搜档网
当前位置:搜档网 › 合和术和解法

合和术和解法

合和术和解法

合和术和解法,化解合和术

和解法,合和术化解法:

1、三枚古代铜钱和一条绳子,绳子要20公分长,无论什么绳都行。

2、将三枚铜钱用绳带串起来,再依次打上五个结,然后将它系在自己常用的包包上。

3、在满月的夜晚(无论那个月,只要是满月),对月亮说出你想和谁和好的愿望。

4、许愿后的第三天晚上解开一个结,接著每隔三天再解开一个结。当解到最后一个结时,你们之间的心结就会化解了。

5、铜钱要好好保存下来。

记住:三天解一个结!

《高等几何》教学大纲最新

《高等几何》教学大纲 一、课程名称 《高等几何》(Projective Geometry) 二、课程性质 数学与应用数学专业限选课。它跟初等几何、解析几何、高等代数等课程有紧密的联系;它对未来中学数学教师在几何方面基础的培养、观点的提高、思维的灵活、方法的多样起着重要作用,从而大有助于中学数学教学质量的提高和科研能力的培养。本课程的主旨在于拓展读者的几何空间知识,学习了解变换群观点,进而达到训练理性思维的能力,提高数学修养的目的。本课程包括了许多著名的定理,奇妙的图形。通过本课程的学习,可以有效地提高数学审美意识。 本大纲要求本课程的内容处理上实行解析法与综合法并用,以解析法为主。前修课程包括:初等几何、解析几何、数学分析、高等代数、近世代数。 三、课程教学目的 通过本课程的学习,使学生掌握射影几何的基本内容和处理几何问题的方法,同时也认识射影几何、仿射几何、欧氏几何的内在联系,以及在初等几何和解析几何中的应用,并为学习数学的其他分支打好基础。尤其是对无穷远元素的认识和理解,以开拓同学们的思维方式和视野,使同学们能以居高临下的观点来处理初等数学问题。 四、课程教学原则和方法 1、理论与实践相结合的原则; 2、《高等几何》知识与高等数学中的其它知识相结合原则; 3、《高等几何》知识与初等几何知识相结合的原则; 4、在课堂教学中使用传统的讲解法,并适当采用教具演示的方法相结合的原则; 5、讲解法与自学相结合的原则。 五、课程总学时 72学时,习题课占1/5。

六、教学内容要点及建议学时分配 课程教学内容要点及建议学时分配 第一章仿射坐标与仿射变换(计划学时6) 一、本章教学目标:通过本章的学习,掌握透视仿射对应(变换),仿射对应(变换)以及其代数表达式等。 二、本章主要内容: 第一节透视仿射对应 1、弄清共线三点的单比和透视仿射对应的基本概念。 2、熟练掌握透视仿射对应的四个性质---保持同素性、结合性、共线三点的单比和平行性。 第二节仿射对应与仿射变换 1、掌握平面上的透视链、二直线间和二平面间的仿射对应与仿射变换的概念。 2、掌握仿射对应与仿射变换的性质。 第三节仿射坐标

高等几何试卷及答案

《高等几何》考试试题A 卷(120分钟) 一、填空题(2分?12=24分) 1 平行四边形 ;2、直线0521=+x x 上无穷远点坐标为: (5,-1,0) 3、已知3),(4321=l l l l ,则=),(1234l l l l 3 =),(4231l l l l -2 4、过点A(1,i - ,2)的实直线的齐次方程为: 0231=-x x 5、方程0652 2 2121=+-u u u u 表示的图形坐标 (1,2,0) (1,3,0) 6、已知OX 轴上的射影变换式为312'+-= x x x ,则原点的对应点 -3 1 7、求点)0,1,1(-关于二阶曲线0547533231212 322 21=+++++x x x x x x x x x 的极线方程063321=++x x x 8、ABCD 为平行四边形,过A 引AE 与对角线BD 平行,则),(DE BC A = -1 9、一点列到自身的两射影变换a):21→,32→,43→; b):10→,32→,01→ 其中为对合的就是: b 10、求射影变换012'=+-λλλ的自对应元素的参数 1 11、两个线束点列成透视的充要条件就是 底的交点自对应 12、直线02321=+-x x x 上的三点)1,3,1(A ,)1,5,2(B ,)0,2,1(C 的单比)(ABC = 1 二、求二阶曲线的方程,它就是由下列两个射影线束所决定的: 130x x λ-=与23'0x x λ-= 且 '2'10λλλλ-++=。 解:射影对应式为'2'10λλλλ-++=。 由两线束的方程有:1233 ,'x x x x λλ= =。 将它们代入射影对应式并化简得, 2 122313320x x x x x x x +-+= 此即为所求二阶曲线的方程。

微分方程解析近似解的符号计算研究

微分方程解析近似解的符号计算研究 【摘要】:本文基于数学机械化思想,借助于符号计算软件,以非线性方程为对象,系统地研究了适用于强非线性问题的解析近似方法:Adomian分解方法(ADM)和同伦分析方法(HAM)的应用和机械化实现。第一章是与本文相关的研究背景。简要综述了计算机代数和孤立子理论的发展进程,针对性地介绍了近年来解析近似方法的研究成果和现状。第二章改进了Adomian分解方法,能够获得修正Korteweg-deVries(mKdV)方程和Kadomtsev-Petviashvili(KP)方程的双孤子解。通过引入自变量变换和行波变换,将Degasperis-Procesi(DP)方程短波模型化为常微分方程,应用Adomian分解方法求解之,获得其闭合形式的解析解,再经过反变换,能够获得其环状孤子解。以上结果表明了Adomian分解方法在求解方程特殊孤子解方面的有效性。对Adomian分解方法进行了推广,解决了方程中离散变量不同于连续方程中的变量问题,并与Pade近似结合,能够获得几个经典的非线性微分差分方程组的孤子解,显著提高了方程解析近似解的精度。同时,我们还讨论了Pade有理近似中出现的伪极点问题,给出了合适选择Pade 近似阶数的指导原则。获得的解析近似解与精确解符合得很好,表明了Adomian分解方法对复杂强非线性问题的有效性。第三章通过引入自变量变换和行波变换,将偏微分方程化为常微分方程,通过同伦分析方法求解之,再经过反变换,能够获得DP方程短波模型的环状孤子解和Camassa-Holm(CH)方程短波模型的尖状孤子解,结果表明了同伦

分析方法在求解方程特殊孤子解方面的有效性。对同伦分析方法进行了推广,解决了方程中离散变量不同于连续方程中的变量问题,改进了同伦分析方法选择初始猜测解的方法,能够获得离散修正KdV方程的亮孤子解,获得的解析近似解与精确解符合得很好,表明了同伦分析方法对复杂强非线性问题的有效性。第四章在计算机代数系统Maple 上实现了Biazar提出的求解Adomian多项式的算法,编制了构造微分方程(组)和积分方程(组)解析近似解的自动推导软件包,这个算法避免了Adomian多项式的计算膨胀问题,降低了计算难度并显著提高了计算速度,通过大量实例说明了该软件包的有效性和实用性。【关键词】:微分方程微分差分方程解析近似解符号计算孤立子 【学位授予单位】:华东师范大学 【学位级别】:博士 【学位授予年份】:2010 【分类号】:O175 【目录】:摘要6-7Abstract7-11第一章绪论11-181.1数学机械化与计算机代数12-131.2孤立子理论13-141.3求解非线性方程的解析近似方法14-161.3.1Adomian分解方法14-151.3.2同伦分析方法15-161.4本文的选题和主要工作16-18第二章Adomian分解方法在非线性系统中的应用18-592.1Adomian分解方法求解非线性微分方程18-322.1.1

解析解与数值解 精确解和近似解

解析解与数值解精确解和近似解 默认分类2011-01-19 12:51:37 阅读93 评论0 字号:大中小 订阅 在解组件特性相关的方程式时,大多数的时候都要去解偏微分或积分式,才能求得其正确的解。依照求解方法的不同,可以分成以下两类:解析解和数值解。 解析解(analytical solution)就是一些严格的公式,给出任意的自变量就可以求出其因变量,也就是问题的解, 他人可以利用这些公式计算各自的问题. 所谓的解析解是一种包含分式、三角函数、指数、对数甚至无限级数等基本函数的解的形式。用来求得解析解的方法称为解析法〈analytic techniques、analytic methods〉,解析法即是常见的微积分技巧,例如分离变量法等。解析解为一封闭形式〈closed-form〉的函数,因此对任一独立变量,我们皆可将其带入解析函数求得正确的相依变量。因此,解析解也被称为闭式解(closed-form solution)数值解(numerical solution)是采用某种计算方法,如有限元的方法, 数值逼近,插值的方法, 得到的解.别人只能利用数值计算的结果, 而不能随意给出自变量并求出计算值. 当无法藉由微积分技巧求得解析解时,这时便只能利用数值分析的方式来求得其数值解了。数值方法变成了求解过程重要的媒介。在数值分析的过程中,首先会将原方程式加以简化,以利后来的数值分析。例如,会先将微分符号改为差分符号等。然后再用传统的代数方法将原方程式改写成另一方便求解的形式。这时的求解步骤就是将一独立变量带入,求得相依变量的近似解。因此利用此方法所求得的相依变量为一个个分离的数值〈discrete values〉,不似解析解为一连续的分布,而且因为经过上述简化的动作,所以可以想见正确性将不如解析法来的好。 解析解一般可以理解为通过已经有的方法,是对应的问题在这个解决域上,进行变换演绎得到解的一种结果,变换过程也会有增根或漏根。数值解是将问题化解为比较多的子域,然后用比较简单的已知函数来逼近需求函数的相关问题。解析法要求基本功比较强,对概念理解非常有利,仅适合简单形式问题;数值解比较简单,要求运算量大,适合工程实际中的复杂问题。 解析解是解的形式可以表达为一个显式函数的表达式的解;而数值解其解的形式不能表达为显式函数,只能通过数值计算的方式求解,得到的是一系列离散的数值,不能表达为一个明确的函数的形式。对于大多数问题是得不到解析解的,只能得到数值解。能得到解析解的只是一小部分问题,而且通常有比较严格的限制条件。解析解能够很直观的体现各参数之间的关系,对于定性分析是很重要的。对于得不到解析解的问题,进行数值计算得到数值解,对于工程应用很重要。 精确解和近似解 所谓精确解和近似解,是从算法上决定的。一般的力学模型都是有一定的使用和假设条件的,主要是看在求解有关的问题时,计算的结果与模型的真实值的误差是否为零,如果为零,则是精确解法,如算法本身不能保证得到真实值,则是近似解法,与其是否是解析解无关,与

逐次逼近式AD转换原理

一、逐次逼近式AD转换器与计数式A/D转换类似,只是数字量由“逐次逼近寄存器SAR” 产生。SAR使用“对分搜索法”产生数字量,以8位数字量为例,SAR首先产生8位数字量的一半,即10000000B,试探模拟量Vi的大小,若Vo>Vi,清除最高位,若VoVi,“控制电路”清除最高位,若Vo

高等几何教学大纲.

《高等几何》课程教学大纲 课程编码: 课程性质:选修 学时数:54 学分数:3 适用专业:数学与应用数学 【课程性质、目的和要求】 高等几何的主要内容是具有悠久历史,至今仍富生命力的射影几何。它不仅在提高学生空间几何直观想象能力方面有独特的作用,而且在论证方法、思维方式方面还具有不同于初等几何、解析几何、高等代数的巧妙灵活的特点。 通过高等几何(或射影几何)的学习,可以使学生从较高的观点处理初等几何、解析几何的一些问题,以便更深入地理解中学几何教材,并掌握近代几何知识与方法,这对学生在几何方面观点的提高、思维的灵活、方法的多样性的培养都起着特别重要的作用,从而有助于学生数学素质的提高和科研能力的培养。 本课程在研究方法上利用代数法和综合法,目的之一是便于学生进一步学习高维空间上的射影几何,目的之二是加强直观性,以便开发智力,启迪思维。在内容编排上应做到由浅入深,由易到难,循序渐进,要特别注意理论基础的系统性与严密性,尽可能做到与中学数学实际相结合,本课程应特别注意对概念及解题方法的分析。 通过本课程的学习,要求学生理解并熟练掌握平面射影几何的基本概念和理论。了解几何学的群论观点和各种几何学之间的联系和差别。学会统一处理几何问题的方法特别要学会利用二次曲线的射影理论处理仿射几何和度量几何方面的有关问题,以便提高学生分析问题和解决问题的能力。 【教学内容、要点和课时安排】 第一章仿射坐标与放射变换(8学时) 【目的要求】掌握透视仿射对应、仿射对应与仿射变换;掌握仿射坐标系;熟练求出仿射变换的代数表示式;理解仿射性质。 【教学重点】仿射坐标系 【难点】仿射性质的理解 【教学内容】 第一节透视仿射对应 第二节仿射对应与仿射变换 第三节仿射坐标

高等几何

第五章高等几何 第一节课程概论 1、本课程的起源与发展 早自欧洲文艺复兴时期,由于绘图和建筑等的需要,透视画的理论逐步形成,以后便建立了画法几何。法国数学家蒙日(GaspardMonge,1746-1818)在1768到1799年之间和1809年分别出版了画法几何和微分几何两部经典著作,由于画法几何理论的发展,他的学生彭色列(JeanPoncelet,1788-1867)继承了这两部著作中的综合思想,于1822年写了一本书,它是射影几何方面最早的专者。继彭色列之后,法国人沙尔(Michel Chasles,1793-1880) 等对射影几何的研究都做出了重要贡献。出生于德国数学家史坦纳(Jacob Steiner,1796-1863)改进了射影几何的研究工具,并且把它们应用到各种几何领域,因而得到了丰硕结果。 到了19世纪上半叶,几何学的发展经历了它的黄金时代。在这期间,古典的欧几里得几何学不再是几何学的唯一对象,射影几何学正式成为一门新学科。英国人凯莱(Cayley,1821-1895)和德国人克莱因(Christian Felix Klein,1849-1925)等人用变换群的方法研究了这个分支,射影几何便成为完整独立的学科。 射影几何的诞生诱发于透视理论,一个射影平面就是由欧几里得平面添加所谓无穷远直线而得到的。克莱因对于几何学理论的统一性有着执著的追求,他在成功地把几种度量几何统一于射影几何之后,就立即在更深层次上寻求统一各种几何学理论的基础。 在19世纪,人们开始把几何中图形的一些性质看作是一种“变换”运动的结果。如正方形的“中心对称性”,就是将正方形绕其两条对角线的交点O“旋转”180°后仍重合的结果。正方形的“轴对称性”,就是将正方形绕过O点的水平轴“反射”(即翻转)180°后仍重合的结果。这里的“旋转”、“反射”就可以分别被看作是一种“变换”。更为重要的是,数学家们进一步发现,这个正方形上的所有旋转、反射、平移等变换所构成的集合,满足群的条件,因而构成一个“变换群”。另外,人们还看到,在欧几里得几何中,图形在作旋转、反射、平移等变换的过程中,该图形中线段的长短、角的大小是保持不变的。于是人们就称“长度”、“角度”是这种变换中的不变量。这就导致了对几何中“不变量”理论的研究,并将它与群论结合起来。

第三章、逐次逼近法

第三章 逐次逼近法 1.1内容提要 1、一元迭代法x n+1=φ(x n )收敛条件为: 1)映内性x ∈[a,b],φ(x) ∈[a,b] 2)压缩性∣φ(x) -φ(y)∣≤L ∣x-y ∣其中L <1,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。由微分中值定理,如果∣φ’∣≤L <1,显然它一定满足压缩性条件。 2、多元迭代法x n+1=φ(x n )收敛条件为: 1)映内性x n ∈Ω,φ(x n ) ∈Ω 2)压缩性ρ(▽φ)<1,其中▽φ为x n 处的梯度矩阵,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。 3、当φ(x )= Bx+f 时,收敛条件为,ρ(B )<1,此时x n+1= Bx n +f ,在不断的迭代中,就可以得到线性方程组的解。 4、线性方程组的迭代解法,先作矩阵变换 U L D A --= Jacobi 迭代公式的矩阵形式 f Bx b D x U L D x n n n +=++=--+111)( Gauss-Seidel 迭代公式的矩阵形式 f Bx b L D Ux L D x n n n +=-+-=--+1 11)()( 超松弛迭代法公式的矩阵形式 f Bx b L D x U D L D x k k k +=-++--=--+ωωωωω111 )(])1[()( 三种迭代方法当1)(

第6章 层流的解析解与近似解(1)

第6章 层流的解析解与近似解 粘性流动基本方程组的解析解有着它固有的数学困难,真正能做解析解的流动为数不多,而且都是比较简单的流动。 本章将介绍几种粘性流动的解析解,有助于我们开阔思路,认识多种实际流动的性质。 首先先介绍一下粘性流研究的意义和研究的特点以及粘性流动的基本方程组,接着介绍一些解析解。 在介绍解析解时先考虑常特性不可压缩流体,通过基本方程,解得流场的速度和温度分布,最后求出摩擦阻力系数和热交换系数。 为了认识可压缩流动的特性,介绍两种简单的可压缩流动的解析解。 另外本章只限于雷诺数不大的流动。 6.1 粘性流研究的意义 一切流体都具有粘性,但是人类最经常接触的流体,如水和空气其粘性都很小,要考虑粘性的影响就会使数学问题变得非常复杂;另外,对于这些粘性小的流体,忽略其粘性所得到的结果又能在一定程度上符合实际情况,因此,理想无粘性流体理论最先得到了发展,它比粘性流体理论要成熟得多。 应当指出,虽然理想流体理论取得了重大的成就,但在某些方面却有不可逾越的先天性缺陷。 例如,它不能预估管道流动的压力损失,也不能计算在流体中运动的物体所受到的阻力。 后一问题与著名的达朗伯疑题有关。 达朗伯对理想流体进行了严谨的研究后得出了如下结论:当任意形状的固体在静止的充满无限空间的无粘性流体中作匀速直线运动,它不承受沿运动方向的作用力,即物体所受阻力为零。 在他所做假设的前提下,这一结论的逻辑推理是完全正确的,但它却与实际完全不符,因为所有的物体在流动中运动时都受到阻力作用。 这从反面说明了考虑粘性的必要性。 例1 圆柱绕流 对于理想不可压缩流体, ()22214sin s p p p C U θρ∞∞ -==- 其中 p ∞——远前方静压,ρ——流体密度。 图6-1给出了上述理想流体的压力系数与实际测量值的比较。 图中的实验曲线对应于两个不同的Re 数。 图6-1 圆柱表面的压力分布,理想流体理论与实验测量数据的比较 由图6-1可见,在圆柱的前缘(0οθ=和360ο)附近,理想流体的理论结果与实际符合较好。 但在后缘 (180οθ=)附近两者差别则相当大。 对于理想流体,圆柱前后的流动是完全对称的,所以理论阻力为零。 但是实测的压力分布前后不对称,圆柱后部的实测压力系数低与前部对应点处的值,使圆柱受到向后作用的力,即

§3.1解的存在唯一性定理与逐次逼近法

§3.1解的存在唯一性定理与逐次逼近法 一、教学目的:讨论Picard逼近法及一阶微分方程的解的存在与唯一性定理。 二、教学要求:熟练掌握Picard逼近法,理解解的存在唯一性定理的条件、结论 及证明思路,会用Picard逼近法求近似解。 三、教学重点:Picard存在唯一性定理及其证明。 四、教学难点:解的存在唯一性定理的证明。 五、教学方法:讲练结合教学法、提问式与启发式相结合教学法。 六、教学手段:传统板书与多媒体课件辅助教学相结合。 七、教学过程: 3.1.1.解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。 例如方程dy = dx 过点(0,0)的解就是不唯一,易知0 y=是方程过(0,0)的解,此外,容易验证,2 =或更一般地,函数 y x

2 0 0() c<1 x c y x c x ≤≤?=?-≤? 都是方程过点(0,0)而且定义在区间01x ≤≤上的解,其中c 是满足 01c <<的任一数。 解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性和唯一性。另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。而解的存在唯一性定理保证了所求解的存在性和唯一性。 一.存在性与唯一性定理: 1、 显式一阶微分方程 ),(y x f dx dy = (3.1) 这里),(y x f 是在矩形域:00:||,||R x x a y y b -≤-≤ (3.2) 上连续。 定理1:如果函数),(y x f 满足以下条件:1)在R 上连续:2)在R 上关于变量y 满足李普希兹(Lipschitz )条件,即存在常数0L >,使对于R 上任何一对点1(,)x y ,2(,)x y 均有不等式 1212(,)(,)f x y f x y L y y -≤-成立,则方程(3.1)存在唯一的解()y x ?=, 在区间0||x x h -≤上连续,而且满足初始条件00()x y ?= (3.3)

南京师范大学《高等几何》课程教学大纲

南京师范大学《高等几何》课程教学大纲 课程名称:高等几何(Higher Geometry) 课程编号:06100020 学分:3 学时:90 先修课程:解析几何, 高等代数(I), 数学分析(I) 替代课程:无 一、课程教学目的 本课程是大学数学类专业的主干基础课程之一。本课程在学生具备初等几何、解析几何、高等代数、数学分析知识的基础上,系统地学习射影几何的基本知识,使学生能用变换群的观点来看待几何学,加深对几何学的理解,拓展几何空间概念。通过本课程利用商空间思想研究亏格为零不可定向的闭曲面上的几何学的训练,一方面使得学生拓宽眼界,扩大知识领域,提高抽象思维、理性思维能力,为进一步的数学学习打下基础;另一方面使得学生加深对中学几何特别是解析几何的理论与方法的理解,从而获得用高观点来处理中学几何问题的能力,为未来的中学几何教学打下基础;第三,本课程包括了许多著名的定理,奇妙的图形,匪夷所思的处理技巧,通过本课程的学习,可以有效地提高数学审美意识。 概括来说,学习本课程后,要使得学生有如下收获:(1)空间不只是平直的,除欧氏空间外,还有很多其他的空间。即让学生在空间观念上有一个提升;(2)进一步让学生了解处理几何问题不只是可以用综合法,还可以用解析法;(3)深刻理解对偶原理,认识到射影几何是与欧氏几何完全不同的几何学;(4)深刻理解射影变换及其性质,认识到射影几何是研究射影图形在射影变换下的不变性和不变量的一门科学;(5)深刻理解Klein的变换群观点,即研究某空间中的图形在它的某变换群作用下不变的性质和数量的科学就称为一门几何学;(6)深刻了解一些平面射影图形的射影性质。如:点列,线束,完全n点(线)形,二次曲线的射影性质。(7)学会构造射影图形。因为我们的纸张是欧氏平面,所以在其上构造射影图形还是有很多技巧,学生要深刻领会这些技巧。 二、教学任务 通过课堂教学、课外辅导等多个教学环节,教师主要完成下列教学任务: 1、完成上述教学目的。 2、培养学生树立科学世界观、人生观和价值观,具有良好的思想道德素养和团结协作的精神,具有一定的社会责任感、宽广的胸怀和创新意识。 3、使学生了解近代几何学的发展概貌及其在社会发展中的作用,了解数学科学的若干最新发展状况。 4、培养学生的各种数学能力,不仅要教会学生用研究的眼光(即经常想一想当初数学家是如

线性方程组的迭代解法(Matlab)

第六章线性方程组的迭代解法 2015年12月27日17:12 迭代法是目前求解大规模稀疏线性方程组的主要方法之一。包括定常迭代法和不定常迭代法,定常迭代法的迭代矩阵通常保持不变,包括有雅可比迭代法(Jacobi)、高斯-塞德尔迭代法(Gauss-Seidel)、超松弛迭代法(SOR) 1.雅可比迭代法(Jacobi) A表示线性方程组的系数矩阵,D表示A的主对角部分,L表示下三角部分,U表示上三角部分。 A=D+L+U 要解的方程变为Dx+Lx+Ux=b x=D^(-1)(b-(L+U)x) 所以Jocabi方法如下: Matlab程序 function [x,iter] =jacobi(A,b,tol) D=diag(diag(A)); L=D-tril(A); U=D-triu(A); x=zeros(size(b)); for iter=1:500 x=D\(b+L*x+U*x); error=norm(b-A*x)/norm(b); if(error

7月浙江自考高等几何试题及答案解析

1 浙江省2018年7月自学考试高等几何试题 课程代码:10027 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.在三角形的以下性质中是仿射性质的是( ) A.垂心 B.重心 C.内心 D.外心 2.以下四条直线中所含的无穷远点与其他三条不同的是( ) A.x y x y 121)1(2+=++ B.11)(2=++x x y C.x +2y =0 D.过点(1,3),(3,2)的直线 3.已知A ,B ,C ,D 四点是调和点列,任意调整它们次序后所得交比不会出现的是( ) A.1 B.2 C.-1 D. 2 1 4.椭圆型射影对应的自对应元素是( ) A.两个互异的实元素 B.两个互异的虚元素 C.两个重合的实元素 D.两个重合的虚元素 5.唯一决定一条二阶曲线需无三点共线的( ) A.3点 B.4点 C.5点 D.6点 二、填空题(本大题共5小题,每小题2分,共10分) 请在每小题的空格中填上正确答案。错填、不填均无分。 6.两点-3u 1+u 2+2u 3=0,2u 1-u 2+3u 3=0连线的坐标是_________. 7.若对合a μμ′+b (μ+μ′)+c =0是椭圆型的,则系数满足_________. 8.完全四线形的每一条对角线上有一组调和点列,即这直线上的两个顶点和_________. 9.椭圆上四定点与其上任意第五点所联四直线的交比为_________.

2 10.平面上任一圆通过的两个固定点称为_________. 三、计算题(本大题共6小题,每小题6分,共36分) 11.求使三点A (0,0),B (1,1),C (1,-1)变到三点A ′(1,1),B ′(3,1),C (1,-1)的仿射变换. 12.已知平面上有点A (2,1),B (4,2),C (6,-3),D (-3,2),E (-5,1),求A (BC ,DE ). 13.求射影变换式,使它的不变元素的参数是λ1=-1,λ2=3,并且使λ3=1变为3 λ'=0. 14.求射影变换??? ??--='-='-='3213 212 211 36 4 x x x x x x x x x x ρρρ的二重直线. 15.求两个成射影对应的线束x 1-λx 2=0,x 2-λ′x 3=0,(λ′= λ λ +1)所构成的二阶曲线的方程. 16.求二次曲线x 1x 2+x 1x 3+x 2x 3=0的中心. 四、作图题(本大题共2小题,每小题8分,共16分)(第18题写出作法) 17.作出下列图形的对偶图形: 题17图 18.已知二阶曲线上五点A ,B ,C ,D ,E ,求作该曲线上点A 处的切线. 题18图 五、证明题(本大题共3小题,第19小题和第20小题各10分,第21小题8分,共28分)

逐次逼近式转换原理(终审稿)

逐次逼近式转换原理公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

一、逐次逼近式AD转换器与计数式A/D转换类似,只是数字量由“逐次逼近寄存器SAR”产生。SAR使用“对分搜索法”产生数字量,以8位数字量为例,SAR首先产生8位数字量的一半,即B,试探模拟量Vi的大小,若Vo>Vi,清除最高位,若VoVi,“控制电路”清除最高位,若Vo

(3)在最高位确定后,SAR又以对分搜索法确定次高位,即以低7位的一半y1000000B(y为已确定位) 试探模拟量Vi的大小。在bit6确定后,SAR以对分搜索法确定bit5位,即以低6位的一半yy100000B(y为已确定位) 试探模拟量Vi的大小。重复这一过程,直到最低位bit0被确定。 (4)在最低位bit0确定后,转换结束,“控制电路”发出“转换结束”信号EOC。该信号的下降沿把SAR的输出锁存在“缓冲寄存器”里,从而得到数字量输出。从转换过程可以看出:启动信号为负脉冲有效。转换结束信号为低电平。 ? 我觉得,这有点像数学中的二分法,如给一个数a,先用8'b1000000(设为b)与a相比较,如果a大于b,则保留最高位1,即原来的范围变成了0-7'b1111111(第8位已确认)。之后的过程都是这样,重复执行就可以了。 根据以上理论,举个例子,例如满量程应该是5V,所以,第一次DA输出,输入电压与比较,输入电压大,故而取之间,即最高位保留1。然后在新的范围内取中间电压,即,依此类推。。。。

高等几何学习指导

《高等几何》学习指导

第一章仿射坐标与仿射变换 一、教学目的要求 1、理解透视仿射对应、仿射对应和仿射变换的概念,注意其区别和联系; 2、熟练掌握共线三点单比的概念及其坐标表示法; 3、理解仿射不变性与仿射不变量的概念,并能利用它们证明平面图形的其它仿射性质; 4、熟练掌握仿射变换的代数表示. 二、教学重点、难点 重点: 透视仿射对应、仿射变换的概念;仿射不变性与仿射不变量;仿射变换的代数表示和共线三点单比的坐标表示法. 难点:透视仿射对应的概念、特征及判断. 三、内容小结 本章主要介绍下述内容: 1、共线三点单比(简比)的概念 2、透视仿射对应 1)、概念: ①、同一平面内,直线l到直线/l的透视仿射对应; ②、平面π到平面/π的透视仿射对应. 2)、判断:对应点连线互相平行.

3)、性质: ①、保持同素性; ②、保持结合性; ③、保持平行性; ④、保持共线三点单比不变. 3、仿射对应与仿射变换 概念:透视仿射链. 4、仿射坐标 1)、仿射坐标系; 2)、共线三点单比的坐标表示: 设3131 1233232 (,),(1,2,3),()i i i x x y y P x y i PP P x x y y --== = --则; 3)、仿射变换的代数表示:/111213 /212223 x a x a y a y a x a y a ?=++??=++??, 1112 2122 0a a a a ?= ≠; 5、仿射性质 1)、仿射不变性:同素性、结合性、平行性. 2)、仿射不变量: 共线三点的单比; 两条平行线段之比; 两个三角形面积之比; 两个封闭图形面积之比. 3)、常见的仿射不变图形:三角形、平行四边形、梯形. 四、例题

第三章逐次逼近法

第三章 逐次逼近法 1.1 1、一元迭代法x n+1=φ(x n )收敛条件为: 1)映内性x ∈[a,b],φ(x) ∈[a,b] 2)压缩性∣φ(x) -φ(y)∣≤L ∣x-y ∣其中L <1,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。由微分中值定理,如果∣φ’∣≤L <1,显然它一定满足压缩性条件。 2、多元迭代法x n+1=φ(x n )收敛条件为: 1)映内性x n ∈Ω,φ(x n ) ∈Ω 2)压缩性ρ(▽φ)<1,其中▽φ为x n 处的梯度矩阵,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。 3、当φ(x )= Bx+f 时,收敛条件为,ρ(B )<1,此时x n+1= Bx n +f ,在不断的迭代中,就可以得到线性方程组的解。 4、线性方程组的迭代解法,先作矩阵变换 U L D A --= Jacobi 迭代公式的矩阵形式 f Bx b D x U L D x n n n +=++=--+111)( Gauss-Seidel 迭代公式的矩阵形式 f Bx b L D Ux L D x n n n +=-+-=--+111)()( 超松弛迭代法公式的矩阵形式 f Bx b L D x U D L D x k k k +=-++--=--+ωωωωω111 )(])1[()( 三种迭代方法当1)( ∑ ≠-,于是

数值解与解析解

解析解是解的形式可以表达为一个显式函数的表达式的解;而数值解其解的形式不能表达为显式函数,只能通过数值计算的方式求解,得到的是一系列离散的数值,不能表达为一个明确的函数的形式。对于大多数问题是得不到解析解的,只能得到数值解。能得到解析解的只是一小部分问题,而且通常有比较严格的限制条件。解析解能够很直观的体现各参数之间的关系,对于定性分析是很重要的。对于得不到解析解的问题,进行数值计算得到数值解,对于工程应用很重要。 所谓精确解和近似解,是从算法上决定的。一般的力学模型都是有一定的使用和假设条件的,主要是看在求解有关的问题时,计算的结果与模型的真实值的误差是否为零,如果为零,则是精确解法,如算法本身不能保证得到真实值,则是近似解法,与其是否是解析解无关,与是否是手算和机算也无关。简单的例子,如结构力学中的结构有限元法得出的是精确解,而对于多高层结构的分层法则是近似解法。以上两种方法都是数值解法,但有限元法(指结构力学中的矩阵位移法)直接求解的结构的平衡方程,求解过程中没有对方程进行近似的假设,而分层法对则是利用力矩分配法的研究成果,对于不符和利用力矩分配法的高层结构进行了近似,所以求得的是近似解。有限元法多在计算机上进行实现,而分层法是早期计算机没有出现或还不普及的时候,工程师们解决实际问题的时候所采用的方法。分层法所得到的结果虽然是近似的,与真实结果有一定的误差,但只要误差在一定的范围内,则是可以作为设计的依据进行使用的。再如有限元法和力矩分配法,两种算法都是精确解法,只要单元取得足够多,或者分配的次数足够多,算法本身能够保证其结果是精确解。但是很多情况下是没有必要的,单元太多或者分配次数太多,往往会带来计算量过大的问题,只要误差在一定的范围内,是可以满足工程应用的要求的。 对于非线性问题,由于计算上的困难,一般得到的是近似的数值解。 对于该问题的理解,楼主可以看看龙驭球院士编的《结构力学教程》。 解非线性方程组的方法有很多,比如直接降维、搜索(用最小二乘、牛顿迭代及最优化法)、连续法等等!直接降维操作较难,求解时间长;牛顿迭代有局部收敛性;最优化必须给出真实解的初始值;连续发需要构造同伦方程。

高等几何对初等几何教学指导作用浅析1

高等几何对初等几何教学指导作用浅析 摘要: 高等几何是高等师范院校数学与应用数学专业的一门重要基础课 ,其中贯穿着现代数学 的思想、理念和方法 ,是初等几何的延伸 ,拓展了初等几何的解题途径 ,丰富了初等几何的研究方 法 ,开阔了初等几何的学习视野。本文以实例与分析相结合说明高等几何的点线结合命题对初等几 何的高观点指导作用和在实践中广泛的应用 ,表明高等几何不仅在提高观点方面有独特作用 ,而且 在论证方法 ,思考问题等方面具有独特的巧妙、灵活等特点。 关键词:高等几何;初等几何; 初等几何是以静止的观点研究一些简单而又有规则的图形,高等几何则是以变动的观点研究变 动的图形.相比较而言,它们虽然同属几何学科,但其观点层次的高低不同.高等几何是在初等几何乃 至高等代数等课程的基础上研究几何问题的,它使学生在较高层面上认识几何空间的基本特征、研究 方法、内在联系,确认几何学的本质,从而发展了几何空间概念,并为进一步学习近代数学创造条件. 通过学习高等几何,可以居高临下地认识初等几何的内涵,高等几何不仅为初等几何提供了理 论依据,更为它拓展了解题途径,丰富了研究方法.因此,高等几何对初等几何具有现实的指导作用, 很有研究、探讨之必要,而且内容非常丰富,甚至是无止境的. 高等几何与初等几何的关系 《高等几何》是高等师范院校数学专业的一门重要的课程.是为学生加深对中学几何的理论和方法的理解,获得较高观点上处理中学几何问题的能力的专业选修课程. 而《初等几何研究》也是高师数学系数学教育专业的一门重要课程,是为培养中学数学师资所特有的课程,是培养未来中学数学教师从事初等几何教学和研究的能力,是提高他们数学素质和几何教学水平的重要课程。初等几何是高等几何的基础.而高等几何是初等几何的深化。初等几何研究的问题一般比较直观、单纯,但形成的概念和积累的技巧对高等几何往往影响深远;高等几何虽然抽象、复杂,但内容和方法却常常可以在初等几何中找到其根源,所以高等几何由于引入了无穷元素,因而处理问题的手段比初等几何高明,作为数学工具也就更具有一般性.从内容上讲,高等几何点变换的观点把初等几何中的正交变换扩大到仿射变换,再扩大到射影变换,从而把几何空间的概念也由欧氏空间扩大到仿射空间,再扩大到射影空间;坐标系也由笛卡尔坐标系扩大到仿射坐标系和射影坐标系.几何学的基本元素方面,也由以点为基本元素的点几何学化为以直线为基本元素的线几何学,并且由有限元素扩大到无穷远元素,由实元素扩大到复元素. 高等几何在初等几何中的应用 欧氏几何作为仿射几何、射影几何的子几何,使我们有可能把初等几何、解析几何放到更为广阔的背景中去考虑,有助于弄清欧氏几何与其它几何的联系与区别,以便从高观点下把握和处理中学教材,将高等几何的思想应用在初等几何中,这无疑对初等几何的教学有很大的指导作用。下面我们就通过几个实例可以看出高等几何对初等几何的指导作用。