搜档网
当前位置:搜档网 › 第3章 神经网络控制- 网络结构3

第3章 神经网络控制- 网络结构3

(完整版)深度神经网络及目标检测学习笔记(2)

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(Deep Neural Network,NN)实现了对图片的识别,包 括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术 的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来“这是苹在父母一遍遍的重复中学习训练的过程就好像是刚出生的婴儿,设置。.果”、“那是汽车”。有人说,人工智能很傻嘛,到现在还不如三岁小孩。其实可以换个角度想:刚出生婴儿就好像是一个裸机,这是经过几十万年的进化才形成的,然后经过几年的学习,就会认识图片和文字了;而深度学习这个“裸机”用了几十年就被设计出来,并且经过几个小时的“学习”,就可以达到这个水平了。 1.2 BP算法 神经网络的训练就是它的参数不断变化收敛的过程。像父母教婴儿识图认字一样,给神经网络看一张图并告诉它这是苹果,它就把所有参数做一些调整,使得它的计算结果比之前更接近“苹果”这个结果。经过上百万张图片的训练,它就可以达到和人差不多的识别能力,可以认出一定种类的物体。这个过程是通过反向传播(Back Propagation,BP)算法来实现的。 建议仔细看一下BP算法的计算原理,以及跟踪一个简单的神经网络来体会训练的过程。

神经网络控制

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两

BP神经网络的数据分类MATLAB源代码.doc

%%%清除空间 clc clear all ; close all ; %%%训练数据预测数据提取以及归一化 %%%下载四类数据 load data1 c1 load data2 c2 load data3 c3 load data4 c4 %%%%四个特征信号矩阵合成一个矩阵data ( 1:500 , : ) = data1 ( 1:500 , :) ; data ( 501:1000 , : ) = data2 ( 1:500 , : ) ; data ( 1001:1500 , : ) = data3 ( 1:500 , : ) ; data ( 1501:2000 , : ) = data4 ( 1:500 , : ) ; %%%%%%从1到2000间的随机排序 k = rand ( 1 , 2000 ) ; [ m , n ] = sort ( k ) ; %%m为数值,n为标号

%%%%%%%%%%%输入输出数据 input = data ( : , 2:25 ) ; output1 = data ( : , 1) ; %%%%%%把输出从1维变到4维 for i = 1 : 1 :2000 switch output1( i ) case 1 output( i , :) = [ 1 0 0 0 ] ; case 2 output( i , :) = [ 0 1 0 0 ] ; case 3 output( i , :) = [ 0 0 1 0 ] ; case 4 output( i , :) = [ 0 0 0 1 ] ; end end %%%%随机抽取1500个样本作为训练样本,500个样本作为预测样本 input_train = input ( n( 1:1500 , : ) )’ ; output_train = output ( n( 1:1500 , : ) )’ ; input_test = input ( n( 1501:2000 , : ) )’ ;

最新神经网络最新发展综述汇编

神经网络最新发展综述 学校:上海海事大学 专业:物流工程 姓名:周巧珍 学号:201530210155

神经网络最新发展综述 摘要:作为联接主义智能实现的典范,神经网络采用广泛互联的结构与有效的学习机制来模拟人脑信息处理的过程,是人工智能发展中的重要方法,也是当前类脑智能研究中的有效工具。目前,模拟人脑复杂的层次化认知特点的深度学习成为类脑智能中的一个重要研究方向。通过增加网络层数所构造的“深层神经网络”使机器能够获得“抽象概念”能力,在诸多领域都取得了巨大的成功,又掀起了神经网络研究的一个新高潮。本文分8个方面综述了其当前研究进展以及存在的问题,展望了未来神经网络的发展方向。 关键词: 类脑智能;神经网络;深度学习;大数据 Abstract: As a typical realization of connectionism intelligence, neural network, which tries to mimic the information processing patterns in the human brain by adopting broadly interconnected structures and effective learning mechanisms, is an important branch of artificial intelligence and also a useful tool in the research on brain-like intelligence at present. Currently, as a way to imitate the complex hierarchical cognition characteristic of human brain, deep learning brings an important trend for brain-like intelligence. With the increasing number of layers, deep neural network entitles machines the capability to capture “abstract concepts” and it has achieved great success in various fields, leading a new and advanced trend in neural network research. This paper summarizes the latest progress in eight applications and existing problems considering neural network and points out its possible future directions. Key words : artificial intelligence; neural network; deep learning; big data 1 引言 实现人工智能是人类长期以来一直追求的梦想。虽然计算机技术在过去几十年里取得了长足的发展,但是实现真正意义上的机器智能至今仍然困难重重。伴随着神经解剖学的发展,观测大脑微观结构的技术手段日益丰富,人类对大脑组织的形态、结构与活动的认识越来越深入,人脑信息处理的奥秘也正在被逐步揭示。如何借助神经科学、脑科学与认知科学的研究成果,研究大脑信息表征、转换机理和学习规则,建立模拟大脑信息处理过程的智能计算模型,最终使机器掌握人类的认知规律,是“类脑智能”的研究目标。 类脑智能是涉及计算科学、认知科学、神经科学与脑科学的交叉前沿方向。类脑智能的

(完整版)深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署DNN 的关键。 论文地址:https://https://www.sodocs.net/doc/985331521.html,/pdf/1703.09039.pdf 本文旨在提供一个关于实现DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个DNN 综述——讨论了支持DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低DNN 计算成本。本文也会对帮助研究者和从业者快速上手DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解DNN 的关键设计考量;通过基准和对比指标评估不同的DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础[1]。由于DNN 在语音识别[2] 和图像识别[3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些DNN 被部署到了从自动驾驶汽车[4]、癌症检测[5] 到复杂游戏[6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是GPU),已经成为许多DNN 处理的砥柱,但提供对DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对DNN、理解DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下:

实验八:基于神经网络的优化计算实验

实验八:基于神经网络的优化计算实验 一、实验目的 掌握连续Hopfield神经网络的结构和运行机制,理解连续Hopfield神经网络用于优化计算的基本原理,掌握连续Hopfield神经网络用于优化计算的一般步骤。 二、实验原理 连续Hopfield神经网络的能量函数的极小化过程表示了该神经网络从初始状态到稳定状态的一个演化过程。如果将约束优化问题的目标函数与连续Hopfield神经网络的能量函数对应起来,并把约束优化问题的解映射到连续Hopfield神经网络的一个稳定状态,那么当连续Hopfield神经网络的能量函数经演化达到最小值时,此时的连续Hopfield神经网络的稳定状态就对应于约束优化问题的最优解。 三、实验条件 VC++6.0。 四、实验内容

1、参考求解TSP问题的连续Hopfield神经网络源代码,给出15个城市和20个城市的求解结果(包括最短路径和最佳路线),分析连续Hopfield神经网络求解不同规模TSP问题的算法性能。 2、对于同一个TSP问题(例如15个城市的TSP问题),设置不同的网络参数,分析不同参数对算法结果的影响。 3、上交源代码。 五、实验报告 1、画出连续Hopfield神经网络求解TSP问题的流程图。

2、根据实验内容,给出相应结果及分析。 (1)15个城市(测试文件TSP15.TXT)

tsp15.txt 最短路程 371 最佳路线 1914861351534712210111 →→→→→→→→→→→→→→→ (2)20个城市(测试文件TSP20.TXT) tsp20.txt 最短路程349 最佳路线 →→→→→→→→→→→→→→→→→→→→→141618971315111735124289191610201 3、总结连续Hopfield神经网络和遗传算法用于TSP问题求解时的优缺点。

深度神经网络及目标检测学习笔记

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(DeepNeural Network,NN)实现了对图片的识别,包括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来设置。训练的过程就好像是刚出生的婴儿,在父母一遍遍的重复中学习“这是苹

神经网络架构搜索

神经网络架构搜索 架构搜索根据一个已有的效果比较好的神经网络结构,找到更好的结构,例如将其中的某一层进行替换,增添一层或者减少一层,改变网络的拓扑结构。为什么要基于已有的网络?因为在已有的神经网络上更改拓扑结构可以利用已经训练好的权重,在巨人的肩膀上进步,为了更快的得到更好的结果。什么是Path-Level?链式结构如上图,我们称之为Layer-LevelPath-Level如下图:Layer-Level的架构搜索给定一个层的候选集(例如:卷积层3*3,卷积层1*1,池化层,identity),从候选集中选择一个层进行替换。identity指的是x->x,什么都不做。如何选择?1. 暴力搜索:遍历每一种可能的选择通过训练后测试结果反馈来选择结果最好的网络结构。2. 随机搜索:随机选择一种层通过训练后测试结果反馈来选择结果最好的网络结构。3. 强化学习:在暴力搜索和随机搜索的过程中,我们可能会发现当前层选择卷积层3*3,无论网络后面怎样选择,效果都比选择卷积层1*1和池化层效果好,那么我们此时就可以把这一层固定下来只使用卷积层3*3,但如果我们一直这么贪心选择的话,可能会错过一些即使当前不选择卷积层3*3也可能结果很好的机会,所以我们对此做一个折中,我们以x的概率选择随机搜索,以1-x 的概率选择贪心搜索,这样我们搜索的效率就比暴力搜索和

随机搜索好了很多。4. 强化学习+ RNN:在前面三种搜索策略中,我们都是只考虑了当前的状态,那我们可以试图结合前几层或后几层一起对当前层做出决策,我们使用双向RNN来解决这个问题,每一个节点的输入是前一层的输出和前一层的激活函数返回值,输出是当前层应该选择哪一层,但利用双向RNN解决架构搜索问题的过程中,我们发现没有label用来训练RNN,所以强化学习其实起到的是一个采样的作用,采样之后,RNN根据采样的每一层的选择和最后的结果一起来决定每一层选择不同选择的概率。Path-Level 的架构搜索为什么要做Path-Level的架构搜索?因为已经有一些Multi-Brach Neural Networks取得了很好效果,我们需要提供一种方法可以改变旧网络的拓扑结构,使得我们有机会生成表征能力更强的类似Inception models, ResNets这样优秀的网络或更好的网络。定义如何拓宽网络Net2WiderNet 我们定义两种操作,Replication-Add和Split-Concat:1. Replication-Add是指将x复制成2份,分别操作后把结果除以2再相加,保证输入和输出和之前的维度相同。2. Split-Concat是指将x按照维度切成两份,分别操作后再把结果相接,保证输入和输出和之前的维度相同。定义如何加深网络Net2DeeperNet利用Net2DeeperNet在当前层后面加一个identity层(实现细节可以看论文中的相关链接Net2Net)定义Path-Level的架构搜索的数据结构如图,a过程是

神经网络在数据挖掘中的应用

神经网络在数据挖掘中的应用

————————————————————————————————作者:————————————————————————————————日期: ?

神经网络在数据挖掘中的应用 摘要:给出了数据挖掘方法的研究现状,通过分析当前一些数据挖掘方法的局限性,介绍一种基于关系数据库的数据挖掘方法——神经网络方法,目前,在数据挖掘中最常用的神经网络是BP网络。在本文最后,也提出了神经网络方法在数据挖掘中存在的一些问题. 关键词:BP算法;神经网络;数据挖掘 1.引言 在“数据爆炸但知识贫乏”的网络时代,人们希望能够对其进行更高层次的分析,以便更好地利用这些数据。数据挖掘技术应运而生。并显示出强大的生命力。和传统的数据分析不同的是数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识。所得到的信息具有先未知,有效性和实用性三个特征。它是从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示三个步骤。数据准备是从各种数据源中选取和集成用于数据挖掘的数据;规律寻找是用某种方法将数据中的规律找出来;规律表示是用尽可能符合用户习惯的方式(如可视化)将找出的规律表示出来。数据挖掘在自身发展的过程中,吸收了数理统计、数据库和人工智能中的大量技术。作为近年来来一门处理数据的新兴技术,数据挖掘的目标主要是为了帮助决策者寻找数据间潜在的关联(Relation),特征(Pattern)、趋势(Trend)等,发现被忽略的要素,对预测未来和决策行为十分有用。 数据挖掘技术在商业方面应用较早,目前已经成为电子商务中的关键技术。并且由于数据挖掘在开发信息资源方面的优越性,已逐步推广到保险、医疗、制造业和电信等各个行业的应用。 数据挖掘(Data Mining)是数据库中知识发现的核心,形成了一种全新的应用领域。数据挖掘是从大量的、有噪声的、随机的数据中,识别有效的、新颖的、有潜在应用价值及完全可理解模式的非凡过程。从而对科学研究、商业决策和企业管理提供帮助。 数据挖掘是一个高级的处理过程,它从数据集中识别出以模式来表示的知识。它的核心技术是人工智能、机器学习、统计等,但一个DM系统不是多项技术的简单组合,而是一个完整的整体,它还需要其它辅助技术的支持,才能完成数据采集、预处理、数据分析、结果表述这一系列的高级处理过程。所谓高级处理过程是指一个多步骤的处理过程,多步骤之间相互影响、反复调整,形成一种螺旋式上升过程。最后将分析结果呈现在用户面前。根据功能,整个DM系统可以大致分为三级结构。 神经网络具有自适应和学习功能,网络不断检验预测结果与实际情况是否相符。把与实际情况不符合的输入输出数据对作为新的样本,神经网络对新样本进行动态学习并动态改变网络结构和参数,这样使网络适应环境或预测对象本身结构和参数的变化,从而使预测网络模型有更强的适应性,从而得到更符合实际情况的知识和规则,辅助决策者进行更好地决策。而在ANN的

基于神经网络的优化计算实验报告

人工智能实验报告 实验六基于神经网络的优化计算实验 一、实验目的: 掌握连续Hopfield神经网络的结构和运行机制,理解连续Hopfield神经网络用于优化计算的基本原理,掌握连续Hopfield神经网络用于优化计算的一般步骤。 二、实验原理 连续Hopfield神经网络的能量函数的极小化过程表示了该神经网络从初始状态到稳定状态的一个演化过程。如果将约束优化问题的目标函数与连续Hopfield神经网络的能量函数对应起来,并把约束优化问题的解映射到连续Hopfield神经网络的一个稳定状态,那么当连续Hopfield神经网络的能量函数经演化达到最小值时,此时的连续Hopfield神经网络的稳定状态就对应于约束优化问题的最优解。 三、实验条件: VC++6.0。 四、实验内容: 1、参考求解TSP问题的连续Hopfield神经网络源代码,给出15个城市和20个城市的求解结果(包括最短路径和最佳路线),分析连续Hopfield神经网络求解不同规模TSP问题的算法性能。 2、对于同一个TSP问题(例如15个城市的TSP问题),设置不同的网络参数,分析不同参数对算法结果的影响。 3、上交源代码。

五、实验报告要求: 1、画出连续Hopfield神经网络求解TSP问题的流程图。 2、根据实验内容,给出相应结果及分析。 (1)15个城市(测试文件TSP15.TXT)

tsp15.txt 最短路程 371 最佳路线 →→→→→→→→→→→→→→→1914861351534712210111 (2)20个城市(测试文件TSP20.TXT) tsp20.txt 最短路程349 最佳路线 →→→→→→→→→→→→→→→→→→→→→141618971315111735124289191610201 3、总结连续Hopfield神经网络和遗传算法用于TSP问题求解时的优缺点。 遗传算法易出现早熟收敛和收敛性差的缺点。 Hopfield算法对高速计算特别有效,但网络不稳定。 用Hopfield解TSP问题效果并不理想。相对前面的遗传算法解TSP 性能有相当大差距。

BP神经网络及深度学习研究-综述(最新整理)

BP神经网络及深度学习研究 摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。 关键词:BP神经网络、算法分析、应用 1 引言 人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。 人工神经网络最有吸引力的特点就是它的学习能力。因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。 人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。现在分别介绍人工神经元模型及人工神经网络模型。 1.1 人工神经元模型 仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W. Pitts 在分析总结神经元基本特性的基础上首先提出的MP模型。该模型经过不断改进后,形成现在广泛应用的BP神经元模型。人工神经元模型是由人量处理单元厂泛互连而成的网络,是人脑的抽象、简化、模拟,反映人脑的基本特性。一般来说,作为人工神经元模型应具备三个要素: (1)具有一组突触或连接,常用表示神经元i和神经元j之间的连接强度。 w ij (2)具有反映生物神经元时空整合功能的输入信号累加器。

BP神经网络的数据分类-语音特征信号分类

clear %% 训练数据预测数据提取及归一化 %下载四类语音信号 load data1 c1 load data2 c2 load data3 c3 load data4 c4 %四个特征信号矩阵合成一个矩阵 data(1:500,:)=c1(1:500,:); data(501:1000,:)=c2(1:500,:); data(1001:1500,:)=c3(1:500,:); data(1501:2000,:)=c4(1:500,:); %从1到2000间随机排序 k=rand(1,2000); [m,n]=sort(k); %输入输出数据 input=data(:,2:25); output1 =data(:,1); %把输出从1维变成4维 for i=1:2000 switch output1(i) case 1 output(i,:)=[1 0 0 0]; case 2 output(i,:)=[0 1 0 0]; case 3 output(i,:)=[0 0 1 0]; case 4 output(i,:)=[0 0 0 1]; end end %随机提取1500个样本为训练样本,500个样本为预测样本input_train=input(n(1:1500),:)'; output_train=output(n(1:1500),:)'; input_test=input(n(1501:2000),:)'; output_test=output(n(1501:2000),:)'; %输入数据归一化 [inputn,inputps]=mapminmax(input_train); %% 网络结构初始化 innum=24; midnum=25; outnum=4;

基于神经网络的优化计算实验

实验六基于神经网络的优化计算实验 一、实验目的 掌握连续Hopfield神经网络的结构和运行机制,理解连续Hopfield神经网络用于优化计算的基本原理,掌握连续Hopfield神经网络用于优化计算的一般步骤。 二、实验原理 连续Hopfield神经网络的能量函数的极小化过程表示了该神经网络从初始状态到稳定状态的一个演化过程。如果将约束优化问题的目标函数与连续Hopfield神经网络的能量函数对应起来,并把约束优化问题的解映射到连续Hopfield神经网络的一个稳定状态,那么当连续Hopfield神经网络的能量函数经演化达到最小值时,此时的连续Hopfield神经网络的稳定状态就对应于约束优化问题的最优解。 实验报告 1、画出连续Hopfield神经网络求解TSP问题的流程图。

2、根据实验内容,给出相应结果及分析。 (1)、参考求解TSP问题的连续Hopfield神经网络源代码(设置参数A=15,B=15,D=0.015, u0=0.02,h=0.5,r= cityNumber*10),给出15个城市和20个城市的求解结果(包括最短路径和最佳路线),分析连续Hopfield神经网络求解不同规模TSP问题的算法性能。 1)int main(int argc,char *argv[]):修改路径计算的代码 2)最后要求输出:

TSP4 (2)、对于同一个TSP问题(例如15个城市的TSP问题),设置不同的网络参数(A=50,B=50,D=0.01,C=50,u0=0.02, h=0.5,r=cityNumber*100; A=0.5, B=0.5, D=0.5, C=0.2,u0=0.02,h=0.5,r=cityNumber*100; A=500,B=500,D=500,C=200,u0=0.02,h=0.5, r=cityNumber*100; A=5, B=5, D=0.01, C=5,u0=0.02,h=0.5, r=cityNumber*100),分析不同参数对算法结果的影响。 1)int main(int argc,char *argv[]):增加全局约束的参数C,网络动态方程也需增加全局约束项。 2)bool is_a_road():在是否是一条可行路径中,需要增加满足全局约束的判断 3)最后要求输出: 情况一 情况二

神经网络控制完整版

神经网络控制 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与 102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉

BP神经网络的基本原理-一看就懂

5.4 神经网络的基本原理 ()网络是1986年由和为首的科学家小组提 出,是一种按误差逆传播算法训练的多层前馈网 络,是目前应用最广泛的神经网络模型之一。网 络能学习和存贮大量的输入-输出模式映射关 系,而无需事前揭示描述这种映射关系的数学方 程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。神经网络模型拓扑结构包括输入层()、隐层( )和输出层( )(如图5.2所示)。 5.4.1 神经元 图5.3给出了第j个基本神经元(节点),它只模仿了生物神经元所具有的三个最基本也是最重要的功能:加权、求和与转移。其中x1、x2……分别代表来自神经元1、2…i…n的输入;1、2……则分别表示神经元1、2…i…n与第j个神经元的连接强度,即权值;为阈值;f(·)为传递函数;为第j个神经元的输出。 第j个神经元的净输入值为: (5.12)

其中: 若视,,即令及包括及,则 于是节点j的净输入可表示为: (5.13)净输入通过传递函数()f (·)后,便得到第j个神经元的输出: (5.14)式中f(·)是单调上升函数,而且必须是有界函数,因为细胞传递的信号不可能无限增加,必有一最大值。 5.4.2 网络 算法由数据流的前向计算(正向传播)和误差信号的反向传播两个过程构成。正向传播时,传播方向为输入层→隐层→输出层,每层神经元的

状态只影响下一层神经元。若在输出层得不到期望的输出,则转向误差信号的反向传播流程。通过这两个过程的交替进行,在权向量空间执行误差函数梯度下降策略,动态迭代搜索一组权向量,使网络误差函数达到最小值,从而完成信息提取和记忆过程。 5.4.2.1 正向传播 设网络的输入层有n个节点,隐层有q个节点,输出层有m个节点,输入层与隐层之间的权值为,隐层与输出层之间的权值为,如图5.4所示。隐层的传递函数为f1(·),输出层的传递函数为f2(·),则隐层节点的输出为(将阈值写入求和项中): 1,2,…… q (5.15)输出层节点的输出为: 1,2,…… m (5.16)至此网络就完成了n维空间向量对m维空间的近似映射。

matlab30个案例分析案例12-SVM神经网络的数据分类预测

%% SVM神经网络的数据分类预测----意大利葡萄酒种类识别 %% 清空环境变量 close all; clear; clc; format compact; %% 数据提取 % 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量 load chapter12_wine.mat; % 画出测试数据的box可视化图 figure; boxplot(wine,'orientation','horizontal','labels',categories); title('wine数据的box可视化图','FontSize',12); xlabel('属性值','FontSize',12); grid on; % 画出测试数据的分维可视化图 figure subplot(3,5,1); hold on for run = 1:178 plot(run,wine_labels(run),'*'); end xlabel('样本','FontSize',10); ylabel('类别标签','FontSize',10); title('class','FontSize',10); for run = 2:14 subplot(3,5,run); hold on; str = ['attrib ',num2str(run-1)]; for i = 1:178 plot(i,wine(i,run-1),'*'); end xlabel('样本','FontSize',10); ylabel('属性值','FontSize',10); title(str,'FontSize',10); end % 选定训练集和测试集 % 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集

神经网络学习 之 BP神经网络

神经网络学习之 BP神经网络 https://www.sodocs.net/doc/985331521.html,/u013007900/article/details/50118945

目录 第一章概述 第二章BP算法的基本思想 第三章BP网络特性分析 3.1 BP网络的拓扑结构 (4) 3.2 BP网络的传递函数 (5) 3.3 BP网络的学习算法 (6) 第四章BP网络的训练分解 4.1前向传输(Feed-Forward前向反馈) (8) 4.2逆向反馈(Backpropagation) (9) 4.3 训练终止条件 (10) 第五章BP网络运行的具体流程 (10) 5.1网络结构 (10) 5.2变量定义 (10) 5.3误差函数: (11) 第六章 BP网络的设计 (14) 6.1 网络的层数 (14) 6.2 隐层神经元的个数 (14) 6.3 初始权值的选取 (15) 6.4 学习速率 (15) BP网络的局限性 (15) BP网络的改进 (15)

第一章概述 神经网络是1986年由Rumelhart和McCelland为首的科研小组提出,参见他们发表在Nature 上的论文Learning representations by back-propagating errors。 BP神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。 第二章 BP算法的基本思想 多层感知器在如何获取隐层的权值的问题上遇到了瓶颈。既然我们无法直接得到隐层的权值,能否先通过输出层得到输出结果和期望输出的误差来间接调整隐层的权值呢?BP算法就是采用这样的思想设计出来的算法,它的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。 ?正向传播时,输入样本从输入层传入,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出(教师信号)不符,则转入误差的反向传播阶段。 ?反向传播时,将输出以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据。 这两个过程的具体流程会在后文介绍。 BP算法的信号流向图如下图所示

深度神经网络知识蒸馏综述

Computer Science and Application 计算机科学与应用, 2020, 10(9), 1625-1630 Published Online September 2020 in Hans. https://www.sodocs.net/doc/985331521.html,/journal/csa https://https://www.sodocs.net/doc/985331521.html,/10.12677/csa.2020.109171 深度神经网络知识蒸馏综述 韩宇 中国公安部第一研究所,北京 收稿日期:2020年9月3日;录用日期:2020年9月17日;发布日期:2020年9月24日 摘要 深度神经网络在计算机视觉、自然语言处理、语音识别等多个领域取得了巨大成功,但是随着网络结构的复杂化,神经网络模型需要消耗大量的计算资源和存储空间,严重制约了深度神经网络在资源有限的应用环境和实时在线处理的应用上的发展。因此,需要在尽量不损失模型性能的前提下,对深度神经网络进行压缩。本文介绍了基于知识蒸馏的神经网络模型压缩方法,对深度神经网络知识蒸馏领域的相关代表性工作进行了详细的梳理与总结,并对知识蒸馏未来发展趋势进行展望。 关键词 神经网络,深度学习,知识蒸馏 A Review of Knowledge Distillation in Deep Neural Networks Yu Han The First Research Institute, The Ministry of Public Security of PRC, Beijing Received: Sep. 3rd, 2020; accepted: Sep. 17th, 2020; published: Sep. 24th, 2020 Abstract Deep neural networks have achieved great success in computer vision, natural language processing, speech recognition and other fields. However, with the complexity of network structure, the neural network model needs to consume a lot of computing resources and storage space, which seriously restricts the development of deep neural network in the resource limited application environment and real-time online processing application. Therefore, it is necessary to compress the deep neural network without losing the performance of the model as much as possible. This article introduces

相关主题