搜档网
当前位置:搜档网 › 高等数学II练习册-第9章答案

高等数学II练习册-第9章答案

高等数学II练习册-第9章答案
高等数学II练习册-第9章答案

习题9-1 多元函数的基本概念

1.求下列各函数的定义域: (1

)ln(z y x =-

(2

)u =

2.求下列各极限: (1

(,)(0,0)lim

x y →

(2)

(,)(2,0)tan()

lim

x y xy y →

.

(3)222

2

()

lim()x y x y x y e

-+→∞

→∞

+

令2

2

u x y =+,原式1

lim

lim 0u u

u u u e e →∞→∞===

(4)

()(

,0,0lim

x y →

令t =,则原式2

3220001sin 1cos 12lim lim lim 336

t t t x

t t t t t t +++

→→→--==== 习题9-2 偏导数

1.求下列函数的偏导数: (1)2

sin()cos ()z xy xy =+;

(2)(1)y

z xy =+;

(3)arctan()z

u x y =-.

(4)设()23y z xy x ?=

+,其中()u ?可导,证明22z z

x y xy x y ??+=?? 解 ()()222,33z y z y

y xy x xy x x y x

????''=-+=+?? 左边()()22

2

22233z y y x y x y xy y xy x xy x x ?????''=+=-++=+=?????

右边 2.求下列函数的22z x

??,22z

y ??和2z x y ???.

(1)arctan

y z x

=;

(2)x

z y =.

习题9-3 全微分

1.求下列函数的全微分: (1)y x

z e =;

(2)yz

u x =.

(3)sin 2

yz y

u x e =++. 解

11,c o s ,22yz yz u u y u

ze ye x y z

???==+=???,所求的全微分为 1cos 22yz yz y du dx ze dy ye dz ??

=+++ ???

(4)()

222

tan

z y x

u ++=

解 u x ?=?, u y ?=?

u z ?=?

)du xdx ydy zdz =

++

2.求函数y

z x

=

,当2x =,1y =,0.1x ?=,0.2y ?=-时的全增量和全微分。

3.设(

),,f x y z =

()1,1,1df 解

()111,1,1

11,1z

f x f

x z y y

x -????=?∴

= ?????

()

1121,1,11,1z

f x x f

y z y y y -??????=?-∴

=- ? ?????

??

()

21,1,11ln ,0z

f x x f z

y y z z

????=?-∴

= ?????

故 ()1,1,1

d f d x d

y =- 习题9-4

多元复合函数的求导法则

1.设2

ln z u v =,而x u y =

,32v x y =-,求z x ?

?,z

y

??.

2.设arcsin()z x y =-,而3x t =,3

4y t =,求

dz

dt

.

3.设2()1ax e y z u a -=+,而sin y a x

=,cos z x =,求du

dx

.

4.求函数(,,)u f x xy xyz =的一阶偏导数(其中f 具有一阶连续偏导数)

5.设()z xy xF u =+,而y

u x

=

,()F u 为可导函数,证明z z x y z xy x y ??+=+??.

6.设2

2

()z f x y =+,其中f 具有二阶导数,求22z

x

??,2z x y ???,22z y ??.

习题9-5 隐函数的求导公式

1.设arctan

y x =,求dy dx

.

2.设

ln x z z y =,求z x ??及z

y

??.

3.设(,)u v Φ具有连续偏导数,证明由方程(,)0cx az cy bz Φ--=所确定的函数(,)z f x y =满足z z

a

b c x y

??+=??.

4.求由下列方程组所确定的函数的导数或偏导数:

(1)222

01

x y z x y z ++=??

++=?,求dx dz ,dy

dz

.

(2)2

2

u v x u v y ?-+=??+-=??,求,,,u u v v x y x y ???????? 解 方程组两边分别对,x y 求偏导数得

2121,141420u v

u u v v x x

u v x uv x uv v x

x ???-=-??-?????==?

???+?+?+=???? 2012,141421

u v

u y y u v u u v y uv y uv v y

y ???-=??????

?==?

???+?+?+=???? 习题9-6 多元函数微分学的几何应用

1.求曲线()(sin )(1cos )(4sin )2

t

r f t t t i t j k ==-+-+在与02

t π

=相应的点处的切线及

法平面方程。

2.求曲线2

2y mx =,2

z m x =-在点000(,,)x y z 处的切线及法平面方程。

3.求曲线22230

23540

x y z x x y z ?++-=?-+-=?,在点(1,1,1)处的切线及法平面方程。

4.求椭球面2

2

2

21x y z ++=上平行于平面20x y z -+=的切平面方程。

5.在曲面xy z =上求一点,使这点处的法线垂直于平面093=+++z y x ,并写出这法线方程.

解 设所求点为),,(000z y x ,y z x =, x z y =,

法向量)1,,()1,,(00-=-=x y z z n y x

由题意知

1

13100-==x y ,得,1,300-=-=y x 30=z 法线方程:

1

3

3113-=

+=+z y x 习题9-7 方向导数与梯度

1.求函数22

z x y =+在点(1,2)处沿从点(1,2)到点(2,2+的方向的方向导数。

2.求函数u xyz =在点(5,1,2)处沿从点(5,1,2)到点(9,4,14)的方向的方向导数。

3.求函数u x y z =++在球面2

2

2

1x y z ++=上点000(,,)x y z 处,沿球面在该点的外法线方向的方向导数。

4.设2

2

2

(,,)23326f x y z x y z xy x y z =++++--,求(0,0,0)grad f 及(1,1,1)grad f .

5.求函数2

u xy z =在点0(1,1,2)P -处变化最快的方向,并求沿这个方向的方向导数。

6.求函数z

x

y u )(=在)1,1,1(0P 沿着方向)1,1,2(-=l 的方向导数

o

P l

u ??.

解:

,1)()(0

02

1-=-=??-P z P x y x y z x u

,1)1()(0

1==??-P z P x x y z y u

,0)l n ()(0

==??P z P x

y x y z

u

)6

1,6

1,

6

2(

-=l

.6

1)6

1(06

116

2

)1(0

-=-?+?+?

-=??∴

P l

u

习题9-8 多元函数的极值及其求法

1.求函数22

(,)(2)x

f x y e x y y =++的极值。

2.求函数z xy =在适合附加条件1x y +=下的极大值。

3.在平面xOy 上求一点,使它到0x =,0y =及2160x y +-=三直线的距离平方之和为

最小。

4.将周长为2p 的矩形绕它的一边旋转而构成一个圆柱体,问矩形的边长各为多少时,才可使圆柱体的体积为最大?

5.求函数11

(,)(0)z f x y xy xy x y

==+

+≠的极值 解:

2211,x y z y z x x y

=-

=- 令

0,0(,)

(1,

1x y z z x y ==?= 332,1,22,1,2xx xy yy z x z z y A B C --===?===

230AC B ?=-=>,且0A >

所以(,)(1,1)x y =为函数的极小值点,极小值为(1,1)3f =

6.求表面积为6而体积最大的长方体的体积.

解 设长方体的长,宽,高分别为,,x y z ,则问题归结为在满足条件2()xy yz zx ++=6时求长方

体的体积V xyz =的最大值. 它的拉格朗日函数为(,,,)(3),0,0,0,L x y z xyz xy xz yz x y z λλ=+--->>>

()0,()0,()0L L L yz y z xz x z xy x y x y z

λλλ???=+--==+--==+--=???, 有()0()0()030

yz y z xz x z xy x y xy xz yz λλλ+--=??+--=??+--=??---=? 解方程组有 1x y z === 长方体的最大体积为1.

复习题九

1.求下列函数的一阶和二阶偏导数: (1)2

ln()z x y =+;

(2)y

z x =

.

2.设(,,)z f u x y =,y

u xe =,其中f 具有二阶连续偏导数,求2z x y

???.

3.设cos u

x e v =,sin u y e v =,z uv =,试求

z x

??和z y ??.

4.求螺旋线cos x a θ=,sin y a θ=,z b θ=在点(,0,0)a 处的切线及法平面方程。

5. 已知(,)x y ?具有连续偏导数且(,)0x z y z ?--=确定函数(,)z z x y =,试计算

z z

x y

??+?? 解:

12(1)()0z z

x x

????-

+-=??

112

z x ????=

?+

12()(1)0z z

y y

????-

+-=??

212

z y ????=

?+

1z z x y

??+=?? 6.

=

证明: 设0000(,,)M x y z 为曲面上任意一点 令(,,)F x y z =

x F =

; y F =

;

z F =

000)))0x x y y z z -+-+-=

所以截距和为

2++=

《微积分》《高等数学》第二章测试题

《微积分》第二章测试题 1. 【导数的概念】已知()23f '=,求()() 22lim h f h f h h →+-- 解()() ()() ()()()0 0222222lim lim 226h h f h f h f h f f h f f h h h →→+--+---??'=+== ?-?? 2. 设函数cos ln x y x e a -=++,求 d y d x 解 sin x dy x e dx -=-- 3. 设函数arctan x y e =,求 d y d x 解 d y d x () arctan arctan 1 1 1221x x e e x x x x =? ? = ++ 4. 设函数2 sin cos 2y x x =,求 d y d x , x dy dx = 解()2 2 2 2 4 sin cos 2sin 12sin sin 2sin y x x x x x x ==-=- ()()3 2 2 2sin cos 8sin cos 2sin cos 14sin sin 214sin dy x x x x x x x x x dx =-=-=-, 0x dy dx == 5. 【函数的微分,记得加dx 】设函数2 sin 2x y x = ,求dy 解2 4 3 3 2cos 22sin 22cos 22sin 22cos 22sin 2,dy x x x x x x x x x x dy dx dx x x x ---== ∴= 6. 【高阶导数】设函数11 y x = -,求 n n d y dx 解 () () () () () () () 2 3 1 2 3 4 1 23 ! 11, 21, 3!1,, 1n n n n dy d y d y d y n x x x x dx dx dx dx x ----+' = -=--=-=--=-- 7.【隐函数求导】 设函数()y y x =由方程2 sin 20xy y -=确定,求 d y d x 解 等式两边同时对x 求导2 22sin 20,y xyy y y ''+-=则 () 2 2 2 2sin 222221dy y y y y dx y xy xy xy x y '== = = ---

高等数学2第十一章答案

习题11-1 对弧长的曲线积分 1.计算下列对弧长的曲线积分: (1)22()n L x y ds +??,其中L 为圆周cos x a t =,sin y a t = (02)t π≤≤; (2)L xds ??,其中L 为由直线y x =及抛物线2 y x =所围成的区域的整个边界; (3)L ??,其中L 为圆周222x y a +=,直线y x =及x 轴在第一象限内所围成的 扇形的整个边界; (4) 2x yzds Γ ? ,其中Γ为折线ABCD ,这里A 、B 、C 、D 依次为点(0,0,0)、(0,0,2)、 (1,0,2)、(1,3,2); (5)2L y ds ? ,其中L 为摆线的一拱(sin )x a t t =-,(1cos )y a t =-(02)t π≤≤. 2.有一段铁丝成半圆形y =,其上任一点处的线密度的大小等于该点的纵坐标,求其质量。 解 曲线L 的参数方程为()cos ,sin 0x a y a ???π==≤≤ ds ad ??= = 依题意(),x y y ρ=,所求质量220 sin 2L M yds a d a π??= ==?? 习题11-2 对坐标的曲线积分 1.计算下列对坐标的曲线积分: (1)22()L x y dx -? ,其中L 是抛物线2y x =上从点(0,0)到点(2,4)的一段弧; (2)22 ()()L x y dx x y dy x y +--+??,其中L 为圆周222 x y a +=(按逆时针方向绕行);

(3)(1)xdx ydy x y dz Γ +++-? ,其中Γ是从点(1,1,1)到点(2,3,4)的一段直线; (4) dx dy ydz Γ -+??,其中Γ为有向闭折线ABCA ,这里A 、B 、C 依次为点(1,0,0)、 (0,1,0)、(0,0,1); 2.计算 ()()L x y dx y x dy ++-?,其中L 是: (1)抛物线2 y x =上从点(1,1)到点(4,2)的一段弧; (2)从点(1,1)到点(4,2)的直线段; (3)先沿直线从点(1,1)到点(1,2),然后再沿直线到(4,2)的折线; (4)曲线2 21x t t =++,2 1y t =+上从点(1,1)到点(4,2)的一段弧。 3.把对坐标的曲线积分 (,)(,)L P x y dx Q x y dy +? 化成对弧长的曲线积分,其中L 为: (1)在xOy 面内沿直线从点(0,0)到点(1,1); (2)沿抛物线2 y x =从点(0,0)到点(1,1); (3)沿上半圆周2 22x y x +=从点(0,0)到点(1,1). 4.设Γ为曲线x t =,2 y t =,3 z t =上相应于t 从0变到1的曲线弧,把对坐标的曲线积分 L Pdx Qdy Rdz ++? 化成对弧长的曲线积分。 习题11-3 格林公式及其应用 1. 利用曲线积分,求星形线3 cos x a t =,3 sin y a t =所围成的图形的面积。

高等数学第9章参考答案

第八章 多元函数的微分法及其应用 § 1 多元函数概念 一、设]),,([:,),(,),(22222y y x f y x y x y x y x f ??求-=+=. 二、求下列函数的定义域: 1、2 221) 1(),(y x y x y x f ---= 222{(,)|(,)R ,1};x y x y y x ∈+≠ 2、x y z arcsin = };0,|),{(≠≤x x y y x 三、求下列极限: 1、22 2)0,0(),(sin lim y x y x y x +→ (0) 2、 x y x x y 3)2,(),()1(lim +∞→ (6e ) 四、证明极限 24 2)0,0(),(lim y x y x y x +→不存在. 证明:当沿着x 轴趋于(0,0)时,极限为零,当沿着2 x y =趋于(0,0)时,极限为2 1 , 二者不相等,所以极限不存在 五、证明函数?? ??? =≠+=)0,0(),(,0)0,0(),(,1sin ),(22 y x y x y x xy y x f 在整个xoy 面上连续。 证明:当)0,0(),(≠y x 时,为初等函数,连续),(y x f 。当)0,0(),(=y x 时, )0,0(01 sin lim 2 2)0,0(),(f y x xy y x ==+→,所以函数在(0,0)也连续。所以函数 在整个xoy 面上连续。 六、设)(2y x f y x z +++=且当y=0时2x z =,求f(x)及z 的表达式. 解:f(x)=x x -2,z y xy y x -++=2222 § 2 偏导数 1、设z=x y x e x y + ,验证 z xy +=??+??y z y x z x 证明:x y x y x y e x ,e x y e y +=??-+=??y z x z ,∴z xy xe xy xy x y +=++=??+??y z y x z x 4 2244222222)()),,((y y x x y y x y y x f +-=+-=?答案:

高等数学第二章练习及答案

第二章 一、选择题. 1. 函数1y x =+在0x =处 ( ) A 、无定义 B 、不连续 C 、可导 D 、连续但不可导 2. 设函数221,0(), 0x x f x x x +

7. (arctan 2)d x =________,[]ln(sin 2)d x =__________. 8. 函数32()39f x x ax x =++-,已知()f x 在3x =-时取得极值,则a =______. 9.设需求量q 对价格p 的函数为2e 100)(p p q -=,则需求弹性E p =__________. 三、判断题. 1. 若()f x 在点0x 处可导,则()f x 在点0x 处连续. ( ) 2. dy 是曲线()y f x =在点00(,())x f x 处的切线纵坐标对应于x ?的改变量. ( ) 3. 函数()y f x =在0x 点处可微的充要条件是函数在0x 点可导. ( ) 4. 极值点一定是驻点. ( ) 5. 函数y x =在点0x =处连续且可导. ( ) 四、计算题. 1.求函数y =. 2. 求由方程0e e 2=+-+y x y x 所确定的隐函数()y f x =的导数y '. 3. 设e x y x =,求y '. 4. 求由方程cos()y x y =+所确定的隐函数()y f x =的二阶导数.y '' 五、求下列极限. (1)sin lim sin x x x x x →∞-+, (2)x x x x x x x --+-→4240sin 23lim , (3)11lim 1ln x x x x →??- ?-? ?, (4)1lim(1)(0)x x a x a →∞->, (5)()10lim 1x x x →+, (6)1lim ()x x x x e →+∞+. 六、应用题. 1. 求函数32 ()391f x x x x =--+的单调性、极值与极值点、凹凸区间及拐点. 2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求量为100010q p =-(q 为需求量,p 为价格).试求:(1)成本函数,收入函数;(2)产量为多少吨时利润最大?

高数课后习题及答案 第二章 2.3

2.2)1 ()3,0 x f x x ==; 解: 11 lim 11 lim lim ()lim 3330 lim ()lim 333 x x x x x x x x x x f x f x - →--+ →++-∞ →→+∞ →→========+∞ 因为0 lim ()lim ()x x f x f x - + →→≠,所以3 lim ()x f x →-不存在。 3)2 11(),02x f x x - ?? == ? ?? ; 解: 2 10000 11lim ()lim ()lim ()lim 22x x x x x f x f x f x -+- -∞ →→→→?? ??=====+∞ ? ??? ?? 所以3 lim ()x f x →-不存在。 4)3,3 9)(2 -=+-= x x x x f ; 解:63 ) 3)(3(lim )(lim )(lim 3 3 3 -=+-+==+ + - -→-→-→x x x x f x f x x x 故极限6)(lim 3 -=-→x f x 2 2 2 2 2 5).lim ()224,lim ()3215, lim ()lim (),lim ()x x x x x f x f x f x f x f x -+-+→→→→→=?==?-=≠解:因为所以不存在。 ()0 6.lim ()lim 21,lim ()lim cos 12,lim ()lim (),lim ()x x x x x x x x f x f x x f x f x f x --++-+→→→→→→→===+=≠)解:因为所以不存在。 7)1()arctan ,0f x x x ==;

微积分2习题答案

一、填空题 1.设)(x P 是x 的多项式,且26)(lim 23=-∞→x x x P x ,3) (lim 0=→x x P x ,则=)(x P 2.=-++∞ →))(arcsin(lim 2 x x x x 6 π x x x 3262 3++↑ 3.=?? ? ??-∞ →3 21lim x x x 32 -e 4.设A x x ax x x =-+--→1 4 lim 31,则有=a ,=A 4,-2 5.设x x x x x f sin 2sin )(+=,则=∞→)(lim x f x 2 6.=?+→2 32031 sin sin lim x x x x x 31 7.函数) 2)(1(1+-+=x x x y 的间断点是 1=x 8.为使函数()x x x f tan 1 ?=在点0=x 处连续,应补充定义()=0f 1 9.设函数?????=≠-=00)1(3 x K x x y x 在0=x 处连续,则参数=K 3-e 10.函数???>+≤+=0 10 )(x e x a x x f x 在点0=x 处连续,则=a 2 二、单项选择题 1.设0>n x ,且n n x ∞→lim 存在,则n n x ∞ →lim ② ①0> ②0≥ ③0= ④0< 2.极限=-→1 11 lim x e x ③ ①∞ ②1 ③不存在 ④0 3.=++∞→- →x x x x x x 1 sin lim ) 1(lim 10 ④ ①e ; ②1e -; ③1e +; ④1 1e -+ 4.()() 213 ++-= x x x y 的连续区间是__________________ ② ①()()()+∞----∞-,11,22, ②[)+∞,3 ③()()+∞--∞-,22, ④()()+∞--∞-,11, 5.函数1 2 111 11+----=x x x x y 的不连续点有 ③ ①2个 ②3个 ③4个 ④4个以上 6.下列函数中,.当0→x 时,与无穷小量x 相比是高阶无穷小量的是___________;是等价无穷小量的是__________________ ①,② ①x cos 1- ②2 x x + ③x ④x 2sin

专升本高等数学测试及答案(第二章)

高等数学测试(第二章) 一.选择题(每小题2分,共20分) 1 .设函数0()10 2 x f x x ≠=??=?? 在0x =处( ) A .不连续B .连续但不可导C .可导D .可微 2.设函数()ln 2f x x x =在0x 处可导,且0()2f x '=,则0()f x 等于( )A .1 B .2 e C .2e D .e 3.设函数()f x 在点x a =处可导,则0()()lim x f a x f a x x →+--等于( ) A .0 B .()f a ' C .2()f a ' D .(2)f a ' 4.设x x x f += ??? ??11,x x g ln )(=,则[()]f g x '= ( ) A . 2) 1(1x + B .2)1(1x +- C .1x x + D .22 )1(x x +- 5.设函数 )(x f 在),(+∞-∞内可导,则下列结论中正确的是 ( ) A .若)(x f 为周期函数,则)(x f '也是周期函数 B .若)(x f 为单调增加函数,则)(x f '也是单调增加函数 C .若)(x f 为偶函数,则)(x f '也是偶函数 D .若 )(x f 为奇函数,则)(x f '也是奇函数 6.设)(x f 可导,则下列不成立的是 ( ) A .)0()0()(lim 0 f x f x f x '=-→ B .)()()2(lim 0 a f h a f h a f h '=-+→ C .)()()(lim 0 000 x f x x x f x f x '=??--→? D .)(2)()(lim 0000 x f x x x f x x f x '=??--?+→?

高等数学II练习册-第10章答案.

习题10-1 二重积分的概念与性质 1.根据二重积分的性质,比较下列积分的大小: (1)2()D x y d σ+??与3 ()D x y d σ+?? ,其中积分区域D 是圆周22(2)(1)2x y -+-=所围成; (2) ln()D x y d σ+??与2 [ln()]D x y d σ+??,其中D 是三角形闭区域,三顶点分别为(1,0), (1,1),(2,0); 2.利用二重积分的性质估计下列积分的值: (1)22 sin sin D I x yd σ= ??,其中{(,)|0,0}D x y x y ππ=≤≤≤≤; (2)22 (49)D I x y d σ= ++?? ,其中22{(,)|4}D x y x y =+≤ . (3) .D I = ,其中{(,)|01,02}D x y x y =≤≤≤≤ 解 () ,f x y = Q 2,在D 上(),f x y 的最大值

()1 4M x y = ==,最小值()11,25m x y ==== 故0.40.5I ≤≤ 习题10-2 二重积分的计算法 1.计算下列二重积分: (1) 22 ()D x y d σ+??,其中{(,)|||1,||1}D x y x y =≤≤; (2) cos()D x x y d σ+??,其中D 是顶点分别为(0,0),(,0)π和(,)ππ的三角形闭区域。 2.画出积分区域,并计算下列二重积分: (1) x y D e d σ+??,其中{(,)|||1}D x y x y =+≤

(2) 2 2()D x y x d σ+-??,其中D 是由直线2y =,y x =及2y x =所围成的闭区域。 3.化二重积分(,)D I f x y d σ= ??为二次积分(分别列出对两个变量先后次序不同的两个二次 积分),其中积分区域D 是: (1)由直线y x =及抛物线2 4y x =所围成的闭区域; (2)由直线y x =,2x =及双曲线1 (0)y x x = >所围成的闭区域。

高等数学2期末复习题与答案(可编辑修改word版)

x 2 + y 2 - 1 3 1- y 2 《高等数学》2 期末复习题 一、填空题: 1. 函 数 z = + ln(3 - x 2 - y 2 ) 的 定 义 域 是 1≦ X^2+Y^2<3 . 2.设 z = (1 + x ) y , 则 ?z = ?y (1+ x ) y ln(1+ x ) . 3.函数 z = ln(1+ x 2 + y 2 ) 在点(1, 2) 的全微分dz = 1 dx + 2 dy (1,2) 3 3 4.设 f (x + y , xy ) = x 2 + y 2 , 则 f (x , y ) = . 设 f (x + y , y ) = x 2 - y 2 , 则 f (x , y ) = . x 5. 设 z = e u sin v 而 u = xy v = x + y 则 ?z = ?y e xy [x sin(x + y ) + cos(x + y )] 6. 函数 z = x 2 + y 2 在点(1,2)处沿从点(1,2)到点(2, 2 + )的方向 导数是 1+ 2 2 2 y 1 7. 改换积分次序 ?0 dy ? y 2 f (x , y )dx = ; ?0 dy ? y -1 f (x , y )dx = . 8. 若 L 是抛物线 y 2 = x 上从点 A (1,-1) 到点 B (1,1) 的一段弧,则? xydx = L 9. 微分方程(1+ e 2x )dy + ye 2x dx = 0 的通解为 . 二、选择题: 1. lim ( x , y )→(2,0) tan(xy ) y 等于 ( )(上下求导) A .2, B. 1 2 C.0 D.不存在 2. 函 数 z = 的定义域是( D ) A. {(x , y ) x ≥ 0, y ≥ 0} C. {(x , y ) y ≥ 0, x 2 ≥ y } B. {(x , y ) x 2 ≥ y } D. {(x , y ) x ≥ 0, y ≥ 0, x 2 ≥ y } 3 x - y

高等数学二答案

高等数学(二)答案 二. 填空题:(每小题4分,共40分) (1). 1, (2). 41, (3). 2, (4). 2, (5). x 1, (6). x e , (7). ()x f -, (8).1, (9). 33 2π, (10). 1。 三.计算题:(每小题6分,共60分) 1.解. ()()()()( )()()()()()()()() x b x a x b x a x b x a x b x a x b x a x b x a x x --+++---++=---+++∞→+∞ →(lim lim ….3分 () b a x b x a x b x a b a x +=? ? ? ??-??? ??-+??? ??+??? ??++=+∞ →11112lim . ……….6分 2.解.()17517372lim 75732lim +?? ? ??-+??? ??+??? ??=+-++∞ →∞→n n n n n n n n n n . ……..3分 =1. ……6分 3.解法一.() dx e dy b ax ' sin += ……..3分 dx e b ax a b ax )sin()cos(++= ………6分 解法二.() ()()b ax d e dy b ax +=+sin sin ………3分 dx e b ax a b ax )sin()cos(++=. ………6分 4.解.,2,22 x x x x xe e dx y d xe e dx dy +=+= …….4分 所以 20 2 2==x dx y d . ……….6分

5.解.(1) ()11sin 0 0=-- ==x x x y xy ,故10-==x y , …..3分 (2)()()01 cos 2=--+?? ? ??+x y dx dy xy dx dy x y , ……..4分 于是()() 01cos 0 20=--+?? ? ?? +==x x x y dx dy xy dx dy x y ,即 20 ==x dx dy . ……..6分 6.解.() ?? ++= +113 113 332 x d x dx x x ……3分 () C x ++=233 19 2 . ……6分 7.解. ()()()?????+=+=2 1 10 2 21 10 20 2xdx dx x dx x f dx x f dx x f ……….3分 3 10 3313 21 2 1 3=+= +=x x . ……….6分 8.解.x e e x dt e e x x x x t t x sin 2lim cos 1)2(lim 00 -+=--+-→-→? ………3分 0cos lim 0=-=-→x e e x x x . …….6分 9解.特征方程02 =+k k ,特征值为1,021-==k k , 2分 故通解为 x e c c y -+=21,其中21,c c 为任意数. ………6分 10.解. 因为()())11(114321ln 1432≤<-++-++-+-=++x n x x x x x x n n ΛΛ, ……3分 所以,()2 2 1ln x x x =+())1 1432(1 432ΛΛ++-++-+-+n x x x x x n n =())11(114323 6543 ≤<-++-++-+-+x n x x x x x n n ΛΛ …….6分

高等数学I(专科类)测试题

考试科目:《高等数学》高起专 一.选择题 (每题4分,共20分) 1. 函数 y = 的定义域是 ( ). (a) (2,6)- (b) (2,6] (c)[2,6) (d)[2,6]- 2. 设11f x x =-(), 则(())f f x = ( ) (a) 1x x - (b) 12x - (c) 1x - (d) 1x x - 3. 10 lim(12)x x x →- (a) e (b) 1 (c) 2e - (d) ∞ 4. 2 20lim (2) x x sin x → (a) 12 (b) 13 (c) 1 (d) 14 5. 在 0x → 时, sin x x - 是关于 x 的 ( ) (a) 低阶无穷小量 (b) 等价无穷小量 (c) 高阶无穷小量 (d) 同阶但不等价无穷小量 二.填空题(每题4分,共28分) 6. 设2(1)3f x x x -=++, 则 ()f x =___________. 7. 函数()f x = 的定义域是__________ 8. 若(31)1x f x +=+, 则()f x =__________ . 9. 2sin(2)lim 2 x x x →--=_____. 10. 设1,0,()5,0,1tan ,0x x f x x x x -? , 则 0lim ()x f x +→=_______.

11. 4lim(1)x x x →∞-=_____. 12. 3232lim 35 x x x x x →∞+--+=_____. 三.解答题(满分52分) 13. 求 45lim()46 x x x x →∞--. 14. 求 0x →. 15. 求 2sin lim 24cos x x x x x →∞-+. 16. 求 2lim x →-. 17. 求 123lim 24 n n n +→∞-+. 18. 设函数22cos ,0()2,0ln(14)a x x x f x x x x +-≤??=?>?+? , 在 0x = 处极限存在, 求 a 的值。 19. 若 33lim 12 x x ax b →-=++, 试确定常数 ,a b 的值。 附:参考答案: 一.选择题 (每题4分,共20分) 1)a 2)d 3)c 4)a 5)c 二.填空题(每题4分,共28分) 6)2 35x x ++ 7)12x -<<

高等数学练习答案1-10

习题1-10 1. 证明方程x 5-3x =1至少有一个根介于1和2之间. 证明 设f (x )=x 5-3x -1, 则f (x )是闭区间[1, 2]上的连续函数. 因为f (1)=-3, f (2)=25, f (1)f (2)<0, 所以由零点定理, 在(1, 2)内至少有一点ξ (1<ξ<2), 使f (ξ)=0, 即x =ξ 是方程x 5-3x =1的介于1和2之间的根. 因此方程x 5-3x =1至少有一个根介于1和2之间. 2. 证明方程x =a sin x +b , 其中a >0, b >0, 至少有一个正根, 并且它不超过a +b . 证明 设f (x )=a sin x +b -x , 则f (x )是[0, a +b ]上的连续函数. f (0)=b , f (a +b )=a sin (a +b )+b -(a +b )=a [sin(a +b )-1]≤0. 若f (a +b )=0, 则说明x =a +b 就是方程x =a sin x +b 的一个不超过a +b 的根; 若f (a +b )<0, 则f (0)f (a +b )<0, 由零点定理, 至少存在一点ξ∈(0, a +b ), 使f (ξ)=0, 这说明x =ξ 也是方程x =a sin x +b 的一个不超过a +b 的根. 总之, 方程x =a sin x +b 至少有一个正根, 并且它不超过a +b . 3. 设函数f (x )对于闭区间[a , b ]上的任意两点x 、y , 恒有|f (x )-f (y )|≤L |x -y |, 其中L 为正常数, 且f (a )?f (b )<0. 证明: 至少有一点ξ∈(a , b ), 使得f (ξ)=0. 证明 设x 0为(a , b )内任意一点. 因为 0||l i m |)()(|l i m 0000 0=-≤-≤→→x x L x f x f x x x x , 所以 0|)()(|lim 00 =-→x f x f x x , 即 )()(l i m 00 x f x f x x =→. 因此f (x )在(a , b )内连续. 同理可证f (x )在点a 处左连续, 在点b 处右连续, 所以f (x )在[a , b ]上连续. 因为f (x )在[a , b ]上连续, 且f (a )?f (b )<0, 由零点定理, 至少有一点ξ∈(a , b ), 使得f (ξ)=0. 4. 若f (x )在[a , b ]上连续, a

高等数学 课后习题答案第九章

习题九 1. 求函数u =xy 2+z 3-xyz 在点(1,1,2)处沿方向角为 πππ ,,343αβγ=== 的方向导数。 解: (1,1,2)(1,1,2) (1,1,2)cos cos cos u u u u y l x z αβγ ????=++???? 22(1,1,2)(1,1,2)(1,1,2)πππ cos cos cos 5.(2)()(3)343xy xz y yz z xy =++=--- 2. 求函数u =xyz 在点(5,1,2)处沿从点A (5,1,2)到B (9,4,14)的方向导数。 解: {4,3,12},13.AB AB == u u u r u u u r AB u u u r 的方向余弦为 4312cos ,cos ,cos 131313αβγ= == (5,1,2)(5,1,2)(5,1,2)(5,1,2)(5,1,2)(5,1,2)2105u yz x u xz y u xy z ?==??==??==? 故4312982105. 13131313u l ?=?+?+?=? 3. 求函数22221x y z a b ??=-+ ??? 在点处沿曲线22 2 21x y a b +=在这点的内法线方向的方向导 数。 解:设x 轴正向到椭圆内法线方向l 的转角为φ,它是第三象限的角,因为 2222220,x y b x y y a b a y ''+==- 所以在点 处切线斜率为 2.b y a a ' ==- 法线斜率为 cos a b ?= . 于是tan sin ??== ∵2222,, z z x y x a y b ??=-=-??

高等数学试题及答案

高等数学试题及答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

《 高等数学 》 一.选择题 1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( ) A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y 2. 函数f(x)在点x 0极限存在是函数在该点连续的( ) A)、必要条件 B)、充分条件 C)、充要条件 D)、无关条件 3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、(( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4. 下列各式正确的是( ) A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、2arctan 1dx dx x x =+? D )、211 ()dx C x x -=-+? 5. 下列等式不正确的是( ). A )、()()x f dx x f dx d b a =??????? B )、()()()[]()x b x b f dt x f dx d x b a '=??????? C )、()()x f dx x f dx d x a =??????? D )、()()x F dt t F dx d x a '=????? ?'? 6. 0 ln(1)lim x x t dt x →+=?( ) A )、0 B )、1 C )、2 D )、4 7. 设bx x f sin )(=,则=''?dx x f x )(( ) A )、C bx bx x +-sin cos B )、C bx bx x +-cos cos

高等数学第二章练习及答案

x) 1 3. 函数f (x) lnx 在x 1处的切线方程是 _______________________ 1 4. 设 f(—) x ,则 f (x) ___ ________ x 3 5. 函数 f (x) sin(cosx ),贝y f (x) ___________________ 6.设函数f(x) ln cosx ,则二阶导数f (x) 、选择题. 1.函数y A 、无定义 不连续 第二章 C 、可导 D 、连续但不可导 2.设函数f (X ) 2x 2 x , 1,x 0 ,则 f (x)在点x 0处 A 、没有极限 B 、有极限但不连续 C 、连续但不可导 D 、可导 3?设函数y f (x)可微, 则当 y dy 与x 相比,是 x 的等价无穷小 x 的同阶无穷小 C . x 的高阶无穷小 x 的低阶无穷小 4.函数 x 3的单调增区间是 中B 、(严,T 3 3 3 C 、(于 5?函数f (x) 1 (e x e x )的极小值点是 ) ) ) ) (0,+ ) ) 不存在 、填空题. 1. 已知(sin x) cosx , 利用导数定义求极限 2、 如果f (x °) 4,则 lim f(x 0 3x) x 0 f (X o )

7. d(arctan2x) ,d In (sin 2x) 四、计算题. 六、应用题. 产品的市场需求量为 q 1000 10 p ( q 为需求量,p 为价格)?试求:(1 )成本函数,收入 函数;(2)产量为多少吨时利润最大? 8.函数f(x) x 3 ax 2 3x 9,已知f (x)在x 3时取得极值,则 a = p 9 ?设需求量q 对价格p 的函数为q(p) 100e ? ,则需求弹性E p 三、判 断题. 1. 若f(x)在点X o 处可导,则f (x)在点X o 处连续. 2. dy 是曲线y f (x)在点(x 0, f (怡))处的切线纵坐标对应于 x 的改变量. 3. 函数y f (x)在x 0点处可微的充要条件是函数在 X 。点可导. 4. 极值点一定是驻点. 5. 函数y x 在点x 0处连续且可导. 1.求函数 y arctan-. 1 x 2的导数. 2.求由方程x y e 2x e y 0所确定的隐函数 y f(x)的导数y . e 3.设 y x ,求 y . 4.求由方程y cos(x y)所确定的隐函数 y f (x)的二阶导数y . 五、求下列极限. (1) lim x x sin x x sin x (2) 4 c 2 lim X x 0 3x 2x si nx 4 , (3) 01 x x 1 ln x (4) 1 lim( a' X 1)x (a 0), (5) (6) lim (x x 1 X \ X e)x . 1.求函数f (x) x 3 3x 2 9x 1的单调性、极值与极值点、凹凸区间及拐点. 2.某厂生产一批产品, 其固定成本为2000元,每生产一吨产品的成本为 60元, 对这种

《高等数学(文)》第二次作业答案

首页 - 我的作业列表 - 《高等数学(文)》第二次作业答案 你的得分:100.0 完成日期:2014年07月12日17点37分 说明:每道小题括号里的答案是您最高分那次所选的答案,标准答案将在本次作业结束(即2014年09月11日)后显示在题目旁边。 一、单项选择题。本大题共25个小题,每小题4.0 分,共100.0分。在每小题给出的选项中,只有一项是符合题目要求的。 1. ( A ) A.奇函数 B.偶函数 C.非奇非偶函数 D.以上均不对 2. ( B ) A. A B. B C. C D.D 3. ( C ) A. A B. B C. C D.D 4. ( B ) A.充分条件,但不是必要条件 B.必要条件,但不是充分条件 C.充分必要条件 D.既不是充分条件也不是必要条件

5. ( B ) A.-1 B.0 C. 1 D.2 6. ( A ) A. A B. B C. C D.D 7. ( D ) A. A B. B C. C D.D 8. ( D ) A. A B. B C. C D.D 9. ( C ) A. A B. B C. C

D.D 10. ( C ) A.-3 B.-2 C.-1 D.0 11. ( C ) A.12 B.8 C. 4 D.0 12. ( D ) A. 3 B.0 C. 1 D.2 13. ( A ) A. A B. B C. C D.D 14. ( A ) A. A B. B C. C D.D

15. ( C ) A. A B. B C. C D.D 16. ( A ) A.(1,1) B.(1,-1) C.(-1,1) D.(-1,-1) 17. ( D ) A. A B. B C. C D.D 18. ( C ) A. A B. B C. C D.D 19.

高等数学练习题第二章导数与微分

高等数学练习题 第二章 导数与微分 系 专业 班 学号 第一节 导数概念 一.填空题 1.若)(0x f '存在,则x x f x x f x ?-?-→?) ()(lim 000 = )(0x f '- 2. 若)(0x f '存在,h h x f h x f h ) ()(lim 000 --+→= )(20x f ' . 000 (3)() lim x f x x f x x ?→+?-?=03()f x '. 3.设20-=')(x f , 则=--→)()2(lim )000 x f x x f x x 4 1 4.已知物体的运动规律为2 t t s +=(米),则物体在2=t 秒时的瞬时速度为5(米/秒) 5.曲线x y cos =上点( 3 π ,21)处的切线方程为03 123=- -+π y x ,法线方程为 03 22332=-+ -π y x 6.用箭头?或?表示在一点处函数极限存在、连续、可导、可微之间的关系, 可微 ? 可导 <≠ ? | 连续 <≠? 极限存在。 二、选择题 1.设0)0(=f ,且)0(f '存在,则x x f x ) (lim 0→= [ B ] (A ))(x f ' ( B) )0(f ' (C) )0(f (D) 2 1 )0(f 2. 设)(x f 在x 处可导,a ,b 为常数,则x x b x f x a x f x ??--?+→?) ()(lim 0 = [ B ] (A ))(x f ' ( B) )()(x f b a '+ (C) )()(x f b a '- (D) 2 b a +)(x f ' 3. 函数在点 x 处连续是在该点 x 处可导的条件 [ B ] (A )充分但不是必要 (B )必要但不是充分 (C )充分必要 (D )即非充分也非必要 4.设曲线22 -+=x x y 在点M 处的切线斜率为3,则点M 的坐标为 [ B ]

高等数学第九章微分方程试题及答案

第九章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: ()()()()0≠=y Q y Q x P dx dy 通解() ()? ?+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意 常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()() C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令 u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln 二.一阶线性方程及其推广 1.一阶线性齐次方程 ()0=+y x P dx dy 它也是变量可分离方程,通解()?-=dx x P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程 ()()x Q y x P dx dy =+ 用常数变易法可求出通解公式 令()()?-=dx x P e x C y 代入方程求出()x C 则得 ()()()[] ?+=??-C dx e x Q e y dx x P dx x P 3.伯努利方程 ()()()1,0≠=+ααy x Q y x P dx dy 令α-=1y z 把原方程化为()()()()x Q z x P dx dz αα-=-+11 再按照一阶线性非齐次方程求解。 4.方程: ()()x y P y Q dx dy -=1可化为()()y Q x y P dy dx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。 三、可降阶的高阶微分方程

相关主题