。国际上通常以Rel表示。应力超过Rel时即认为材料开始屈服。 3、屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为Rp0.2。 影响屈服强度的因素 影响屈服强度的内在因素有:结合键、组织、结构、原子本性。 如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:(1)固溶强化;(2)形变强化;(3)沉淀强化和弥散强化;(4)晶界和亚晶强化。沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。 影响屈服强度的外在因素有:温度、应变速率、应力状态。 随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化。应力状态的影响也很重要。虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度。 屈服强度的工程意义

影响混凝土强度的主要因素

影响混凝土强度的主要因素 硬化后的混凝土在未受到外力作用之前,由于水泥水化造成的化学收缩和物理收缩引起砂浆体积的变化,在粗骨料与砂浆界面上产生了分布极不均匀的拉应力,从而导致界面上形成了许多微细的裂缝。另外,还因为混凝土成型后的泌水作用,某些上升的水分为粗骨料颗粒所阻止,因而聚集于粗骨料的下缘,混凝土硬化后就成为界面裂缝。当混凝土受力时,这些预存的界面裂缝会逐渐扩大、延长并汇合连通起来,形成可见的裂缝,致使混凝土结构丧失连续性而遭到完全破坏。强度试验也证实,正常配比的混凝土破坏主要是骨料与水泥石的粘结界面发生破坏。所以,混凝土的强度主要取决于水泥石强度及其与骨料的粘结强度。而粘结强度又与水泥强度等级、水灰比及骨料的性质有密切关系,此外混凝土的强度还受施工质量、养护条件及龄期的影响。 1)水灰比 水泥强度等级和水灰比是决定混凝土强度最主要的因素。也是决定性因素。 水泥是混凝土中的活性组成,在水灰比不变时,水泥强度等级愈高,则硬化水泥石的强度愈大,对骨料的胶结力就愈强,配制成的混凝土强度也就愈高。如常用的塑性混凝土,其水灰比均在0.4~0.8之间。当混凝土硬化后,多余的水分就残留在混凝土中或蒸发后形成气孔或通道,大大减小了混凝土抵抗荷载的有效断面,而且可能在孔隙周围引起应力集中。因此,在水泥强度等级相同的情况下,水灰比愈小,水泥石的强度愈高,与骨料粘结力愈大,混凝土强度也愈高。但是,如果水灰比过小,拌合物过于干稠,在一定的施工振捣条件下,混凝土不能被振捣密实,出现较多的蜂窝、孔洞,将导致混凝土强度严重下降。参见图3—1。 图3—1混凝土强度与水灰比的关系 a)强度与水灰比的关系 b)强度与灰水比的关系 2)骨料的影响 当骨料级配良好、砂率适当时,由于组成了坚强密实的骨架,有利于混凝土强度的提高。如果混凝土骨料中有害杂质较多,品质低,级配不好时,会降低混凝土的强度。 由于碎石表面粗糙有棱角,提高了骨料与水泥砂浆之间的机械啮合力和粘结力,所以在原材料、坍落度相同的条件下,用碎石拌制的混凝土比用卵石拌制的混凝土的强度要高。 骨料的强度影响混凝土的强度。一般骨料强度越高,所配制的混凝土强度越高,这在低水灰比和配制高强度混凝土时, 特别明显。骨料粒形以三维长度相等或相近的球形或立方体

南昌大学《材料性能学》课后答案

《工程材料力学性能》(第二版)课后答案 第一章材料单向静拉伸载荷下的力学性能 一、解释下列名词 滞弹性:在外加载荷作用下,应变落后于应力现象。 静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。 弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。 比例极限:应力—应变曲线上符合线性关系的最高应力。 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(ζP) 或屈服强度(ζS)增加;反向加载时弹性极限(ζP)或屈服强度(ζS) 降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学姓能? 答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。 三、什么是包辛格效应,如何解释,它有什么实际意义? 答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。 包辛格效应可以用位错理论解释。第一,在原先加载变形时,位错源在滑移

熟料的矿物组成对强度影响

熟料矿物组成对水泥强度的影响 在硅酸盐水泥熟料中,四种主要矿物C3S、C2S、C3A、C4AF每一种都以单独的相存在,并在水化反应中显示各自不同的特征。因此,矿物组成及相对含量对水泥的水化速度、水化物的形态和尺寸有决定性影响,对水泥强度的形成和发展有着至关重要的作用。可以说,矿物组成是水泥早期强度、强度增长速度和后期强度高低位重要的影响因素。 表1和表2是水泥熟料四种单矿物质强度的测定结果。由于试验条件的差异,各方面所测单矿物的绝对强度不一样,但就其基本规律却是一致的,即硅酸盐矿物的含量是决定水泥强度的主要因素。 表1 四种主要矿物的抗压强度(一)单位:Mpa

其中C3S的早期强度最大,28天强度基本上依赖于C3S,C3S含量高,水泥的早期强度高,但以后强度增长不大。而C2S高的水泥虽然早期强度不高,但长期强度增幅大,到1年以后可以赶上甚至超过C3S高的水泥。C3S、C2S的相对含量对强度发展的影响如图2所示。 表2 四种主要矿物的抗压强度(二)单位:Mpa C3A的早期强度增长很快,一般认为,C3A主要对早期强度有利,但强度绝对值不高,而后期强度增长随龄期延长逐渐减少,甚至有倒缩现象。实验表明,当水泥中C3A含量较低时,水泥强度随C3A的增多而提高,但超过某一最佳含量后,强度反而降低,同时龄期越短,C3A的最佳含量越高。C3A的含量对1d、3d 的早期强度影响最大,如果超过最佳含量,则将对后期产生不利影响。 关于C4AF的强度,目前国内外有关实验证明,C4AF不仅对早期强度有利,而且有助于后期强度的发展,由表1和表2数据可知,其3d、7d、28d抗压强度远比C2S和C3A高,其一年强度甚至还能超过C3S。由此可知,C4AF也是一种

屈服强度概述

屈服强度概述 屈服强度是材料开始发生明显塑性变形时的最低应力值。 1.概念解释 屈服强度:是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度。大于此极限的外力作用,将会使零件永久失效,无法恢复。如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。 (1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值); (2)对于屈服现象不明显的材料,和应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的原始标距)时的应力。通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。因为在应力超过材料屈服极限后产生颈缩,应变增大,使材料破坏,不能正常使用。 当应力超过弹性极限后,进入屈服阶段后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,应力应变出现微小波动,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(ReL或Rp0.2)。

有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度。 首先解释一下材料受力变形。材料的变形分为弹性变形(外力撤销后可以恢复原来形状)和塑性变形(外力撤销后不能恢复原来形状,形状发生变化,伸长或缩短)。 建筑钢材以屈服强度作为设计应力的依据。 2.屈服极限,常用符号δs,是材料屈服的临界应力值。 (1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值); (2)对于屈服现象不明显的材料,和应力-应变的直线关系的极限偏差达到规定值(通常为材料发生0.2%延伸率)时的应力。通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。因为在应力超过材料屈服极限后产生塑性变形,应变增大,使材料失效,不能正常使用。 当应力超过弹性极限后,进入屈服阶段后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,应力应变出现微小波动,这种现象称为屈服。这一阶段的最大、最小应力分别称为下屈服点和上屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(ReL或Rp0.2)。 a.屈服点yield point(σs) 试样在试验过程中力不增加(保持恒定)仍能继续伸长(变形)

影响水泥强度和分析检验结果的因素

影响水泥强度检验的因素: 一、试验条件对水泥强度检验结果的影响: 1、材料温度、室温、水温变化时对水泥强度的影响 当材料温度、室温、养护水温均底于标准规定时,会导致水泥强度明显下降。如所有温度相差6—7℃,则强度可相差一个等级。当温度偏高,则强度也明显偏高。据有关试验表明:养护水温每提高或降低1℃,强度约相差1%--2%。 2、养护箱温度对强度的影响 如养护箱温度从控制标准提高5℃左右,不同龄期的抗折抗压强度就相应偏高2%--5%。温度对于水泥的早期强度影响比对水泥后期强度的影响更大一些。 3、水泥试样存放条件对强度的影响 a.试样存放条件对水泥强度的影响较大。试验表明,如水泥在四层纸袋中存储15天后,强度会明显下降,尤其是28天抗压强度比原来下降10%左右。这说明,试样受潮后强度将明显下降。 b.试样封存条件对强度影响也很大。试验表明,常温下的水泥试样装入白铁筒封存3个月,水泥强度下降不明显,而热水泥装入白铁筒封存3个月,水泥强度会下降,抗压强度降低7%左右。采用聚氯乙烯塑料袋包装水泥试样,将使水泥强度有较大幅度的下降。试验证明,常温下将水泥装进聚氯乙烯塑料袋封存,15天无显著影响,1个月后强度降低12%左右。热水泥装入聚氯乙烯塑料袋封存,15天后抗压强度就下降10%以上。而采用食品塑料袋封存水泥试样,则对水泥强度没有影响。因此试样应保持在干燥的环境中,并采用适当措施加以封存。 4、胶砂加水量对强度的影响 加水量对水泥强度影响较大。用水量增减10ml时,抗折或抗压强度均有明显变化。试验表明:加水量波动1%,则抗压强度相应变化2%左右。 5、标准砂对强度的影响 二、仪器设备对水泥强度检验结果的影响 1、胶砂搅拌机:叶片与锅底、锅壁的工作间隙为3±1mm,间隙增大,锅底

混凝土试块抗压强度的影响因素

混凝土试块抗压强度的影响因素 一、试件取样对混凝土试块抗压强度的影响 1、试件数量不足。出现该问题的原因大多为在施工之前没有将抽样方案确定下来,对于留置数量和评定统计方法没有量化、细化,导致统计上出现了误差。 2、抽样的样品没有代表性,不能将混凝土的质量真实地反映出来。这大多是由于取样人员在取样时,没有严格按照相关规范的要求实施取样。在实施中,仅是根据混凝土搅拌质量的优劣一次制作出了多组试件包含了下一个批次的试件,如此做法,不能真实地反映个批次混凝土的实际质量。 3、《普通混凝土物理力学性能试验方法标准》中的相关条例具体规定了混凝土试件的成型方法、振捣方法和养护要求,如果在施工现场对这些规范和要求有所缺失,必然导致成型后的试件存在诸多问题,这些问题也势必影响了试块抗压强度检测的准确性。 二、检测过程对混凝土试块抗压强度的影响 1、在对试块实施抗压强度测试之前,没有能够按照试件的尺寸公差实施检测。大量工程实践和相关标准表明,标准的试件检测有如下要求: (1)承压面的平整度公差应£0.0005d(其中d为试件直径); (2)试件相邻面应该垂直,即夹角为90°,公差应0.5°; (3)对于试件各边长、直径和高的实际尺寸公差应1mm。 2、在进行试块抗压强度测试的操作中,试块放置位置的精确程

度不够,导致试块不是轴心受压。 3、没有按照加荷速度标准实施正确的操作,导致由于加荷速度过于快了生成冲击荷载。大量理论研究和工程实践经验表明,试块在受力被破坏之前,荷载增加的速度如果大于材料裂纹扩展的速度,那么测试得到的强度值与真实值相比偏高。 4、在测试时,如果试件表面有油污对测试结果有影响。理论研究和实验表明,如果试件的受压面上存有油污,那么将减小承压板与试件表面之间的摩擦力,试件将出现垂直裂纹而破坏,如此一来测试得到的混凝土强度值偏低。 5、试件浸泡养护后没有晾干对测试结果也有影响。理论研究和实验表明,试件在水中浸泡养护后,试件含水量比较大,如果不将其晾干,那么测试得到的混凝土强度值偏低。 三、改善措施分析 1、试件取样上控制 (1)严格做好试配、试验、设计配合比、浇筑施工、养护、取样和测强等等每一环节来科学地确定混凝土强度等级,因为在操作上任何一个环节出现疏忽或失误,都有导致降低混凝土强度的可能。 (2)对于混凝土施工组织设计和质量措施方案的编制要有专人负责,精心编制,确保混凝土质量能够始终位于受控的状态。 (3)在具体工程中配备的从业人员,应是具有一定文化水平和工作责任心的专职抽样人员,由其负责现场的混凝土取样和制作工作。

力学性能整理

第一章 弹性比功——材料吸收弹性变形功的能力 滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象 滞弹性的影响因素 (1)材料的成分、组织 材料组织越不均匀,滞弹性越明显。 (2)试验条件:a) 温度T↑→滞弹性速率和滞弹性应变↑ b) 切应力愈大,滞弹性越明显。 消除办法: 采用长期回火 回火的作用是使间隙原子到位错空位和晶界去,自身变得比较稳定。 金属的内耗 加载时消耗于金属的变形功大于卸载时金属放出的变形功,因而有一部分变形 功为金属所吸收,这部分吸收的功就称为金属的内耗。 循环韧性:金属材料在交变载荷(振动)下吸收不可逆变形功的能力,称为金属的循环韧性, 也叫金属的内耗,表示材料吸收不可逆变形的能力,亦称消振性。 循环韧性的意义是:材料循环韧性愈高,则机件依靠材料自身的消振能力愈好。 包申格(Bauschinger )效应 金属材料经过预先加载产生少量塑性变形(残余应变小于1 -4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现 象。 消除方法(1)预先经受较大的塑性变形(2)在第二次反向受力前使金属材料于回复或再 结晶温度下退火 金属材料常见的塑性变形方式主要为滑移和孪生 屈服现象是金属材料开始产生宏观塑性变形时的标志。 屈服点σs :材料的在拉伸过程中试验力不增加(保持恒定)仍能 继续伸长时的应力。 σs =Fs/ A0 上屈服点σsu : 试样发生屈服而试验力首次下降前的最大应力。 σsu =Fsu/A0 下屈服点σsl : 当不计初始瞬时效应(指在屈服过程中试验力第一次发生下降)时的屈服阶 段的最小应力。 σsl =FsL/ A0 影响屈服强度的因素 (一) 影响屈服强度的内因素 1.金属本性和晶格类型(结合键、晶体结构) 不同的金属其晶格类型,位错运动所受的阻力不同,故彼此的屈服强度不同,单晶的屈服强 度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力- -派拉力、位错运动交互作用产生的阻力)决定。 派拉力:

提高混凝土强度的方法

影响混凝土强度的因素和提高措施 1混凝土原料构成及其作用 混凝土是一种由水泥、砂、石骨料、水及其它外加材料按一定比例均匀拌和,经一定时间硬化而形成的人造石材。在混凝土中,砂石起骨架作用称为骨料,水泥与水形成水泥浆,水泥浆包裹在骨料表面并填充其空隙。在硬化前,水泥浆起润滑作用,赋予拌和物一定的和易性,便于施工。水泥浆硬化后,则将骨料胶结成一个坚实的整体。 混凝土强度的高低,直接影响到建筑物结构安全,情况严重的将造成建筑物倒塌,严重危害到人们的生命安全。因此,在施工中对混凝上的强度应有足够的重视。 2混凝土强度等级与混凝土强度平均值及其标准差的关系 混凝土强度等级是根据混凝土强度分布的平均值减去1.645倍标准差确定的,保证混凝土强度标准值具有95%的保证率,低于该标准值的概率不大于5%,充分地保证结构的安全。从这个定义推定,抽样检验的N组件的混凝土强度平均值一定不小于混凝土设计强度等级,而强度平均值的大小取决于标准差的大小。因此施工人员必须明确,不但要使混凝土强度平均值大于混凝土强度的变异性,更要使混凝土强度标准差降低到最低值。这样既保证了工程质量又降低了工程造价,是行之有效的节约措施。 3影响混凝土强度的因素 普通混凝土受力破坏一般出现在骨料和水泥石的分界面上,是常见的粘结面破坏的形式。在普通混凝土中,骨料最先破坏的可能性小,因为骨料强度通常大大超过水泥石和粘结面的强度。所以混凝土的强度主要决定于水泥石强度及其与骨料表面的粘结强度。而水泥石强度及其与骨料的粘结强度又与水泥标号、水灰比、及骨料的性质有密切关系。当水泥石强度较底时,水泥石本身容易受到破坏。此外混凝土的强度还受施工质量、养护条件及龄期的影响。 3.1水灰比和水泥标号是决定混凝土强度的主要因素 水泥是混凝土中的活性成分,其强度的大小直接影响着混凝土强度的高低。从混凝土强度表达式:fcu.o=A?fce(C/W-B)可以看出,在配合比相同的条件下,所用的水泥标号越高,制成的混凝土强度越高。当水泥相同时,混凝土的强度取决于水灰比。当水泥水化时所需的结合水,一般只占水泥重量的23%左右。如果结合水较大(约占水泥重量的40~70%),混凝土硬化后,多余的水分残留在混凝土中形成气泡或蒸发后形成气孔,大大地减少了混凝土抵抗荷载的实际有效断面,可能在空隙周围产生应力集中。因此,在水泥标号相同的情况下,水灰比愈小,水泥石的强度愈高,与骨料粘结力愈大,混凝土的强度就愈高。如果加水太少,拌和物过于干硬,在一定的捣实成型条件下,无法保证浇灌质量,混凝土中将出现较多的蜂窝孔洞,混凝土强度也将下降。 3.2粗骨料的影响

胶砂强度影响因素

浅析影响水泥胶砂强度的主要因素 王晓红 涟水县建设工程质量检测中心江苏省223400 摘要:水泥是应用最广的重要建筑材料,其质量的优劣直接关系到混凝土及其相关制品的质量,在水泥检测的所有项目中,水泥胶砂强度是水泥在工程应用时的一项非常重要的必检项目,其检测结果的准确性直接关系到水泥在建筑施工中的正确使用以及工程结构的质量,同时也是衡量水泥强度等级的重要指标。为提高水泥强度的检验精度,真实反映受控水泥的强度,服务于工程建设,文章根据现行标准,分析了影响水泥胶砂强度检测的主要因素,并对检测中有关问题进行了探讨和研究。 关键词:水泥强度试模抗折抗压试验条件试验操作影响 中图分类号:TQ172文献标识码:A文章编号: 前言:水泥质量检验的准确性是保证工程建设质量的重要因素之一。从江苏省建设厅对全省工程质量检测机构多次组织的水泥比对试验结果,以及日常工作中自我比对的结果来看,水泥胶砂强度的离散性较大。笔者根据近二十年的检测工作实践,理论联系实际,对影响水泥胶砂强度的主要因素进行剖析,提出了检测水泥胶砂强度应注意的几个重点方面问题。

1试验设备的影响 1.1试模的影响 使用的水泥胶砂试模,其材质和制造尺寸应符合JC/T726-2005《水泥胶砂试模》要求,试模为40mm×40mm×160mm可拆卸的三联试模。试模模腔的基本尺寸是长(A)为160mm±0.8mm,宽(B)不为40mm±0.2mm,深(C)为40.1mm±0.1mm。当试模不符合标准规定时,就不能保证试体的形状和尺寸,影响水泥强度测定结果。模腔尺寸增大会使检测结果偏高,尺寸减小使结果偏低;试模必须符合重量要求,总重量要求达到6.25kg±0.25kg的标准。过轻和过重都会直接影响振实台的频率,使强度结果发生偏差。 1.2加水器的影响 目前,我们很多检测部门,使用的是容量为(2251)ml的自动加水器,却很少考虑过其容量的准确性,据本人反复试验得知,加水量的大小直接影响水泥强度的检测结果。当加水量大于标准量时,强度会偏低,加水量小于标准量时,强度会偏高。据实验统计,加水量增减10ml时,抗压、抗折均有明显变化,按百分比计,加水量波动1%,则抗压强度相应变化2%左右。因此,在实际操作中加水量一定要准确,使用自动加水器时一定要进行严格标定,以免影响检测结果的准确性。 1.3养护箱的影响

不锈钢的屈服强度及其影响因素

不锈钢的屈服强度及其影响因素 (2008-09-03 10:48:50) 转载 1. 屈服标准 工程上常用的屈服标准有三种: (1)比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp 表示,超过σp时即认为材料开始屈服。 (2)弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。国际上通常以σel表示。应力超过σel时即认为材料开始屈服。 (3)屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。 2. 影响屈服强度的因素 影响屈服强度的内在因素有: 结合键、组织、结构、原子本性。如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:(1)固溶强化; (2)形变强化; (3)沉淀强化和弥散强化; (4)晶界和亚晶强化。 沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。 影响屈服强度的外在因素有: 温度、应变速率、应力状态。随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化。应力状态的影响也很重要。虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度。 3.屈服强度的工程意义

传统的强度设计方法,对塑性材料,以屈服强度为标准,规定许用应力 [σ]=σys/n,安全系数n一般取2或更大,对脆性材料,以抗拉强度为标准,规定许用应力[σ]=σb/n,安全系数n一般取6。 需要注意的是,按照传统的强度设计方法,必然会导致片面追求材料的高屈服强度,但是随着材料屈服强度的提高,材料的抗脆断强度在降低,材料的脆断危险性增加了。 屈服强度不仅有直接的使用意义,在工程上也是材料的某些力学行为和工艺性能的大致度量。例如材料屈服强度增高,对应力腐蚀和氢脆就敏感;材料屈服强度低,冷加工成型性能和焊接性能就好等等。因此,屈服强度是材料性能中不可缺少的重要指标。 材料开始屈服以后,继续变形将产生加工硬化。 4.加工硬化指数n的实际意义 加工硬化指数n反应了材料开始屈服以后,继续变形时材料的应变硬化情况,它决定了材料开始发生颈缩时的最大应力。n还决定了材料能够产生的最大均匀应变量,这一数值在冷加工成型工艺中是很重要的。 对于工作中的零件,也要求材料有一定的加工硬化能力,否则,在偶然过载的情况下,会产生过量的塑性变形,甚至有局部的不均匀变形或断裂,因此材料的加工硬化能力是零件安全使用的可靠保证。 形变硬化是提高材料强度的重要手段。不锈钢有很大的加工硬化指数n=0.5,因而也有很高的均匀变形量。不锈钢的屈服强度不高,但如用冷变形可以成倍地提高。高碳钢丝经过铅浴等温处理后拉拔,可以达到2000MPa以上。但是,传统的形变强化方法只能使强度提高,而塑性损失了很多。现在研制的一些新材料中,注意到当改变了显微组织和组织的分布时,变形中既能提高强度又能提高塑性。 5.抗拉强度 在材料不产生颈缩时抗拉强度代表断裂抗力。脆性材料用于产品设计时,其许用应力是以抗拉强度为依据的。抗拉强度对一般的塑性材料有什么意义呢?虽然抗拉强度只代表产生最大均匀塑性变形抗力,但它表示了材料在静拉伸条件下的极限承载能力。对应于抗拉强度σb的外载荷,是试样所能承受的最大载荷,尽管此后颈缩在不断发展,实际应力在不断增加,但外载荷却是在很快下降的。

金属材料屈服强度的影响因素.

金属材料屈服强度及其影响因素 屈服强度是指材材料开始产生宏观塑性变形时的应力。对于屈服现象明显的材料,屈服强度就屈服点的应力—屈服值;对于屈服现象不明显的材料,通常将应力-应变曲线上以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。 屈服强度通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。 影响屈服强度的因素 影响屈服强度的内在因素有: 1.金属本性及晶格类型——纯金属单晶体的屈服强度由位错运动时所受的阻力决定。这些阻力有晶格阻力和位错间交互作用产生的阻力之分。其中晶格力与位错宽度和柏氏矢量有关,而两者又与晶体结构有关。位错间交互产生的阻力包括平行位错间交互产生的阻力和运动位错与林位错交互产生的阻力。用公式表示:T=αGb/L,式中α为比例系数,又因为密度ρ与1/L2成正比,因此,T=αGb ρ1/2,由此可见,密度增加,屈服强度也随之增加。 2.晶粒大小和亚结构——晶粒大小的影响是晶界影响的反映,减小晶粒尺寸将增加位错运动障碍的数目,减小晶粒内位错塞积群的长度,将使屈服强度提高。许多金属与合金的屈服强度与晶粒大小的关系均符合霍尔佩奇公式σ s =σ j +k y d-1/2,式中,σ j 是位错在基体金属中运动的总阻力,亦称摩擦阻力,它决定于 晶体结构和位错密度;k y 是度量晶界对强化贡献大小的钉扎常数,或表示滑移带端部的应力集中系数;d为晶粒平均尺寸。亚晶界的作用和晶界类似,也阻碍位错的运动。 3.溶质元素——纯金属中融入溶质原子形成间隙型或置换型固溶合金将会显著提高屈服强度,此即为固溶强化。这主要是由于溶质原子和溶剂原子直径不同,在溶质周围形成了晶格畸变应力场,该应力场产生交互作用,使位错运动受阻,从而提高屈服强度。 4.第二相——工程上的金属材料,其显微组织一般是多相的。第二相对屈服强度的影响与质点本身在金属材料屈服变形过程中能否变形有很大关系。据此可将第二相质点分为不可变形和可变形的两类。 根据位错理论,位错线只能绕过不可变形的第二相质点,为此,必须克服弯曲位错的线张力。不可变形第二相质点的金属材料,其屈服强度与流变应力就决定于第二相质点之间的间距。对于可变形的第二相质点,位错可以切过,使之同基体一起变形,由此也能提高屈服强度。 第二相的强化效果还与其尺寸、形状、数量和分布以及第二相与基体的强度、塑性相应硬化特性、两相间的晶体学配合和界面能等因素有关。在第二相体积比相同的情况下,长形质点显著影响位错运动,因而具有此种组织的金属材料,其屈服强度就比球状的高。 综上所述,表征金属微量塑性变形抗力的屈服强度是一个对成分、组织极其敏感的力学性能指标,受许多内在因素的影响,改变合金成分或热处理工艺可使屈服强度产生明显变化。

影响水泥混凝土强度的各种因素

试论影响水泥混凝土强度的各种因素摘要:随着我国的公路事业的迅猛发展,道路、桥梁和隧道工程建设数量在不断增加。而应用于这些建设工程的水泥混凝土,越来越受到人们的重视。作为混凝土最重要的性能,强度可评定和控制混凝土施工的质量。因此水泥混凝土强度与工程建设质量之间有着重大的关系。笔者根据自身多年的工作经验,谈谈影响水泥混凝土强度的各种因素。 关键词:水泥混凝土;强度;各种因素 abstract: along with the rapid development of the cause of the highway, the road, bridge and tunnel construction are increasing in number. and applied in the construction project of the cement concrete, more and more attention by people. as the most important properties of concrete, strength can be assessed and control the quality of concrete construction. so the cement concrete strength and engineering construction quality has a significant relationship between the. according to the own many years of work experience, and talk about on cement concrete strength of various factors. keywords: cement concrete; strength; various factors 中图分类号:tu528.45 文献标识码:a 文章编号: 应用于道路、桥梁和隧道工程建设的原料——水泥混凝土,主

混凝土试件抗压强度结果影响因素分析

混凝土试件抗压强度结果影响因素分析 论文发表 写作指导 资料参考 发表时间:2011-03-05 来源:中国鸣网作者:宋国兴 摘要:对廊涿高速公路跨京广铁路、107国道大桥钻孔灌注桩C30混凝土和现浇箱梁C55混凝土两个不同施工阶段的28天混凝土试件抗压强度情况的根源进行统计与分析,阐述施工、养护条件等因素对混凝土试件抗压强度结果的影响及防治措施。 关键词:混凝土试件强度影响因素分析 一、前言 统计表明,水泥混凝土已成为当代用量最多的人造材料。因其原料易得,成本低廉,施工方便,耐久性好,在当前桥梁和工业民用建筑中得到广泛应用。但又因硬化后的水泥混凝土结构的不可重塑性,一旦混凝土强度不能满足设计要求,返工处理将浪费很大的人力、物力,并造出不良的社会影响。水泥混凝土结构在施工完成后的实体强度很难直接得到,工程中通常采用混凝土立方体试件标准养护28天的抗压强度来予以反映,但由于施工、制件、养护、试验操作等诸多因素的影响,在实际施工过程中同强度等级、同配比、同施工条件下的不同批次混凝土试件的强度却往往偏差很大,甚至还有很多同一组混凝土试件不同个体之间的强度偏差也超过规范的要求,强度达不到设计要求的情况也偶有发生。 二、混凝土试件28天抗压强度结果统计汇总 廊涿高速跨京广铁路、107国道大桥工程前期钻孔灌注桩混凝土均使用了商品混凝土,后期箱梁采用了自拌混凝土。对本工程某一时间段的24棵灌注桩总计72组和15片预制箱梁共计60组混凝土试件28天的抗压强度进行统计。 三、原因分析 统计结果表明,处于工程初期施工的灌注桩,由于对现场施工、混凝土拌合站以及试验室等管理还不太规范,虽然混凝土设计强度并不高,但是均方差和变异系数却都很大,极差甚

影响水泥强度检验的主要因素

水泥强度是指水泥胶砂硬化试体所能承受外力破坏地能力.水泥强度是水泥重要地物理力学性能,强度检验地规范性和准确性直接影响到水泥地控制. 、仪器设备地影响 计量器具地影响 —规定,称量天平地精度为±1g,加水器精度±,如检验用天平和加水器地精度不够,会使水泥用量和加水量不准确,导致水泥胶砂地水灰比和灰砂比误差较大,必然影响水泥强度检验地结果.试验表明,加水量波动,抗压强度相应波动左右.个人收集整理勿做商业用途行星式水泥胶砂搅拌机 —规定,叶片与锅底、锅壁之间地间隙为±1mm,也就是说必须执行“过不过”原则.:《水泥试验方法—强度测定》要求标准砂地粒度范围 2.0mm,间隙<2mm,搅拌机会挤压砂粒,使水泥抗压强度偏高;间隙>4mm时,胶砂浆体不均匀,试体强度跳差大;间隙过大,抗折下降、抗压下降,抗折下降、抗压下降.个人收集整理勿做商业用途 —要求行星式水泥胶砂搅拌机伴随着慢速和快速旋转完成搅拌过程,搅拌叶片高速和低速时地自转和公转速度高低直接影响水泥胶砂拌和地均匀程度,所以水泥胶砂搅拌机要定期计量检定和校验.个人收集整理勿做商业用途 振实台 振实台地振动部分重量是影响振幅大小地主要因素,“台盘上安装上空试模后包括臂杆、模套和卡具地总质量”要求符合—规定:(±),振幅大小又直接影响到试体地密实程度,从而影响水泥强度检验结果.振实部分重量增加,会使振幅变小,使试体中地空气不能充分排出,致使试体不密实,导致强度检验结果偏低,反之会偏高.所以振实台必须定期检验和校验.个人收集整理勿做商业用途 振实台地安装若不按标准要求进行,也不能正确反映水泥强度检验结果. 试模 忽略对试模地管理,不对其进行校验,从而使用不符合—地试模,造成振实成型砂浆渗透出来,成型地试体不规则,直接影响水泥强度检验结果;模腔尺寸偏大会使检验结果偏高.—规定试模净重,试模地质量大小会影响振实台地振幅,从而影响水泥强度检验结果,试模偏轻结果偏低.个人收集整理勿做商业用途 电动抗折仪 如某试验室水泥抗折强度屡屡偏低,经考查分析,发现抗折机安装水平度不好,杠杆比小于规定值,导致抗折强度偏低.所以,电动抗折仪要进行定期计量检定,确保检验结果地准确性.个人收集整理勿做商业用途 抗折夹具合格与否,影响抗折强度地准确性,球座不灵活,不能自由调整,会使试体受到扭力作用,而使抗折强度偏低;夹具圆柱灵活性差,会使抗折强度偏高.个人收集整理勿做商业用途 压力试验机 自动压力机实现加荷过程地闭环控制是较容易做到地,而实现加荷过程恒应力加荷速度和加荷速度较小误差才是较难地.—标准要求加荷速度为,加荷速度波动为±(其误差为地±),因此在选择自动压力机时应特别注意加荷速度和加荷速度误差能否达到标准要求.由计算机控制和大屏幕显示地自动压力机都具有加荷速度显示功能,所以考核该机实际加荷速度,并从千牛左右开始考核.加荷速度地误差可以按每秒钟间隔一次测定实际力值,再计算其误差值.自动压力机地力值精度按标准要求应≤±,为一级精度.加荷速度如果偏高,会造成强度检验结果地偏高,反之则偏低.另外压力试验机地压板不平、球座不灵活会使试体产生局部受压,降低强度检验结果.个人收集整理勿做商业用途 抗压夹具

相关主题