搜档网
当前位置:搜档网 › 基于Fluent的换热器流场模拟

基于Fluent的换热器流场模拟

基于Fluent的换热器流场模拟
基于Fluent的换热器流场模拟

第1章绪论 (2)

1.1换热器的分类 (2)

1.2 换热器研究与发展 (3)

1.2.1换热器发展历史 (3)

1.2.2 换热器研究及发展动向 (3)

1.2.3 国外新型换热器技术走向 (4)

第2章管壳式换热器 (9)

2.1 管壳式换热器结构 (9)

2.2 管壳式换热器类型 (9)

2.3 换热器的安装、使用及维护 (10)

2.3.1换热器的安装 (10)

2.3.2 换热器的清洗 (10)

2.3.3换热器的维护和检修 (12)

2.3.4换热器的防腐 (13)

2.4 换热器的强化 (14)

2.4.1管程的传热强化 (14)

2.4.2 壳程的传热强化 (16)

第3章流体传热的研究方法 (17)

3.1 传热学的常用研究方法 (17)

3.2数值模拟的求解过程 (17)

第4章基于Fluent的管壳式换热器的数值计算 (20)

4.1 Fluent简介 (20)

4.2 基于Fluent的三角形排列的换热器流畅模拟 (21)

结论 (31)

第1章绪论

换热器是将热流体的部分热量传递给冷流体,使流体温度达到工艺流程规定的指标的热量交换设备,又称热交换器,广泛应用于化工、石油化工、动力、医药、冶金、制冷、轻工业等行业。随着节能技术的飞速发展,换热器的种类越来越多。

1.1换热器的分类

换热器作为传热设备随处可见,在工业中应用非常普遍,特别是耗能量十分大的领域。随着节能技术的飞速发展,换热器的种类开发越来越多。适用于不同介质、不同工况、不同温度、不同压力的换热器结构和形式亦不相同,换热器种类随新型,高效换热器的开发不断更新,具体分类如下。

(1)冷、热流体热量交换的原理和方式

基本上可分三大类:间壁式、混合式和蓄热式。

间壁式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流进行换热。间壁式换热器根据传热面的结构不同可分为管式、板面式和其他型式。管式换热器以管子表面作为传热面,包括蛇管式换热器、套管式换热器和管壳式换热器等;板面式换热器以板面作为传热面,包括板式换热器、螺旋板换热器、板翅式换热器、板壳式换热器和伞板换热器等;其他型式换热器是为满足某些特殊要求而设计的换热器,如刮面式换热器、转盘式换热器和空气冷却器等。

混合式换热器是通过冷、热流体的直接接触、混合进行热量交换的换热器,又称接触式换热器。由于两流体混合换热后必须及时分离,这类换热器适合于气、液两流体之间的换热。例如,化工厂和发电厂所用的凉水塔中,热水由上往下喷淋,而冷空气自下而上吸入,在填充物的水膜表面或飞沫及水滴表面,热水和冷空气相互接触进行换热,热水被冷却,冷空气被加热,然后依靠两流体本身的密度差得以及时分离。

在蓄热式换热器中,冷热两种流体依次交替地流过同一换热表面而实现热量交换,固体表面除了换热以外还起到蓄热的作用:高温流体经过时,固体避免吸收并积蓄热量,然后释放给接着流过的低温流体。这种换热器的热量传递过程是非稳态的。

三种类型中,间壁式换热器应用最为广泛。

(2)表面的紧凑程度

换热器还可以按照表面的紧凑程度而区分为紧凑式换热器(compact heat exchanger)与非紧凑式换热器(non-compact heat exchanger)。紧凑的程度可以用水力直径(d h,hydraulic diameter,也称当量直径,流动界面积的4倍除以湿周长)来区别,或者用每立方米中的传热面积β来衡量:当β>700m2或者d h <6mm时,称为紧凑式换热器。当β>3000m2或者100m

μ15000m2或者100m

μ

时属于微型换热器。

1.2 换热器研究与发展

1.2.1换热器发展历史

20世纪20年代出现板式换热器,并应用于食品工业。以板代管制成的换热器,结构紧凑,传热效果好,因此陆续发展为多种形式。30年代初,瑞典首次制成螺旋板换热器。接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。在此期间,为了解决强腐蚀性介质的换热问题,人们对新型材料制成的换热器开始注意。 60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。此外,自60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。70年代中期,为了强化传热,在研究和发展热管的基础上又创制出热管式换热器。20世纪80年代以来,换热器技术飞速发展,带来了能源利用率的提高。各种新型高效换热器的相继开发与应用带来了巨大的社会经济效益,市场经济的发展,私有化比例的加大,降低成本已成为企业追求的最终目标。因而节能设备的研究与开发备受瞩目。能源的日趋紧张,全球气温的不断升高,环境保护要求的提高给换热器及空冷式换热器及高温,高压换热器迎来了日益广阔的应用前景。

1.2.2 换热器研究及发展动向

(1)物性模拟研究

换热器传热与流体流动计算的准确性,取决于物性模拟的准确性。因此,物性模拟一直为传热界重点研究课题之一,特别是两相流物性的模拟,这恰恰是与实际工况差别的体现。实验室模拟实际工况很复杂,准确性主要体现与实际工况的差别。纯组分介质的物性数据基本上准确,但油气组成物的数据就与实际工况相差较大,特别是带有固体颗粒的流体模拟更复杂。为此,要求物性模拟在试验手段上更加先进,测试的准确率更高。从而使换热器计算更精确,材料更节省。物性模拟将代表换热器的经济技术水平。

(2)分析设计的研究

分析设计是近代发展的一门新兴科学,美国ANSYS软件技术一直处于国际领先技术,通过分析设计可以得到流体的流动分布场,也可以将温度场模拟出来,这无疑给流路分析法技术带来发展,同时也给常规强度计算带来更准确,更便捷的手段。在超常规强度计算中,可模拟出应力的分布图,使常规方法无法得到的计算结果能方便、便捷、准确地得到,使换热器更加安全可靠。这一技术随着计算机应用的发展,将带来技术水平的飞跃。将会逐步取代强度试验,摆脱实验室繁重的劳动强度。

(3)大型化及能耗研究

换热器将随着装置的大型化而大型化,直径将超过5m,传热面积将达到单位10000 m2,紧凑型换热器将越来越受欢迎。板壳式换热器,折流杆换热器,板翅式换热器,板式空冷器将得到发展,振动损失将逐步克服,高温,高压,安全,可靠的换热器结构朝着结构简单,制造方便,重量轻发展。随着全球水资源的紧张,循环水将被新的冷却介质取代,循环将被新型,高效的空冷器所取代。保温绝热技术发展,热量损失将减少到目前的50%一下。

(4)强化技术研究

各种新型,高效换热器将逐步取代现有常规产品。电场动力效应强化换热技术,添加物强化沸腾传热技术,通入惰性气体强化传热技术,添加物强化沸腾传热技术,微生物传热技术,磁场动力传热技术将会在新的世纪得到研究和发展。同心管换热器、高温喷流式换热器、印刷线路板换热器、穿孔板换热器、微尺度换热器、微通道换热器、硫化床换热器、新能源换热器将在工业领域及其它领域得到研究和应用。

(5)新材料研究

材料将朝着强度高,制造工艺简单,防腐效果好,重量轻的方向发展。随着稀有金属价格的下降,钛、钽、锆等稀有金属使用量将扩大,CrMo钢材料将实现不预热和后热的方向发展。

(6)控制结垢及腐蚀的研究

国内污垢数据基本上是20世纪60~70年代从国外照搬而来。四十年来,污垢研究技术发展缓慢。随着节能,增效要求的提高,污垢研究将会受到国家的重视和投入。通过对污垢形成的机理,生长速度,影响因素的研究,预测污垢曲线,从而控制结垢,这对传热效率的提高将带来重大的突破。保证装置低能耗,长周期的运行,超声防垢技术将得到大力发展。

腐蚀技术的研究将会有所突破,低成本的防腐涂层特别是金属防腐镀层技术将得到发展,电化学防腐技术将成为主导。

1.2.3 国外新型换热器技术走向

(1)螺旋折流板换热器

螺旋折流板换热器(图1.1)是最新发展起来的一种管壳式换热器 ,是由美国 ABB 公司提出的。其基本原理为:将圆截面的特制板安装在”拟螺旋折流系统”中 ,每块折流板占换热器壳程中横剖面的四分之一 ,其倾角朝向换热器的轴线 ,即与换热器轴线

保持一定倾斜度。相邻折流板的周边相接 ,与外圆处成连续螺旋状。每个折流板与壳程流体的流动方向成一定的角度 ,使壳程流体做螺旋运动 ,能减少管板与壳体之间易结

垢的死角 ,从而提高了换热效率。在气一水换热的情况下 ,传递相同热量时 ,该换热器可减少30 %~40 %的传热面积 ,节省材料 20 %~30 %。相对于弓形折流板 ,螺旋折流板消除了弓形折流板的返混现象、卡门涡街 ,从而提高有效传热温差 ,防止流动诱导振

动;在相同流速时 ,壳程流动压降小;基本不存在震动与传热死区 ,不易结垢。对于低雷诺数下(Re< 1 000)的传热 ,螺旋折流板效果更为突出。

图1.1螺旋折流板换热器

(2)折流杆式换热器

20 世纪 70 年代初 ,美国菲利浦公司为了解决天然气流动振动问题 ,将管壳式换热器中的折流板改成杆式支撑结构 ,开发出折流杆换热器。研究表明 ,这种换热器(图1.2)不但能防振 ,而且传热系数高。现在此种换热器广泛应用于单相沸腾和冷凝的各种工况。在后来出现了一种外导流筒折流杆换热器 ,此种换热器能最大限度地消除管壳式换热器挡板的传热不活跃区 ,增加了单位体积设备的有效传热面积。目前 ,所有的浮头式换热器均采用了外导流筒。近些年 ,又出现了直扁钢条支撑方式和波浪型扁钢支撑结构等新型支撑结构的折流杆换热器。这些新结构除了增加有效换热面积外 ,更主要的是提高了对管子震动的抑制作用。

图1.2 折流杆式换热器示意图

(3) 空心环管壳式换热器

空心环管壳式换热器(图1.3)是华南理工大学于发明的一种新型管壳式换热器。空心环是由直径较小的钢管截成短节 ,均匀地分布于换热管管间的同一截面上 ,呈线性接触 ,在紧固装置螺栓力的作用下 ,使管束相对紧密固定。从而支撑管束并促进流体扰动。空心环支撑往往与强化管组合使用。其特点是:

(1)壳程流阻低。壳程轴向流道空隙率达80 %的空心环管间支承物对纵向流体的形体阻力几乎可以忽略。

(2)传热膜系数高。该种结构的换热器可充分发挥粗糙型强化传热管的强化传热性

能 ,利用传热管的周向粗糙肋 ,促进纵向流体在传热界面上滞流层的湍流度,获得比普通光滑管界面高 80 %~100 %的传热膜系数

图1.3 空心环管式换热器示意图

(4)管子自支承式换热器

近年来 ,人们将壳程强化传热的两种主要途径综合起来考虑 ,利用管子形状的变化来达到相互支撑和强化传热双重功能。目前主要有剌孔膜片式、螺旋扁管式和变截面管式几种形式。

剌孔膜片式的特点是刺孔膜片既是支撑元件 ,又是管壁的延伸 ,增大了单位体积内的有效传热面积;膜片上的毛刺和小孔增大了流体湍流度 ,各区间的流体经小孔实现一定程度的混合;刺和孔使换热表面的边界层不断更新 ,减薄了层流底层厚度 ,从而提高了换热系数;壳程流体纵向流动 ,压力降很小。

螺旋扁管是瑞典 ALLARES公司推出的一种高效换热元件,螺旋扁管的结构特点是管子换热段的任一截面均为一长圆 ,当组装成换热器时可以混合管束 ,也可以是纯螺旋扁管。螺旋扁管的截面类似于椭圆管 ,椭圆的长短轴比值根据换热管程和壳程的流速设计确定 ,当管程流量较低时 ,可增大长、短轴之比值。减少流通截面以提高流速 ,使换热器两侧处于较理想的流动状态。

变截面管式(图1.4)是把普通圆管按一定节距压制出互成90度或互成60度的扁圆形截面 ,利用这种变截面管互相支撑并构成扰流元件。这种换热器管子排列紧凑 ,减少了换热器的尺寸和质量 ,而且可实现管束间流体薄层流动。其结构比较简单 ,且是双面强化管 ,但最大弱点是管内阻力太大。

图1.4变截面管示意图

(5)纵流管束换热器

流体在壳程中作纵向流动是管壳式换热器中最理想的流动形式。为了将弓形折流板支撑的横向流动尽可能地改为平行于管子的纵向流动,消除滞留死区。近年来开发出了一些新型结构,例如矩形孔、梅花孔等异形孔的折流板结构(图1.5)。这种折流板既

能支承管子 ,又能让传热介质流过折流板 ,产生射流 ,从而消除了管子结垢和垢下腐蚀。后来 ,德国 GRIMMA公司制造的一种网状整圆形折流板换热器 ,传热效果优于传统的圆缺形折流板换热器 ,其结构为在折流板上开横排管孔 ,以 4 个孔为一组将管桥处铣通,壳侧流体在管桥处沿着轴向流动 ,避免了流体因转折引起的滞留区。瑞典的 WELL 和 GEE 提出的针翅管,既能扩大传热面,又可造成流体的强烈扰动,极大地强化了传热,而且压降不大,可大大节省支承板材料,是当前国内外最先进的纵向流换热器。

图1.5

(6)热管换热器

热管是一种新型高效的传热元件。热管是一个内部抽成真空并充以少量液体的密封管,具有高效的导热性能。在工作时热流体通过热管的一端外表面,冷流体通过热管另一部分。籍助于管内工质的潜热变化而进行冷热流体间的换热。由于是潜热的变化,具有相当高的导热能力,其当量导热系数为铜、银等金属导热系数的几百倍。在20世纪60年代首先被应用于宇航技术中,后来在电子、机械、化工和石油等行业也有了广泛的应用。热管换热器在国外已系列化生产。而我国经过 20 多年努力先后开发了气、气热管换热器、热管蒸汽发生器和高温热管,并在石油、化工、冶金、动力以及水泥等行业得到了广泛的应用,取得了良好的效果。

(7)新型麻花管换热器

瑞典Alares公司开发了一种扁管换热器,通常称为麻花管换热器。美国休斯顿的布朗公司做了改进。螺旋扁管的制造过程包括了“压扁”与“热扭”两个工序。改进后的麻花管换热器同传统的管壳式换热器一样简单,但有许多激动人心的进步,它获得了如下的技术经济效益:改进了传热,减少了结垢,真正的逆流,降低了成本,无振动,节省了空间,无折流元件。

由于管子结构独特使管程与壳程同时处于螺旋运动,促进了湍流程度。该换热器总传热系数较常规换热器高40%,而压力降几乎相等。组装换热器时也可采用螺旋扁管与光管混合方式。

该换热器严格按照ASME标准制造。凡是用管壳式换热器和传统装置之处均可用此

种换热器取代。它能获得普通管壳式换热器和板框式传热设备所获得的最佳值。估计在化工、石油化工行业中具有广阔的应用前景。

(8)非钎焊绕丝筋管螺旋管式换热器

在管子上缠绕金属丝作为筋条(翅片)的螺旋管式换热器(TA),一般都是采用焊接方法将金属丝固定在管子上。但这种方法对整个设备的质量有一系列的影响,因为钎焊法必将从换热中“扣除”很大一部分管子和金属丝的表面。更重要的是,由于焊料迅速老化和破碎会造成机器和设备堵塞,随之提前报损。

俄罗斯推荐一种新方法制造绕丝筋管,即借助在管子上缠绕和拉紧金属丝时产生的机械接触来固定筋条。采用此法能促进得到钎焊时的连续特性(即将金属丝可靠地固定在管子上,而管子的截面又不过分压紧),故对于金属丝仅用做隔断时,可以认为是较钎焊更受欢迎的方法。但若利用金属丝作为筋条(翅片)以增加换热面积时,只有当非钎焊筋条的有效传热面不小于钎焊连接时,才应更偏重于此方法。

试验表明,当金属丝与管子为线性接触时,有效传热面最大,但此时金属丝会沿管子滑动。所以关键是要选取最佳的接触宽度,也就是绕丝时管子变形留下的痕迹的宽度。这样,非钎焊时的有效传热面要比钎焊时大。

第2章管壳式换热器

2.1 管壳式换热器结构

管壳式(如图2.1) 换热器是最典型的间壁式换热器,它在工业上的应用有着悠久的历史,而且至今仍在所有换热器中占据主导地位。

图2.1

管壳式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束,管束两端固定于管板上。换热管在管板上可按等边三角形或正方形排列。等边三角形排,列较紧凑,管外流体湍动程度高,传热分系数大;正方形排列,管壳式换热器则管外清洗方便,适用于易结垢的流体。在管壳换热器内进行换热的两种流体,一种在管内流动,其行程称为管程;一种在管外流动,其行程称为壳程。管束的壁面即为传热面。为提高管外流体给热系数,通常在壳体内安装一定数量的横向折流档板。折流档板不仅可防止流体短路,增加流体速度,还迫使流体按规定路径多次错流通过管束,使湍动程度大为增加。常用的档板有圆缺形和圆盘形两种,前者应用更为广泛.。流体在管内每通过管束一次称为一个管程,每通过壳体一次称为一个壳程。为提高管内流体的速度,可在两端封头内设置适当隔板,将全部管子平均分隔成若干组。这样,流体可每次只通过部分管子而往返管束多次,称为多管程。同样,为提高管外流速,可在壳体内安装纵向档板使流体多次通过壳体空间,称多壳程。在管壳式换热器内,由于管内外流体温度不同,壳体和管束的温度也不同。如两者温差很大, 换热器内部将出现很大的热应力,可能使管子弯曲,断裂或从管板上松脱。因此,当管束和壳体温度差超过50℃时,应采取适当的温差补偿措施,消除或减小热应力。

2.2 管壳式换热器类型

(1)固定管板式换热器:管束两端的管板与壳体联成一体,结构简单,但只适用于冷热流体温度差不大,且壳程不需机械清洗时的换热操作。当温度差稍大而壳程压力又不太高

时,可在壳体上安装有弹性的补偿圈,以减小热应力。

(2)浮头式换热器:管束一端的管板可自由浮动,完全消除了热应力;且整个管束可从壳体中抽出,便于机械清洗和检修。浮头式换热器的应用较广,但结构比较复杂,造价较高。

(3)U型管换热器:每根换热管皆弯成U形,两端分别固定在同一管板上下两区,借助于管箱内的隔板分成进出口两室。此种换热器完全消除了热应力,结构比浮头式简单,但管程不易清洗。

2.3 换热器的安装、使用及维护

2.3.1换热器的安装

安装换热器的基础必须足以使换热器不发生下沉,或使管道把过大的变形传到换热器的接管上。基础方法一般分为两种:一种为砖砌的鞍形基础,换热器上没有鞍式支座而直接放在鞍形基础上,换热器与基础不加固定,可以随着热膨胀的需要而自由移动。另一种为混凝土基础,换热器通过鞍式支座由地脚螺栓将其与基础牢固地连接起来。

在安装换热器之前应严格地进行基础质量的检查和验收工作,主要项目如下:基础表面概况;基础标高、平面位置、形状和主要尺寸以及预留孔是否符合设计要求;地脚螺栓的位置是否正确,螺纹情况是否良好,螺帽和垫圈是否齐全;放置垫铁的基础表面是否平整等。

基础验收完毕后,在安装换热器之前应在基础上放垫铁,安放垫铁处的基础表面必须铲平,使两者能很好接触。垫铁厚度可以调整,使换热器能达到设计的水平度和标高。垫铁放置后可增加换热器在基础上的稳定性,并将其重量通过垫铁均匀地传递到基础上去。垫铁可分为平垫铁、斜垫铁和开口垫铁。其中,斜垫铁必须成对使用。地脚螺栓两侧均应有垫铁,垫铁的安装不应妨碍换热器的热膨胀。

换热器就位后需用水平仪对换热器找平,这样可使各接管都能在不受力的情况下连接管道。找平后,斜垫铁可与支座焊牢,但不得与下面的平垫铁或滑板焊死。当两个以上重叠式换热器安装时,应在下部换热器找正完毕,并用地脚螺栓充分固定后,再安装上部换热器。可抽管束换热器安装前应抽芯检查、清扫,抽管束时应注意保护密封面和折流板。移动和起吊管束时应将管束放置在专用的支承结构上,以避免损伤换热管。

根据换热器的结构形式,应在换热器的两端留有足够的空间来满足操作、清洗、维修的需要。浮头式换热器的固定头盖端应留出足够的空间以便能从壳体内抽出管束,外头盖端必须也留出足够的空间以便能从壳体内抽出管束,外头盖端必须也留出一米以上的位置以便装拆外头盖和浮头盖。固定管板式换热器的两端应留出足够的空间以便能抽出和更换管子。并且,用机械法清洗管内时,两端都可对管子进行刷洗操作。U形管式换热器的固定头盖应留出足够的空间以便能拆卸壳体。

2.3.2 换热器的清洗

换热器不得在超过铭牌规定的条件下运行。应经常对管、壳程介质的温度及压降进行监督,分析换热器的泄漏和结垢情况。管壳式换热器就是利用管子使其内外的物料进行热交换、冷却、冷凝、加热及蒸发等过程,与其它设备相比较,其与腐蚀介质接触的表面积就显得非常大,发生腐蚀穿孔及接合处松弛泄漏的危险性很高,因此对换热器的防腐蚀和防漏的方法也比其它设备要多加考虑。当换热器用蒸汽来加热或用冷水来冷却时,水中的溶解物在加热后,大部分溶解度都会有所提高,而硫酸钙类型的物质则几乎没有变化。冷却水经常循环使用,由于水的蒸发,使盐类浓缩,产生沉积或污垢。又因水中含有腐蚀性溶解气体及氯离子等引起设备腐蚀,腐蚀与结垢交替进行,激化了钢材的腐蚀。因此,必须通过清洗来改善换热器的性能。由于清洗的因难程度是随着垢层厚度或沉积物的增加而迅速增大的,所以清洗间隔时间不宜过长,应根据生产装置的特点、换热介质的性质、腐蚀速度及运行周期等情况定期进行检查、修理及清洗。

换热器的清洗可用机械法或化学法,应根据清洗的场所、范围、除垢难易程度、垢的性质来决定。凡不溶于酸碱和溶剂的污垢宜采用机械法。化学法适用于形状复杂的换热器的清洗,缺点是对金属多少有些腐蚀作用。下面介绍几种常用的清洗方法。

(1)机械清洗

喷水清洗:用高压水喷射或机械冲击的除垢方法。采用这种方法对化学法不能除去的碳化物污垢或硬质垢的清除是有效的,但清洗换热器时需将设备解体,所以适用于清洗浮头换热器或U形管换热器的管间部分,对固定管板换热器壳程就不能清洗了。其优点是钢材损耗微小。

喷砂清洗:将经筛分的石英砂粒用压缩空气通过喷枪产生强大的线速度,冲刷换热器内壁,将污垢冲掉。砂粒要求硬度高,粒度形状复杂,颗粒均匀。

喷丸清洗:由海绵球和将球推进需清洗的管内的流体喷枪组成。其优点是费用低廉、效率高。不仅用于直管且可用于蛇管、T形管、弯管等,适用范围较广。方法是在管的一端装入海绵球,接上喷枪,拧紧,开喷枪的阀门,即可射出压力流体。由于流体压力,将球推入管内,球受流体的反压力,借助海绵体的弹力,对管内壁施加挤压力。由于反压力,此挤压力增大,能很好地削掉污垢。且从球和管内壁间隙出来的流体以射流喷出,研削效果很好。同时污垢沿前方排出,具有机械研削和喷射清洗的优点。

海绵橡胶球连续清管法:连续操作的自动化清洗,在冷却水系统中装入海绵橡胶球,平均每5min通过一个橡胶球,其直径略大于管径,因此能有效地擦去管子表面的沉积物或污垢。其优点是减少了由于结垢、腐蚀、渗漏或堵塞所造成的无计划停工。冷却水管的连续清洗可以大大减少水的化学处理,可省去手工或其它机械清洗的费用,创造了良好的清洗条件,延长了设备寿命。

钢丝刷子清洗:用一根圆棒或管子,一端焊上与管子内径相同的圆形钢丝刷,一边旋转一边推进。如果是不锈钢管则不能用钢丝刷而用尼龙刷。用圆管比圆棒更有优越性,

因为圆管向前推进时,污垢可以从管子中退出。否则圆棒向前进,污垢也向前进,愈积愈多,以致愈通愈因难。这种方法花费很大劳动力,但还是常用的清洗换热器管内的方法。

刮刀或钻头除垢:在挠性旋转轴的顶端安装刮刀或钻头以除去污垢。旋转动力多用压缩空气或电力,也有使用水力或蒸汽的。一般是将驱动机构设在外边,通过旋转轴将动力传给刀具。旋转轴是挠性的,因此是弯管也能在里面灵活转动。但该法只适用于除去管子或圆筒里面的污垢。

(2)化学清洗

酸洗:酸洗是换热器化学清洗的主要方法,可溶解氧化铁、硬质污垢和其它金属氧化物。这要求对清除的沉积物性质和有关设备的构造成材料有所一解,来确定酸类。清除锈垢要用合适的酸、防凝剂及作辅助用的还原剂、二氧化硅溶解剂湿润剂铜钝化剂。清除氧化铁、钙或镁最有效的酸是盐酸。大部分用稀释酸如处理钢管可用12%的盐酸。柠檬酸效率最差,但如只有少量腐蚀产物也可使用。对奥氏体钢,如拆开有关部件有困难,可用盐酸。如主要部件由不锈钢制造则不许用盐酸。盐酸加入氧化物,对铁的溶解可稍有利,而对含硅的物料溶解大为有利。因此如含有硅沉淀物可推荐使用。柠檬酸加氟化物可改进氧化铁的溶解速率。

碱洗:换热器在某些特定情况下也可用碱洗。有两种方法:一种为单独采用碱性洗涤剂进行碱洗,目的在于除去能溶解于碱性溶液中的污垢。另一种是在酸洗或其它方法进行清洗之后,用碱性进行中和钝化,清洗新设备、软化硬质污垢和氧化硅时可采用碱洗的方法,常用的洗涤剂为苛性钠、碳酸钠、磷酸钠、中和钝化溶液及甲烷等。在污垢中,当含铜非常多时,可在氨液中加入铜溶解剂,用于除去铜垢。

溶剂清洗:溶剂清洗是为了清除石油化工和石油装置中换热器的有机污垢和含油质的污垢,油垢含有较多的钢材产物氧化铁类。使用有机溶剂掺表面活化剂和碱或用酸把有机溶剂和界面活性剂混合制成乳剂,对油和无机质同时进行清洗,可把有机垢和氧化铁同时除去。主要采用的溶剂有以下几种:四氧化碳主要是洗掉油品的有机污垢,芳香烃溶剂、碱性甲酚溶液、甲烷基-异丁烷基-甲醇重端对于含有酸性焦油的沉积物具有强烈的去垢清洁力。

(3)在线清洗

在线清洗是指工艺装置在运转中,将换热器组列中某一个进行清洗,这样就避免了装置全部停车,从而使换热器组列能够高效运行和延长运转周期。它与化学清洗在所用药剂、反应原理及剂量方面相同,最大不同点是设备不停止运行。优点是能减少机械或化学清洗的停工时间节省停工清洗的劳动力和费用,延长运转周期,防止操作过程中压降的增加,提高了传热效率,降低了能耗。

2.3.3换热器的维护和检修

为了保证换热器长久正常运行,提高其生产率,必须对设备进行维护与检修。应以预防性维修摆在首位,强调安全预防,以保证换热性连续稳定运转,减少任何可能发生的事故。检修应注意合理施工,检修之前进行检查和清洗管子,并应拆开管子与管箱的连接处,再将整个管全部拆开以确定清洗或检修。应把换热器内的介质,特别是带有腐蚀性或形成聚合物的液体排出。在直立的固定管板换热器中,排液管接头应安装在管板底部,否则不能把壳程的流体全部排出。依据应排流体的性质,流体可排向大气或低压系统。换热器的排水应单独接出而不用支管板底部开口,换热器上安装阀门以提供反向冲洗。

检修换热器时常常需要把换热管从壳体中抽出。但由于腐蚀、结垢等原因,换热管抽出比较困难。这就要求管束抽出装置有足够的抽出或推进力,能适应不同高度的位置变化,并能自动对中,能适应不同的换热器直径变化,机体轻、灵活方便、操作安全。其驱动方式有液压和机械式。液压式机构体积小,拉或推力大,适合于管束开始抽出或推进时的高负荷。而机械式驱动速度快,适用于在管束抽出或推进一段距离后的快速操作,所以以液压和机械联合驱动为好。

换热器由于腐蚀、冲击、振动、应力等原因会造成损坏,主要发生在换热管子上,基本上有以下两种情况:

(1)换热管由于外界因素而减薄或穿孔,当出现泄漏时就必须更换管子。把损坏的称热管从管板上拆下来,一般可采用钻削或铣削的方法进行。注意不能损坏管板孔,否则,可能产生泄露漏。因此,要采用比管孔直径略小的钻头。如用铣削的方法,则不能将管壁铣穿,留下很薄的一层管子外壁,不仅保护了管孔免受损伤,而且也便于将整根管子抽出。如果是胀接则应先钻孔,除掉胀管头,拔出坏管,然后插上新管再进行胀接。操作中要注意不能让异物嵌入管孔槽中,以免影响随后的胀接。在胀管时,对周围不需更换的管子的胀管处会有影响,所以对周围的管子可以轻胀一下。如果是焊接则需先用专用发刀具将焊缝刮下,然后拔出坏管。

(2)由于温度变化产生膨胀、收缩,换热管入口端介质的涡流磨损及由于管束振动等原因使管子与管板连接处松弛而泄漏。如果是胀接可用胀管器对管子进行补胀,同于胀管应力可能影响周围管子,故对其附近的管子也要轻胀一下,如果是焊接则需要对汇漏处进行补焊。

2.3.4换热器的防腐

换热器的使用量大,包括在新建项目、改造项日、更新项目中的使用。而在更新项目中.主要是对损坏的换热路进行更换,损坏的原因一般由腐蚀造成。据统计,大概占有90%以上,全国每年由于腐蚀更换的换热器投资约20亿元。因此防腐成为技术发展的重点。近年来防腐研究经费投入很大,但技术发展缓慢,效果不明显。由于石油工业中的原油开采已进入中后期,石油中含酸值逐年增加,腐蚀逐年加重。再则中东含酸原

油进口量猛增,设备防腐的投资也越来越大。因此,抗腐蚀材料及防腐措施尤为至要。目前,换热器防腐主要有防腐涂层、金屑涂层、金属堆焊、缓蚀剂等措施。

2.4 换热器的强化

换热器在化工生产过程中起着至关重要的作用,其投资费用占全部投资费用较大。传统的管壳式换热器单位体积的传热面积较低,传热系数不高,难以满足生产要求,因而,高效换热器的研究越来越得到重视。提高换热器的换热效率是节约能源、降低工程投资的关键,对于提高换热效率国内外非常重视。

换热器中流体的相对流向一般有顺流和逆流两种。顺流时,入口处两流体的温差最大,并沿传热表面逐渐减小,至出口处温差为最小。逆流时,沿传热表面两流体的温差分布较均匀。在冷、热流体的进出口温度一定的条件下,当两种流体都无相变时,以逆流的平均温差最大顺流最小。在完成同样传热量的条件下,采用逆流可使平均温差增大,换热器的传热面积减小;若传热面积不变,采用逆流时可使加热或冷却流体的消耗量降低。前者可节省设备费,后者可节省操作费,故在设计或生产使用中应尽量采用逆流换热。当冷、热流体两者或其中一种有物相变化(沸腾或冷凝)时,由于相变时只放出或吸收汽化潜热,流体本身的温度并无变化,因此流体的进出口温度相等,这时两流体的温差就与流体的流向选择无关了。除顺流和逆流这两种流向外,还有错流和折流等流向。在传热过程中,降低间壁式换热器中的热阻,以提高传热系数是一个重要的问题。热阻主要来源于间壁两侧粘滞于传热面上的流体薄层(称为边界层)和换热器使用中在壁两侧形成的污垢层,金属壁的热阻相对较小。增加流体的流速和扰动性,可减薄边界层,降低热阻提高给热系数。但增加流体流速会使能量消耗增加,故设计时应在减小热阻和降低能耗之间作合理的协调。为了降低污垢的热阻,可设法延缓污垢的形成,并定期清洗传热面。

强化换热是指在传统的换热器基础之上通过强化传热技术来提高换热器的换热效率,减少换热过程中的能量损失。就强化传热技术来说,主要是力求使换热设备在单位时间内、单位传热面积传递的热量尽可能增多。从大的方面来说强化途径不外乎三个:提高传热系数、扩大单位传热面积、增大传热温差。

管式换热器的传热强化主要包括管程的强化和壳程的强化。

2.4.1管程的传热强化

管程的强化传热通常是对光管进行加工得到各种结构的异形管,如螺旋槽纹管、横槽纹管、波纹管、低螺纹翅片管(螺纹管)、螺旋扁管、多孔表面管、针翅管等,通过这些异形管进行传热强化。

(1)螺旋槽纹管

螺旋槽纹管管壁是由光管挤压而成,其管内强化传热主要由两种流动方式决定:

一是螺旋槽近壁处流动的限制作用,使管内流体做整体螺旋运动产生的局部二次流动;

二是螺旋槽所导致的形体阻力,产生逆向压力梯度使边界层分离。螺旋槽纹管具有双面强化传热的作用,适用于对流、沸腾和冷凝等工况,抗污垢性能高于光管,传热性能较光管提高2~4 倍。

(2)横槽纹管

横槽纹管强化机理为:当管内流体流经横向环肋时,管壁附近形成轴向漩涡,增加了边界层的扰动,使边界层分离,有利于热量的传递。当漩涡将要消失时流体又经过下一个横向环肋,因此不断产生涡流,保持了稳定的强化传热作用。研究和实际应用证明:横槽纹管与单头螺旋槽纹管比较,在相同流速下,流体阻力要大一些,传热性能好些,

其应用场合与螺旋槽纹管相同。

(3)波纹管

对波纹管按流体力学观点分析:在波峰处流体速度降低,静压增加,在波谷处流速增加,静压降低。流体的流动在反复改变轴向压力梯度下进行,产生了剧烈的漩涡,冲刷流体的边界层,使边界层减薄。因此用波纹管做换热管从理论上讲:由于波节的存在,增加了对管内流体流动的扰动,使波纹管具有较好的传热效果,但流动特性不如光管的好。在低雷诺数下,波纹管的换热与阻力性能比明显好于光管;在高雷诺数下,波纹管与光管的换热与阻力性能比非常接近。

(4)翅片管

翅片管是一种外壁带肋的管子,肋的截面形状有矩形、锯齿形、三角形、T 型、E 型、花瓣型等等,这种管子有助于扩大传热面积,促进流体的湍流,一般用于以壳程热阻为主的情况。当壳程热阻为管程 2 倍以上时,使用翅片管是合适的。但不能用来处理容

易结焦的介质。

(5)螺旋扁管

螺旋扁管的独特结构使流体在管内处于螺旋流动,促进湍流程度。实验研究表明:螺旋扁管管内膜传热系数通常比普通圆管大幅度提高,在低雷诺数时最为明显,达 2~3 倍;随着雷诺数的增大,通常也可提高传热系数 50%以上。

(6)表面多孔管

在普通金属管表面敷上一层多孔性金属层,形成表面多孔管。表面多孔管能显著地

强化沸腾给热过程,但其表面的多孔状局限了其只能应用于无垢或轻垢的场合。

(7)针翅管

针翅管既扩大了传热面,又可造成流体的强烈扰动,极大地强化传热,而且压降不大,并可籍针翅互相支撑而取消折流支撑板(杆),大大节省支撑板材料,可代替光管和螺纹管作为油品换热器的换热管,也是低传热膜系数、高粘度介质和含尘高温烟气的理想传热管,可用于油品等纵向流管束换热和烟气锅炉或余热回收中。

(8)管内插入件

管内插入件是强化管内单相流体传热的行之有效的方法之一。目前管内插入件的种类很多,有纽带、螺旋线圈、螺旋片、静态混合器等。管内加麻花片纽带使管内换热系数比光管增加了 56%~95%,摩擦系数增加了 70%~400%。因内插物是为了降低管内流体由层流转变到湍流时的临界雷诺数,一般说它们在低雷诺数下强化传热的效果比湍流区更佳。

2.4.2 壳程的传热强化

在管壳式换热器中,管束支撑结构的主要作用是:支撑管束,使壳程流体产生期望的流型和流速,阻止管子因流体诱导振动而发生失效。因此,管束支撑结构是壳程内的关键部件,直接影响着换热器壳程的流体流动和传热性能。管束支撑结构经过多年的研究、应用和发展,概括起来有3种类型:

(1)横流式支撑,如传统的弓形折流板,使壳程流体呈横向流动;

(2)纵流式支撑,如折流杆式等新型支撑,使壳程流体呈纵向流动;

(3)螺旋流式支撑,如螺旋折流板,使壳程流体呈螺旋流动。其中,传统的管壳式换热器壳程流体横向冲刷管束传热效率较低,流动阻力大,常发生流体诱导振动而导致破坏。为解决换热管束的振动问题,美国菲利浦石油公司在 20 世纪 70 年代开发了折流板式换热器,该换热器不仅解决了振动问题,而且由于壳侧流体的纵向流动使折流板换热器比传统的弓形折流板换热器传热系数提高 30%左右,壳程压降减少 50%。这种异型折流板性能特点是:

(1)能有效地支撑管束,从而避免管束发生流体诱导振动(“大管孔”式除外);

(2)孔板截面积小于壳程流通面积,因而可以调节壳程流体速度;

(3)各种形式的孔对流体具有“射流作用”,射流流体速度高且直接冲刷管外壁,因而能增加流体湍流度,减薄管壁液体的边界层,因而有效强化了壳程传热,适用于中、低粘度流体且雷诺数不太大的场合。而螺旋折流板换热器又可分为单螺旋折流板换热器和双螺旋折流板换热器。螺旋折流板换热器与常规折流板相互平行布置方式不同,它的折流板相互形成一种螺旋形结构,每个折流板与壳程流体的流动方向成一定的角度,使壳程流体做螺旋运动,能减少管板与壳体之间易结垢的死角,从而提高了换热效率。螺旋流换热器的强化传热机理为螺旋通道内的流型减弱了边界层的形成,从而使传热系数有较大增加。相对于弓形折流板,螺旋折流板消除了弓形折流板的返混现象,从而提高有效传热温差,防止流动诱导振动;在相同流速时,壳程流动压降小;基本不存在流动与传热死区,不易结垢,适宜于处理含固体颗粒、粉尘、泥沙等流体。对于低雷诺数下(Re<1000)的传热,螺旋折流板效果更为突出。在螺旋折流板换热器中,螺旋角β(即壳侧介质流动方向与管束横截面之间的夹角)将直接影响壳侧流体的流动及传热性能。

第3章流体传热的研究方法

3.1 传热学的常用研究方法

在流体传热学的研究中,常用的方法有实验研究法、理论分析法和数值计算方法。

实验研究是最基本的研究方法,因为所有传热过程基本定律的揭示首先要通过实验测定来完成,在传热学中引入的诸如导热系数这一类的热物性参数要靠实验测定来获得。在现阶段,对流传热表面传热系数的工程计算公式都是通过实验测定得出的。在传热学发展进程中,为了能够有效地进行对流传热的实验研究,形成与发展起来了相似原理的基本内容。实验的方法在传热设备性能的标定、过程的控制、实验仪器的开发以及新现象的研究中起着重要的作用。

流体的速度、压力等参数是由纳维--斯托克斯方程以及连续性方程等一组偏微分方程规定的,同样物体中各点的温度也是由一个能量方程的偏微分方程规定的。理论分析就是在给定的条件下求解这些偏微分方程,从而得出能确定物体中各点温度、速度等的函数,成为解析解或精确解。由于实际问题的复杂性,目前只能对情况比较简单的问题得到分析解。

数值计算求解的基本思想可以概括为:把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。

其中,理论研究方法的特点是:能够清晰普遍的揭示出流动的内在规律,但是该方法目前只局限于少数比较简单的理论模型,而且需要研究者具有较高的理论素养和数学功底。实验研究方法的特点是结果可靠,但其局限性在于相似准则不能全部满足、尺寸限制、边界影响等,同时实验研究需要场地、仪器设备和大量经费,研究周期也比较长。数值方法所需要的时间和费用较少,而且具有较高的精度,目前在流体力学及传热学的研究中扮演着越来越重要的角色,例如波音777飞机,就是一架“Paper Design”的飞机,大量的风洞试验以及全机应力实验等都是通过在计算机上进行CFD和有限元等数值模拟完成的。数值计算方法要求对问题的物理特性有足够的了解,并能建立比较精确的描述方程组。

3.2数值模拟的求解过程

经过多年的探索与研究,数值模拟大致可分为下列若干步骤。

(1)建立基本守恒方程组

数值模拟的第一步是由流体力学、热力学、传热传质学、燃烧学及热等离子体等的基本原理出发,建立质量、动量、能量、组分、湍流特性的守恒方程组,对湍流、多项流等,由不同的模拟理论出发,往往基本守恒方程组也不同,因此,如何构造方程组,也是模拟理论的重要部分。

(2)建立或选择模型或封闭方法

写出基本方程组后并非以万事大吉,这些方程组往往不是封闭的,特别是湍流、甚至多项流、化学反应流更是如此。例如,动量方程中的脉动速度关联项(雷诺应力项),能量方程中的湍流导热项及辐射项,扩散方程中的扩散项及湍流反应项等都是未知的。解决这一问题,使方程组封闭,即使模拟理论的关键问题。现在好多数值模拟软件,如Fluent,以预设了许多物理模型,如湍流模型、两项流模型、湍流反应模型、辐射换热模型、污染物生成模型等。我们可以根据具体问题选择不同的模型,也可以自己通过实验事实或物理概念的基本假设来构造各个过程的模型,然后将Fluent作为一个开发平台,利用UDF功能将自己提出的物理模型实现,并做检验。

(3)确定初始与边界条件

数值模拟必须按给定的几何形状和尺寸,由问题的物理特性出发,确定计算域并给定计算域的的进出口,轴线(或对称面)及各壁面或自由面处条件。正确给定边界条件是十分重要的,但不是轻而易举的事情。边界条件是否合理往往也是数值模拟的成败的关键问题之一。初始条件是所研究对象在过程初始时刻各个求解变量的空间分布情况。对于瞬态的非定常问题必须给定初始条件。对于定常问题,不需要初始条件。

(4)划分计算网格

采用数值方法求解控制方程时,都是想方法将控制方程在空间区域上进行离散,然后求解得到的离散方程组,其本质就是把连续的空间变量用离散的网格点上的变量来近似,连续的控制方程在离散之后就成为所有网格点上变量的非线性方程组。要想在空间区域上离散控制方程组,必须使用网格。现在已发展出多种对各种区域进行离散以生成网格的方法,网格生成技术也成为CFD领域的一个独特分支。

(5)建立离散化方程

用数值方法求解偏微分方程组,必须将方程组离散化,即把计算域内有限数量位置上的因变量作为基本未知量来处理,从而建立一系列关于这组未知量的代数方程组,通过求解代数方程组来获得这些节点上的值。

对于所引入的因变量在节点之间的分布,假设及推导离散化方程的方法不同,形成了有限差分法,有限容积法,有限元或有限分析法等不同类型的离散化方法。在同一种离散化方法中,对方程中对流项所采用的离散格式不同,也将导致不同形式的离散方程。

(6)制定求解方法

对离散完成的差分方程组已经有各种不同的求解方法。例如涡量-流函数算法、基于压力的压力-速度修正算法(SIMPLE系列算法),基于密度的耦合隐式或显式时间推进求解算法,矢通量分裂方法和通量差分分裂方法等。针对代数方程组的求解有三角形矩阵法(追赶法)、逐线迭代、松弛高斯赛德尔迭代方法等。针对两项流和有反应的流动又有一些更专门的解法,如颗粒与流体的耦合PSIC法,加速化学反应计算而设计的ISAT

算法等。

(7)数值模拟结果与实验的对比

对各种工况进行大量的模拟计算后,如果判断解收敛,就可以得到一批可用的变量场预报结果。判断解的收敛性是一个经验性很强的问题。常用的判断方法就是判断残差小于我们设定的某个小量,实际应用中,经常需要配合以总的质量流量、某点的物理量变化或某个截面通量物理量的变化、物体所受的力或力矩的变化等来综合判断,而且有时是所监控的物理量不再变化,有时是所监控的物理量周期性变化时,就认为解收敛了。如果解不收敛甚至发散,就需要调松弛因子,降低差分格式,选择更简单的模型,甚至重新回到GAMBIT划分网格以提高网格质量,再重新计算。总之,必须获得收敛的数值模拟结果。

必须将这些数值模拟结果和变量场的测量结果进行对照,或者依据一些理论结果,定性并且定量地评价模拟结果或模拟理论及方法优缺点及可靠性,方便我们选择更合适的模拟理论及方法。

第4章基于Fluent的管壳式换热器的数值计算

4.1 Fluent简介

Fluent是计算流体力学(CFD)商用软件,以理论流体力学和数学分析方法为基础,求解Navier-Stokes方程来计算内部流场的速度、温度及压力场。由于采用了多种求解方法和多重网格加速收敛技术,因而FLUENT能达到最佳的收敛速度和求解精度。利用Fluent软件进行内部的流动模拟,可以使我们直观的对流道内介质的流动情况进行分析,找出设计的缺陷并提出合理的改进方案和措施,以达到改进设计的目的。这大大降低了设计成本,也缩短了设计的周期,这种数值模拟的方法,应用也越来越广泛。灵活的非结构化网格和基于解的自适应网格技术及成熟的物理模型,使FLUENT在转换与湍流、传热与相变、化学反应与燃烧、多相流、旋转机械、动/变形网格、噪声、材料加工、燃料电池等方面有广泛应用。

FLUENT软件具有以下特点:

(1)采用基于完全非结构化网格的有限体积法,而且具有基于网格节点和网格单元的梯度算法;

(2)定常/非定常流动模拟,而且新增快速非定常模拟功能;

(3)FLUENT软件中的动/变形网格技术主要解决边界运动的问题,用户只需指定初始网格和运动壁面的边界条件,余下的网格变化完全由解算器自动生成。网格变形方式有三种:弹簧压缩式、动态铺层式以及局部网格重生式。其局部网格重生式是FLUENT所独有的,而且用途广泛,可用于非结构网格、变形较大问题以及物体运动规律事先不知道而完全由流动所产生的力所决定的问题;

(4)具有强大的网格支持能力,支持界面不连续的网格、混合网格、动/变形网格以及滑动网格等。值得强调的是,FLUENT软件还拥有多种基于解的网格的自适应、动态自适应技术以及动网格与网格动态自适应相结合的技术;

(5)包含三种算法:非耦合隐式算法、耦合显式算法、耦合隐式算法,是商用软件中最多的;

(6)包含丰富而先进的物理模型,使得用户能够精确地模拟无粘流、层流、湍流。湍流模型包含Spalart-Allmaras模型、k-ω模型组、k-ε模型组、雷诺应力模型(RSM)组、大涡模拟模型(LES)组以及最新的分离涡模拟(DES)和V2F模型等。另外用户还可以定制或添加自己的湍流模型;

(7)适用于牛顿流体、非牛顿流体;

(8)含有强制/自然/混合对流的热传导,固体/流体的热传导、辐射;

(9)化学组份的混合/反应;

(10)自由表面流模型,欧拉多相流模型,混合多相流模型,颗粒相模型,空穴两相流模型,湿蒸汽模型;

(11)融化溶化/凝固;蒸发/冷凝相变模型;

fluent计算错误分析

1. FlUENT 1.1 求解方面 1.1.1 floating point error是什么意思?怎样避免它? Floating point error已经提过很多次了并且也已经对它讨论了许多。下面是在Fluent论坛上的一些答案: 从数值计算方面看,计算机所执行的运算在计算机内是以浮点数(floating point number)来表示的。那些由于用户的非法数值计算或者所用计算机的限制所引起的错误称为floating point error。 1)非法运算:最简单的例子是使用Newton Raphson方法来求解f(x)=0的根时,如果执行第N次迭代时有,x=x(N),f’(x(N))=0,那么根据公式x(N+1)=x(N)-f(x(N))/ f’(x(N))进行下一次迭代时就会出现被0除的错误。 2)上溢或下溢:这种错误是数据太大或太小造成的,数据太大称为上溢,太小称为下溢。这样的数据在计算机中不能被处理器的算术运算单元进行计算。 3)舍入错误:当对数据进行舍入时,一些重的数字会被丢失并且不可再恢复。例如,如果对0.1进行舍入取整,得到的值为0,如果再对它又进行计算就会导致错误。 避免方法 计算和迭代我认为设一个比较小的时间步长会比较好的。或者改成小的欠松驰因子也会比较好。从我的经验来看,我把欠松驰因子设为默认值的1/3;降低欠松驰因子或使用耦合隐式求解;改变欠松驰因子,如果是非稳态问题可能是时间步长太大;改善solver-control-limits 比例或许会有帮助;你需要降低Courant数;如果仍然有错误,不选择compute from初始化求解域,然后单击init。再选择你想从哪个面初始化并迭代,这样应该会起作用。另外一个原因可能是courant数太大,就样就是说两次迭代之间的时间步太大并且计算结果变化也较大(残差高)。 网格问题当我开始缩放网格时就会发生这个错误。在Gambit中,所有的尺寸都是以mm 为单位,在fluent按scale按钮把它转换成m,然后迭代几百次时就会发生这种错误。但是当我不把网格缩放到m时,让它和在Gambit中一样,迭代就会成功;我认为你应当检查网格,你的网格数太多了,使用较少的网格问题就会解决;网格太多,计算机资源不够用,使使比较粗的网格。 边界条件在我的分析中,我设了一个wall边界条件来代迭axis边界条件,结果fluent拒绝计算并告诉我floating point error。你的边界条件不能代表真实的物理现象;错误的边界条件定义可能会导致floating point error。例如把内边界设成interior;一次我使用对称边界条件模拟2D区间时也遇到这种问题,我把symmetry设为axe symmetric,就发生了floating point error;检查你设的湍流参数,减小湍流强度,先进行50次迭代。 多处理器问题我近来在进行多处理器模拟时也遇到相似的问题。问题的解决方法是在单个处理器上运行,这样就运算得很好。 错误迭代以错误的条件来初始化,在开始迭代时就会发生floating point error。 1.1.2 coupled和segregated求解有什么区别? Coupled会同时求解所有的方程(质量守恒方程、动量守恒方程和能量守恒方程)而不是单个方程求解(方程互相分离)。当速度和压力高度耦合(高压和高速)时应该使用耦合求解,但这样会需要较长的计算时间。 在耦合求解中,能量方程中总是包含组分扩散(Species Diffusion Term)项。

Fluent性能分析

Fluent性能分析 仅仅就我接触过得谈谈对fluent的认识,并说说哪些用户适合用,哪些不适合 fluent对我来说最麻烦的不在里面的设置,因为我本身解决的就是高速流动可压缩N-S方程,而且本人也是学力学的,诸如边界条件设置等概念还是非常清楚的同时我接触的流场模拟,都不会有很特别的介质,所以设置起来很简单 对我来说,颇费周折的是gambit做图和生成网格,并不是我不会,而是gambit对作图要求的条件很苛刻,也就是说,稍有不甚,就前功尽弃,当然对于计算流场很简单的用户,这不是问题。有时候好几天生成不了的图形,突然就搞定了,逐渐我也总结了一点经验,就是要注意一些小的拐角地方的图形,有时候做布尔运算在图形吻合的地方,容易产生一些小的面最终将导致无法在此生成网格, fluent里面的计算方法是有限体积法,而且我觉得它在计算过程中为了加快收敛速度,采取了交错网格,这样,计算精度就不会很高。同时由于非结构网格,肯定会导致计算精度的下降,所以我一贯来认为在fluent里面选取复杂的粘性模型和高精度的 格式没有任何意义,除非你的网格做的非常好。 而且fluent5.5以前的版本(包括5。5),其物理模型,(比如粘性流体的几个模型)都是预先设定的,所以,对于那些做探索性或者检验新方法而进行的模拟,就不适合 用。 同时gambit做网格,对于粘性流体,特别是计算湍流尺度,或者做热流计算来说其网格精度一般是不可能满足的,除非是很小的计算区域 所以,用fluent做的比较复杂一点的流场(除了经典的几个基本流场) 其计算所得热流,湍流,以及用雷诺应力模拟的粘性都不可能是准确的, 这在物理上和计算方法已经给fluent判了死刑,有时候看到很多这样讨论的文章,觉得 大家应该从物理和力学的本质上考虑问题。 但是,fluent往往能计算出量级差不多的结果,我曾经做了一个复杂的飞行器热流计算,高超音速流场,得到的壁面热流,居然在量级上是吻合的,但是,从计算热流需要的壁面网格精度来判断,gambit所做的网格比起壁面网格所满足的尺寸的要大了至少2个数量级, 我到现在还不明白fluent是怎么搞的。 综上,我觉得,如果对付老板的一些工程项目,可以用fluent对付过去但是如果真的做论文,或者需要发表文章,除非是做一些技术性工作,比如优化计算 一般用fluent是不适合的。 我感觉fluent做力的计算是很不错的,做流场结构的计算,即使得出一些涡也不是流场本身性质的反应,做低速流场计算,fluent的优势在于收敛 速度快,但是低速流场计算,其大多数的着眼点在于对流场结构的探索,所以计算得到的结果就要好好斟酌一下了,高速流场的模拟中,一般着眼点在于气动力的结果,压力分布

FLUENT 15.0 VOF模型测试报告

ANSYS 15.0 系列测试报告 FLUENT 15.0 VOF模型 测试人:崔亮安世亚太公司 测试时间:2013.12.01

1、仿真平台 HP Z820工作站,Intel Xeon E5-2690 * 2,内存64GB,2TB SATA硬盘。安装ANSYS 15.0 Preview3版本。 2、仿真模型 对某车型上带有底部隔板的油箱,在车辆加速时油箱内燃油晃动的瞬态过程进行瞬态仿真分析,网格单元数约10万,使用FLUENT的VOF模型计算空气和燃油的两相交界面。重点考察FLUENT 15.0中VOF模型的计算效率和两相交界面捕捉精度的提升。 测试案例的几何形状 测试案例的网格模型 3、试用情况 1).稳定性 在整个试用过程中,软件保持稳定,未出现任何不流畅、死机、系统崩溃等情况。2).流畅度 模型拖动、旋转、缩放等操作十分流畅,模型设定及求解过程操作十分流畅。 3).效率 该模型使用0.0005秒的时间步长进行瞬态计算,共计算了2000步,共计1.0秒时长。使用15.0 Preview3版本所用的计算时间为3693秒。之前使用13.0版本计算该模型所用计算时间为4381秒。新版本提速15.7%。 4).硬件资源调用情况 由于该模型网格数量较少,仅使用单核进行求解计算。在整个计算过程中,单核占用率达到100%,内存占用峰值约为400 MB。之前使用13.0版本计算该模型的内存占用峰值约

为450兆。新版本对内存的峰值占用约为旧版本的90%左右。 5).计算精度 VOF模型的计算精度体现在两相交界面捕捉的清晰程度,15.0版本的交界面捕捉清晰程度比旧版本略有提升,对于一些较小的气泡有着更好的捕捉能力。 t=0.45s时,15.0版本和13.0版本计算的两相交界面对比 t=0.45s时,15.0版本和13.0版本计算的两相交界面对比 4、总结 在ANSYS 15.0 Preview3版本的试用过程中,对FLUENT 15.0中VOF模型的计算效率提升感到满意,相比较于旧版本,约有15%的计算速度提升,这对缩短仿真分析的周期有极大帮助;还有约10%的内存峰值占用量下降,这对于合理利用现有硬件资源进行更大规模的模型计算有着重要意义。此外,新版本VOF模型的计算精度也有所提升,两相交界面捕捉更加锐利,对于一些较小的气泡,相对于旧版本有着更好的捕捉能力

fluent经验总结

1什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什 么样的影响? 1、亚松驰(Under Relaxation):所谓亚松驰就是将本层次计算结果与上一层次结果的差值作适当缩减,以避免由于差值过大而引起非线性迭代过程的发散。用通用变量来写 出时,为松驰因子(Relaxation Factors)。《数值传热学-214》 2、FLUENT中的亚松驰:由于FLUENT所解方程组的非线性,我们有必要控制的变化。一般用亚松驰方法来实现控制,该方法在每一部迭代中减少了的变化量。亚松驰最简 单的形式为:单元内变量等于原来的值加上亚松驰因子a与变化的积, 分离解算器使用亚松驰来控制每一步迭代中的计算变量的更新。这就意味着使用分离解算器解的方程,包 括耦合解算器所解的非耦合方程(湍流和其他标量)都会有一个相关的亚松驰因子。在FLUENT中,所有变量的默认亚松驰因子都是对大多数问题的最优值。这个值适合于很多问题,但是对于一些特殊的非线性问题(如:某些湍流或者高Rayleigh数自然对流问题),在计算开始时要慎重减小亚松驰因子。使用默认的亚松驰因子开始计算是很好的习惯。如 果经过4到5步的迭代残差仍然增长,你就需要减小亚松驰因子。有时候,如果发现残差 开始增加,你可以改变亚松驰因子重新计算。在亚松驰因子过大时通常会出现这种情况。 最为安全的方法就是在对亚松驰因子做任何修改之前先保存数据文件,并对解的算法做几 步迭代以调节到新的参数。最典型的情况是,亚松驰因子的增加会使残差有少量的增加, 但是随着解的进行残差的增加又消失了。如果残差变化有几个量级你就需要考虑停止计算 并回到最后保存的较好的数据文件。注意:粘性和密度的亚松驰是在每一次迭代之间的。 而且,如果直接解焓方程而不是温度方程(即:对PDF计算),基于焓的温度的更新是要进行亚松驰的。要查看默认的亚松弛因子的值,你可以在解控制面板点击默认按钮。对于 大多数流动,不需要修改默认亚松弛因子。但是,如果出现不稳定或者发散你就需要减小 默认的亚松弛因子了,其中压力、动量、k和e的亚松弛因子默认值分别为0.2,0.5,0.5和0.5。对于SIMPLEC格式一般不需要减小压力的亚松弛因子。在密度和温度强烈耦合 的问题中,如相当高的Rayleigh数的自然或混合对流流动,应该对温度和/或密度(所用 的亚松弛因子小于1.0)进行亚松弛。相反,当温度和动量方程没有耦合或者耦合较弱时,流动密度是常数,温度的亚松弛因子可以设为1.0。对于其它的标量方程,如漩涡,组分,PDF变量,对于某些问题默认的亚松弛可能过大,尤其是对于初始计算。你可以将松弛因子设为0.8以使得收敛更容易。 SIMPLE与SIMPLEC比较 在FLUENT中,可以使用标准SIMPLE算法和SIMPLEC(SIMPLE-Consistent)算法,默认是SIMPLE算法,但是对于许多问题如果使用SIMPLEC可能会得到更好的结果,尤其是可以应用增加的亚松驰迭代时,具体介绍如下: 对于相对简单的问题(如:没有附加模型激活的层流流动),其收敛性已经被压力速

fluent模拟基本步骤及注意事项

二维模拟: 一、模拟类型: 1、 大区域空间速度场模拟 计算区域大小设置:迎风面是建筑长度的3倍,背风面是建筑长度的12倍,两侧面是建筑宽度的3倍,高度是建筑高度的4倍。 根据相似理论:l C -几何比例尺 速度比例尺:2 10l C C =υ 风量比例尺:2520l l Q C C C C =?=υ 热量比例尺: 250l T Q C C C Cq =?=? 2、 建筑户型温度场、速度场模拟 二、基本操作步骤及注意事项: A gambit 建模 1、 建模: 方法一:直接在GAMBIT 建模; 方法二:CAD 导入gambit ; 1) 在CAD 中用PL 线将户型的基本构造画出来,创建为面域; 2) 输入命令acisoutver ,把‘70’修改为‘30’。 3) “文件”——“输出”——sat 文件 4) 在gambit 中导入Acis 文件 注意:在用PL 线构画户型时,在进口和出口边界(窗户、内户门),要各边界端点连续画线。 2、 划分网格: Interval Size :50 3、 设置边界条件 内部开口边界(门)设置为internal ,房间相邻墙壁设置为Wall 4、 保存文件,并输出mesh 文件 B 导入fluent 计算: 1、 导入mesh 文件 2、 检查网格 3、 设置单位 gambit 里可以缩小建筑比例建模,在fluent 中设置单位恢复原模型。 4、 选择计算模型 5、 设置材料类型 6、 设置边界条件 7、 设置模拟控制条件 8、 边界初始化

9、设置监视窗口 10、设置迭代次数进行计算 11、结果显示 12、保存文件 三、需解决问题: 1、湍流强度等计算; 2、层流湍流界定问题; 3、壁面湿度设置问题; 四、待提高部分: 1、户型流场模拟时,墙壁考虑采用双钱; 2、南京理工校区原始模型(不简化)模拟; 3、三维模型模拟; 五、

fluent使用总结

3.1计算流体力学基础与FLUENT软件介绍 3.1.1计算流体力学基础 计算流体力学(Computational Fluid Dynamics,简称CFD)是利用数值方法通过计算机求解描述流体运动的数学方程,揭示流体运动的物理规律,研究定常流体运动的空间物理特性和非定常流体运动的时空物理特征的学科[}ss}。其基本思想可以归纳为:把原来在时间域和空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关十这些离散点上场变量之间的关系的代数方程组,然后求解代数方程组获得场变量的近似值[f=}}l 计算流体力学可以看作是在流动基本方程(质量守恒方程、动量守恒方程、能量守恒方程)控制下对流动的数值仿真。通过这种数值仿真,可以得到流场内各个位置上的基本物理量(如速度、压力、温度和浓度等)的分布以及这些物理量随时间的变化规律。 还可计算出相关的其它物理量,如旋转式流体机械的转矩、水力损失和效率等。此外,与CAD联合还可进行结构优化设计等。 过去,流体力学的研究主要有实验研究和理论分析两种方法。实验研究主要以实验为研究手段,得到的结果真实可信,是理论分析和数值计算的基础,其重要性不容低估。然}fu实验往往受到模型尺寸、流场扰动和测量精度等的限制,有时可能难以通过实验的方法得到理想的结果。此外,实验往往经费投入较大、人力和物力耗费较大及周期较长;理论分析方法通常是利用简化的流动模型假设,给出所研究问题的解析解或简化方程。然}fu随着时代的发展,这些方法已不能很好地满足复杂非线性流体运动规律的研究。理论分析方法的优点是所得结果具有普遍适用性,各种影响因素清晰可见,是指导试验研究和验证新的数值计算方法的理论基础。但是,它往往要求对计算对象进行抽象和简化,才有可能得出理论解。}fU对十非线性情况,只有少数流动才能得到解析结果。 计算流体力学方法很好地克服了前面两种方法的弱点,与传统的理论分析方法、实验研究方法一同组成了研究流体流动问题的完整体系。计算流体力学的发展,先后经历 2 FLUENT软件介绍 FLUENT软件是由美国FLUENT公司开发的著名的CFD计算分析软件,在航空、航天、透平机械、汽车、船舶、机械、化工、石化、计算机、半导体、能源、医学等领域得到了广泛的应用。能够解决流动、传热、化学反应、燃烧、多相流、旋涡流动等问题。 FLUENT软件研究的流动模型包括了定常和非定常流动,层流(包括各种非牛顿流模型),紊流(包括最先进的紊流模型),不可压缩和可压缩流动,传热和化学反应等。FLUENT软件设计基于“CFD计算机软件群的概念”,针对每一种流动的物理问题的特点,采用适合于它的数值解法在计算速度、稳定性和精度等各方面达到最佳。不同领域的计算软件组合起来,成为CFD软件群,从而高效率地解决各个领域的复杂流动的计算问题,在各软件之间可以方便地进行数值交换,采用统一的前后处理工具,省去了科研工作者在计算方法、编程、前后处理等方面投入的重复、低效的劳动,而可以将主要精力用十物理问题本身的探索上。 流体有限体积法(Finite V olume Method,简称FVM)是目前计算流体动力学领域内应用最普遍的一种对偏微分方程组的离散方法。FLUENT软件就是采用C语言编写的基于非结构化网格和有限体积法的通用CFD求解器,它推出了多种优化的物理模型,如定常和非定常流动;层流(包括各种非牛顿流模型);紊流(包括最先进的紊流模型);不可压缩和可压缩流动;传热;化学反应等。对每一种物理问题的流动特点,有适合它的数值解法,用户可对显式或隐式差分格式进行选择,以期在计算速度、稳定性和精度等方面达到最佳。 在FLUENT 5.0之后的版本中,都采用GAMBIT的专用前处理软件。GAMBIT软件是面向CFD的专业前处理器软件,它包含全面的几何建模能力,也可以从主流的CAD/CAE软件导入几何体和网格,GAMBIT强大的布尔运算能力为建立复杂的几何模型提供的极大的方便。GAMBIT功能强大的网格划分工具,可以划分出包含边界层等CFD特殊要求的高质量的网格。GAMBIT中专有的网格划分算法可以保证在较为复杂的几何区域直接划分出高质量的六面体网格。GAMBIT中的TGRID方法可以在极其复杂的几何区域中划分出与相邻区域网格连续的完全非结构化的网格,GAMBIT网格划分方法的选择完全是智能化的,在选择一个几何区域后GAMBIT会自动选择最合适的网格划分算法,使网格划分过程变得极为容易。 通用CFD软件包,用来模拟从不可压缩到高度可压缩范围内的复杂流动。由于采用了多种求解方法和多重网格加速收敛技术,因而FLUENT能达到最佳的收敛速度和求解精度。灵活的非结构化网格和基于解的自适应网格技术及成熟的物理模型,使FLUENT在转捩与湍流、传热与相变、化学反应与燃烧、多相流、旋转机械、动/变形网格、噪声、材料加工、燃料电池等方面有广泛应用。

实体入水FLUENT模拟过程_包括划分网格方法

实体入水模拟过程 3.2.1利用GAMBIT建立计算模型 1)启动GAMBIT,打开对话框如图3.2.1选择工作目录为D:\GAMBIT working。 图 3.2.1 2)首先建立等边三角形,单击Geometry Vertex Create Real Vertex,在Create Real Vertex面板的x、y、z坐标输入(0,0,0),单击Apply按钮生成第一个点,按同样的方法建立点(0.4,0,0)。然后单击Geometry Edge Create Straight Edge,在Create Straight Edge面板中选择点1与点2,连接这两点省成线段。如图3.2.2 图3.2.2 3)单击Edge面板中的Move/Copy Edges按钮,打开如图3.2.3的面板,选择线段1,单击copy按钮,并选择Operation为Rotate,在Angle栏输入60,其他保持默认,单击Apply 按钮。即旋转复制生成第二条线段。

图3.2.3 4)剩下的一条线段只需连接右侧两点即可,如图3.2.4所示。 图3.2.4 5)创建三角形面。单击Geometry Face Create Face from Wireframe,在Create Face from Wireframe面板中利用鼠标左键框选等边三角形的三条边,然后单击Apply按钮创建面。 6)由于三角形面域的位置不对,所以还要对其位置进行调整。首先需将其旋转210度。单击Face面板中的Move/Copy Faces按钮,在Move/Copy Faces面板中,选择面1(face.1),单击Move并选择Operation为Rotate,在Angle栏输入210,其他保持默认,单击Apply 按钮。其次,需要将三角形平移,在Move/Copy Edges面板中选择面1(face.1),单击Move 并选择Operation为Translate,在x与y栏分别输入3和8.4,单击Apply按钮完成平移操作,此时的视图窗口如图3.2.5所示。

FLUENT软件学习报告

FLUENT软件学习报告 一、软件简介 CFD商业软件FLUENT,是通用CFD软件包,用来模拟从不可压缩到高度可压 FLUENT能达到最佳的收敛速度和求解精度。灵活的非结构化网格和基于解的自适应网格技术及成熟的物理模型,使FLUENT在转换与湍流、传热与相变、化学反应与燃烧、多相流、旋转机械、动/变形网格、噪声、材料加工、燃料电池等方面有广泛应用。 从本质上讲,FLUENT只是一个求解器。FLUENT本身提供的主要功能包括导入网格模型、提供计算的物理模型、施加边界条件和材料特性、求解和后处理。FLUENT支持的网格生成软件包括GAMBIT、TGRid、prePDF、GeoMesh和其他CAD/CAE软件包。 二、软件使用方法 本学习报告将以一简单算例—台阶运动演示FLUENT软件与GAMBIT及CAD 的结合使用。 2.1 物理模型 二维后台阶运动的计算区域如图2-1所示。计算区域为0.4m×1.2m,台阶长度为0.2m,高度为0.1m。 2.2在CAD中生成几何模型 在CAD中按下列步骤生成如图2-1几何模型:

(1)绘制求解区域形状。 (2)调用PEDIT命令,将构成台阶及边界的线生成多段线。 (3)调用REGION命令,将多段线形成的封闭区间生成区域。 (4)调用EXPORT命令,将绘图结果导出为ASCI格式文件命名为台阶,以便在GAMBIT中进行后续处理。 图2-2是在AUTOCAD中绘制的后台阶绕流的几何模型,该结果包含一个局域。 2.3在GAMBIT中划分网格 在AUTOCAD中生成了一个二维台阶的几何模型,该模型包含一个区域,现在转入到GAMBIT中进行网格划分。 按照导入几何模型、生成流体区域、划分网格、定义边界类型和区域类型的步骤完成GAMBIT划分网格的工作。网格划分完成后输出保存为MSH格式的网格文件。绘制结果如图2-3. 图2-3 网格

建筑群风场fluent计算分析大作业

建筑群风场fluent计算分析大作业 一、建筑群风场分析目的及计算模型的选取 1、建筑群风场分析的目的 随着城市人口的集中和建筑技术的发展,建筑物之间的间距也变得越来越小,这些建筑物对周围环境风场的影响较大,风力载荷正成为建筑群设计中必须考虑的重要因素。风对建筑物以及建筑物周围环境的影响具体表现为以下几点: (1)在建筑物比较密集的地方,建筑物改变了原来的风场,在相同条件下,建筑物周围的局部风速增大。 (2)风力载荷是一种随机载荷, 受建筑物高度、风向、风的强度以及持续时间的影响很大。高层建筑物周围的局部负压过大, 使得建筑物顶局部掀起或装饰玻璃破碎、脱 落。 (3)建筑物的外轮廓形状一般都是非流线形的, 因而流场不可避免地伴随有分离流动、涡的脱落和振荡.这些现象会在建筑物的居室产生严重的噪音, 更严重时还会引起结 构和流体的耦合震荡。 因此,研究建筑群风场的速度分布、静压分布十分有必要。 2、计算模型选择 当建筑物是钝体,空气绕过钝体时的风场和绕过流线体时存在着分离流和剪切层的非定常振动,钝体周围流场十分复杂,是由撞击、分离、再附、环绕和旋涡等确定的。另外,建筑物通常建造在大气边界层。在大气边界层中,气流质点运动杂乱无章,气流流动表现为湍流状态。湍流是由大小不同尺度的涡体叠合而成,对时间和空间都是非线性的随机运动的,因此使用湍流模型解决此问题。在湍流模型中,基于Reynolds时均的Realizable K-ε模型能

在整体上很好地反映出建筑物表面风压的变化趋势,模拟结果与试验值相差较小且计算效率高,所以选用该模型。 二、计算模型设置 1、边界条件选取 计算流域入流处采用 FLUENT 中的速度进口边界条件(velocity-inlet )。边界条件用于定义在流动进口处的流动速度及相关其它标量型流动变量。该边界条件适用于不可压缩流动,对于可压缩流动问题时会使得入口处的总温度或总压有一定的波动,导致非物理结果,所以可压缩流问题不适合采用速度进口边界条件。本文为不可压缩流,可采用以 velocity-inlet 边界。需对流动速度 v 、k 和ε定义。设建筑物所在地形为B 类地形,其风场为B 类风场,10m 高度处、10min 平均的基本风压为 w0=0.35kPa ,相应的标准高度处平均风速为u0=23.7m/s ;则人口处的湍流强度I 、湍流动能K 和湍流耗散率 ε的具体表达式如下 21.5()k u I =?; 3342 0.09k l ε=; 0.250.3150.1()5450450z I z z -≤??=?<≤?? 其中z ,u 分别是流域中任意高度和对应的平均风速,z 由模型底部开始算起。l 为湍流积分尺度,采用经验公式0.5100(l z =。平均风速剖面、湍动能,c 和耗散率 值采用Fluent 提供的UDF 编程与Fluent 作接口实现。 出口采用完全发展出流边界条件(outflow )。Outflow 边界条件用于出流边界上的压力或速度都未知的情况,适用于出口处流动是完全发展的情况。 计算流域顶部和两侧采用对称边界条件(symmetry ),适用于流动及传热场是对称的

Fluent数值模拟步骤

Fluent数值模拟的主要步骤 使用Gambit划分网格的工作: 首先建立几何模型,再进行网格划分,最后定义边界条件。 Gambit中采用的单位是mm,Fluent默认的长度是m。 Fluent数值模拟的主要步骤: (1)根据具体问题选择2D或3D求解器进行数值模拟; (2)导入网格(File-Read-Case),然后选择由Gambit导出的msh文件。 (3)检查网格(Grid-Check),如果网格最小体积为负值,就要重新进行网格划分。(4)选择计算模型(Define-Models-Solver)。(6) (5)确定流体的物理性质(Define-Materials)。 (6)定义操作环境(Define-Operating Conditions)。 (7)指定边界条件(Define-Boundary Conditions )。 (8)求解方法的设置及其控制(Solve-Control-Solution)。 (9)流场初始化(Solve-Initialize)。 (10)打开残插图(Solve-Monitors-Residual)可动态显示残差,然后保存当前的Case和Data文件(File-Writer-Case&Data)。 (11)迭代求解(Solve-Iterate)。 (12)检查结果。 (13)保存结果(File-Writer-Case&Data),后处理等。 在运行Fluent软件包时,会经常遇到以下形式的文件: .jou文件:日志文档,可以编辑运行。 .dbs文件:Gambit工作文件,若想修改网格,可以打开这个文件进行再编辑。 .msh文件:Gambit输出的网格文件。 .cas文件:是.msh文件经过Fluent处理后得到的文件。 .dat文件:Fluent计算数据结果的数据文件。 三维定常速度场的计算实例操作步骤 对于三维管道的速度场的数值模拟,首先利用Gambit画出计算区域,并且对边界条件进行相应的指定,然后导出Mesh文件。接着,将Mesh文件导入到Fluent求解器中,再经过一些设置就得到形影的Case文件,再利用Fluent求解器进行求解。最后,可以将Fluent 求解的结果导入到Tecplot中,并对感兴趣的结果进行进一步的处理。

Fluent后处理分析

第四章Fluent后处理 利用FLUENT 提供的图形工具可以很方便的观察CFD 求解结果,并得到满意的数据和图形,用来定性或者定量研究整个计算。本章将重点介绍如何使用这些工具来观察您的计算结果。 1 生成基本图形 在FLUENT中能够方便的生成网格图、等值线图、剖面图,速度矢量图和迹线图等图形来观察计算结果。下面将介绍如何产生这些图形。 一、生成网格图 生成网格或轮廓线视图的步骤 (1)打开网格显示面板 菜单:Display –〉Grid... 图4-1 网格显示对话框 (2)在表面列表中选取表面。点击表面列表下的Outline 按钮来选择所有“外”表面。如果所有的外表面都已经处于选中状态,单击该按钮将使所有外表面处于未选中的状态。点击表面列表下的Interior 按钮来选择所有“内”表面。同样,如果所有的内表面都已经处于选中状态,单击该按钮将使所有内表面处于未选中的状态。 (3)根据需要显示的内容,可以选择进行下列步骤: 1)显示所选表面的轮廓线,在图4-1所示的对话框中进行如下设置:在Options 项选择Edges,在Edge Type 中选择Outline。 2)显示网格线,在Options 选择Edges,在Edge Type 中选择ALL。 3)绘制一个网格填充图形,在Options 选择Faces。显示选中面的网格节点,在Options 选择Nodes。

(4)设置网格和轮廓线显示中的其它选项。 (5)单击Display 按钮,就可以在激活的图形窗口中绘制选定的网格和轮廓线。 二、绘制等值线和轮廓图 生成等值线和轮廓的步骤: 通过图4-2 所示的等值线对话框来生成等值线和轮廓。 菜单:Display –〉Contours... 图4-2 等值线对话框 生成等值线或轮廓的基本步骤如下: (1) 在Contours Of 下拉列表框中选择一个变量或函数作为绘制的对象。首先在上面的列表中选择相关分类;然后在下面的列表中选择相关变量。 (2) 在Surfaces 列表中选择待绘制等值线或轮廓的平面。对于2D情况,如果没有选取任何面,则会在整个求解对象上绘制等值线或轮廓。对于3D情况,至少需要选择一个表面。 (3) 在Levels 编辑框中指定轮廓或等值线的数目。最大数为100。 (4) 如果需要生成一个轮廓视图,请在Option 中选中Draw Profiles 选项。在轮廓选项对话框中(如图4-3),可以如下定义轮廓:

沿程损失阻力系数的FLUENT数值模拟计算报告 李济然

沿程损失阻力系数 工程力学2007级李济然 20071210114 一概述: 沿程损失水流流动过程中,由于固体壁面的阻滞作用而引起的摩擦阻力所造成的水头损失。流体流动中为克服摩擦阻力而损耗的能量称为沿程损失。沿程阻力损失与长度、粗糙度及流速的平方成正比,而与管径成反比,沿程能量损失的计算公式是: h r=λv2/(2dg) 其中:l为管长,λ为沿程损失系数,d为管道内径,v2/(2g)为单位重力流体的动压头(速度水头),v为流体的运动粘度系数。 沿程损失能量损失的计算公式由带粘性的伯努利方程: v12/(2g)+p1/(ρg)+z1=v22/(2g)+p2/(ρg)+z2+h f 推出: h f=(p1-p2)/ (ρg) 其中: v22/(2g)——单位质量流体的动能(速度水头)。流体静止时为0。 Z ——单位质量流体的势能(位置水头)。 p/(ρg)——单位质量流体的压力能(压强水头)。 又由量纲分析的π定理,得出Δp/(ρV2/2)=λL/d,计算出达西 λ=f(Re)由于摩擦因子λ=2Δpd/(LρV2),则h f=λLV2/(2gD) d Re=Vd/v和v=μ/ρ,则λ=f(R e d)

湍流光滑管的沿程损失系数按卡门一普朗特(Karmn-Prandtl)公式: 1/λ1/2=2lg(Reλ1/2)-0.8 当105<Re<3×106时,尼古拉兹的计算公式为: λ=0.0032+0.221Re-0.237 1.湍流粗糙管过渡区 :26.98(d/ε)8/7<Re<2308(d/ε)0.85为湍流粗糙管过渡区。该区域的沿程损失系数与按洛巴耶夫(Б.H.Лo6aeв)的公式进行计算,即 λ=1.42[lg(dRe/ε)]-2=1.42[lg(1.273qv/vε)]-2 2.湍流粗糙管平方阻力区:2308(d/ε)0.85

fluent计算分析报告

fluent计算分析报告 风扇的分析 学号:20xx04033073 班级:7403302姓名:喻艳平 Gambit 操作步骤 1. 选择分析软件 2. 修改内定值(Edit-Default) 3. 建立点→线→面→体积 4. 建立网格 5. 定义边界条件、流体或固体 6. 检视格点 7. 存档离开(save file and export mesh) 运行软件 进入软件,将模型导入gambit 建立旋转流体区 Operation ↓ GEOMETRY COMMAND BUTTON ↓ Geometry ↓ VOLUME COMMAND BUTTON ↓ Volume ↓ Create Real Cylinder 建立管道部分Operation----GEOMETRY COMMAND BUTTON---Geometry---VOLUME COMMAND BUTTON ---Volume---Create Real Cylinder 最终图形如下:

建立管道入进口处: 建立管道出口处: 处理风扇部分: 1. Volume 3 split with Volume 2 2. Volume 2 subtract Volume 1 风扇编号从内到外依次为1、2、3。处理管道部分: 计算出来的图 箱梁表面压力分布 阻力报告 升力报告 弯矩 箱梁附近的压强云图 箱梁附近的速度云图 箱梁附近速度矢量图 -6°攻角跨中截面压强等值线 一、前言 二、计算参数选择 为合理地对本项目主体建筑的风荷载分布状况进行分析,首先必须合理地选择计算模型以及涉及风荷载和CFD计算的有关参数。 建筑物计算模型 本项目主体建筑可以大致分为东、西两座塔楼和裙房三

轿车尾流fluent仿真分析与设计

轿车尾流fluent仿真分析与设计 1.1空气动力学在汽车中的应用 空气动力学特性是汽车的重要特性之一,它直接影响汽车的动力性、燃油经济性、操纵稳定性、舒适性与安全性。其中,空气动力学中的空气阻力(风阻)是影响油耗的首要因素,降低风阻系数则是提高汽车燃油经济性的重要途径之一。汽车空气动力学性能对汽车的安全性、经济性和舒适性具有重要影响。汽车空气动力学的首要研究任务是通过试验或者数值模拟研究获得汽车行驶时汽车本身所受到的气动力的变化,改善汽车的行驶性能,评价汽车的节能水平。 1.2阶背式轿车与直背式轿车简述 阶背式轿车国际上简称L型车,也称为三厢式轿车,具有后备箱。它通常是中高档轿车的款式,涵盖的车型最多,从夏利三厢、富康988、捷达、奥迪一直到凯迪拉克、劳斯莱斯。在一般人的眼中,这车型是引擎置在车头,中间省几个座位,四扇车门,车尾有个分隔的行李厢,即三厢式设计。缺点是扁阔的尾厢放不下较大件的行李,而且乘客在行车时,也照顾不到放在后备厢的东西。在驾驶方面,由于车身重心是在前方偏中位置,所以有中性转向的特性。随着生活水平的日益提高, 外出旅行成了人们休闲的新时尚, 直背式旅行轿车(简称直背式轿车)在人们旅行时起着非常重要的作用, 既能载人又能载物.但缺点是后行李仓空间不足以简化的直背式轿车模型为研究对象。 1.3国内外研究现状 当前国内外对汽车外流场的研究已经比较深入,已经有大量的相关文献发表,北航的康宁、李光辉教授借助商用计算流体力学软件STAR-CD,利用移动边界条件进行三维数值模拟,计算加装行李架前后的轿车在不同车速下的车身气动阻力系数和升力系数,并通过与试验结果的对比,验证数值计算结果的正确性。计算结果表明,不同剖面形状的行李架对直背式轿车外

(完整版)fluent学习总结报告6

10、计算结果后处理 1)创建要进行后处理的表面 FLUENT中的可视化信息基本都是以表面({surface)为基础的。有些表面,如计算的进口表面和壁面等,可能已经存在,在对计算结果进行后处理时直接使用即可。但多数情况下,为了达到对空间任意位置上的某些变量的观察、统计及制作XY散点图,需要创建新的表面。FLUENT提供了多种方法,用以生成各种类型的表面。FLUENT在生成这些表确后,将表面的信息存储在案例文件中。现简要介绍这些表面。 ?区域表面(Zone Surfaces)。如果用户想创建一个与现有的单元区域(或单元面区域)包含相同单元(或单元面)的单元区域(或单元面区域).可使用这种方式创建区域表面。当需要在边界上显 示结果时,这类表面非常有用。用户可通过Surface / Zone命令打开Zone Surface对话框,来生成这类表面。 ?子域表面(Partition Surfaces)。当用户使用FLLENT的并行版本时,可通过两个网格子 域的边界来生成表面。用户可通过Surface /Partition命令打开Partition Surface对话框,来生成这类表面。 ?点表面(Point Surfaces)。为了监视某一点处的变量或函数的值,需要创建这类表 面。用户可通过Surface / Point命令打开Point Surface对话框,来生成这类表面。 ?线和耙表面(Line and Rake Surfaces)。为了生成流线.用户必须指定一个表面,粒子将从这个表 面释放出来。线表面和耙表面就是专为此设计的。一个耙表面由一 组在两个指定点间均匀分布的若于个点组成,一个线表面只是一个指定了端点且在计算域内延伸的一条线。用户可通过Surface/Line/R ake。命令打开Line / Rake Surface对话框,来生成这类表而。 ?平面(Plane Surface):如果想显示计算域内指定平面上的流场数据,则可创建这 类表面。该类表面通过指定3个点来定义。用户可通过Surface /Plane命令打开Plane Surface对话框,来生成这类表面。 ?二次曲面(Quadric Surfaces]:为了显示在一条直线、平面、圆、球或二次曲面上的数据,用户可输入用于定义这个几何对象的二次函数的系数来创建它。该

FLUENT-6-计算模拟过程方法及步骤

FLUENT 12 模拟步骤 Problem Setup 读入网格:file read case 选择网格文件(后缀为。Mesh) 1 General 1)Mesh(网格) > Check(点击查看网格的大致情况,如有无负体积等) Maximum volume (m3)(最大体积,不能为负) Minimum volume (m3)(最小体积,不能为负) Total volume (m3)(总体体积,不能为负) > Report Quality(点击报告网格质量) Maximum cell squish(最大单元压扁,如果该值等于1,表示得到了很坏的单元) Maximum cell skewness(最大单元扭曲,该值在0到1之间,0表示最好,1表示最坏) Maximum aspect ratio(最大长宽比,1表示最好) > Scale(点击缩放网格尺寸,FLUENT默认的单位是米) Mesh Was Create In(点选mm →点击Scale按钮且只能点击一次) View Length Unit In(点选mm →直接点击Close按钮不能再点击Scale按钮) > Display(点击显示网格设定)→弹出Mesh Colors窗口 Options(选Edges和Faces) Edge Type(点选All) Surface(点选曲面) →点击Display按钮 点击Colors按钮→弹出Mesh Display窗口 Options(点选Color by ID) →点击Close按钮→再点击Display按钮 2)Solver(求解器) > Pressure-Based(压力基,压力可变,用于低速不可压缩流动) > Density-Based(密度基,密度可变,用于高速可压缩流动) 3)Velocity Formulation(速度格式) > Absolute(绝对速度) > Relative(相对速度) 4)Time(时间) > Steady(稳态) > Transient(瞬态) 5)Units(点击设置变量单位) 点击按钮→弹出Set Units窗口→在Quantities项里点选pressure →在Units项里点选atm →点击

多孔介质-Fluent模拟

7.19多孔介质边界条件 多孔介质模型适用的范围非常广泛,包括填充床,过滤纸,多孔板,流量分配器,还有管群,管束系统。当使用这个模型的时候,多孔介质将运用于网格区域,流场中的压降将由输入的条件有关,见Section 7.19.2.同样也可以计算热传导,基于介质和流场热量守恒的假设,见Section 7.19.3. 通过一个薄膜后的已知速度/压力降低特性可以简化为一维多孔介质模型,简称为“多孔跳跃”。多孔跳跃模型被运用于一个面区域而不是网格区域,而且也可以代替完全多孔介质模型在任何可能的时候,因为它更加稳定而且能够很好地收敛。见Section 7.22. 7.19.1 多孔介质模型的限制和假设 多孔介质模型就是在定义为多孔介质的区域结合了一个根据经验假设为主的流动阻力。本质上,多孔介质模型仅仅是在动量方程上叠加了一个动量源项。这种情况下,以下模型方面的假设和限制就可以很容易得到: ?因为没有表示多孔介质区域的实际存在的体,所以fluent默认是计算基于连续性方程的虚假速度。做为一个做精确的选项,你可以适用fluent 中的真是速度,见section7.19.7。 ?多孔介质对湍流流场的影响,是近似的。 ?当在移动坐标系中使用多孔介质模型的时候,fluent既有相对坐标系也可以使用绝对坐标系,当激活相对速度阻力方程。这将得到更精确的源项。 相关信息见section7.19.5和7.19.6。 ?当需要定义比热容的时候,必须是常数。 7.19.2 多孔介质模型动量方程 多孔介质模型的动量方程是在标准动量方程的后面加上动量方程源项。源项包含两个部分:粘性损失项(达西公式项,方程7.19-1右边第一项),和惯性损失项(方程7.19-1右边第二项) (7.19-1)

相关主题