搜档网
当前位置:搜档网 › Keil移植stm32的usb及usb+massStorage步骤

Keil移植stm32的usb及usb+massStorage步骤

Keil移植stm32的usb及usb+massStorage步骤
Keil移植stm32的usb及usb+massStorage步骤

Keil移植stm32的usb及usb massStorage步骤

1.将STM32的usb的库文件拷贝到Src\Libraries下

并在工程中添加STM32_USB-FS-Device_Driver全部源文件;

在工程属性c++选项include Path 添加STM32_USB-FS-Device_Driver\inc路径

2.将本目录的Mass_Storage文件夹拷贝到Src\Usr文件下

并在工程中添加Mass_Storage\src全部源文件;

在工程属性c++选项include Path 添加Mass_Storage\inc路径

3.将下面三个头文件和两个函数加到stm32f10x_it.c中

#include "usb_lib.h"

#include "usb_istr.h"

#include "usb_pwr.h"

void USB_HP_CAN1_TX_IRQHandler(void)

{

CTR_HP();

}

void USB_LP_CAN1_RX0_IRQHandler(void)

{

USB_Istr();

}

6.对Mass_Storage\src下的usb_hw_config.c文件下其中2个函数

void USB_Disconnect_Config(void) [注意:此处的IO口设置为推挽输出]

void USB_Cable_Config (FunctionalState NewState)

重新按照自己硬件改写

Mass_Storage\inc下的usb_hw_config.h文件三个定义

#define USB_DISCONNECT GPIOA

#define USB_DISCONNECT_PIN GPIO_Pin_8

#define RCC_APB2Periph_GPIO_DISCONNECT RCC_APB2Periph_GPIOA

关于usb的使能IO 按照自己硬件改写

7.在\Src\Usr\Mass_Storage\mass_mal.c文件中

A:添加存储器驱动文件相关函数的头文件

B:填写四个函数,均为存储器的相关驱动函数

在unsigned short int MAL_Init(unsigned char lun)中添加存储器初始化函数

在unsigned short int MAL_Write(unsigned char lun, unsigned int Memory_Offset, unsigned int *Writebuff, unsigned short int Transfer_Length) 中添加存储器写缓存

函数

在unsigned short int MAL_Read(unsigned char lun, unsigned int Memory_Offset, unsigned int *Readbuff, unsigned short int Transfer_Length) 中添加存储器读缓存

函数

在unsigned short int MAL_GetStatus (unsigned char lun)中添加存储器容量的函数8.使用方法:

包含头文件

#include "usb_lib.h"

#include "usb_hw_config.h"

#include "usb_pwr.h"

调用函数:

MassStorageInit(); //IO相关初始化

Set_USBClock(); //USB时钟初始化USB_Interrupts_Config(); //USB通信中断配置USB_Init(); //USB初始化

9.

吴青松

2012-3-15

STM32固件库的学习(重要,要常看)

1. stm32的编程中,在stdperiph_drive中添加的misc.c文件是干什么用的啊? 因为STM32 V3.5版本的库函数中没有原来版本中单独对于NVIC(中断向量嵌套)的外设驱动,把NVIC的外设驱动放在了misc.c中,实际上是代替原来的stm32f10x_nvic.c。 2. STM32F10XXX V 3.5标准外设库文件夹描述 标准外设库的第一部分是CMSIS 和STM32F10x_StdPeriph_Driver,CMSIS 是独立于供应商的Cortex-M处理器系列硬件抽象层,为芯片厂商和中间件供应商提供了简单的处理器软件接口,简化了软件复用工作,降低了Cortex-M上操作系统的移植难度,并减少了新入门的微控制器开发者的学习曲线和新产品的上市时间。 STM32F10x_StdPeriph_Driver则包括了分别对应包括了所有外设对应驱动函数,这些驱动函数均使用C语言编写,并提供了统一的易于调用的函数接口,供开发者使用。Project 文件夹中则包括了ST官方的所有例程和基于不同编译器的项目模板,这些例程是学习和使用STM32的重要参考。Utilities包含了相关评估板的示例程序和驱动函数,供使用官方评估板的开发者使用,很多驱动函数同样可以作为学习的重要参考。 3.文件功能说明

4.CMSIS文件夹结构

在实际开发过程中,根据应用程序的需要,可以采取2种方法使用标准外设库

(StdPeriph_Lib): (1)使用外设驱动:这时应用程序开发基于外设驱动的API(应用编程接口)。用户只需要配置文件”stm32f10x_conf.h”,并使用相应的文件”stm32f10x_ppp.h/.c”即可。 (2) 不使用外设驱动:这时应用程序开发基于外设的寄存器结构和位定义文件。 5. STM32F10XXX标准外设库的使用 标准外设库中包含了众多的变量定义和功能函数,如果不能了解他们的命名规范和使用规律将会给编程带来很大的麻烦,本节将主要叙述标准外设库中的相关规范,通过这些规范的学习可以更加灵活的使用固件库,同时也将极大增强程序的规范性和易读性,同时标准外设库中的这种规范也值得我们在进行其他相关的开发时使用和借鉴。 a.缩写定义 标准外设库中的主要外设均采用了缩写的形式,通过这些缩写可以很容易的辨认对应的外设。

stm32入门C语言详解

阅读flash:芯片内部存储器flash操作函数我的理解——对芯片内部flash进行操作的函数,包括读取,状态,擦除,写入等等,可以允许程序去操作flash上的数据。 基础应用1,FLASH时序延迟几个周期,等待总线同步操作。推荐按照单片机系统运行频率,0—24MHz时,取Latency=0;24—48MHz时,取Latency=1;48~72MHz时,取Latency=2。所有程序中必须的 用法:FLASH_SetLatency(FLASH_Latency_2); 位置:RCC初始化子函数里面,时钟起振之后。 基础应用2,开启FLASH预读缓冲功能,加速FLASH的读取。所有程序中必须的 用法:FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); 位置:RCC初始化子函数里面,时钟起振之后。 3、阅读lib:调试所有外设初始化的函数。 我的理解——不理解,也不需要理解。只要知道所有外设在调试的时候,EWRAM需要从这个函数里面获得调试所需信息的地址或者指针之类的信息。 基础应用1,只有一个函数debug。所有程序中必须的。 用法:#ifdef DEBUG debug(); #endif 位置:main函数开头,声明变量之后。 4、阅读nvic:系统中断管理。 我的理解——管理系统内部的中断,负责打开和关闭中断。 基础应用1,中断的初始化函数,包括设置中断向量表位置,和开启所需的中断两部分。所有程序中必须的。 用法:void NVIC_Configuration(void) { NVIC_InitTypeDef NVIC_InitStructure; //中断管理恢复默认参数 #ifdef VECT_TAB_RAM //如果C/C++ Compiler\Preprocessor\Defined symbols中的定义了 VECT_TAB_RAM(见程序库更改内容的表格) NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0); //则在RAM调试 #else //如果没有定义VECT_TAB_RAM NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);//则在Flash里调试 #endif //结束判断语句 //以下为中断的开启过程,不是所有程序必须的。 //NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置NVIC优先级分组,方式。 //注:一共16个优先级,分为抢占式和响应式。两种优先级所占的数量由此代码确定, NVIC_PriorityGroup_x可以是0、1、2、3、4,分别代表抢占优先级有1、2、4、8、16个和响应优先级有16、8、4、2、1个。规定两种优先级的数量后,所有的中断级别必须在其中选择,抢占级别高的会打断其他中断优先执行,而响应级别高的会在其他中断执行完优先执行。 //NVIC_InitStructure.NVIC_IRQChannel = 中断通道名; //开中断,中断名称见函数库 //NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //抢占优先级 //NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //响应优先级 //NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //启动此通道的中断 //NVIC_Init(&NVIC_InitStructure); 中断初始化

7个基于STM32单片机的精彩设计实例

7个基于STM32单片机的精彩设计实例,附原理图、代码等相关资料 STM32单片机现已火遍大江南北,各种教程资料也是遍布各大网站论坛,可谓一抓一大把,但大部分都差不多。今天总结了几篇电路城上关于STM32的制作,不能说每篇都是经典,但都是在其他地方找不到的,很有学习参考意义的设计实例。尤其对于新手,是一个学习stm32单片机的“活生生”的范例。 1、STM32与FPGA强强联合,实现完整版信号发生器 话说之前看过作者的另外一个作品,是STM32和FPGA实现的示波器,当然感觉不做。现在作者又推出了信号发生器。重点是TFT触屏来控制波形,相当于一个终端,STM32用来通信,起到了FPGA和TFT之间的纽带作用。最后波形输出作者使用了巴特沃斯滤波器,让输出的波形更加干净。虽然以高端的信号发生器无法比拟,但是用于平时信号输出使用时足够了。 2.采用STM32单片机基于uCOS II系统控制VS1053B语音芯片制作的MP3播放器 一看到uCOS II,就觉得是个高级货,绝对不是一般的小打小闹。该制作耗时半年能完成制作,不得不佩服作者的坚持。这个使用了VC1053B音频模块,TFT液晶显示,还是用了NRF24L01无线模块(暂时没明白这个无线如何使用的),最后作者还很细心的提供了理论指导,方便大家制作。 3.使用OV7670让STM32转身变成照相机(附原理图、代码源文件) 经常使用STM32的同学有没有做过照相机呢?虽说在智能手机遍布的时代,正经相机也要束之高阁了。但是能使用STM32做个相机,拿出去拍个照也是非常拉风的。这个相机使用了ST32F103C8T6(ST32F103C8T6数据手册),摄像头用的是OV7670,带SD卡和触摸屏2.4寸,整体尺寸和卡片机差不多。 4.基于STM32的手机WIFI 控制四轴飞行器设计 我们平时看到的四轴飞行器多是遥控手柄控制的,给你推荐的这个是手机通过wifi就可以控制了,重点在作者还提供了安卓版本的app,直接安装就可以控制飞行器了,当然前提是要根据作者提供的原理图、pcb、代码做出个飞行器了。对APP感兴趣的朋友不妨写写ios 版本的。 5、使用STM32F103RC实现数字万用表设计,具备常用功能 作为电子工程师,最经常用到的就是万用表,可以很少人知道万用表里面的结构、测电压的过程。现在就有人用STM32F103(STM32F103数据手册)做了个数字万用表,只有三个常用功能:测电压(0-50v),测电阻(1k-390k),短路档,使用了LCD5110显示数据,大家不妨动动手开发其他功能。 6、基于RFID技术、以STM32为终端的智能小区管理系统 话说现在高档小区越来越多,对小区的智能化管理也在日渐智能化。这个设计就使用了当下很火的wifi智能控制。系统由多个智能服务终端和系统服务器所组成。智能服务终端就是一个基于STM32的完备系统,涵盖了室内环境监测、高温火警GSM报警、A卡管理助手、天气助手、用户电子账单、万年历、小区意见反馈等功能。

stm32库函数解释

部分库函数简介 一、通用输入/输出(GPIO)--------------------------------------------------------------------------------------------3 二、外部中断/事件控制器(EXTI)-----------------------------------------------------------------------------------7 三、通用定时器(TIM)-------------------------------------------------------------------------------------------------9四:ADC寄存器------------------------------------------------------------------------25 五:备份寄存器(BKP)-------------------------------------------------------------------------------------------------33 六、DMA控制器(DMA)---------------------------------------------------------------37 七、复位和时钟设置(RCC)------------------------------------------------------------------------------------------41 八、嵌套向量中断控制器(NVIC)-----------------------------------------------------------------------------------49

STM32固件库详解42324

STM32固件库详解 最近考试较多,教材编写暂停了一下,之前写了很多,只是每一章都感觉不是特别完整,最近把其中的部分内容贴出来一下,欢迎指正。本文内容基于我对固件库的理解,按照便于理解的顺序进行整理介绍,部分参考了固件库的说明,但是也基本上重新表述并按照我理解的顺序进行重新编写。我的目的很简单,很多人写教程只是告诉你怎么做,不会告诉你为什么这么做,我就尽量吧前因后果都说清楚,这是我的出发点,水平所限,难免有很大的局限性,具体不足欢迎指正。基于标准外设库的软件开发 STM32标准外设库概述 STM32标准外设库之前的版本也称固件函数库或简称固件库,是一个固件函数包,它由程序、数据结构和宏组成,包括了微控制器所有外设的性能特征。该函数库还包括每一个外设的驱动描述和应用实例,为开发者访问底层硬件提供了一个中间API,通过使用固件函数库,无需深入掌握底层硬件细节,开发者就可以轻松应用每一个外设。因此,使用固态函数库可以大大减少用户的程序编写时间,进而降低开发成本。每个外设驱动都由一组函数组成,这组函数覆盖了该外设所有功能。每个器件的开发都由一个通用API (application programming interface 应用编程界面)驱动,API对该驱动程序的结构,函数和参数名称都进行了标准化。

ST公司2007年10月发布了版本的固件库,MDK 之前的版本均支持该库。2008年6月发布了版的固件库,从2008年9月推出的MDK 版本至今均使用版本的固件库。以后的版本相对之前的版本改动较大,本书使用目前较新的版本。 使用标准外设库开发的优势 简单的说,使用标准外设库进行开发最大的优势就在于可以使开发者不用深入了解底层硬件细节就可以灵活规范的使用每一个外设。标准外设库覆盖了从GPIO到定时器,再到CAN、I2C、SPI、UART和ADC 等等的所有标准外设。对应的C源代码只是用了最基本的C编程的知识,所有代码经过严格测试,易于理解和使用,并且配有完整的文档,非常方便进行二次开发和应用。 STM32F10XXX标准外设库结构与文件描述 1. 标准外设库的文件结构 在上一小节中已经介绍了使用标准外设库的开发的优势,因此对标准外设库的熟悉程度直接影响到程序的编写,下面让我们来认识一下STM32F10XXX的标准外设库。STM32F10XXX的标准外设库经历众多的更新目前已经更新到最新的版本,开发环境中自带的标准外设库为版本,本书中以比较稳定而且较新的版本为基础介绍标准外设库的结构。

献给新手:解析STM32的库函数

意法半导体在推出STM32微控制器之初,也同时提供了一套完整细致的固件开发包,里面包含了在STM32开发过程中所涉及到的所有底层操作。通过在程序开发中引入这样的固件开发包,可以使开发人员从复杂冗余的底层寄存器操作中解放出来,将精力专注应用程序的开发上,这便是ST推出这样一个开发包的初衷。 但这对于许多从51/AVR这类单片机的开发转到STM32平台的开发人员来说,势必有一个不适应的过程。因为程序开发不再是从寄存器层次起始,而要首先去熟悉STM32所提供的固件库。那是否一定要使用固件库呢?当然不是。但STM32微控制器的寄存器规模可不是常见的8位单片机可以比拟,若自己细细琢磨各个寄存器的意义,必然会消耗相当的时间,并且对于程序后续的维护,升级来说也会增加资源的消耗。对于当前“时间就是金钱”的行业竞争环境,无疑使用库函数进行STM32的产品开发是更好的选择。本文将通过一个简单的例子对STM32的库函数做一个简单的剖析。 以最常用的GPIO设备的初始化函数为例,如下程序段一: GPIO_InitTypeDef GPIO_InitStructure; 1 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4; 2 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; 3 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 4 GPIO_Init(GPIOA , &GPIO_InitStructure 5 这是一个在STM32的程序开发中经常使用到的GPIO初始化程序段,其功能是将GPIOA.4口初始化为推挽输出状态,并最大翻转速率为50MHz。下面逐一分解: 首先是1,该语句显然定义了一个GPIO_InitTypeDef类型的变量,名为GPIO_InitStructure,则找出GPIO_InitTypeDef的原型位于“stm32f10x_gpio.h” 文件,原型如下: typedef struct { u16 GPIO_Pin; GPIOSpeed_TypeDef GPIO_Speed; GPIOMode_TypeDef GPIO_Mode; }GPIO_InitTypeDef; 由此可知GPIO_InitTypeDef是一个结构体类型同义字,其功能是定义一个结构体,该结构体有三个成员分别是u16类型的GPIO_Pin、 GPIOSpeed_TypeDef 类型的GPIO_Speed和GPIOMode_TypeDef 类型的 GPIO_Mode。继续探查GPIOSpeed_TypeDef和GPIOMode_TypeDef类型,在“stm32f10x_gpio.h”文件中找到对GPIOSpeed_TypeDef的定义: typedef enum { GPIO_Speed_10MHz = 1,

stm32启动文件详解

STM32启动文件详解 一、启动文件的作用 1.初始化堆栈指针SP; 2.初始化程序计数器指针PC; 3.设置堆、栈的大小; 4.设置异常向量表的入口地址; 5.配置外部SRAM作为数据存储器(这个由用户配置,一般的开发板可没有外部SRAM); 6.设置C库的分支入口__main(最终用来调用main函数); 7.在版的启动文件还调用了在文件中的SystemIni()函数配置系统时钟。

二、汇编指令

三、启动代码 ----- 栈 Stack_Size EQU 0x00000400 ; 栈的大小 AREA STACK, NOINIT, READWRITE,ALIGN=3 Stack_Mem SPACE Stack_Size ; 分配栈空间 __initial_sp ; 栈的结束地址(栈顶地址) 分配名为STACK,不初始化,可读可写,8(2^3)字节对齐的1KB空间。 栈:局部变量,函数形参等。栈的大小不能超过内部SRAM大小。 AREA:汇编一个新的代码段或者数据段。STACK段名,任意命名;NOINIT表示不初始化;READWRITE可读可写;ALIGN=3(2^3= 8字节对齐)。 __initial_sp紧挨了SPACE放置,表示栈的结束地址,栈是从高往低生长,结束地址就是栈顶地址。

----- 堆 Heap_Size EQU 0x00000200 ; 堆的大小(512Bytes) AREA HEAP, NOINIT, READWRITE,ALIGN=3 __heap_base ; 堆的起始地址 Heap_Mem SPACE Heap_Size ; 分配堆空间 __heap_limit ; 堆的结束地址 分配名为HEAP,不初始化,可读可写,8(2^3)字节对齐的512字节空间。__heap_base堆的起始地址,__heap_limit堆的结束地址。堆由低向高生长。动态分配内存用到堆。 PRESERVE8 -- 指定当前文件的堆/栈按照8 字节对齐。 THUMB-- 表示后面指令兼容THUMB 指令。THUBM 是ARM 以前的指令集,16bit;现在Cortex-M 系列的都使用THUMB-2 指令集,THUMB-2 是32 位的,兼容16 位和32 位的指令,是THUMB 的超级。 3.向量表 AREA RESET, DATA, READONLY EXPORT __Vectors E XPORT __Vectors_End E XPORT __Vectors_Size 定义一个名为RESET,可读的数据段。并声明__Vectors、__Vectors_End 和__Vectors_Size 这三个标号可被外部的文件使用。 __Vectors DCD __initial_sp ; Top of Stack DCD Reset_Handler ; Reset Handler

STM32库函数功能详解

STM32库函数简介 一、通用输入/输出(GPIO)--------------------------------------------------------------------------------------------3 二、外部中断/事件控制器(EXTI)-----------------------------------------------------------------------------------7 三、通用定时器(TIM)-------------------------------------------------------------------------------------------------9 四:ADC寄存器------------------------------------------------------------------------25 五:备份寄存器(BKP)-------------------------------------------------------------------------------------------------33 六、DMA控制器(DMA)---------------------------------------------------------------37 七、复位和时钟设置(RCC)------------------------------------------------------------------------------------------41 八、嵌套向量中断控制器(NVIC)-----------------------------------------------------------------------------------49

STM32固件库详解

STM32固件库详解基于标准外设库的软件开发 STM32标准外设库概述 STM32标准外设库之前的版本也称固件函数库或简称固件库,是一个固件函数包,它由程序、数据结构和宏组成,包括了微控制器所有外设的性能特征。该函数库还包括每一个外设的驱动描述和应用实例,为开发者访问底层硬件提供了一个中间API,通过使用固件函数库,无需深入掌握底层硬件细节,开发者就可以轻松应用每一个外设。因此,使用固态函数库可以大大减少用户的程序编写时间,进而降低开发成本。每个外设驱动都由一组函数组成,这组函数覆盖了该外设所有功能。每个器件的开发都由一个通用API (application programming interface 应用编程界面)驱动,API对该驱动程序的结构,函数和参数名称都进行了标准化。 ST公司2007年10月发布了版本的固件库,MDK 之前的版本均支持该库。2008年6月发布了版的固件库,从2008年9月推出的MDK 版本至今均使用版本的固件库。以后的版本相对之前的版本改动较大,本书使用目前较新的版本。 使用标准外设库开发的优势 简单的说,使用标准外设库进行开发最大的优势就在于可以使开发者不用深入了解底层硬件细节就可以灵活规范的使用每一个外设。标准外设库覆盖了从GPIO到定时器,再到CAN、I2C、SPI、UART和ADC等等的所有标准外设。对应的C源代码只是用了最基本的C编程的知识,所有代码经过严格测试,易于理解和使用,并且配有完整的文档,非常方便进行二次开发和应用。 STM32F10XXX标准外设库结构与文件描述 1. 标准外设库的文件结构 在上一小节中已经介绍了使用标准外设库的开发的优势,因此对标准外设库的熟悉程度直接影响到程序的编写,下面让我们来认识一下STM32F10XXX的标准外设库。STM32F10XXX的标准外设库经历众多的更新目前已经更新到最新的版本,开发环境中自带的标准外设库为版本,本书中以比较稳定而且较新的版本为基础介绍标准外设库的结构。

基于STM32的图像显示系统

摘要 本文介绍了基于STM32的图片显示系统设计。现如今LCD显示屏的技术和产业都取得了长足的发展,作为重要的现代信息发布媒体之一,LCD显示屏在证券交易、金融、交通、体育、广告等领域被广泛的应用。基于STM32的LCD显示可以更好的满足各种需求,也更便于操作和实现。通电后,复位到初始化状态可显示本次课程设计题目及成员等基本信息,可人为操作对显示信息的汉字进行自定义大小颜色及字体等等;把要显示的图片考入内存卡里,更新内存卡,即图片可进行变换;自定义定时跳转下一幅图片,也可以通过按键快速跳到下一幅图片,或返回上一张图片。利用TFT-LCD液晶显示屏显示的图片清晰、分辨率高,显示图片的效果极好。 关键词: STM32; LCD显示屏; 图片显示

目录 1 引言 .................................................................................................... 错误!未定义书签。 2 总体设计 ............................................................................................ 错误!未定义书签。 2.1 图片显示的基本原理 (2) 2.2 图片显示设计分析 (2) 2.3 系统的结构框图 (3) 3 详细设计 ............................................................................................ 错误!未定义书签。 3.1 硬件设计 .................................................................................... 错误!未定义书签。 3.1.1 ALIENTEK MiniSTM32开发板简介 .................................. 错误!未定义书签。 3.1.2 功能简介 .......................................................................... 错误!未定义书签。 3.2 软件设计 (7) 3.2.1 主函数部分 (8) 3.2.2 硬件部分程序 (9) 3.2.3 识别图片 (11) 3.2.4 FAT系统 (14) 3.2.5 程序流程图 (15) 4 实验结果及分析 (16) 4.1 硬件实验结果 (16) 4.2 结果分析 .................................................................................. 错误!未定义书签。 5 结论 (17) 参考文献 (18)

stm32DAC函数库详解

DAC固件库函数 DAC固件库函数 函数名描述 void DAC_DeInit(void) DAC外围寄存器默认复位值。VoidDAC_Init(uint32_tDAC_Channel,DAC_InitTypeDef* DAC_InitStruct) 根据外围初始化指定的DAC void DAC_StructInit(DAC_InitTypeDef* DAC_InitStruct) 把DAC_StructInit 中的每一个参 数按缺省值填入 voidDAC_Cmd(uint32_t DAC_Channel, FunctionalState NewState) 使能或使能指定的DAC通道。 void DAC_ITConfig(uint32_t DAC_Channel, uint32_t DAC_IT, FunctionalState NewState) 使能或者失能指定的DAC 的中断 voidDAC_DMACmd(uint32_tDAC_Channel,FunctionalState NewState) 使能或者失能指定的DAC通道DMA请求。 void DAC_SoftwareTriggerCmd(uint32_t DAC_Channel, FunctionalState NewState) 使能或者失能用选定的DAC通道软件触发 voidDAC_DualSoftwareTriggerCmd(FunctionalState NewState) 使能或者使能双软件触发命令 void DAC_WaveGenerationCmd(uint32_t DAC_Channel, uint32_t DAC_Wave, FunctionalState NewState) 使能或者使能选定的DAC通道波的产生。 void DAC_SetChannel1Data(uint32_t DAC_Align, uint16_t Data) 设置通道1 的数据 void DAC_SetChannel2Data(uint32_t DAC_Align, uint16_t Data) 设置通道2 的数据 void DAC_SetDualChannelData(uint32_t DAC_Align, uint16_t Data2, uint16_t Data1) 设置双通道的数据 uint16_tDAC_GetDataOutputValue(uint32_t DAC_Channel) 返回选定DAC通道最后的数据输出值。 FlagStatus DAC_GetFlagStatus(uint32_t DAC_Channel, uint32_t DAC_FLAG) 检查指定的DAC标志位设置与否。 void DAC_ClearFlag(uint32_t DAC_Channel, uint32_t DAC_FLAG) 清除指定的DAC标志位。 ITStatus DAC_GetITStatus(uint32_t DAC_Channel, uint32_t DAC_IT) 检查指定的DAC 中断是否发生 void DAC_ClearITPendingBit(uint32_t DAC_Channel, uint32_t DAC_IT) 清除DACx 的中断待处理位

STM32库函数说明及示例

STM32库函数说明及示例(版本V1.4.0) ----第一篇:GPIO库 相关术语说明: gpio:通用输入输出接口 gpio管脚:一个io管脚,这个管脚可以有多个配置。在库函数中用GPIO_Pin_1这样的宏定义表示 gpio端口(gpio分组):一组gpio管脚的信息。在库函数中用宏定义GPIOA GPIOB等表示 1 gpio库说明 库文件名:stm32f4xx_gpio.c 文档提示翻译: 如何使用这个驱动 (1)使用RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOx, ENABLE)函数使能GPIO的AHB总线时钟。 (2)使用GPIO_Init()函数对每个引脚进行四种可能的配置 《1》输入状态:Floating(浮空), Pull-up(上拉), Pull-down(下拉) 《2》输出状态:Push-Pull (上拉下拉)(Pull-up(上拉), Pull-down(下拉)or no Pull(不上拉也不下拉)),Open Drain(开漏)(Pull-up(上拉), Pull-down(下拉)or no Pull(不上拉也不下拉)),在输出模式,速度配置成2MHZ,25MHZ,50MHZ和100MHZ. 《3》第二功能:上拉下拉和开漏 《4》模拟:当一个管脚被用作ADC通道或者DAC输出的时候,需要配置成此模式(3)外设的第二功能: 《1》在ADC和DAC模式,使用GPIO_InitStruct->GPIO_Mode = GPIO_Mode_AN 把需要的管脚配置成模拟模式 《2》对于其它的管脚(定时器,串口等): l 使用GPIO_PinAFConfig()函数把管脚和需要的第二功能进行连接 l 使用GPIO_InitStruct->GPIO_Mode = GPIO_Mode_AF把需要的管脚配置成第二功能模式l 通过成员变量GPIO_PuPd, GPIO_OType and GPIO_Speed选择类型,上拉下拉和输出速度 l 调用函数GPIO_Init() (4)在输入模式,使用函数GPIO_ReadInputDataBit()得到配置好管脚的电平 (5)在输出模式,使用函数GPIO_SetBits()/GPIO_ResetBits()设置配置好IO的高低电平 (6)在复位过程和刚刚复位后,第二功能是无效的,GPIO被配置成了输入浮空模式(JTAG管脚除外) (7)当LSE振荡器关闭的时候,LSE振荡器管脚OSC32_IN和OSC32_OUT可以作为通过IO来使用(分别用PC14和PC15表示)。LSE的优先级高于GPIO函数 (8)当HSE振荡器关闭的时候,HSE振荡器管脚OSC_IN和OSC_OUT可以作为通用IO(PH0,PH1)来使用。HSE的优先级高于GPIO函数。 2 具体函数说明

STM32电机控制【重量级库函数】解析

STM32电机控制重量级库函数解析 Foc_svpwm.c 归属组:arithmetic 描述:PWM配置和SVPWM计算 函数: 函数功能描述输入参数输出 参数 调用函数在何处被调用 SvpwmLMotorConfig(void) 对左电机用到外设进行配置无无无foc_port.c/ FOCPortPeripheralConfig() SvpwmRMotorConfig(void) 对右电机用到外设进行配置无无无foc_port.c/ FOCPortPeripheralConfig() SvpwmTimerSynchConfig(void) 双电机pwm控制时钟源 Timer1、8同步,配置TIM1、 TIM8、TIM5进行时钟同步无无无foc_port.c/ FOCPortInit() SvpwmCalcDutyCycles(STATOR_VOLTAGE,u8) 又Valpha、Vbeta输入生成 SVPWM波形typedef struct //Valpha Vbeta { s16 V alfa; s16 Vbeta; }STATOR_VOLTAGE; U8 mc_ch //电机通道,左电机or 右电机 无无foc_encoder.c/ FOCEncoderStartUp(u8 mc_ch) foc_port.c/ FOCPortArithmeticModel(u8 mc_ch) Foc_port.c 归属组:arithmetic 描述:FOC配置和算法接口模块 函数: 函数功能描述输入参数输出参数调用函数在何处被调用 FOCPortPeripheralConfig(void) 对电机用到外设进行配置(定 时器、ADC) 无无SvpwmLMotorConfig() SvpwmRMotorConfig() InjectADCConfig() InjectADCRegularDMAConfig() Foc_port.c/ FOCPortInit() FOCPortInit(void) 电机控制配置,外设和变量的 初始化无无FOCCurrentPIDInit() FOCPortPeripheralConfig() InjectADCReadEn() SvpwmTimerSynchConfig() InjectADCPhaseCaliPend() App_main.c/ App_TaskStart()

STM32固件库文件结构及作用详解

STM32标准外设固件库文件结构及用途 文件夹树图及文件作用详述 stm32f10x_stdperiph_lib_V3.5.0--------------ST 公司针对STM32提供的函数接口 ├─Release_Notes.html -------------------------官方网页资源 ├─stm32f10x_stdperiph_lib_um.chm -------------库的帮助文档 ├─stm32f10x_stdperiph_lib_um.chw ├─htmresc -----------------------------------CMSIS 内核和ST 公司Logo │ ├─CMSIS_Logo_Final.jpg │ └─logo.bmp ├─Libraries ----------------------------------固件库 │ ├─CMSIS -Cortex Microcontroller Software Interface Standard(Cortex 内核软件接口标准) │ │ ├─CMSIS debug support.htm ------------官方网页资源 │ │ ├─CMSIS_changes.htm ------------------官方网页资源 │ │ ├─License.doc │ │ ├─CM3 固件库文件夹树形图

│ │ │ ├─CoreSupport----为采用Cortex-M3核设计SOC的芯片商设计的芯片外设提供一个进入M3内核的接口 │ │ │ │ ├─core_cm3.c │ │ │ │ └─core_cm3.h │ │ │ └─DeviceSupport │ │ │ └─ST │ │ │ └─STM32F10x │ │ │ ├─Release_Notes.html │ │ │ ├─stm32f10x.h --------------------定义寄存器的地址及使用的结构体封装 │ │ │ ├─system_stm32f10x.c--------------设备外设访问层,主要配置时钟频率 │ │ │ ├─system_stm32f10x.h--------------配置时钟频率相应的头文件 │ │ │ └─startup--------由汇编编写的系统启动文件,不同的文件对应不同的芯片型号 │ │ │ ├─arm-------ARM编译器启动文件 │ │ │ │ ├─startup_stm32f10x_cl.s------cl:互联型产品,stm32f105/107系列 │ │ │ │ ├─startup_stm32f10x_hd.s------hd:高密度产品,FLASH大于128 │ │ │ │ ├─startup_stm32f10x_hd_vl.s---vl:超值型产品,stm32f100系列 │ │ │ │ ├─startup_stm32f10x_ld.s------ld:低密度产品,FLASH小于64K │ │ │ │ ├─startup_stm32f10x_ld_vl.s │ │ │ │ ├─startup_stm32f10x_md.s------md:中等密度产品,FLASH=64 or 128 │ │ │ │ ├─startup_stm32f10x_md_vl.s │ │ │ │ └─startup_stm32f10x_xl.s----xl:超高密度(容量)产品,stm32f101/103系列│ │ │ ├─gcc_ride7………………GCC编译器启动文件 │ │ │ ├─iar………………………………IAR编译器启动文件 │ │ │ └─TrueSTUDIO……………TrueSTUDIO编译器启动文件 │ │ └─Documentation │ │ └─CMSIS_Core.htm --------------CMSIS_Core网页资源 │ └─STM32F10x_StdPeriph_Driver-----------CMSIS的设备外设函数,由stm32f10x_ppp.c或 stm32f10x_ppp.h ││文件组成,PPP表示外设名称。每个外设驱动库函数对应一个头文件| | 和源文件. │ ├─Release_Notes.html │ ├─inc(include缩写)--------------各个外设的头文件 │ └─src(source缩写)--------------每个设备外设的驱动程序,这些外设是芯片制造商在Cortex-M3核外加的│ ├─misc.c--------------提供了外设对内核中的NVIC(Nested Vectored Interrupt Controller),| |嵌套向量中断控制器的访问函数 │ ├─stm32f10x_adc.c---------------模数转换器 │ ├─stm32f10x_bkp.c---------------备份寄存器 │ ├─stm32f10x_can.c---------------控制器局域网模块 │ ├─stm32f10x_cec.c---------------CEC网络模块 │ ├─stm32f10x_crc.c---------------CRC计算单元 │ ├─stm32f10x_dac.c---------------数模转换器 │ ├─stm32f10x_dbgmcu.c------------调试支持 │ ├─stm32f10x_dma.c---------------直接内存存取控制器 │ ├─stm32f10x_exti.c--------------外部中断事件控制器 │ ├─stm32f10x_flash.c-------------闪存存储器 │ ├─stm32f10x_fsmc.c--------------灵活的静态存储器控制器 │ ├─stm32f10x_gpio.c--------------通用输入输出 │ ├─stm32f10x_i2c.c---------------I2C接口 │ ├─stm32f10x_iwdg.c--------------独立看门狗 │ ├─stm32f10x_pwr.c---------------电源/功耗控制 │ ├─stm32f10x_rcc.c---------------复位与时钟控制器 │ ├─stm32f10x_rtc.c---------------实时时钟 │ ├─stm32f10x_sdio.c--------------SDIO接口 │ ├─stm32f10x_spi.c---------------串行外设接口 │ ├─stm32f10x_tim.c---------------定时器 │ ├─stm32f10x_usart.c-------------通用同步/异步收发器 │ └─stm32f10x_wwdg.c--------------窗口看门狗 ├─Project │ ├─STM32F10x_StdPeriph_Examples------------------标准外设库驱动的完整例程 │ │ ├─Library_Examples.html │ │ ├─Release_Notes.html │ │ ├─ADC---------------------------------------模数转换器 │ │ │ ├─3ADCs_DMA │ │ │ ├─ADC1_DMA │ │ │ ├─AnalogWatchdog │ │ │ ├─ExtLinesTrigger │ │ │ ├─RegSimul_DualMode │ │ │ └─TIMTrigger_AutoInjection │ │ ├─BKP---------------------------------------备份寄存器 │ │ │ ├─Backup_Data │ │ │ └─Tamper │ │ ├─CAN---------------------------------------控制器局域网模块 │ │ │ ├─DualCAN

相关主题