搜档网
当前位置:搜档网 › 减水剂的作用原理

减水剂的作用原理

减水剂的作用原理
减水剂的作用原理

减水剂的作用原理是什么?

减水剂主要能提高砂浆的强度,它的定义是在不影响混凝土施工和易性的条件下,具有减水和增强作用的外加剂称为减水剂。一般减水率大于8%的称之为高效减水剂,减水剂有很多的功能。分为引气型减水剂(兼引气作用的减水剂)早强型减水剂(兼早强作用的减水剂),缓凝型减水剂(兼缓凝作用的减水剂)等。

减水剂的作用原理:减水剂通常是一种表面活性剂,属阴离子型表面活性剂。它吸附于水泥颗粒表面使颗粒显示电性能,颗粒间由于带相同电荷而相互排斥,使水泥颗粒被分散而释放颗粒间多余的水分而产生减水作用。另一方面,由于加入减水剂后,水泥颗粒表面形成吸咐膜,影响水泥的水化速度,使水泥石晶体的生长更为完善,减少水分蒸发的毛细空隙,网络结构更为致密,提高了水泥砂浆的硬度和结构致密性。

减水剂的功能:使水泥颗粒分散,改善和易性,降低用水量,从而提高水泥基材料的致密性和硬度,增大其流动性。

减水剂的种类有木质素磺酸盐、萘系减水剂、密胺系减水剂、聚羧酸盐减水剂、干酪素减水剂、氨基磺酸盐减水剂、丙烯酸系减水剂等。

下面介绍几种市场上用量较大的减水剂

木质素磺酸盐:它属于普通的减水剂,它的原料是木质素,一般从针叶树材中提取,木质素是由对亘香醇、松柏醇、芥子醇这三种木质素单体聚合而成的,用于砂浆中可改进施工性、流动性,提高强度,减水率在5%-10%。

萘磺酸盐减水剂:是我国最早使用的高效减水剂,是萘通过硫酸磺化,再和甲醛进行缩合的产物,属于阴离子型表面活性剂。该类减水剂外观视产品的不同可呈浅黄色到深褐色的粉末,易溶于水,对水泥等许多粉体材料分散作用良好,减水率达25%。

密胺系减水剂:是三聚氰胺通过硫酸磺化,再和甲醛进行缩合的产物,因而化学名称为磺化三聚氰胺甲醛树脂,属于阴离子表面活性剂。该类减水剂外观为白色粉末,易溶于水,对粉体材料分散好,减水率高,其流动性和自修补性良好。

粉末聚羧酸酯:它是近年来研制开发的新型高性能减水剂,它具有优异的减水率、流动性、渗透性。明显增强水泥砂浆的强度,但制作工艺复杂,一般价格较高。

干酪素:它是一种生物聚合物,它是牛奶用酸沉淀并经过圆筒干燥后得到的。

混泥土添加剂-(分类用途等相关知识)

混凝土添加剂

在混凝土、砂浆或净浆的制备过程中,掺人不超过水泥用量5%(特殊情况除外),能对混凝土、砂浆或净浆的正常性能要求而改性的一种产品,称为混凝土外加剂。自上个世纪30年代美国开始使用引气剂,混凝土外加剂至今已经有70多年的历史了。从20世纪60年代日本和西德研制成功高效减水剂以来,外加剂进入了迅速发展的时代。现在,在发达国家使用外加剂的混凝土占混凝土总量的70%~80%,有些已达到100%,外加剂已成为混凝土材料不可缺少的组成部分。 我国外加剂的研究和应用较国外晚,从20世纪50年代才开始研制木质素类的减水剂,并用于大型水库的大体积混凝土,以后由于某些原因停滞多年。直到70年代后,外加剂的科研、生产和应用才取得较大进展。特别是1982年和1986年分别成立了混凝土外加剂学会和混凝土外加剂协会后,我国的混凝土外加剂得到了进一步的加速发展,使用外加剂的混凝土量占混凝土总量的比率从5%增长到近40%。 近年来,我国外加剂行业的科研队伍不断发展壮大,生产企业不断增加,新产品不断研制开发,应用领域不断拓展扩大,砼外加剂行业成为经济建设中一支不可替代的新生力量,与之同时,外加剂的应用技术也得到了迅速发展。 1混凝土外加剂的种类 混凝土外加剂按其主要功能分为六类: ①改善新拌混凝土流动性的外加剂。主要包括各种减水剂、引气剂、灌浆剂、泵送剂等。 ②调节混凝土凝结时间和硬化性能的外加剂。主要包括缓凝剂、促凝剂、早强剂等。 ③调节混凝土含气量的外加剂。主要包括引气剂、加气剂、发泡剂等。 ④增强混凝土物理力学性能的外加剂。主要包括引气剂、防水剂、防冻剂、灌浆剂、膨胀剂等。 ⑤改进混凝土抗侵蚀作用的外加剂。主要包括了引气剂、防水剂、阻锈剂、抗渗剂等。 ⑥为混凝土提供特殊性能的外加剂。主要包括发泡剂、着色剂、杀菌剂、碱骨料反应抑制剂等。 2推广应用混凝土外加剂的意义 推广应用混凝土外加剂不仅可以改善混凝土的物理力学性能,提高工程质量,节约水泥,节省能源、缩短工期,改善施工条件,满足特种混凝土的技术需要。同时,还具有投资少、见效快、技术经济效益明显,社会效益突出等特点。根据不同技术要求,使用不同类型的外加剂可以获得不同的经济效益。混凝土中掺加引气减水剂,一是使混凝土中的微细气泡均匀分布以提高抗冻和抗渗的能力;二是由于它的分散作用而带来减水增强效果。因而,既能改善新拌混凝土的和易性,又能提高混凝土的耐久性。 混凝土中掺加高效减水剂、早强减水剂,可使混凝土的1天强度提高1倍以上,这样使配制高强或超高强度混凝土就易于实现。而混凝土强度的提高,不仅扩大了混凝土的使用范围,在一定程度上也可改变目前结构设计中存在的“肥梁、胖柱、深基础”等状况。这样,既减轻了房屋的自重,又节省了建筑材料。混凝土中掺加缓凝减水剂。可延长混凝土由塑性状态进入固态所需的时间,减慢水泥水化放热速率。可满足不同工程,特别是大体积混凝土工程的施工及质量要求。 混凝土中掺加速凝剂。可满足坑道中喷射混凝土和国防抢修等混凝土工程中的施工要求。混凝土中掺加膨胀、灌浆剂。可使混凝土的密实程度提高,从而增加了“混凝土的稳定性的抗渗、抗冻”等性能。混凝土中

河南减水剂项目建议书

河南减水剂项目 建议书 xxx有限公司

报告说明— 国内单体产能自2007年的50万吨飞速扩展至今,年均增长率保持在20%的高增速,2010-2016年间,下游需求的快速增长使得聚羧酸减水剂单 体产能快速增长。预期未来五年聚羧酸减水剂单体产能增速将大幅放缓, 在下游需求推动的作用下,聚羧酸减水剂单体的开工率将显著提升。 该聚羧酸减水剂项目计划总投资14610.94万元,其中:固定资产投资12458.07万元,占项目总投资的85.27%;流动资金2152.87万元,占项目 总投资的14.73%。 达产年营业收入17577.00万元,总成本费用13622.63万元,税金及 附加262.43万元,利润总额3954.37万元,利税总额4762.23万元,税后 净利润2965.78万元,达产年纳税总额1796.45万元;达产年投资利润率27.06%,投资利税率32.59%,投资回报率20.30%,全部投资回收期6.43年,提供就业职位266个。 减水剂行业上游是环氧乙烷(EO),目前国内EO下游最大的消费领域 仍是乙二醇(EG),此时EO作为生产环节中的一环、不作产品销售,而从 可流通商品来看,EO下游包括聚羧酸减水剂单体、非离子表面活性剂、乙 醇胺等下游产品,用量最大的是聚羧酸减水剂聚醚单体,占比达到52%左右。

目录 第一章项目总论 第二章项目单位概况 第三章背景、必要性分析 第四章产业研究 第五章项目方案分析 第六章选址可行性分析 第七章项目工程方案分析 第八章工艺概述 第九章项目环境影响情况说明第十章企业卫生 第十一章投资风险分析 第十二章项目节能评估 第十三章实施计划 第十四章投资估算 第十五章经济效益分析 第十六章结论 第十七章项目招投标方案

减水剂的作用及用途

减水剂的作用及用途 一、减水剂的作用 减水剂是指在混凝土和易性及水泥用量不变条件下,能减少拌合用水量、提高混凝土强度;或在和易性及强度不变条件下,节约水泥用量的外加剂。与普通减水剂相比,减水及增强作用都较强。 1)静电斥力理论 水泥水化后,由于离子间的范德华力作用以及水泥水化矿物、水泥主要矿物在水化过程中带不同电荷而产生凝聚,导致了混凝土产生絮凝结构。减水剂大多属阴离子型表面活性剂,掺入到混凝土中后,减水剂中的负离子-SO—、-COO—就会在水泥粒子的正电荷Ca2+矿的作用下而吸附于水泥粒子上,形成扩散双电层(Zel。a电位)的离子分布,在表面形成 2)立体位阻效应 掺有减水剂的水泥浆中,减水剂的有机分子长链实际上在水泥微粒表面是呈现各种吸附状态的。不同的吸附态是因为高效减水剂分子链结构的不同所致,它直接影响到掺有该类减水剂混凝土的坍落度的经时变化。有研究表明萘系和三聚氰胺系减水剂的吸附状态是棒状链,因而是平直的吸附,静电排斥作用较弱。其结果是Zeta电位降低很快,静电衡容易随着水泥水化进程的发展受到破坏,使范德华引力占主导,坍落度经时变化大。 3)润滑作用 减水剂的极性亲水基团定向吸附于水泥颗粒表面,多以氢键形式与水分子缔合,再加上水分子之问的氢键缔合,构成了水泥微粒表面的一层稳定的水膜,阻止水泥颗粒问的直接接触,增加了水泥颗  粒间的滑动能力,起到润滑作用,从而进一步提高浆体的流动性。水泥浆巾的微小气泡,同样对减水剂分的定向吸附极性基团所包裹,使气泡与气泡及气泡。

在混凝土掺加减水剂后,伴随水化反应进行,减水剂分子分散于分散系,均匀吸附在水泥颗粒表面,破坏水泥颗粒的团聚,使得水泥颗粒由于减水剂分子存在的特殊作用处于高度分散安定状态。在低含水量时就具有较高流动性。对于高性能减水剂在水泥颗粒表面的吸附状态及分散作用机理的研究有许多,其中较为着名的有立体效应理论、空位稳定型理论、D-L-V-O理论等。 二、减水剂的用途 1.在不改变各种原材料配比(除水泥)及混凝土强度的情况下,可以减少水泥的用量,掺加水泥质量%~%的混凝土减水剂,可以节省水泥量的15~30%以上。 2.在不改变各种原材料配比(除水)及混凝土的坍落度的情况下,减少水的用量,可以大大提高混凝土的强度,早强和后期强度分别比不加减水剂的混凝土提高60%及20%以上,通过减水,可以实现浇筑C100标号的高强混凝土。 3.在不改变各种原材料配比的情况下,可以大幅度提高混凝土的流变性及可塑性,使得混凝土施工可以采用自流、泵送、无需振动等方式进行施工,提高施工速度、降低施工能耗。 4.掺加混凝土高效减水剂,可以提高混凝土的寿命一倍以上,即使建筑物的正常使用寿命延长一倍以上。 5、减少混凝土凝固的收缩率,防止混凝土构件产生裂纹;提高抗冻性,有利于冬季施工。 引气剂 使混凝土拌合物在搅拌时引入空气而形成微小气泡的外加剂。绝大部分引气剂的成分为松香衍生物以及各种磺酸盐,如烷基磺酸钠、烷基苯磺酸钠,常用掺量是水泥重量的50~500ppm。引气剂主要用于抗冻性要求高的结构,如混凝土大坝、路面、桥面、飞机场道面等大面积易受冻的部位。 1、气泡结构好,气泡半径小,抗冻指标高,用于高耐久性的混凝土结构,如水坝、高等级公路、热电站冷却塔、水池水工、港口等。 2、撒除冰盐的混凝土公路及桥梁。

聚羧酸高效减水剂项目可行性报告

年产1万吨聚羧酸(醚酯共聚)高效减水剂 可 行 性 报 告 编制: 审核: 单位: 年月日

目录 1、概况 (1) 1.1、项目名称 (1) 1.2、承办单位概况 (1) 1.3、拟建地点 (1) 1.4、建设内容与规模 (1) 1.5、建设年限 (1) 1.6、概算投资 (1) 1.7、效益分析 (2) 2、项目建设的必要性和条件 (3) 2.1、项目建设的必要性分析 (3) 2.2、建设条件分析 (5) 3、建设规模与产品方案 (6) 3.1、建设规模 (6) 3.2、产品方案 (6) 4、技术方案、设备方案和工程方案 (6) 4.1、技术方案 (6) 4.2、主要设备方案 (6) 4.3、工程方案 (7) 5、投资估算及资金筹措 (7) 5.1、投资估算 (7)

5.2、资金筹措 (7) 6、效益分析 (8) 6.1、评价依据 (8) 6.2、基本数据 (8) 6.3、总成本估算 (9) 6.4、财务效益预测 (9) 6.5、社会效益 (10) 6.6、生态效益 (10) 7、结论 (10)

1、概况 1.1项目名称: 年产1万吨聚羧酸(醚酯共聚)高效减水剂。 1.2承办单位概况: 项目承办单位:XX 注册资金:XX 企业经营范围:XX 公司占地面积XX 多平方米,。。。。 公司现有员工XX人,其中高中级管理及技术人才XX余人,聘请了相关科研院所、高等院校等单位的技术专家人作为本厂的技术顾问,使公司具有了较强的研发及技术创新能力。 承办单位主要经历: 项目负责人:XXX 联系电话:XXX 技术负责人:XXX 联系电话:XXX 1.3拟建地点:

缓蚀剂原理

缓蚀剂原理 -------冀衡药业酸洗缓蚀剂产品部 在电解质溶液中,金属的腐蚀过程服从电化学过程,因此腐蚀的发生存在着阴极反应和阳极反应。阴极反应对应的是去极化剂接受电子的过程,最常见的两种去极化剂为氢质子和氧气,而阳极反应对应的是金属的溶解过程。从腐蚀电化学原理分析,缓蚀剂加入后使得腐蚀反应的阳极过程或者阴极过程受到抑制,有些缓蚀剂可以同时抑制腐蚀反应的阴极和阳极过程。 大多数无机型缓蚀剂主要使用在中性或偏碱性的介质环境中,它们通常对电极的阳极过程有显著的抑制 作用,通过使金属表面钝化或者在金属表面形成沉积膜进而起到缓蚀作用。随着缓蚀剂使用的发展,无机缓蚀剂的使用并未局限在中性或碱性介质中,如在酸性介质中添加碘化物、亚铜、亚锑盐后,能显著增强有机缓蚀剂的作用效果。有机缓蚀剂在酸性介质中的使用非常广泛,它们通过物理或化学作用力吸附在金属表面,通过改变双电层结构,提高腐蚀反应活化能以及将腐蚀介质和金属基体隔离,进而抑制腐蚀速率,有机缓蚀剂在中性介质中也取得了成功的使用,如有机磷酸盐、苯钾酸盐、咪唑啉在工业水和油田污水处理的使用。 1.无机缓蚀剂作用机理 根据腐蚀电化学原理,通过考察无机缓蚀剂对电极阴阳极的抑制效果,无机缓蚀剂的作用机理可以归纳为阴极型、阳极型、混合型。 (1)阳极抑制机理 图1.2阳极抑制型缓蚀剂作用曲线图

图1.2为阳极抑制型钝化剂作用原理图,当介质中存在阳极抑制型缓蚀剂时,极化曲线阳极部分从活化区转为钝化区,使得腐蚀电流密度显著降低,而极化曲线的阴极部分并没有显著的改变。 (2)阴极型缓蚀剂 图l-1(a)所示的极化曲线阐明了阴极型缓蚀剂的作用机理,从图中可以发现,介质中有阴极型缓蚀剂存在时,极化曲线的阴极部分塔菲尔斜率明显增加,而阳极部分塔菲尔斜率却没有改变,这说明阴极型缓蚀剂主要增加了电极的阴极极化过程,这使得金属的开路电位以及腐蚀电流密度均下降。阴极型缓蚀剂可以通过在金属表面的阴极区成膜来增加阴极极化过程,也可以通过提高阴极反应的过电位从而抑制阴极反应,而在中性介质中,阴极过程主要为氧去极化过程为,因此也可以通过吸收体系中的氧来增加阴极反应的极化,根据阴极型缓蚀剂的不同作用原理,其可以进一步细分为以下几种: A.成膜类阴极型缓蚀剂。这类阴极缓蚀剂通过和介质中的物质反应或者自身吸附,在金属的阴极区间成膜,形成的膜能有效地抑制阴极去极化剂如O2、H+等向界面扩散,使得阴极去极化作用受到有效抑制,进而减缓了腐蚀速率。 B.提高阴极反应过电位缓蚀剂。腐蚀反应的阴极过程大多为氢质子或氧的还原反应,这些阴极反应发生的电位均高于其理论的平衡电位,即存在过电位。特别是在酸性介质中,氢质子的还原反应在不同金属上存在显著的差异,而当介质中存在铋、汞、锑等重金属离子时,将会显著提高氢质子的还原过电位,从而使阴极过程受到抑制,降低腐蚀反应速度。 C.耗氧型阴极缓蚀剂。在中性介质中,腐蚀反应的阴极过程多为氧去极化过程,因此在介质中加入可以和氧发生反应的物质,则可降低介质中的氧含量,使阴极反应受到抑制,进而抑制腐蚀速率。 (3)混合型缓蚀剂 混合型缓蚀剂作用示意图见图1.1(c),该类型缓蚀剂对腐蚀的阴阳极反应均有明显的抑制作用,由于加入混合型缓蚀剂后电极的阴阳极塔菲尔斜率同时增加,因此自腐蚀电位没有显著改变,但是腐蚀电流密度显著降低,使得金属腐蚀速度受到抑制。 2.有机缓蚀剂作用机理 有机缓蚀剂分子中通常同时具有极性基团和非极性基团,极性基团中存在氮、氧、磷、硫等元素,这些元素均含有孤对电子,而且电负性大,有机缓蚀剂通过极性基团牢固地吸附在金属表面上,而非极性基团排列在介质中,这样一方面有效地隔离了金属和腐蚀介质的接触,阻碍了腐蚀反应产物的扩散,同时还改变了双电层结构,提高了腐蚀反应的活化能,最终抑制了腐蚀反应的进行。有机缓蚀剂的缓蚀性能有赖于

减水剂的发展及其应用

绪论 混凝土是一类量大面广、历史悠久的传统材料,广泛应用于土木、建筑、水利等工程。建筑业的迅速发展,对混凝土的性能提出了新的要求,如提高混凝土的强度、耐久性,改善新拌混凝土的流动性,减少混凝土在运输中的塌落度损失等。普通混凝土已经不能满足现行的施工工艺要求。国内外的生产实践证明,应用外加剂是混凝土技术进步的主要途径,能使混凝土满足各种不同的施工要求,具有投资少、见效快、推广应用较容易、技术经济效益显著等优点。 混凝土外加剂是在拌制混凝土过程中掺入的用以改善混凝土性能的物质,赋予新拌混泥土和硬化混泥土以优良性能的化学外加剂,掺量通常不大于水泥(或胶凝材料)质量的5%,它是混泥土的第五组分。混泥土外加剂是生产各种高性能混泥土和特种混泥土不可缺少的部分。 混泥土外加剂可以改进混泥土内部结构和工艺过程,应用混泥土外加剂的目的在于改善混泥土的和易性和硬化混泥土的性能,同时获得节省水泥、节省能源、提高强度、缩短工期、加快模板周转等多种经济技术效果。以减水剂的发展为核心,矿物外加剂的应用离不开化学外加剂,各种复合外加剂一般都包括减水剂成分。在混泥土中掺入外加剂后,许多性能如微观结构、孔隙率、吸附性、硬化速度、强度等将发生改变,水泥矿物水化和水泥本身的一些性能也会受到影响[1]。 在混凝土外加剂中,减水剂是目前应用最广的一种外加剂。减水剂又称为分散剂或塑化剂。减水剂对混泥土的影响主要表现为:一是:保持混泥土用水量不变,提高拌合物流动性;二是:保持流动性和水泥用量不变,可减少用水量,降低水灰比,提高混泥土的强度;三是:保证强

度和流动性不变,在减水的同时减少水泥用量,可节约水泥[2]。

减水剂品种及特点

减水剂品种及特点 (一)定义 减水剂是指在保持砂浆稠度基本相同的条件下,能减少拌合用水量的添加剂。 (二)种类 (三)预拌砂浆中的应用 超塑化剂的典型用途是自流平砂浆。自流平砂浆中常用的超塑化剂主要有干酪素和三聚氰胺甲醛缩合物,它们对于保证自流平砂浆在一定的水灰比下具有良好的可工作性是必不可少的。干酪素在薄层自流平砂浆中具有非常好的使用的效果,可使其具有良好的保水性和内聚性,从而降低自流平砂浆的离析和泌水倾向。不过,干酪素是一种从牛奶中提炼出来的天然蛋白质产品,在水泥砂浆中使用会受砂浆初始高碱性条件作用(pH 12)或受砂浆中生长的微生物作用产生化学降解,即干酪素可以产生含有-NH2和/或-SH基团的物质,它们具有令人厌恶的气味。而三聚氰胺甲醛缩合物常常由于残余甲醛的存在而出现甲醛排放的问题。甲醛含量较高的合成超塑化剂1天后典型的排放量在1000-2000 μg/m3。在室温下,这些化学物质足以挥发出来而引起一些症状,如对呼吸和眼睛的刺激。因此干酪素和一些合成超塑化剂的使用在一些国家受到了限制甚至禁止。此外,由于干酪素是一种天然产品,价格和质量上的波动也是其使用过程中存在的问题。 为了兼顾天然和合成超塑化剂的性能特点,并考虑到将VOC排放降低到最低程度,一些公司开发了具有附加的流化功能的可在分散胶粉系列产品来制备自流平砂浆,而无需添加超塑化剂。 其它类型的高效减水剂如萘系和胺基磺酸盐系减水剂也用于地面硬化剂和灌浆材料等干砂浆产品。

目前使用较为广泛的减水剂种类为木质素系减水剂、萘系、三聚氰胺高效减水剂 以及聚羧酸盐系高效减水剂,各自的特点如下: ⑴木质素系减水剂 木质素系减水剂主要成分为木质素磺酸盐,包括木钙、木钠和木镁三种,为普通减水剂。其减水率不高,而且缓凝、引气,因此使用时要控制适宜的掺量,否则掺量过大会造成强度下降且不经济,甚至很长时间不凝结,造成工程事故。 一般适宜掺量为水泥质量的0.2%~0.3%。 ⑵萘系高效减水剂 萘系、甲基萘系、蒽系、古马隆系、煤焦油混合物系减水剂,因其生产原料均来自煤焦油中的不同馏分,因此统称为煤焦油系减水剂。此类减水剂皆为含单环、多环或杂环芳烃并带有极性磺酸基团的聚合物电解质,相对分子质量在1500~10000的范围内,因磺酸基团对水泥分散性很好,即减水率高,故煤焦油系减水剂均属高效减水剂的范畴,在适当分子量范围内不缓凝、不引气。由于萘系减水剂生产工艺成熟,原料供应稳定,且产量大,应用广,逐渐占了优势,因而通常煤焦油系减水剂主要是指萘系减水剂。萘系高效减水剂喷雾干燥后,可用于灌浆料做流平剂。 适宜掺量一般为水泥质量的0.2%~1.0%。 ⑶三聚氰胺系高效减水剂 三聚氰胺系高效减水剂(俗称蜜胺减水剂),化学名称为磺化三聚氰胺甲醛树脂,其性能与萘系减水剂近似,均为非引气型,且无缓凝作用,其减水增强作用略优于萘系减水剂,但掺量和价格也略高于萘系减水剂。三聚氰胺系高效减水剂喷雾干燥后,已广泛用于灌浆料、自流平砂浆等产品。 适宜掺量一般为水泥质量的0.5%~2.0%。 ⑷聚羧酸盐系高效减水剂 聚羧酸盐系高效减水剂是随着高性能混凝土的发展和应用而开发、研制的一类新型高性能混凝土减水剂,它具有强度高,耐热性、耐久性、耐候性好等优异性能。其优点是掺量小、减水率高,具有良好的流动性;保坍性好,90min内坍落度基本无损失;合成中不使用甲醛,对环境不造成污染。聚羧酸盐系高效减水剂用于干混砂浆还处于起步阶段。 适宜掺量一般为水泥质量的0.05%~1.0%。 砂浆中掺加减水剂需注意哪些问题? 预拌砂浆中通常都掺入一定数量的保水增稠材料,而保水增稠材料通常都有较强的需水性,因而增加了砂浆的单位用水量,也影响到砂浆的力学性能和耐久性,因此需采用适当的减水剂对水泥浆体体系进行分散。减

减水剂项目计划书

减水剂项目计划书 投资分析/实施方案

摘要说明— 减水剂下游主要应用于预拌及预制混凝土,其商品混凝土为最主要应用产品,占比在70%以上。 该减水剂项目计划总投资3723.84万元,其中:固定资产投资2662.85万元,占项目总投资的71.51%;流动资金1060.99万元,占项目总投资的28.49%。 达产年营业收入8394.00万元,总成本费用6536.93万元,税金及附加66.49万元,利润总额1857.07万元,利税总额2179.71万元,税后净利润1392.80万元,达产年纳税总额786.91万元;达产年投资利润率49.87%,投资利税率58.53%,投资回报率37.40%,全部投资回收期4.17年,提供就业职位149个。 报告内容:概论、项目建设背景及必要性分析、产业调研分析、产品规划方案、选址评价、土建工程分析、工艺原则及设备选型、环境保护和绿色生产、企业安全保护、建设风险评估分析、项目节能评价、实施安排方案、项目投资方案、项目经营效益、结论等。 规划设计/投资分析/产业运营

减水剂项目计划书目录 第一章概论 第二章项目建设背景及必要性分析第三章产品规划方案 第四章选址评价 第五章土建工程分析 第六章工艺原则及设备选型 第七章环境保护和绿色生产 第八章企业安全保护 第九章建设风险评估分析 第十章项目节能评价 第十一章实施安排方案 第十二章项目投资方案 第十三章项目经营效益 第十四章招标方案 第十五章结论

第一章概论 一、项目承办单位基本情况 (一)公司名称 xxx有限责任公司 (二)公司简介 在本着“质量第一,信誉至上”的经营宗旨,高瞻远瞩的经营方针, 不断创新,全面提升产品品牌特色及服务内涵,强化公司形象,立志成为 全国知名的产品供应商。公司全面推行“政府、市场、投资、消费、经营、企业”六位一体合作共赢的市场战略,以高度的社会责任积极响应政府城 市发展号召,融入各级城市的建设与发展,在商业模式思路上领先业界, 对服务区域经济与社会发展做出了突出贡献。 公司在管理模式、组织结构、激励制度、科技创新等方面严格按照科 技型现代企业要求执行,并根据公司所具优势定位于高技术附加值产品的 研制、生产和营销,以新产品开拓市场,以优质服务参与竞争。强调产品 开发和市场营销的科技型企业的组织框架已经建立,主要岗位已配备专业 学科人员,包括科技奖励政策在内的企业各方面管理制度运作效果良好。 管理制度的先进性和创新性,极大地激发和调动了广大员工的工作热情, 吸引了较多适用人才,并通过科研开发、生产经营得以释放,因此,项目 承办单位较好的经济效益和社会效益。公司实行董事会领导下的总经理负

减水剂的作用机理

减水剂的作用机理 高效减水剂有效地减少了混凝土的的塌落度损失,改善混凝土的工作度,提高流动性,在高性能混凝土中发挥重要的作用,只是至今为止仍旧没有一个完美的理论来解释高效减水剂的作用机理,但有几个理论为大家普遍认同。 静电斥力理论 水泥水化后,由于离子间的德华力作用以及水泥水化矿物、水泥主要矿物在水化过程中带不同电荷而产生凝聚,导致了混凝土产生絮凝结构。高效减水剂大多属阴离子型表面活性剂,掺入到混凝土中后,减水剂中的负离子-SO—、-COO—就会在水泥粒子的正电荷Ca2+矿的作用下而吸附于水泥粒子上,形成扩散双电层(Zel。a电位)的离子分布,在表面形成 扩散双电层的离子分布,使水泥粒子在静电斥力作用下分散,把水泥水化过程中形成的空间网架结构中的束缚水释放出来,使混凝土流动化。Zeta电位的绝对值越大,减水效果就越好。随着水泥的进一步水化,电性被中和,静电斥力随之降低,德华力的作用变成主导,对于萘系、三聚氰胺系高效减水剂的混凝土,水泥浆又开始凝聚,塌落度经时损失比较大,所以掺入这两类减水剂的混凝土所形成的分散是不稳定的。而对于氨基磺酸、多羧酸系高效减水剂,由于其与水泥的吸附模型不同,粒子间吸附层的作用力不同于前两类,其发挥分散作用的主导因素不是Zeta电位,而是一种稳定的分散。 立体位阻效应

掺有高效减水剂的水泥浆中,高效减水剂的有机分子长链实际上在水泥微粒表面是呈现各种吸附状态的。不同的吸附态是因为高效减水剂分子链结构的不同所致,它直接影响到掺有该类减水剂混凝土的坍落度的经时变化。有研究表明萘系和三聚氰胺系减水剂的吸附状态是棒状链,因而是平直的吸附,静电排斥作用较弱。其结果是Z eta电位降低很快,静电衡容易随着水泥水化进程的发展受到破坏,使德华引力占主导,坍落度经时变化大。而氨基磺酸类高效减水剂分子在水泥微粒表面呈环状、引线状和齿轮状吸附,它使水泥颗粒之问的静电斥力呈现立体的交错纵横式,立体的静电斥力的Zeta电位经时变化小,宏观表现为分散性更好,坍落度经时变化小。而多羧酸系接枝共聚物高效减水剂大分子在水泥颗粒表面的吸附状态多呈齿形。这种减水剂不但具有对水泥微粒极好的分散性而且能保持坍落度经时变化很小。原因有三:其一是由于接枝共聚物有大量羧基存在.具有一定的螫合能力,加之链的立体静电斥力构成对粒子问凝聚作用的阻碍;其二是因为在强碱性介质例如水泥浆体中,接枝共聚链逐渐断裂开,释放出羧酸分子,使上述第一个效应不断得以重视;其三是接枝共聚物Zeta电位绝对值比萘系和三聚氰胺系减水剂的低,因此要达到相同的分散状态时,所需要的电荷总量也不如萘系和三聚氰胺系减水剂那样多。对于有侧链的聚羧酸减水剂和氨基磺酸盐系高效减水剂,通过这种立体排斥力,能保持分散系统的稳定性。 润滑作用

减水剂复配小料的作用

泵送剂新思路 主要组成: 1、激活组分: a、主要激发水泥活性。 b、与C3A反应,控制水泥水化反应及坍落度损失。 c、常用材料:Na2CO3(纯碱)、NaOH(片碱、烧碱、火碱)、Na2SO4(元明粉)、Na2S2O3(大苏打)、NaHCO3(小苏打)、K2CO3等。 2、减水组分: 常用高效减水剂,改变用量可改变泵送剂的减水率。 主要分为以下几大类: a)萘系高效减水剂 b)氨基磺酸盐系高效减水剂 c)脂肪族系高效减水剂 d)三聚氰胺(蜜胺树脂)系高效减水剂 e)蒽系高效减水剂 f)聚羧酸盐系高效减水剂 g)木质素磺酸盐系减水剂 3、缓凝组分: 主要用于调节混凝土凝结时间,保持坍落度。 常用材料:第三代缓钠.葡萄糖酸钠、柠檬酸钠、柠檬酸、白糖、糖蜜、糖钙、糖钠、三乙醇胺、硼砂、磷酸三钠、三聚磷酸钠、六偏磷酸钠、多聚磷酸钠、焦磷酸钠、磷酸、硫酸铜、硫酸铁、硫酸锌等。

4、保水组分: 主要用于改善混凝土的保水性能,解决泌水、离析、抓底等问题。 常用材料:第三代缓钠.麦芽糊精、可溶性淀粉、甲基纤维素、羧甲基纤维素、ZY、保坍剂等。 5、引气组分: 主要用于调整混凝土的含气量,改善流动性,提高抗渗性、抗冻性和耐久性,也可用于解决泌水、抓底、离析等问题。 常用材料:十二烷基苯磺酸钠(简称十二烷)、十二烷基磺(硫)酸钠(简称K12)、微沫剂、松香皂化物、松香热聚物、三萜皂苷、AOS(α—烯基磺酸钠)。 外加剂小料的作用 1、硫酸钠(元明粉)俗称芒硝作用在外加剂里做早强成分 2、三聚酸钠,工业名(五钠)混凝土外加剂里用于缓凝成分 3、六偏磷酸钠作为缓凝剂使用 4、柠檬酸、柠檬酸钠;掺量一般为0.03%-0.1%,都起缓凝作用,但是后者比前者效果好 5、葡萄糖酸钠,特点在高温下缓凝效果好 6、亚硝酸钠(亚钠)起防冻作用 7、亚硝酸钙也起防冻作用 8、第三代缓钠、,夏天高温下缓凝效果好.,溶泥,.保坍效果好.特点不假凝.,防泌水及和易性好.,可节成本

减水剂项目建议书(总投资8000万元)(31亩)

减水剂项目 建议书 规划设计 / 投资分析

摘要说明— 该减水剂项目计划总投资7653.71万元,其中:固定资产投资6112.20万元,占项目总投资的79.86%;流动资金1541.51万元,占项目总投资的20.14%。 达产年营业收入14706.00万元,总成本费用11574.37万元,税金及 附加135.56万元,利润总额3131.63万元,利税总额3699.14万元,税后 净利润2348.72万元,达产年纳税总额1350.42万元;达产年投资利润率40.92%,投资利税率48.33%,投资回报率30.69%,全部投资回收期4.76年,提供就业职位219个。 严格遵守国家产业发展政策和地方产业发展规划的原则。项目一定要 遵循国家有关相关产业政策,深入进行市场调查,紧密跟踪项目产品市场 走势,确保项目具有良好的经济效益和发展前景。项目建设必须依法遵循 国家的各项政策、法规和法令,必须完全符合国家产业发展政策、相关行 业投资方向及发展规划的具体要求。 总论、建设背景分析、市场研究、建设规划方案、项目建设地方案、 土建工程、项目工艺分析、项目环境影响分析、安全经营规范、项目风险 评价、项目节能说明、项目进度方案、投资方案计划、项目经济效益分析、综合结论等。

第一章建设背景分析 一、项目建设背景 1、《中国制造2025》的实施,已经和仍将发挥提升中国制造企业国际竞争力的作用,中国制造业将直面第四次工业革命的机遇和挑战,并受惠 于所产生的科技成果,加快转型升级和动能转换的步伐,进一步提升创新 能力和供给能力,排除干扰,朝着制造强国这一目标坚定地前进。 2、目前中国的制造业产量占世界的近25%,超过德国成为世界制造业 产出最大的国家,但是我国总体上仍然是一个发展水平较低的发展中国家,按可比价格计算,我国人均GDP排名世界100名左右。中国制造业目前虽 然以2.5万亿美元产值居世界第一,但人均只有2.6万美元,仅为美国的15.6%。 3、“十三五”时期,要以转变经济发展方式为目标,以科学发展、 跨越发展为主线,顺应世界科技飞速发展带来的新机遇和新挑战,加快产 业升级换代,积极谋划战略性新兴产业、高技术发展重点,培育壮大具有 当地特色的产业集群;紧紧抓住加快培育发展战略性新兴产业的新机遇, 跟踪世界高技术产业发展动态,立足现有产业基础,充分利用国际和国内 资源,加强创新引领,不断改造提升传统优势产业,大力培育壮大区域特 色和比较优势的战略性新兴产业,力争建成一批有自主核心技术、有一定

缓蚀剂原理

缓蚀剂原理 ——冀衡药业酸洗缓蚀剂产品部 在电解质溶液中,金属的腐蚀过程服从电化学过程,因此腐蚀的发生存在着阴极反应和阳极反应。阴极反应对应的是去极化剂接受电子的过程,最常见的两种去极化剂为氢质子和氧气,而阳极反应对应的是金属的溶解过程。从腐蚀电化学原理分析,缓蚀剂加入后使得腐蚀反应的阳极过程或者阴极过程受到抑制, 有些缓蚀剂可以同时抑制腐蚀反应的阴极和阳极过程。 大多数无机型缓蚀剂主要使用在中性或偏碱性的介质环境中,它们通常对电极的阳极过程有显著的抑制 作用,通过使金属表面钝化或者在金属表面形成沉积膜进而起到缓蚀作用。随着缓蚀剂使用的发展,无机缓蚀剂的使用并未局限在中性或碱性介质中,如在酸性介质中添加碘化物、亚铜、亚锑盐后,能显著增强有机缓蚀剂的作用效果。有机缓蚀剂在酸性介质中的使用非常广泛,它们通过物理或化学作用力吸附在金属表面,通过改变双电层结构,提高腐蚀反应活化能以及将腐蚀介质和金属基体隔离,进而抑制腐蚀速率,有机缓蚀剂在中性介质中也取得了成功的使用,如有机磷酸盐、苯钾酸盐、咪唑啉在工业水和油田污水处理的使用。 ,无机缓蚀剂作用机理 根据腐蚀电化学原理,通过考察无机缓蚀剂对电极阴阳极的抑制效果,无机缓蚀剂的作用机理可以归纳 为阴极型、阳极型、混合型。 (1)阳极抑制机理 图1.2阳极抑制型缓蚀剂作用曲线图

图1.2为阳极抑制型钝化剂作用原理图,当介质中存在阳极抑制型缓蚀剂时,极化曲线阳极部分从活化区转为钝化区, 使得腐蚀电流密度显著降低,而极化曲线的阴极部分并没有显著的改变。 (2)阴极型缓蚀剂 图l-1(a)所示的极化曲线阐明了阴极型缓蚀剂的作用机理,从图中可以发现,介质中有阴极型缓蚀剂 存在时,极化曲线的阴极部分塔菲尔斜率明显增加,而阳极部分塔菲尔斜率却没有改变,这说明阴极型缓蚀剂主要增加了电极的阴极极化过程,这使得金属的开路电位以及腐蚀电流密度均下降。阴极型缓蚀剂可以通过在金属表面的阴极区成膜来增加阴极极化过程,也可以通过提高阴极反应的过电位从而抑制阴极反应,而在中性介质中,阴极过程主要为氧去极化过程为,因此也可以通过吸收体系中的氧来增加阴极反应 的极化,根据阴极型缓蚀剂的不同作用原理,其可以进一步细分为以下几种: A.成膜类阴极型缓蚀剂。这类阴极缓蚀剂通过和介质中的物质反应或者自身吸附,在金属的阴极区间成膜,形成的膜能有效地抑制阴极去极化剂如02、H+等向界面扩散,使得阴极去极化作用受到有效抑制, 进而减缓了腐蚀速率。 B.提高阴极反应过电位缓蚀剂。腐蚀反应的阴极过程大多为氢质子或氧的还原反应,这些阴极反应发生 的电位均高于其理论的平衡电位,即存在过电位。特另U是在酸性介质中,氢质子的还原反应在不同金属上存在显著的差异,而当介质中存在铋、汞、锑等重金属离子时,将会显著提高氢质子的还原过电位,从而 使阴极过程受到抑制,降低腐蚀反应速度。 C.耗氧型阴极缓蚀剂。在中性介质中,腐蚀反应的阴极过程多为氧去极化过程,因此在介质中加入可以 和氧发生反应的物质,则可降低介质中的氧含量,使阴极反应受到抑制,进而抑制腐蚀速率。 (3)混合型缓蚀剂 混合型缓蚀剂作用示意图见图 1.1(c),该类型缓蚀剂对腐蚀的阴阳极反应均有明显的抑制作用,由于 加入混合型缓蚀剂后电极的阴阳极塔菲尔斜率同时增加,因此自腐蚀电位没有显著改变,但是腐蚀电流密度显著降低,使得金属腐蚀速度受到抑制。 ~有机缓蚀剂作用机理 有机缓蚀剂分子中通常同时具有极性基团和非极性基团,极性基团中存在氮、氧、磷、硫等元素,这些元素均含有孤对 电子,而且电负性大,有机缓蚀剂通过极性基团牢固地吸附在金属表面上,而非极性基团排列在介质中,这样一方面有效地隔离了金属和腐蚀介质的接触,阻碍了腐蚀反应产物的扩散,同时还改变了双电层结构,提高了腐蚀反应的活化能,最终抑制了腐蚀反应的进行。有机缓蚀剂的缓蚀性能有赖于

高效减水剂的作用及原理

高效减水剂的作用及原理 时间:2009-07-20 00:04来源:砼建外加剂网作者:砼建公司点击:151次 高效减水剂是指在混凝土和易性及水泥用量不变条件下,能减少拌合用水量、提高混凝土强度;或在和易性及强度不变条件下,节约水泥用量的外加剂。与普通减水剂相比,减水及增强作用都较强。 高效减水剂的作用可以有效地减少了混凝土的的塌落度损失,改善混凝土的工作度,提高流动性,在高性能混凝土中发挥重要的作用,只是至今为止仍旧没有一个完美的理论来解释高效减水剂的作用机理,但有几个理论为大家普遍认同。 1)静电斥力理论 水泥水化后,由于离子间的范德华力作用以及水泥水化矿物、水泥主要矿物在水化过程中带不同电荷而产生凝聚,导致了混凝土产生絮凝结构。高效减水剂大多属阴离子型表面活性剂,掺入到混凝土中后,减水剂中的负离子-SO—、-COO—就会在水泥粒子的正电荷Ca2+矿的作用下而吸附于水泥粒子上,形成扩散双电层(Zel。a电位)的离子分布,在表面形成 扩散双电层的离子分布,使水泥粒子在静电斥力作用下分散,把水泥水化过程中形成的空间网架结构中的束缚水释放出来,使混凝土流动化。Zeta电位的绝对值越大,减水效果就越好。随着水泥的进一步水化,电性被中和,静电斥力随之降低,范德华力的作用变成主导,对于萘系、三聚氰胺系高效减水剂的混凝土,水泥浆又开始凝聚,塌落度经时损失比较大,所以掺入这两类减水剂的混凝土所形成的分散是不稳定的。而对于氨基磺酸、多羧酸系高效减水剂,由于其与水泥的吸附模型不同,粒子间吸附层的作用力不用于前两类,其发挥分散作用的主导因素不是Zeta电位,而是一种稳定的分散。 2)立体位阻效应 掺有高效减水剂的水泥浆中,高效减水剂的有机分子长链实际上在水泥微粒表面是呈现各种吸附状态的。不同的吸附态是因为高效减水剂分子链结构的不同所致,它直接影响到掺有该类减水剂混凝土的坍落度的经时变化。有研究表明萘系和三聚氰胺系减水剂的吸附状态是棒状链,因而是平直的吸附,静电排斥作用较弱。其结果是Zeta电位降低很快,静电衡容易随着水泥水化进程的发展受到破坏,使范德华引力占主导,坍落度经时变化大。而氨基磺酸类高效减水剂分子在水泥微粒表面呈环状、引线状和齿轮状吸附,它使水泥颗粒之问的静电斥力呈现立体的交错纵横式,立体的静电斥力的Zeta电位经时变化小,宏观表现为分散性更好,坍落度经时变化小。而多羧酸系接枝共聚物高效减水剂大分子在水泥颗粒表面的吸附状态多呈齿形。这种减水剂不但具有对水泥微粒极好的分散性而且能保持坍落度经时变化很小。原因有三:其一是由于接枝共聚物有大量羧基存在.具有一定的螫合能力,加之链的立体静电斥力构成对粒子问凝聚作用的阻碍;其二是因为在强碱性介质例如水泥浆体中,接枝共聚链逐渐断裂开,释放出羧酸分子,使上述第一个效应不断得以重视;其三是接枝共聚物Zeta电位绝对值比萘系和三聚氰胺系减水剂的低,因此要达到相同的分散状态时,所需要的电荷总量也不如萘系和三聚氰胺系减水剂那样多。对于有侧链的聚羧酸减水剂和氨基磺酸盐系高效减水剂,通过这种立体排斥力,能保持分散系统的稳定性。 3)润滑作用 高效减水剂的极性亲水基团定向吸附于水泥颗粒表面,多以氢键形式与水分子缔合,再加上水分子之问的氢键缔合,构成了水泥微粒表面的一层稳定的水膜,阻止水泥颗粒问的直接接触,增加了水泥颗粒间的滑动能力,起到润滑作用,从而进一步提高浆体的流动性。水泥浆巾的微小气泡,同样对减水剂分的定向吸附极性基团所包裹,使气泡与气泡及气泡 与水泥颗粒问也因同电性相斥而类似在水泥微粒间加入许多微珠,亦起到润滑作用,提高流动性。 2 与水泥的适应性问题

西宁减水剂项目投资申报材料

西宁减水剂项目 投资申报材料 xxx有限公司

西宁减水剂项目投资申报材料说明 减水剂行业工业化起源于20世纪10年代,当时主要是疏水剂和塑化剂;30年代美国研制出引气剂,解决了公路路面的抗冻问题,随后第一代木质素类减水剂应运而生,我国在50年代左右开始木质素类减水剂的研究和应用;20世纪60年代,日本研制出第二代高效减水剂,随后在混凝土工程中高效减水剂作为最主要的外加剂被大量运用;20世纪90年代,日本又研制出第三代高性能减水剂,聚羧酸系,相较第二代产品减水率更高、掺量更低,并且更加环保。 该聚羧酸减水剂项目计划总投资14056.39万元,其中:固定资产投资11891.13万元,占项目总投资的84.60%;流动资金2165.26万元,占项目总投资的15.40%。 达产年营业收入14450.00万元,总成本费用11513.17万元,税金及附加215.25万元,利润总额2936.83万元,利税总额3557.16万元,税后净利润2202.62万元,达产年纳税总额1354.54万元;达产年投资利润率20.89%,投资利税率25.31%,投资回报率15.67%,全部投资回收期7.88年,提供就业职位251个。 重视施工设计工作的原则。严格执行国家相关法律、法规、规范,做好节能、环境保护、卫生、消防、安全等设计工作。同时,认真贯彻“安

全生产,预防为主”的方针,确保投资项目建成后符合国家职业安全卫生 的要求,保障职工的安全和健康。 ...... 报告主要内容:概论、建设背景及必要性、市场分析预测、项目建设 内容分析、项目选址、土建方案、工艺技术方案、项目环境影响分析、安 全生产经营、项目风险应对说明、节能、项目实施计划、项目投资估算、 项目经济效益可行性、项目总结、建议等。 减水剂行业上游是环氧乙烷(EO),目前国内EO下游最大的消费领域 仍是乙二醇(EG),此时EO作为生产环节中的一环、不作产品销售,而从 可流通商品来看,EO下游包括聚羧酸减水剂单体、非离子表面活性剂、乙 醇胺等下游产品,用量最大的是聚羧酸减水剂聚醚单体,占比达到52%左右。

有机缓蚀剂的作用机理修订稿

有机缓蚀剂的作用机理 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

有机缓蚀剂的作用机理 ----冀衡酸洗缓蚀剂产品部 有机缓蚀剂分子中通常同时具有极性基团与非极性基团,极性基团中存在氮、氧、磷、硫等元素,这些元素均含有孤对电子,而且电负性大,有机缓蚀剂通过极性基团牢固地吸附在金属表面上,而非极性基团排列在介质中,这样一方面有效地隔离了金属与腐蚀介质的接触,阻碍了腐蚀反应产物的扩散,同时还改变了双电层结构,提高了腐蚀反应的活化能,最终抑制了腐蚀反应的进行。有机缓蚀剂的缓蚀性能有赖于其极性基团在金属表面吸附的强度,而极性基团的吸附可以是物理吸附也可以是化学吸附,或者两种吸附共同存在。 (1)有机缓蚀剂极性基团的物理吸附 关于的物理吸附行为,Mann最早做了深入的研究,他指出在酸性溶液中,吡啶(C5H5N)、烷基胺(RNH2)、硫醇(RSH)及三烷基磷等的中心原子(N、S、P等)含有孤对电子,这些中心原子与酸性溶液中的氢质子结合,最终形成阳离子: RNH2+H+=(RNH3)+ 形成的缓蚀剂与金属之间存在的范德华力使缓蚀剂吸附在金属表面,这就是物理吸附。物理吸附速度很快,是可逆过程,容易脱附,吸附过程产生的热小,受温度影响小,而且金属和缓蚀剂间没有特定组合。 物理吸附会受到金属表面过剩电荷的显着影响,如上所述,大多有机缓蚀剂在酸性介质中都以阳离子形式存在,如果金属表面带有过剩负电荷,那么金属表面与缓蚀剂之间就会存在强烈的静电引力作用,使得缓蚀剂更容易吸附在金属表面,而且吸附作用力也更强;相反,金属表面如果存在过剩的正电荷,则会一定程度上抑制缓蚀剂向金属表面的吸附。金属表面究竟携带何种过剩电荷,可以通过零电荷电位(即金属表面没有电荷存在时的电位)测量进行考察,零电荷电位可以通过微分电容曲线测试进行确定,即为金属电极双电层电容最小时的电位。当金属开路电位大于零电荷电位时,金属表面带有过剩的正电荷,相反,金属表面则带有过剩的负电荷。在缓蚀剂的实际应用中可以通过改变金属表面携带的过剩电荷量来促进缓蚀剂的物理吸附,如在酸性介质中,添加少量碘化物后,有机胺的缓蚀性能将为显着提高,这主要是碘化物吸附在金属表面后,使得金属表面带有更多的过剩负电荷,促进了有机胺类缓蚀剂在金属表面的吸附;同样有机胺类缓蚀剂之所以在盐酸介质中有着卓越的缓蚀性能,也部分归因于氯离子使得金属表面带有更多的过剩电荷。 (2)有机缓蚀剂极性基团的化学吸附——供电子型缓蚀剂

深圳减水剂项目实施方案

深圳减水剂项目实施方案 仅供参考

报告说明— 减水剂行业上游是环氧乙烷(EO),目前国内EO下游最大的消费领域 仍是乙二醇(EG),此时EO作为生产环节中的一环、不作产品销售,而从 可流通商品来看,EO下游包括聚羧酸减水剂单体、非离子表面活性剂、乙 醇胺等下游产品,用量最大的是聚羧酸减水剂聚醚单体,占比达到52%左右。 该聚羧酸减水剂项目计划总投资9326.21万元,其中:固定资产投资6801.70万元,占项目总投资的72.93%;流动资金2524.51万元,占项目 总投资的27.07%。 达产年营业收入22391.00万元,总成本费用17040.96万元,税金及 附加183.05万元,利润总额5350.04万元,利税总额6271.03万元,税后 净利润4012.53万元,达产年纳税总额2258.50万元;达产年投资利润率57.37%,投资利税率67.24%,投资回报率43.02%,全部投资回收期3.82年,提供就业职位403个。 国内单体产能自2007年的50万吨飞速扩展至今,年均增长率保持在20%的高增速,2010-2016年间,下游需求的快速增长使得聚羧酸减水剂单 体产能快速增长。预期未来五年聚羧酸减水剂单体产能增速将大幅放缓, 在下游需求推动的作用下,聚羧酸减水剂单体的开工率将显著提升。

第一章概述 一、项目概况 (一)项目名称及背景 深圳减水剂项目 我国从2000年开始对聚羧酸减水剂的研究和应用,近年来得益于高铁事业的发展,聚羧酸减水剂应用得到飞速推广。随着高性能和低成本化的并行发展,目前聚羧酸减水剂逐渐从高铁、大坝、核电站等领域向民用领域推广。2011年聚羧酸减水剂产量仅为239.11万吨,到了2015年就达到了621.95万吨(按20%浓度计算)。与之相对的是萘系减水剂的境遇,尽管因为价格低廉而一直在民用市场保有市占率,但是萘系减水剂近年受到的环保压力大增。2015年萘系减水剂产量仅有180.62万吨,相比2013年的357.59万吨减少了接近一半。此消彼长之下,聚羧酸减水剂市占率从2007年的14.6%快速上升至2015年72.9%,而高效减水剂(以萘系减水剂为主)的市占率从2007年的79.3%下降至2015年的26.4%。 减水剂行业工业化起源于20世纪10年代,当时主要是疏水剂和塑化剂;30年代美国研制出引气剂,解决了公路路面的抗冻问题,随后第一代木质素类减水剂应运而生,我国在50年代左右开始木质素类减水剂的研究和应用;20世纪60年代,日本研制出第二代高效减水剂,随后在混凝土工

相关主题