搜档网
当前位置:搜档网 › 圆锥曲线、导数2018全国高考数学分类真题(含答案)

圆锥曲线、导数2018全国高考数学分类真题(含答案)

圆锥曲线、导数2018全国高考数学分类真题(含答案)
圆锥曲线、导数2018全国高考数学分类真题(含答案)

圆锥曲线、导数2018年全国高考数学分类真题(含答案)

一.选择题(共7小题)

1.双曲线﹣y2=1的焦点坐标是()

A.(﹣,0),(,0)B.(﹣2,0),(2,0)C.(0,﹣),(0,)D.(0,﹣2),(0,2)

2.已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线

交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()

A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1

3.设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C

的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()

A.B.2 C.D.

4.已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A 且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.

5.双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()

A.y=±x B.y=±x C.y=±x D.y=±x

6.已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线

的交点分别为M,N.若△OMN为直角三角形,则|MN|=()

A.B.3 C.2 D.4

7.设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()

A.y=﹣2x B.y=﹣x C.y=2x D.y=x

二.填空题(共6小题)

8.在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为.

9.已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为.

10.已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=时,点B横坐标的绝对值最大.

11.已知点M(﹣1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k=

12.曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=.

13.曲线y=2ln(x+1)在点(0,0)处的切线方程为.

三.解答题(共13小题)

14.设函数f(x)=[ax2﹣(4a+1)x+4a+3]e x.

(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;

(Ⅱ)若f(x)在x=2处取得极小值,求a的取值范围.

15.如图,在平面直角坐标系xOy中,椭圆C过点(),焦点F1(﹣,0),F2(,0),圆O的直径为F1F2.

(1)求椭圆C及圆O的方程;

(2)设直线l与圆O相切于第一象限内的点P.

①若直线l与椭圆C有且只有一个公共点,求点P的坐标;

②直线l与椭圆C交于A,B两点.若△OAB的面积为,求直线l的方程.

16.如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B

满足PA,PB的中点均在C上.

(Ⅰ)设AB中点为M,证明:PM垂直于y轴;

(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.

17.设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A 的坐标为(b,0),且|FB|?|AB|=6.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线l:y=kx(k>0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若=sin∠AOQ(O为原点),求k的值.

18.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).

(1)证明:k<﹣;

(2)设F为C的右焦点,P为C上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差.

19.设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;

(2)求过点A,B且与C的准线相切的圆的方程.

20.设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).

(1)当l与x轴垂直时,求直线AM的方程;

(2)设O为坐标原点,证明:∠OMA=∠OMB.

21.记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.

(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;

(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;

(3)已知函数f(x)=﹣x2+a,g(x)=.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.

22.已知函数f(x)=﹣lnx.

(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8﹣8ln2;

(Ⅱ)若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.23.已知函数f(x)=a x,g(x)=log a x,其中a>1.

(Ⅰ)求函数h(x)=f(x)﹣xlna的单调区间;

(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明x1+g(x2)=;

(Ⅲ)证明当a≥e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.24.已知函数f(x)=(2+x+ax2)ln(1+x)﹣2x.

(1)若a=0,证明:当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0;

(2)若x=0是f(x)的极大值点,求a.

25.已知函数f(x)=e x﹣ax2.

(1)若a=1,证明:当x≥0时,f(x)≥1;

(2)若f(x)在(0,+∞)只有一个零点,求a.

26.已知函数f(x)=﹣x+alnx.

(1)讨论f(x)的单调性;

(2)若f(x)存在两个极值点x1,x2,证明:<a﹣2.

圆锥曲线、导数2018年全国高考数学分类真题(含答案)

参考答案与试题解析

一.选择题(共7小题)

1.双曲线﹣y2=1的焦点坐标是()

A.(﹣,0),(,0)B.(﹣2,0),(2,0)C.(0,﹣),(0,)D.(0,﹣2),(0,2)

【解答】解:∵双曲线方程可得双曲线的焦点在x轴上,且a2=3,b2=1,

由此可得c==2,

∴该双曲线的焦点坐标为(±2,0)

故选:B.

2.已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线

交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()

A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1

【解答】解:由题意可得图象如图,CD是双曲线的一条渐近线

y=,即bx﹣ay=0,F(c,0),

AC⊥CD,BD⊥CD,FE⊥CD,ACDB是梯形,

F是AB的中点,EF==3,

EF==b,

所以b=3,双曲线=1(a>0,b>0)的离心率为2,可得,

可得:,解得a=.

则双曲线的方程为:﹣=1.

故选:C.

3.设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C

的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()

A.B.2 C.D.

【解答】解:双曲线C:﹣=1(a>0.b>0)的一条渐近线方程为y=x,

∴点F2到渐近线的距离d==b,即|PF2|=b,

∴|OP|===a,cos∠PF2O=,

∵|PF1|=|OP|,

∴|PF1|=a,

在三角形F1PF2中,由余弦定理可得|PF1|2=|PF2|2+|F1F2|2﹣2|PF2|?|F1F2|COS∠PF2O,

∴6a2=b2+4c2﹣2×b×2c×=4c2﹣3b2=4c2﹣3(c2﹣a2),

即3a2=c2,

即a=c,

∴e==,

故选:C.

4.已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A 且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.

【解答】解:由题意可知:A(﹣a,0),F1(﹣c,0),F2(c,0),

直线AP的方程为:y=(x+a),

由∠F1F2P=120°,|PF2|=|F1F2|=2c,则P(2c,c),

代入直线AP:c=(2c+a),整理得:a=4c,

∴题意的离心率e==.

故选:D.

5.双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()

A.y=±x B.y=±x C.y=±x D.y=±x

【解答】解:∵双曲线的离心率为e==,

则=====,

即双曲线的渐近线方程为y=±x=±x,

故选:A.

6.已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()

A.B.3 C.2 D.4

【解答】解:双曲线C:﹣y2=1的渐近线方程为:y=,渐近线的夹角为:60°,不妨设过F(2,0)的直线为:y=,

则:解得M(,),

解得:N(),

则|MN|==3.

故选:B.

7.设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()

A.y=﹣2x B.y=﹣x C.y=2x D.y=x

【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,

可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,

曲线y=f(x)在点(0,0)处的切线的斜率为:1,

则曲线y=f(x)在点(0,0)处的切线方程为:y=x.

故选:D.

二.填空题(共6小题)

8.在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为2.

【解答】解:双曲线=1(a>0,b>0)的右焦点F(c,0)到一条渐近线y=x的距离为c,

可得:=b=,

可得,即c=2a,

所以双曲线的离心率为:e=.

故答案为:2.

9.已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为2.

【解答】解:椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,

可得椭圆的焦点坐标(c,0),正六边形的一个顶点(,),可得:,可得,可得e4﹣8e2+4=0,e∈(0,1),

解得e=.

同时,双曲线的渐近线的斜率为,即,

可得:,即,

可得双曲线的离心率为e==2.

故答案为:;2.

10.已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=5时,点B横坐标的绝对值最大.

【解答】解:设A(x1,y1),B(x2,y2),

由P(0,1),=2,

可得﹣x1=2x2,1﹣y1=2(y2﹣1),

即有x1=﹣2x2,y1+2y2=3,

又x12+4y12=4m,

即为x22+y12=m,①

x22+4y22=4m,②

①﹣②得(y1﹣2y2)(y1+2y2)=﹣3m,

可得y1﹣2y2=﹣m,

解得y1=,y2=,

则m=x22+()2,

即有x22=m﹣()2==,

即有m=5时,x22有最大值16,

即点B横坐标的绝对值最大.

故答案为:5.

11.已知点M(﹣1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k=

2.

【解答】解:∵抛物线C:y2=4x的焦点F(1,0),

∴过A,B两点的直线方程为y=k(x﹣1),

联立可得,k2x2﹣2(2+k2)x+k2=0,

设A(x1,y1),B(x2,y2),

则x1+x2=,x1x2=1,

∴y1+y2=k(x1+x2﹣2)=,y1y2=k2(x1﹣1)(x2﹣1)=k2[x1x2﹣(x1+x2)+1]=﹣4,

∵M(﹣1,1),

∴=(x1+1,y1﹣1),=(x2+1,y2﹣1),

∵∠AMB=90°=0,∴?=0

∴(x1+1)(x2+1)+(y1﹣1)(y2﹣1)=0,

整理可得,x1x2+(x1+x2)+y1y2﹣(y1+y2)+2=0,

∴1+2+﹣4﹣+2=0,

即k2﹣4k+4=0,

∴k=2.

故答案为:2

12.曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=﹣3.

【解答】解:曲线y=(ax+1)e x,可得y′=ae x+(ax+1)e x,

曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,

可得:a+1=﹣2,解得a=﹣3.

故答案为:﹣3.

13.曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.

【解答】解:∵y=2ln(x+1),

∴y′=,

当x=0时,y′=2,

∴曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.

故答案为:y=2x.

三.解答题(共13小题)

14.设函数f(x)=[ax2﹣(4a+1)x+4a+3]e x.

(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;

(Ⅱ)若f(x)在x=2处取得极小值,求a的取值范围.

【解答】解:(Ⅰ)函数f(x)=[ax2﹣(4a+1)x+4a+3]e x的导数为

f′(x)=[ax2﹣(2a+1)x+2]e x.

由题意可得曲线y=f(x)在点(1,f(1))处的切线斜率为0,

可得(a﹣2a﹣1+2)e=0,

解得a=1;

(Ⅱ)f(x)的导数为f′(x)=[ax2﹣(2a+1)x+2]e x=(x﹣2)(ax﹣1)e x,

若a=0则x<2时,f′(x)>0,f(x)递增;x>2,f′(x)<0,f(x)递减.

x=2处f(x)取得极大值,不符题意;

若a>0,且a=,则f′(x)=(x﹣2)2e x≥0,f(x)递增,无极值;

若a>,则<2,f(x)在(,2)递减;在(2,+∞),(﹣∞,)递增,

可得f(x)在x=2处取得极小值;

若0<a<,则>2,f(x)在(2,)递减;在(,+∞),(﹣∞,2)递增,

可得f(x)在x=2处取得极大值,不符题意;

若a<0,则<2,f(x)在(,2)递增;在(2,+∞),(﹣∞,)递减,

可得f(x)在x=2处取得极大值,不符题意.

综上可得,a的范围是(,+∞).

15.如图,在平面直角坐标系xOy中,椭圆C过点(),焦点F1(﹣,0),F2(,0),圆O的直径为F1F2.

(1)求椭圆C及圆O的方程;

(2)设直线l与圆O相切于第一象限内的点P.

①若直线l与椭圆C有且只有一个公共点,求点P的坐标;

②直线l与椭圆C交于A,B两点.若△OAB的面积为,求直线l的方程.

【解答】解:(1)由题意可设椭圆方程为,

∵焦点F1(﹣,0),F2(,0),∴.

∵∴,又a2+b2=c2=3,

解得a=2,b=1.

∴椭圆C的方程为:,圆O的方程为:x2+y2=3.

(2)①可知直线l与圆O相切,也与椭圆C,且切点在第一象限,

∴可设直线l的方程为y=kx+m,(k<0,m>0).

由圆心(0,0)到直线l的距离等于圆半径,可得.由,可得(4k2+1)x2+8kmx+4m2﹣4=0,

△=(8km)2﹣4(4k2+1)(4m2﹣4)=0,

可得m2=4k2+1,∴3k2+3=4k2+1,结合k<0,m>0,解得k=﹣,m=3.

将k=﹣,m=3代入可得,

解得x=,y=1,故点P的坐标为(.

②设A(x1,y1),B(x2,y2),

由?k<﹣.

联立直线与椭圆方程得(4k2+1)x2+8kmx+4m2﹣4=0,

|x2﹣x1|==,

O到直线l的距离d=,

|AB|=|x2﹣x1|=,

△OAB的面积为S===,

解得k=﹣,(正值舍去),m=3.

∴y=﹣为所求.

16.如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B 满足PA,PB的中点均在C上.

(Ⅰ)设AB中点为M,证明:PM垂直于y轴;

(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.

【解答】解:(Ⅰ)证明:可设P(m,n),A(,y1),B(,y2),

AB中点为M的坐标为(,),

抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上,

可得()2=4?,

()2=4?,

化简可得y1,y2为关于y的方程y2﹣2ny+8m﹣n2=0的两根,

可得y1+y2=2n,y1y2=8m﹣n2,

可得n=,

则PM垂直于y轴;

(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,

可得m2+=1,﹣1≤m<0,﹣2<n<2,

由(Ⅰ)可得y1+y2=2n,y1y2=8m﹣n2,

由PM垂直于y轴,可得△PAB面积为S=|PM|?|y1﹣y2|

=(﹣m)?

=[?(4n2﹣16m+2n2)﹣m]?

=(n2﹣4m),

可令t==

=,

可得m=﹣时,t取得最大值;

m=﹣1时,t取得最小值2,

即2≤t≤,

则S=t3在2≤t≤递增,可得S∈[6,],

△PAB面积的取值范围为[6,].

17.设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A 的坐标为(b,0),且|FB|?|AB|=6.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线l:y=kx(k>0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若=sin∠AOQ(O为原点),求k的值.

【解答】解:(Ⅰ)设椭圆+=1(a>b>0)的焦距为2c,

由椭圆的离心率为e=,

∴=;

又a2=b2+c2,

∴2a=3b,

由|FB|=a,|AB|=b,且|FB|?|AB|=6;

可得ab=6,

从而解得a=3,b=2,

∴椭圆的方程为+=1;

(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2),由已知y1>y2>0;

∴|PQ|sin∠AOQ=y1﹣y2;

又|AQ|=,且∠OAB=,

∴|AQ|=y,

由=sin∠AOQ,可得5y1=9y2;

由方程组,消去x,可得y1=,

∴直线AB的方程为x+y﹣2=0;

由方程组,消去x,可得y2=;

由5y1=9y2,可得5(k+1)=3,

两边平方,整理得56k2﹣50k+11=0,

解得k=或k=;

∴k的值为或.

18.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).

(1)证明:k<﹣;

(2)设F为C的右焦点,P为C上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差.

【解答】解:(1)设A(x1,y1),B(x2,y2),

∵线段AB的中点为M(1,m),

∴x1+x2=2,y1+y2=2m

将A,B代入椭圆C:+=1中,可得

两式相减可得,3(x1+x2)(x1﹣x2)+4(y1+y2)(y1﹣y2)=0,

即6(x1﹣x2)+8m(y1﹣y2)=0,

∴k==﹣=﹣

点M(1,m)在椭圆内,即,

解得0<m

∴.

(2)证明:设A(x1,y1),B(x2,y2),P(x3,y3),

可得x1+x2=2,

∵++=,F(1,0),∴x1﹣1+x2﹣1+x3﹣1=0,y1+y2+y3=0,

∴x3=1,

∵m>0,可得P在第一象限,故,m=,k=﹣1

由椭圆的焦半径公式得则|FA|=a﹣ex1=2﹣x1,|FB|=2﹣x2,|FP|=2﹣x3=.

则|FA|+|FB|=4﹣,∴|FA|+|FB|=2|FP|,

联立,可得|x1﹣x2|=

所以该数列的公差d满足2d=|x1﹣x2|=,

∴该数列的公差为±.

19.设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;

(2)求过点A,B且与C的准线相切的圆的方程.

【解答】解:(1)方法一:抛物线C:y2=4x的焦点为F(1,0),当直线的斜率不存在时,|AB|=4,不满足;

设直线AB的方程为:y=k(x﹣1),设A(x1,y1),B(x2,y2),

则,整理得:k2x2﹣2(k2+2)x+k2=0,则x1+x2=,x1x2=1,

由|AB|=x1+x2+p=+2=8,解得:k2=1,则k=1,

∴直线l的方程y=x﹣1;

方法二:抛物线C:y2=4x的焦点为F(1,0),设直线AB的倾斜角为θ,由抛物线的弦长公式|AB|===8,解得:sin2θ=,

∴θ=,则直线的斜率k=1,

∴直线l的方程y=x﹣1;

(2)过A,B分别向准线x=﹣1作垂线,垂足分别为A1,B1,设AB的中点为D,过D作DD1⊥准线l,垂足为D,则|DD1|=(|AA1|+|BB1|)

由抛物线的定义可知:|AA1|=|AF|,|BB1|=|BF|,则r=|DD1|=4,

以AB为直径的圆与x=﹣1相切,且该圆的圆心为AB的中点D,

由(1)可知:x1+x2=6,y1+y2=x1+x2﹣2=4,

则D(3,2),

过点A,B且与C的准线相切的圆的方程(x﹣3)2+(y﹣2)2=16..

20.设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).

(1)当l与x轴垂直时,求直线AM的方程;

(2)设O为坐标原点,证明:∠OMA=∠OMB.

【解答】解:(1)c==1,

∴F(1,0),

∵l与x轴垂直,

∴x=1,

由,解得或,

∴A(1.),或(1,﹣),

∴直线AM的方程为y=﹣x+,y=x﹣,

证明:(2)当l与x轴重合时,∠OMA=∠OMB=0°,

当l与x轴垂直时,OM为AB的垂直平分线,∴∠OMA=∠OMB,

当l与x轴不重合也不垂直时,设l的方程为y=k(x﹣1),k≠0,

A(x1,y1),B(x2,y2),则x1<,x2<,

直线MA,MB的斜率之和为k MA,k MB之和为k MA+k MB=+,

由y1=kx1﹣k,y2=kx2﹣k得k MA+k MB=,

将y=k(x﹣1)代入+y2=1可得(2k2+1)x2﹣4k2x+2k2﹣2=0,

∴x1+x2=,x1x2=,

∴2kx1x2﹣3k(x1+x2)+4k=(4k2﹣4k﹣12k2+8k2+4k)=0

从而k MA+k MB=0,

故MA,MB的倾斜角互补,

∴∠OMA=∠OMB,

综上∠OMA=∠OMB.

21.记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.

(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;

(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;

(3)已知函数f(x)=﹣x2+a,g(x)=.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.

【解答】解:(1)证明:f′(x)=1,g′(x)=2x+2,

则由定义得,得方程无解,则f(x)=x与g(x)=x2+2x﹣2不存在“S点”;

(2)f′(x)=2ax,g′(x)=,x>0,

由f′(x)=g′(x)得=2ax,得x=,

f()=﹣=g()=﹣lna2,得a=;

(3)f′(x)=﹣2x,g′(x)=,(x≠0),

由f′(x0)=g′(x0),得b=﹣>0,得0<x0<1,

由f(x0)=g(x0),得﹣x02+a==﹣,得a=x02﹣,

令h(x)=x2﹣﹣a=,(a>0,0<x<1),

设m(x)=﹣x3+3x2+ax﹣a,(a>0,0<x<1),

则m(0)=﹣a<0,m(1)=2>0,得m(0)m(1)<0,

又m(x)的图象在(0,1)上连续不断,

则m(x)在(0,1)上有零点,

则h(x)在(0,1)上有零点,

则f(x)与g(x)在区间(0,+∞)内存在“S”点.

22.已知函数f(x)=﹣lnx.

(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8﹣8ln2;(Ⅱ)若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.【解答】证明:(Ⅰ)∵函数f(x)=﹣lnx,

∴x>0,f′(x)=﹣,

∵f(x)在x=x1,x2(x1≠x2)处导数相等,

∴=﹣,

∵x1≠x2,∴+=,

由基本不等式得:=≥,

∵x1≠x2,∴x1x2>256,

由题意得f(x 1)+f(x2)==﹣ln(x1x2),

设g(x)=,则,

∴列表讨论:

x(0,16)16(16,+∞)

g′(x)﹣0+

g(x)↓2﹣4ln2↑

∴g(x)在[256,+∞)上单调递增,

∴g(x1x2)>g(256)=8﹣8ln2,

∴f(x1)+f(x2)>8﹣8ln2.

(Ⅱ)令m=e﹣(|a|+k),n=()2+1,

则f(m)﹣km﹣a>|a|+k﹣k﹣a≥0,

f(n)﹣kn﹣a<n(﹣﹣k)≤n(﹣k)<0,

∴存在x0∈(m,n),使f(x0)=kx0+a,

∴对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点,

由f(x)=kx+a,得k=,

设h(x)=,则h′(x)==,

其中g(x)=﹣lnx,

由(1)知g(x)≥g(16),

又a≤3﹣4ln2,∴﹣g(x)﹣1+a≤﹣g(16)﹣1+a=﹣3+4ln2+a≤0,

∴h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,

∴方程f(x)﹣kx﹣a=0至多有一个实根,

综上,a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.

23.已知函数f(x)=a x,g(x)=log a x,其中a>1.

(Ⅰ)求函数h(x)=f(x)﹣xlna的单调区间;

(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明x1+g(x2)=;

(Ⅲ)证明当a≥e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.【解答】(Ⅰ)解:由已知,h(x)=a x﹣xlna,有h′(x)=a x lna﹣lna,

令h′(x)=0,解得x=0.

由a>1,可知当x变化时,h′(x),h(x)的变化情况如下表:

x(﹣∞,0)0(0,+∞)

三年高考(2017-2019)各地文科数学高考真题分类汇总:概率

概率 1.(2019全国II文4)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只 兔子中随机取出3只,则恰有2只测量过该指标的概率为 A.2 3 B. 3 5 C. 2 5 D. 1 5 2.(2019全国III文3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是 A.1 6 B. 1 4 C. 1 3 D. 1 2 3.(2018全国卷Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A.0.6B.0.5C.0.4D.0.3 4.(2018全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A.0.3B.0.4C.0.6D.0.7 5.(2017新课标Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A.1 4 B. 8 π C. 1 2 D. 4 π 6.(2017新课标Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 A. 1 10 B. 1 5 C. 3 10 D. 2 5 7.(2017天津)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为

A .45 B .35 C .25 D .15 8.(2018江苏)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰 好选中2名女生的概率为 . 9.(2017浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4 人服务队,要求服务队中至少有1名女生,共有 种不同的选法.(用数字作答) 10.(2017江苏)记函数()f x =的定义域为D .在区间[4,5]-上随机取一个 数x ,则x D ∈ 的概率是 . 11.(2018北京)电影公司随机收集了电影的有关数据,经分类整理得到下表: 好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. (1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)随机选取1部电影,估计这部电影没有获得好评的概率; (3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论) 12.(2018天津)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现 采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动. (1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人? (2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作. (i)试用所给字母列举出所有可能的抽取结果; (ii)设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率. 13.(2017新课标Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元, 售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求

2018年高考数学二轮复习第一部分专题一第五讲导数的应用第五讲导数的应用(一)习题

第五讲 导数的应用(一) 限时规范训练 A 组——高考热点强化练 一、选择题 1.曲线y =e x 在点A 处的切线与直线x +y +3=0垂直,则点A 的坐标为( ) A .(-1,e -1 ) B .(0,1) C .(1,e) D .(0,2) 解析:与直线x +y +3=0垂直的直线的斜率为1,所以切线的斜率为1,因为y ′=e x ,所以由y ′=e x =1,解得x =0,此时y =e 0 =1,即点A 的坐标为(0,1),选B. 答案:B 2.已知函数f (x )=x 2 +2cos x ,若f ′(x )是f (x )的导函数,则函数f ′(x )在原点附近的图象大致是( ) 解析:因为f ′(x )=2x -2sin x ,[f ′(x )]′=2-2cos x ≥0,所以函数f ′(x )在R 上单调递增,故选A. 答案:A 3.曲线f (x )=x ln x 在点(1,f (1))处的切线的倾斜角为( ) A.π6 B.π4 C.π3 D.π2 解析:因为f (x )=x ln x ,所以f ′(x )=ln x +1,所以f ′(1)=1,所以曲线f (x )=x ln x 在点(1,f (1))处的切线的倾斜角为π 4 .

答案:B 4.若函数f (x )=2x 3 -3mx 2 +6x 在(2,+∞)上为增函数,则实数m 的取值范围是( ) A .(-∞,2) B .(-∞,2] C.? ????-∞,52 D.? ????-∞,52 解析:因为f ′(x )=6x 2-6mx +6,当x ∈(2,+∞)时,令f ′(x )≥0,即6x 2 -6mx +6≥0,则m ≤x +1x ,又因为y =x +1x 在(2,+∞)上为增函数,故当x ∈(2,+∞)时,x +1x >52,故m ≤5 2,故选D. 答案:D 5.函数f (x )=12x 2 -ln x 的最小值为( ) A.12 B .1 C .0 D .不存在 解析:f ′(x )=x -1x =x 2 -1 x ,且x >0.令f ′(x )>0,得x >1;令f ′(x )<0,得00, -2+3=-2b 3a ,-2×3=c 3a , f 3=27a +9b +3c -34=-115, 解得a =2. 答案:C 7.(2017·沈阳模拟)已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (1)=0,当x >0时, xf ′(x )<2f (x ),则使得f (x )>0成立的x 的取值范围是( ) A .(-∞,-1)∪(0,1) B .(-∞,-1)∪(1,+∞)

2018年高考真题汇编——理科数学(解析版)10:圆锥曲线

2018高考真题分类汇编:圆锥曲线 一、选择题 1.【2018高考真题浙江理8】如图,F 1,F 2分别是双曲线C :2 2 221x y a b -=(a,b >0)的左、 右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平 分线与x 轴交与点M ,若|MF 2|=|F 1F 2|,则C 的离心率是 A. 23 B 6 2 D. 3【答案】B 【解析】由题意知直线B F 1的方程为:b x c b y +=,联立方程组??????? =-+=0,b y a x b x c b y 得点 Q ),(a c bc a c ac --,联立方程组??????? =++=0 ,b y a x b x c b y 得点P ),(a c bc a c ac ++-,所以PQ 的中点坐标为),(222b c b c a ,所以PQ 的垂直平分线方程为:)(222b c a x b c b c y --=-,令0=y ,得)1(22b a c x +=,所以c b a c 3)1(22=+,所以2222222a c b a -==,即2223 c a =,所以26=e 。 故选B 2.【2018高考真题新课标理8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线 x y 162=的准线交于,A B 两点,43AB =;则C 的实轴长为( )

()A 2 ()B 22 ()C 4 ()D 8 【答案】C 【解析】设等轴双曲线方程为)0(2 2 >=-m m y x ,抛物线的准线为4-=x ,由34=AB ,则32=A y ,把坐标)32,4(-代入双曲线方程得412162 2 =-=-=y x m ,所以双曲线方 程为42 2 =-y x ,即14 42 2=-y x ,所以2,42==a a ,所以实轴长42=a ,选C. 3.【2018高考真题新课标理4】设12F F 是椭圆22 22:1(0)x y E a b a b +=>>的左、右焦点,P 为 直线32a x =上一点,12PF F ?是底角为30o 的等腰三角形,则E 的离心率为( ) ()A 12 ()B 23 ()C 34 ()D 45 【答案】C 【解析】因为12PF F ?是底角为30o 的等腰三角形,则有 P F F F 212=,,因为 2130=∠F PF ,所以 0260=∠D PF ,0230=∠DPF ,所以21222121F F PF D F == ,即c c c a =?=-22 1 23,所以c a 223=,即43=a c ,所以椭圆的离心率为4 3=e ,选C. 4.【2018高考真题四川理8】已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。若点M 到该抛物线焦点的距离为3,则||OM =( ) A 、22 B 、23 C 、4 D 、5 【答案】B 【解析】设抛物线方程为2 2y px =,则点(2,2)M p ±Q 焦点,02p ?? ??? ,点M 到该抛物线焦点的距离为3,∴ 2 2492p P ? ?-+= ?? ?, 解得2p =,所以44223OM =+?=.

2018年高考真题-单选题-分类汇总 (1)

2016年普通高等学校招生全国统一考试 数学(理)(北京卷) 一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. (1)已知集合A= ,B= , , , , ,则 (A ) (B ) , , (C ) , , (D ) , , , (2)若x,y 满足 2030x y x y x -≤??+≤??≥? ,则2x+y 的最大值为 (A )0 (B )3 (C )4 (D )5 (3)执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为 (A )1 (B )2 (C )3 (D )4 (4)设a ,b 是向量,则“=a b ”是“+=-a b a b ”的 (A ) 充分而不必要条件 (B )必要而不充分条件 (C ) 充分必要条件 (D )既不充分也不必要条件 (5)已知x,y R,且x y o ,则 (A ) - (B )

(C ) (- 0 (D )lnx+lny (6)某三棱锥的三视图如图所示,则该三棱锥的体积为 (A ) (B ) (C ) (D )1 (7)将函数 ( ﹣π )图像上的点P (π ,t )向左平移s (s ﹥0) 个单位长度得到点P ′.若 P ′位于函数 ( )的图像上,则 (A )t= ,s 的最小值为π (B )t= ,s 的最小值为π (C )t= ,s 的最小值为π (D )t= ,s 的最小值为π (8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则 (A )乙盒中黑球不多于丙盒中黑球 (B )乙盒中红球与丙盒中黑球一样多 (C )乙盒中红球不多于丙盒中红球 (D )乙盒中黑球与丙盒中红球一样多 一、选择题(共8小题,每小题5分,共40分) (1)C (2)C (3)B (4)D (5)C (6)A (7)A (8)B 2016年 普 通 高 等 学 校 招 生 全 国 统 一 考 试 上海 数学试卷(理工农医类) 二、选择题(5×4=20) 15.设R a ∈,则“1>a ”是“12>a ”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 16.下列极坐标方程中,对应的曲线为右图的是( ) (A )θρcos 56+= (B )θρin s 56+= (C )θρcos 56-= (D )θρin s 56-= 17.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列条件中,使得

2018年全国卷理科数学十年真题分类汇编 圆锥曲线

圆锥曲线 一.基础题组 1. 【2014课标Ⅰ,理4】已知为双曲线:的一个焦点,则点到的一条渐近线的距离为( ) A. B. 3 C. D. 【答案】A 2. 【2013课标全国Ⅰ,理 4】已知双曲线C :(a >0,b >0), 则C 的渐近线方程为( ). A .y = B .y =C .y = D .y =±x 【答案】C 【解析】∵,∴.∴a 2=4b 2,.∴渐近线方程为. 3. 【2012全国,理4】设F 1,F 2是椭圆E :(a >b >0)的左、右焦点,P 为直线 上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( ) A . B . C . D . 【答案】C F C )0(32 2 >=-m m my x F C 3m 3m 322 22=1x y a b -514x ± 13x ±1 2 x ±2c e a ==2222 22 54c a b e a a +===1=2b a ±1 2 b y x x a =± ±22 221x y a b +=32 a x = 12233445

【解析】设直线与x轴交于点M,则∠PF2M=60°,在Rt△PF2M中,PF2=F1F2=2c,, 故,解得,故离心率. 4. 【2011全国新课标,理7】设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为( ) A B C. 2 D.3 【答案】B 【解析】 5. 【2009全国卷Ⅰ,理4】设双曲线(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率等于() 3 2 a x= 2 3 2 a F M c =- 2 2 3 1 2 cos60 22 a c F M PF c - ?=== 3 4 c a = 3 4 e= 1 2 2 2 2 = - b y a x

2010—2019“十年高考”数学真题分类汇总 复数部分 理数(附参考答案)

2010—2019“十年高考”数学真题分类汇总 复数部分 (附参考答案) 一、选择题。 1.(2019全国II 理2)设z =-3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限 C .第三象限 D .第四象限 【答案】C . 2.(2019北京理1)已知复数i z 21+=,则z z ?= (A (B (C )3 (D )5 【答案】(D ). 3.(2019全国III 理2)若(1i)2i z +=,则z =A .1i --B .1+i -C .1i -D .1+i 【答案】D . 4.(2019全国I 理2)设复数z 满足 =1i z -,z 在复平面内对应的点为(x ,y ),则 A .22 + 11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .2 2 (+1)1 y x +=【答案】C . 5.(2019全国II 理2)设z =-3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C . 6.(2018北京)在复平面内,复数 1 1i -的共轭复数对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D . 7.(2018全国卷Ⅰ))设1i 2i 1i z -=++,则||z = A .0 B . 12 C .1 D 【答案】C .8.(2018全国卷Ⅱ) 12i 12i +=-A .43i 55 - -B .43i 55 - +C .34i 55 - -D .34i 55 - +【答案】D .

9.(2018全国卷Ⅲ)(1i)(2i)+-= A .3i -- B .3i -+C .3i -D .3i +【答案】D .10.(2018浙江)复数 2 1i -(i 为虚数单位)的共轭复数是A .1i +B .1i -C .1i -+D .1i --【答案】B . 11.(2017新课标Ⅰ)设有下面四个命题 1p :若复数z 满足1 z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数1z ,2z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R . 其中的真命题为A .1p ,3p B .1p ,4 p C .2p ,3 p D .2p ,4 p 【答案】B .12.(2017新课标Ⅱ) 3i 1i ++A .B . C . D . 【答案】D . 13.(2017新课标Ⅲ)设复数z 满足(1i)2z i +=,则||z = A . 12 B . 2 C D .2 【答案】C . 14.(2017山东)已知a R ∈,i 是虚数单位,若z a =+,4z z ?=,则a = A .1或-1 B 或 C .- D .【答案】A . 15.(2017北京)若复数(1i)(i)a -+在复平面内对应的点在第二象限,则实数a 的取值范围 是A .(,1) -∞B .(,1) -∞-C .(1,) +∞D .(1,) -+∞

高考数学真题汇编——函数与导数

高考数学真题汇编——函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A. B. C. D. 【答案】D

【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,, , 据此可得:.本题选择D选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.

点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D. 【答案】D 点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 5.【2018年全国卷Ⅲ理】设,,则

2018年高考理科数学通用版三维二轮专题复习专题检测:(二十二) 第20题解答题“圆锥曲线的综合问题”专练

专题检测(二十二) 第20题解答题“圆锥曲线的综合问题”专练 1.(2018届高三·广东五校协作体诊断考试)若椭圆 x2a2+y2b2 =1(a >b >0)的左、右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点F 分成了3∶1的两段. (1)求椭圆的离心率; (2)过点C (-1,0)的直线l 交椭圆于不同两点A ,B ,且AC ―→=2 CB ―→,当 △ AOB 的面积最大时,求直线l 的方程. 解:(1)由题意知,c +b 2=3? ???? c -b 2, 所以b =c ,a 2=2b 2, 所以e =c a = 1-? ?? ??b a 2=22. (2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =ky -1(k ≠0), 因为AC ―→=2CB ―→ ,所以(-1-x 1,-y 1)=2(x 2+1,y 2), 即y 1=-2y 2, ① 由(1)知,椭圆方程为x 2+2y 2=2b 2. 由????? x =ky -1,x2+2y2=2b2 消去x , 得(k 2+2)y 2-2ky +1-2b 2=0, 所以y 1+y 2=2k k2+2 , ② 由①②知,y 2=-2k k2+2,y 1=4k k2+2, 因为S △AOB =12|y 1|+1 2 |y 2|, 所以S △AOB =3·|k| k2+2=3·1 2 |k| +|k|

≤3· 12 2 |k|·|k|= 324 , 当且仅当|k |2=2,即k =±2时取等号, 此时直线l 的方程为x - 2y +1=0或x + 2y +1=0. 2.已知椭圆C :x2a2 + y2b2 =1(a >b >0)的左、右顶点分别为A ,B ,且长轴长为8,T 为椭圆上任意一点,直线TA ,TB 的斜率之积为-3 4 . (1)求椭圆C 的方程; (2)设O 为坐标原点,过点M (0,2)的动直线与椭圆C 交于P ,Q 两点,求OP ―→ · OQ ―→+MP ―→·MQ ―→的取值范围. 解:(1)设T (x ,y ),由题意知A (-4,0),B (4,0), 设直线TA 的斜率为k 1,直线TB 的斜率为k 2, 则k 1=y x +4,k 2=y x -4 . 由k 1k 2=-34,得y x +4·y x -4=-3 4 , 整理得x2 16+y212 =1. 故椭圆C 的方程为x2 16+y2 12 =1. (2)当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +2,点P ,Q 的坐标分别为(x 1,y 1),(x 2,y 2), 联立方程??? ?? x216+y2 12=1, y =kx +2 消去y , 得(4k 2+3)x 2+16kx -32=0.

2018年高考数学—导数专题

导数 (选修2-2P18A7改编)曲线y=sin x x在x= π 2处的切线方程为() A.y=0 B.y=2π C.y=- 4 π2 x+ 4 π D.y= 4 π2 x 解析∵y′=x cos x-sin x x2,∴y′|x= π 2=- 4 π2 , 当x=π 2时,y= 2 π , ∴切线方程为y-2 π =- 4 π2? ? ? ? ? x- π 2 ,即y=- 4 π2 x+ 4 π . (2016·天津卷)已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为________. 解析因为f(x)=(2x+1)e x, 所以f′(x)=2e x+(2x+1)e x=(2x+3)e x, 所以f′(0)=3e0=3. (2017·西安月考)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=________. 解析y′=a- 1 x+1 ,由题意得y′|x=0=2,即a-1=2, 所以a=3. (2017·威海质检)已知函数f(x)=x ln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为() A.x+y-1=0 B.x-y-1=0 C.x+y+1=0 D.x-y+1=0

解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又∵f ′(x )=1+ln x ,∴?????y 0=x 0ln x 0, y 0+1=(1+ln x 0)x 0, 解得x 0=1,y 0=0. ∴切点为(1,0),∴f ′(1)=1+ln 1=1. ∴直线l 的方程为y =x -1,即x -y -1=0. (2015·全国Ⅱ卷)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________. 解析 法一 ∵y =x +ln x ,∴y ′=1+1 x ,y ′|x =1=2. ∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切, ∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行). 由?????y =2x -1,y =ax 2 +(a +2)x +1消去y ,得ax 2+ax +2=0. 由Δ=a 2-8a =0,解得a =8. 法二 同法一得切线方程为y =2x -1. 设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2),∴y ′|x =x 0=2ax 0+(a +2). 由?????2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得???x 0=-12,a =8. 答案 8 (2017·西安质测)曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P

2018高考题圆锥曲线

(2018 全国二卷)19.( 12 分) 设抛物线C : y 2 4x 的焦点为F,过F 且斜率为k(k 0)的直线I 与C 交于A ,B 两点,|AB| 8 . (1)求I 的方程 (2)求过点A , B 且与C 的准线相切的圆的方程. (2018全国三卷)20. (12分) (1)证明:k 1 ; 2 ⑵设F 为C 的右焦点,P 为C 上一点,且F P FA F B 0 .证明:FA , 2 已知斜率为k 的直线I 与椭圆c :- 4 2 7 1交于A , B 两点,线段AB 的中点为 ujur FP ,

FB成等差数列,并求该数列的公差.

(2018北京卷)(19)(本小题14分) 已知抛物线C: y2=2px经过点P (1, 2).过点Q (0, 1)的直线I与抛物线C有两个不同的交点A, B,且直线PA交y轴于M ,直线PB交y轴于N. (I )求直线I的斜率的取值范围; (2018天津卷)(19)(本小题满分14分) 2 2 设椭圆笃笃1 (a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为 a b —,点A的坐标为(b,0),且FB AB 6j2 . 3 (I)求椭圆的方程; (II)设直线I: y kx(k 0)与椭圆在第一象限的交点为P,且I与直线AB 交于点Q. AQ 5名sin AOQ (O为原点),求k的值. PQ (2018江苏卷)18.(本小题满分16分)

如图,在平面直角坐标系xOy 中,椭圆C过点(禺),焦点F1(加皿。), 圆O的直径为F1F2. (1)求椭圆C及圆O的方程; (2)设直线I与圆O相切于第一象限内的点P. ①若直线I与椭圆C有且只有一个公共点,求点P的坐标; ②直线I与椭圆C交于A,B两点.若△ OAB的面积为纽6, 7 求直线I的方程. (2018浙江卷)21.(本题满分15分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C: y2=4x上存在不同的两点A, B满足PA PB的中点均在C

三年高考(2017-2019)理科数学高考真题分类汇总:集合

集合 2019年 1.(2019全国Ⅰ理)已知集合}242{60{}M x x N x x x =-<<=--<,,则M N I = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x << 解析:依题意可得,2426023{|}{|}{} |M x x N x x x x x =-=--=-<<,<<<, 所以2|}2{M N x x =-I <<. 故选C . 2.(2019全国Ⅱ理)设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A .(-∞,1) B .(-2,1) C .(-3,-1) D .(3,+∞) 解析:由{}2560(,2)(3,)A x x x =-+>=-∞+∞U ,{}10(,1)A x x =-<=-∞,则(,1)A B =-∞I .故选A. 3.(2019全国Ⅲ理)已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =I A .{}1,0,1- B .{}0,1 C .{}1,1- D .{}0,1,2 3.解析 因为{}1,0,1,2A =-,2{|1}{|1 1}B x x x x ==-剟?, 所以{}1,0,1A B =-I .故选A . 4.(2019江苏)已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B =I . 解析 因为{}1,0,1,6A =-,{}|0,B x x x =>∈R , 所以{}{}{}1,0,1,6|0,1,6A B x x x =->∈=R I I . 5.(2019浙江)已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U A B I e= A .{}1- B .{}0,1? C .{}1,2,3- D .{}1,0,1,3- 解析 {1,3}U A =-e,{1}U A B =-I e .故选A . 6.(2019天津理1)设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

2020年高考圆锥曲线部分大题解析

1.【2018浙江21】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线 2:4C y x =上存在不同的两点,A B 满足,PA PB 的中点均在C 上。 (1) 设AB 中点为M ,证明:PM 垂直于y 轴; (2) 若P 是半椭圆2 2 1(0)4 y x x +=<上的动点,求PAB ?面积的取值范围。 解析:(1)设2200112211(,),(,),(,)44 P x y A y y B y y AP 中点满足:2 2 102014( )4()22 y x y y ++= BP 中点满足:2 2 202024:( )4()22 y x y y BP ++= 所以12,y y 是方程2 2 0204()4()22 y x y y ++=即22000 280y y y x y -+-=的两个根,所以 12 02 y y y +=,故PM 垂直于y 轴。 (2)由(1)可知212012002,8y y y y y x y +=?=- 所以222 1200013||()384 PM y y x y x =+-= - ,12||y y -= 因此,3 2212001||||4)24 PAB S PM y y y x ?=?-=- 因为2 2 0001(0)4 y x x +=<,所以2200004444[4,5]y x x x -=--+∈ 因此,PAB ? 面积的取值范围是

1. 距离型问题 2.【2018全国3 理20】已知斜率为k 的直线l 与椭圆22 :143 x y C +=交于,A B 两点,线段AB 的中点为(1,)(0)M m m > (1)证明:1 2 k <- ; (2)设F 为C 的右焦点,P 为C 上一点且0FP FA FB ++=,证明:,,FP FA FB 为等差数列,并求出该数列的公差。 解析:(1)由中点弦公式22OM b k k a ?=-,解得34k m =- 又因为点M 在椭圆内,故302m << ,故1 2 k <- (2)由题意知2,2FA FB FM FP FM +==-,故(1,2)P m - 因为点P 在椭圆上,代入可得3,14m k = =-,即3||2 FP = 根据第二定义可知,1211||2,||222 FA x FB x =- =- 联立22 212121114371402,4287 4 x y x x x x x x y x ?+=???-+=?+==? ?=-+?? 即121 ||||4()32 FA FB x x +=- += 故满足2||||||FP FA FB =+,所以,,FP FA FB 为等差数列 设其公差为d ,因为,A B 的位置不确定,则有

三年高考(2017-2019)各地文科数学高考真题分类汇总:导数的计算与导数的几何意义

导数的计算与导数的几何意义 1.(2019全国Ⅰ文13)曲线2)3(e x y x x =+在点(0,0)处的切线方程为___________. 2.(2019全国Ⅱ文10)曲线y =2sin x +cos x 在点(π,–1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+= 3.(2019全国三文7)已知曲线e ln x y a x x =+在点1e a (,)处的切线方程为y =2x +b ,则 A .a=e ,b =-1 B .a=e ,b =1 C .a=e -1,b =1 D .a=e -1,1b =- 4.(2019天津文11)曲线在点处的切线方程为__________. 5.(2019江苏11)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的 切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 . 6.(2018全国卷Ⅰ)设函数32()(1)=+-+f x x a x ax .若()f x 为奇函数,则曲线()=y f x 在点(0,0)处的切线方程为 A .2=-y x B .y x =- C .2=y x D .=y x 7.(2017山东)若函数e ()x f x (e=2.71828L ,是自然对数的底数)在()f x 的定义域上单 调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是 A .()2 x f x -= B .2 ()f x x = C .()3 x f x -= D .()cos f x x = 8.(2018全国卷Ⅱ)曲线2ln =y x 在点(1,0)处的切线方程为__________. 9.(2018天津)已知函数()ln x f x e x =,()f x '为()f x 的导函数,则(1)f '的值为__. 10.(2017新课标Ⅰ)曲线21 y x x =+ 在点(1,2)处的切线方程为____________. 11.(2017天津)已知a ∈R ,设函数()ln f x ax x =-的图象在点(1,(1))f 处的切线为l ,则l 在y 轴上的截距为 . 12.(2017山东)已知函数()32 11,32 f x x ax a = -∈R . (Ⅰ)当2a =时,求曲线()y f x =在点()() 3,3f 处的切线方程; cos 2 x y x =- ()0,1

2018年全国卷理科数学十年真题分类汇编 导数

导数 一.基础题组 1. 【2010新课标,理3】曲线y = 在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3 D .y =-2x -2 【答案】A 2. 【2008全国1,理6】若函数的图像与函数的图像关于直线 对称,则( ) A . B . C . D . 【答案】B. 【解析】由. 3. 【2012全国,理21】已知函数f (x )满足f (x )=f ′(1)e x -1 -f (0)x + x 2 . (1)求f (x )的解析式及单调区间; (2)若f (x )≥ x 2 +ax +b ,求(a +1)b 的最大值. 【解析】(1)由已知得f ′(x )=f ′(1)e x -1 -f (0)+x . 所以f ′(1)=f ′(1)-f (0)+1,即f (0)=1. 又f (0)=f ′(1)e -1 ,所以f ′(1)=e. 从而f (x )=e x -x + x 2 . 2 x + x (1)y f x = -1y =y x =()f x =21 x e -2x e 21 x e +22 x e +() ()()()212121,1,y x x y x e f x e f x e --=?=-==12 12 12

由于f ′(x )=e x -1+x , 故当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 从而,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)由已知条件得e x -(a +1)x ≥b .① (ⅰ)若a +1<0,则对任意常数b ,当x <0,且时,可得e x -(a +1)x <b ,因此①式不成立. (ⅱ)若a +1=0,则(a +1)b =0. 所以f (x )≥ x 2 +ax +b 等价于 b ≤a +1-(a +1)ln(a +1).② 因此(a +1)b ≤(a +1)2 -(a +1)2 ln(a +1). 设h (a )=(a +1)2 -(a +1)2 ln(a +1), 则h ′(a )=(a +1)(1-2ln(a +1)). 所以h (a )在(-1,)上单调递增,在(,+∞)上单调递减, 故h (a )在处取得最大值. 从而,即(a +1)b ≤. 当,时,②式成立, 11 b x a -< +12 12 e 1-12 e 1-12 =e 1a -e ()2h a ≤ e 2 1 2 =e 1a -12 e 2 b =

全国卷历年高考数列真题归类分析2019

全国卷历年高考数列真题归类分析(2019.7含答案) (2015年-2019年共14套) 一、等差、等比数列的基本运算(13小3大) 1.(2016年1卷3)已知等差数列{}n a 前9项的和为27,108a =,则100a = ( ) (A )100 (B )99 (C )98 (D )97 【解析】由已知,11 93627 ,98a d a d +=?? +=?所以110011,1,9919998,a d a a d =-==+=-+=选C. 2.(2017年1卷4)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( ) A .1 B .2 C .4 D .8 【解析】:() 1661664816 2 a a S a a += =?+=, 451824a a a a +=+=, 作差86824 a a d d -==?=, 故而选C. 3.(2018年1卷4) 设为等差数列 的前项和,若,,则( ) A. B. C. D. 【解析】设该等差数列的公差为,根据题中的条件可得 , 整理解得 ,所以 ,故选B. 4.(2019年3卷14)记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则 10 5 S S =___________. 【解析】因213a a =,所以113a d a +=,即12a d =, 所以 105S S =111 1109 1010024542552 a d a a a d ?+ ==?+. 5.(2017年3卷9)等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则 {}n a 前6项的和为( ) A .24- B .3- C .3 D .8 【解析】∵{}n a 为等差数列,且236,,a a a 成等比数列,设公差为d .则2 3 26a a a =?,即() ()()2 11125a d a d a d +=++,又∵11a =,代入上式可得220d d +=,又∵0d ≠,则2d =-

相关主题