搜档网
当前位置:搜档网 › 基于有限元模型的球阵列焊点的寿命估计与影响因素分析

基于有限元模型的球阵列焊点的寿命估计与影响因素分析

基于有限元模型的球阵列焊点的寿命估计与影响因素分析
基于有限元模型的球阵列焊点的寿命估计与影响因素分析

有限元分析复习内容汇总

1、有限元是近似求解一般连续场问题的数值方法 2、有限元法将连续的求解域离散为若干个子域,得到有限个单元,单元和单元之间用节点连接 3、直梁在外力的作用下,横截面的内力有剪力和弯矩两个. 4、平面刚架结构在外力的作用下,横截面上的内力有轴力、剪力、弯矩 . 5、进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角 6、平面刚架有限元分析,节点位移有轴向位移、横向位移、转角。 7、在弹性和小变形下,节点力和节点位移关系是线性关系。 8、弹性力学问题的方程个数有15个,未知量个数有15个。 9、弹性力学平面问题方程个数有8,未知数8个。 10、几何方程是研究应变和位移之间关系的方程 11、物理方程是描述应力和应变关系的方程 12、平衡方程反映了应力和体力之间关系的 13、把经过物体内任意一点各个截面上的应力状况叫做一点的应力状态 14、9形函数在单元上节点上的值,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_ 15、形函数是_三角形_单元内部坐标的_线性_函数,他反映了单元的_位移_状态 16、在进行节点编号时,同一单元的相邻节点的号码差尽量小. 17、三角形单元的位移模式为_线性位移模式_- 18、矩形单元的位移模式为__双线性位移模式_ 19、在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何_各向同性 20、单元刚度矩阵描述了_节点力_和_节点位移之间的关系 21、矩形单元边界上位移是连续变化的 1. 诉述有限元法的定义 答:有限元法是近似求解一般连续场问题的数值方法 2. 有限元法的基本思想是什么 答:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。 3. 有限元法的分类和基本步骤有哪些 答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。 4. 有限元法有哪些优缺点 答:优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。 缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。对无限求解域问题没有较好的处理办法。尽管现有的有限元软件多数使用了网络自适应技术,但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验。 5. 梁单元和平面钢架结构单元的自由度由什么确定 答:由每个节点位移分量的总和确定 6. 简述单元刚度矩阵的性质和矩阵元素的物理意义 答:单元刚度矩阵是描述单元节点力和节点位移之间关系的矩阵 单元刚度矩阵中元素aml的物理意义为单元第L个节点位移分量等于1,其他节点位移分量

工程预测焊点疲劳寿命

工程预测焊点疲劳寿命 介绍了一种预测焊点疲劳寿命的工程计算方法及其软件系统。这一方法用有限元中的刚性梁单元模拟焊核,用壳单元模拟连接板,求取通过梁单元传递的力和力矩;根据这些力和力矩计算焊核附近连接板和焊核周围的“结构应力”;然后通过一组以结构应力为控制参数的焊点S—N曲线估计焊点的疲劳损伤。描述了软件系统的框架和特点,用两个简单的例子说明这一方法的应用。结果表明,分析结果与试验结果相比有一定的保守性。 在汽车工业中,点焊被广泛地用于零部件和结构的制造。点焊构件的耐久性主要取决于焊点的疲劳强度。在一条生产自动线上装备一个焊点的点焊机械装置可能需要30万美元,为了补救某一问题而必须在生产时再增加一个点焊装置,其费用可能不止2倍。如果我们能在设计的早期预测焊点的疲劳寿命,那么显然这些费用可以降到最低点。更有意义的是,它也有助于缩短产品的开发周期,提高产品的质量。 Smith和Cooper用断裂力学方法研究过受剪切载荷焊点的疲劳寿命预测问题。他们指出:“一个焊点也许可以被认为是一个外表面有一环向深裂纹的实心圆棒,当这一圆棒受一个Ⅰ—Ⅱ复合型载荷时,它会在最大的局部Ⅰ型方向产生分叉裂纹并扩展”。他们说明了根据计算的裂纹扩展速率可以较好地预测焊点的疲劳寿命,并用他们的计算结果作出一些简单的设计曲线。Smith和Cooper所建议的方法基于对简单受剪搭接接头的有限元模拟,这种方法需要进一步的发展才能用于其它不同的焊点型式,处理变幅异相复杂载荷。发展的结

果可能是一个简单的专门针对焊点的规范,按照英国标准BS7608的方法,给出适用于不同点焊类型的载荷—寿命曲线族。 事实上,关联不同加载条件下焊点的疲劳强度,载荷是一个相当糟糕的参量。Raji和Sheppard提到,不同型式受不同载荷的焊点,它的疲劳耐久性能够通过分析板内焊点周边的局部应力得到更好的理解,这一局部应力指的是焊点附近的结构应力。Rupp等人描述了如何计算这些结构应力。他们根据最大应力、最小应力和一个载荷谱对焊点的疲劳寿命进行了预测。本文介绍的技术类似于Rupp等人的工作,不同的是进一步地将结构应力计算与应力缩放、叠加以及应用瞬态有限元分析结果等方法结合起来。下面将先介绍软件的技术细节,然后给出两个说明简例。 1 方法概述 方法要求将焊点模拟成为MSC/NASTRAN中的刚性梁单元;经这些梁单元传递的力和力矩被用来计算结构(名义)应力,这些应力为围绕焊点熔核和连接板的局部应力;按照S—N总寿命方法,用这些结构应力预估焊点的疲劳寿命。 软件系统由一些经过修改的MSC/FATIGUE模块组成,它的核心为焊点疲劳分析器SPOTW,图1表示了这一软件的框架。该系统当前只支持两板焊点的疲劳计算。焊点应当用连接两板中面且垂直于这两个中面的刚性梁表达,而板用位于板中面的壳单元模拟。焊点的长度因此是板厚之和的一半。焊点附近的网格不需要做任何细化,对壳单元的唯一要求是它们能将正确的力传至刚性梁。事实上,使用大尺寸的壳单元(大于2倍的熔核直径)似乎能获得最好的结果,即最

有限元法的基本思想及计算 步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列

有限元分析报告样本

《有限元分析》报告基本要求: 1. 以个人为单位完成有限元分析计算,并将计算结果上交;(不允许出现相同的分析模型,如相 同两人均为不及格) 2. 以个人为单位撰写计算分析报告; 3. 按下列模板格式完成分析报告; 4. 计算结果要求提交电子版,报告要求提交电子版和纸质版。(以上文字在报告中可删除) 《有限元分析》报告 一、问题描述 (要求:应结合图对问题进行详细描述,同时应清楚阐述所研究问题的受力状况和约束情况。图应清楚、明晰,且有必要的尺寸数据。) 一个平面刚架右端固定,在左端施加一个y 方向的-3000N 的力P1,中间施加一个Y 方向的-1000N 的力P2,试以静力来分析,求解各接点的位移。已知组成刚架的各梁除梁长外,其余的几何特性相同。 横截面积:A=0.0072 m2 横截高度:H=0.42m 惯性矩:I=0.0021028m4x 弹性模量: E=2.06x10n/ m2/ 泊松比:u=0.3 二、数学模型 (要求:针对问题描述给出相应的数学模型,应包含示意图,示意图中应有必要的尺寸数据;如进行了简化等处理,此处还应给出文字说明。) (此图仅为例题)

三、有限元建模(具体步骤以自己实际分析过程为主,需截图操作过程) 用ANSYS 分析平面刚架 1.设定分析模块 选择菜单路径:MainMenu—preference 弹出“PRreferences for GUI Filtering”对话框,如图示,在对话框中选取:Structural”,单击[OK]按钮,完成选择。 2.选择单元类型并定义单元的实常数 (1)新建单元类型并定 (2)定义单元的实常数在”Real Constants for BEAM3”对话框的AREA中输入“0。0072”在IZZ 中输入“0。0002108”,在HEIGHT中输入“0.42”。其他的3个常数不定义。单击[OK]按 钮,完成选择 3.定义材料属性 在”Define Material Model Behavier”对话框的”Material Models Available”中,依次双击“Structural→Linear→Elastic→Isotropic”如图

双相钢搭接点焊接头疲劳寿命分析

收稿日期:2007-07-09基金项目:国家“863”高技术研究发展计划资助项目(2006AA04Z 126) 双相钢搭接点焊接头疲劳寿命分析 许 君, 张延松, 朱 平, 陈关龙 (上海交通大学车身制造技术中心,上海 200240) 摘 要:研究了双相钢焊点特征,对不同匹配双相钢搭接焊点进行了疲劳试验,获得了焊点的载荷寿命曲线。研究了双相钢焊点的疲劳裂纹扩展及失效形式,分析和解释了疲劳过程中的现象,并根据裂纹的实际扩展路径,提出了局部等效张开应力强度因子 k eq ,从断裂力学的角度对双相钢焊点的疲劳失效进行了分析。结果表明,k eq 能够有效 地关联具有不同厚度,不同熔核直径的搭接焊点试样的疲劳寿命,是反映双相钢焊点疲劳强度的有效参量,能够用来预测焊点疲劳寿命。关键词:双相钢;点焊;疲劳强度;局部等效应力强度因子 中图分类号:TG 115.28 文献标识码:A 文章编号:0253-360X (2008)05-0045- 04 许 君 0 序 言 在汽车工业中,为适应提高油效和减少尾气排放的需要,汽车轻量化已经成为21世纪汽车技术 的前沿和热点[1] 。减少汽车重量的主要途径就是使用轻量化材料。传统的低碳钢以及高强度低碳合金钢(HS LA )现在正越来越多地被双相高强度钢(DP )所取代,双相钢的抗拉强度可以达到600MPa 甚至更高,它能够在不降低车身强度和刚度等各项性能指标的前提下,减少车身重量,而它现在也是整个汽车工业以及钢铁工业研究的热点。双相高强钢由低碳钢和低碳低合金钢经临界区处理或控制轧制而得到,主要由铁素体和马氏体组成。具有屈服强度低,初始加工硬化速率高,在加工硬化和屈服强度上表现高应变速率敏感性以及强度和延性配合好等特点[2,3]。不仅如此,双相高强钢还具有极强的吸能作用,从而在车辆发生碰撞或其它事故时更好地保护驾乘者的安全。 近年,虽然汽车白车身部件的连接出现了许多新的方法,比如激光焊接、粘接等等,但是电阻点焊仍然是车身构件连接的最主要方式。一般情况下,一辆轿车的白车身上有大约3000个焊点,焊点周围存在较严重的应力集中,疲劳裂纹易于形成和扩展,车身结构的大部分疲劳失效都发生在焊点或者焊点周围,焊点的局部失效会降低整个车辆的各种 功能指标,包括刚度、振动、噪声、以及车辆耐久性等 [4] 。随着双向高强钢越来越多地应用于汽车车身 制造中,双相钢焊点疲劳强度也逐渐成为各大汽车厂商的研究焦点。 在双相钢搭接点焊接头进行疲劳试验的基础上,对双相钢点焊接头疲劳裂纹扩展及失效形式进行了讨论,获得了焊点的载荷寿命曲线,分析和解释了疲劳过程中的现象,并根据裂纹的实际扩展路径,提出了局部等效张开应力强度因子k eq ,它是反映焊点疲劳寿命的有效参量。 1 试验方法 1.1 材料与试样 疲劳试验试样使用了双相高强钢DP600GI 以及DP780GI ,对应于DP600GI 有0.8mm 以及1.4mm 两 种厚度钢板,而DP780GI 则有1.0mm 以及1.6mm 两种厚度钢板,两种材料化学成分以及力学性能分别列于表1和表2。用于疲劳试验的拉剪试样具体几何尺寸见图1。为了保证获得焊点的一致性,所有试样的几何尺寸都保持一致,且焊接钢板都是同种厚度的组合,具体焊接参数如表3。 表1 DP600GI 和DP780GI 的化学成分(质量分数,%) Table 1 Chemical compo sitions of DP600GI and DP780GI 材料 C Mn P S Al Fe DP600GI 0.11 1.430.010.0010.02余量DP780GI 0.13 2.01 0.03 0.002 0.049 余量 第29卷第5期2008年5月 焊 接 学 报 TRANS ACTI ONS OF THE CHI NA WE LDI NG I NSTIT UTI ON V ol.29 N o.5May 2008

细解Ansys疲劳寿命分析

细解Ansys疲劳寿命分析 2013-08-29 17:16 by:有限元来源:广州有道有限元 ANSYS Workbench 疲劳分析 本章将介绍疲劳模块拓展功能的使用: –使用者要先学习第4章线性静态结构分析. ?在这部分中将包括以下内容: –疲劳概述 –恒定振幅下的通用疲劳程序,比例载荷情况 –变振幅下的疲劳程序,比例载荷情况 –恒定振幅下的疲劳程序,非比例载荷情况 ?上述功能适用于ANSYS DesignSpacelicenses和附带疲劳模块的更高级的licenses. A. 疲劳概述 ?结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关 ?疲劳通常分为两类: –高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的. 因此,应力通常比材料的极限强度低. 应力疲劳(Stress-based)用于高周疲劳. –低周疲劳是在循环次数相对较低时发生的。塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。一般认为应变疲劳(strain-based)应该用于低周疲劳计算. ?在设计仿真中, 疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳. 接下来,我们将对基于应力疲劳理论的处理方法进行讨论. …恒定振幅载荷 ?在前面曾提到, 疲劳是由于重复加载引起: –当最大和最小的应力水平恒定时, 称为恒定振幅载荷. 我们将针对这种最简单的形式,首先进行讨论. –否则,则称为变化振幅或非恒定振幅载荷

…成比例载荷 ?载荷可以是比例载荷, 也可以非比例载荷:–比例载荷, 是指主应力的比例是恒定的,并且主应力的削减不随时间变化. 这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算.–相反, 非比例载荷没有隐含各应力之间相互的关系,典型情况包括:?在两个不同载荷工况间的交替变化?交变载荷叠加在静载荷上?非线性边界条件

solidworks进行有限元分析的一般步骤

1.软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2.使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。 ◇右键单击“实体文件夹”并选择“应用材料到所有”——所有零部件将被赋予相同的材料属性。 ◇右键单击“实体文件夹”下的某个具体零件文件夹并选择“应用材料到所有实体”——某个零件的所有实体(多实体)将被赋予指定的材料属性。 ◇右键单击“实体文件夹”下具体零件的某个“Body”并选择“应用材料到实体”——只有

焊点疲劳强度研讨

焊点疲劳强度研讨 一.疲劳强度 电子元器件的焊点必须能经受长时间的微小振动和电路发散的热量。随着电子产品元器件安装密度的增加,电路的发热量增加,经常会发生焊接处的电气特性劣化,机械强度下降或出现断裂等现象。材料在变动载荷和应变长期作用下,因累积损伤而引起的断裂现象,称为疲劳。疲劳是一种低应力破坏。 二.提高疲劳强度性能的方法 2.1提高焊点的可靠性 提高焊点可靠性的最好方法有三个:提高焊点合金的耐用性;减少元件与PCB之间热膨胀系数(CTE)的失配;尽可能按照实际的柔软性来生产元件,向焊点提供更大的应变; 2.1.1提高焊点合金的耐用性 2.1.1.1选择合适的焊膏 2.1.1 润湿性能 对于焊料来说,能否与基板形成较好的浸润,是能否顺利地完成焊接的关键。如果一种 合金不能浸润基板材料,则会因浸润不良而在界面上产生空隙,易使应力集中而在焊接 处发生开裂。 焊料的润湿性主要的指标浸润角和铺展率。从现象上看,任何物体都有减少其自身表面 能的倾向。因此液体尽量收缩成圆球状,固体则把其接触的液体铺展开来覆盖其表面。 如果液体滴在固体表面,则会形成图一所示的情况。 图二和图三分别表示浸润不良和良好的现象。 θ为浸润角,显然浸润角越小,液态焊料越容易铺展,表示焊料对基板的润湿性能越好。 a. 当θ<900,称为润湿,B角越小,润湿性越好,液体越容易在固体表面展开; b. 当θ>90时称为不润湿,B角越大,润湿性越不好,液体越不容易在固体表面上铺展开, 越容易收缩成接近圆球的形状;

c. 当θ=00或180“时,则分别称为完全润湿和完全不润湿。 通常电子工业焊接时要求焊料的润湿角θ<200。 影响焊料润湿性能主要有:焊料和基板的材料组分、焊接温度、金属表面氧化物、环境介质、基板表面状况等。 IPC-SPVC用润湿力天平来测量并用润湿时间以及最大润湿力来表示的方法评估了不同组成的 SAC 合金的润湿性,结果发现其中(零交时间与最大润湿力)并无差异,见图4。各候选合金与锡铅共晶合金的润湿性比较见图5。 图 4 不同组成的SAC的润湿性评估结果

汽车车架简化模型有限元分析

汽车典型零部件简化模型有限元分析 任务1:连杆简化模型的有限元分析 1. 分析任务: 对图一所示的连杆的二维简化模型进行有限元分析,确定该设计是否满足结构的强度要求;若强度不够,修改设计直至最大应力减小至材料允许的范围内。在修改结构时,注意不可改变连杆小头衬套的内径和连杆大头的内径,也不可改变连杆各处的厚度和材料。 2. 分析所需数据: a.连杆采用两种材料,连杆本体用的是40Cr结构钢,左侧小头中的衬套用的是铜。 b.连杆杆身和大头的厚度为1.5mm,小头的厚度为3.0mm。注意在杆身和小头的过渡处有R2.0的过渡圆角; c.连杆结构的其它尺寸如图二所示; d.施加在大、小头内壁上的边界条件用于模拟连杆与曲轴及活塞销的连接。假定载荷分布在小头夹角为90o的内壁上,且为锥状分布;约束施加在连杆大头夹角为90o的内壁上; e.40Cr材料的弹性模量:210GPa;泊松比:0.3;屈服极限为:850MPa,设计安全系数为6;铜的弹性模量:120GPa,泊松比:0.33;屈服极限为:250MPa; 设计安全系数为4。 3. 完成该分析应掌握的ANSYS技术: a.单元类型的选择;单元的尺寸控制; b.不同厚度和材料的二维实体建模; c.工作平面的灵活应用;

d.按载荷和约束的要求分割线和面; e.模型参数(材料,实常数,单元类型号等) f.粘结、合并等布尔运算操作 g.局部坐标系,旋转节点坐标系; h.线性分布载荷的施加; i.单元网格误差估计; j.Ansys 命令日志文件及其在修改设计中的应用; k.多窗口显示的功能 4. 分析报告内容的基本要求: a.对分析任务的描述;列出分析所需数据: b.利用多窗口显示的功能绘出连杆的实体模型和网格模型,在模型上能反映出 连杆各部位材料、厚度的不同; c.绘图反映连杆的边界条件; d.绘出对连杆原设计进行有限元分析后得到的变形图和应力等值线图; e.图示SEPC和SERR并说明有限元分析的建模误差; f.详细说明对不符合设计要求的结构所作的设计修改;及最终符合设计要求的 计算结果; g.在分析中遇到的关键问题(在实体建模、网格剖分、边界条件施加等各个步 骤中出现的)及解决的办法; h.整理命令日志文件,并在每个语句后添加说明(说明该语句的功能,说明前 要加!号)。注意:添加的说明(可以用中文说明)应该反映在建模中的操作步骤而不是简单的ANSYS命令定义。

ANSYS 有限元分析基本流程

第一章实体建模 第一节基本知识 建模在ANSYS系统中包括广义与狭义两层含义,广义模型包括实体模型和在载荷与边界条件下的有限元模型,狭义则仅仅指建立的实体模型与有限元模型。建模的最终目的是获得正确的有限元网格模型,保证网格具有合理的单元形状,单元大小密度分布合理,以便施加边界条件和载荷,保证变形后仍具有合理的单元形状,场量分布描述清晰等。 一、实体造型简介 1.建立实体模型的两种途径 ①利用ANSYS自带的实体建模功能创建实体建模: ②利用ANSYS与其他软件接口导入其他二维或三维软件所建立的实体模型。 2.实体建模的三种方式 (1)自底向上的实体建模 由建立最低图元对象的点到最高图元对象的体,即先定义实体各顶点的关键点,再通过关键点连成线,然后由线组合成面,最后由面组合成体。 (2)自顶向下的实体建模 直接建立最高图元对象,其对应的较低图元面、线和关键点同时被创建。 (3)混合法自底向上和自顶向下的实体建模 可根据个人习惯采用混合法建模,但应该考虑要获得什么样的有限元模型,即在网格划分时采用自由网格划分或映射网格划分。自由网格划分时,实体模型的建立比较1e单,只要所有的面或体能接合成一体就可以:映射网格划分时,平面结构一定要四边形或三边形的面相接而成。 二、ANSYS的坐标系 ANSYS为用户提供了以下几种坐标系,每种都有其特定的用途。 ①全局坐标系与局部坐标系:用于定位几何对象(如节点、关键点等)的空间位置。 ②显示坐标系:定义了列出或显示几何对象的系统。 ③节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。 ④单元坐标系:确定材料特性主轴和单元结果数据的方向。 1.全局坐标系 全局坐标系和局部坐标系是用来定位几何体。在默认状态下,建模操作时使用的坐标系是全局坐标系即笛卡尔坐标系。总体坐标系是一个绝对的参考系。ANSYS提供了4种全局坐标系:笛卡尔坐标系、柱坐标系、球坐标系、Y-柱坐标系。4种全局坐标系有相同的原点,且遵循右手定则,它们的坐标系识别号分别为:0是笛卡尔坐标系(cartesian),1是柱坐标系 (Cyliadrical),2是球坐标系(Spherical),5是Y-柱坐标系(Y-aylindrical),如图2-1所示。

有限元模型如何查错

有限元模型如何查错 作者:PAUL KUROWSKI 在建立有限元模型的过程中很容易出错,如果你知道如何查错,修正这些错误将会变得很简单 有限元分析的第一步就是建立被分析对象的数学模型,这要求我们思索建模的理论基础如弹性理论,板的Reissner理论,塑性变形理论等,和考虑问题的其它信息如几何描述、材料特性,约束和荷载等等。 分析的目的就是由这些条件,计算得到精确解u_EX并同时得到位移u_EX的应力函数 F(u_EX)如Von Mises应力等。应力函数F (u_EX) 仅仅依赖于数学模型的定义,而与求解该数学问题的数值近似计算方法无关;同时应力函数F(u_EX)也不依赖于网格划分、网格类型和单元尺寸。函数F(u_EX)与模型实体物理性质之间的差异,被称为“模型错误”。 下一步就是使用有限元方法去找到精确解u_EX的近似值u_FE。这个过程包括选择网格划分和构件类型,如对二维板用八节点(矩形)单元,依此类推。网格划分&单元定义被称为有限元的离散化。 离散化产生的误差可以被定义为: 大部分的分析应该把这个误差控制在10%以内。同时由于建立模型和模型的离散化一定会产生这个误差,正确运用有限元分析就包括对这两类误差进行评估和控制。有限元分析结果中的名义误差&真实误差是有区别的,最好能够加以区别: 名义误差可以比建模误差和离散误差的总和小,二者可能反号而相互抵消。结果的好坏取决于模型是否反应实际(模型误差的大小)和有限元软件在转化过程中的精度控制(离散

化误差的大小)。 WHAT IS MODELING ERROR? 何为模型误差? 假设要分析一个支架,我们首先考虑到的问题应该包括:我们想得到什么结果?是最大应力还是最大变形?是固有频率、弯曲刚度、还是温度分布?支架是否处于弹性变形阶段?极限荷载形式有几种情况?如何模拟支撑条件等等。有了一个明确的目标和对我们使用的理论自身局限性的把握,分析者就可以建立模型了。有时这个模型与CAD模型是相似的,但相当多的情况是,为了简化网格的划分,我们有必要修改模型的拓扑描述。部分建模的过程包括以下一些问题:用壳单元模拟薄壁墙体,对对称性、反对称性或两者的运用,是否考虑细部及忽略不重要的特征等。比如,选用壳单元而不用实体单元意味着我们考虑到数学模型和相应的有限元软件的运作方式而作出了一个重要的决定。 当(研究对象的)拓扑描述已经比较理想后,我们还需要对材料属性(选择线弹性、弹塑性或其他)、荷载及支撑条件进行理想的简化。我们认为这些简化精确反应了所需模型的重要数据,而建模当中的一些重要决策有时并未过多的考虑这些(方面)。简化了的模型经常是概念错误的,一个检验模型是否不合理的方法是其解析解对应的应变能是否无穷大或趋近于零;另一个方法是对应于数学模型的我们感兴趣的数据在结果没有得到体现。很多分析者认为一个有效的网格生成器可以生成高质量的网格并降低模型误差,其实不尽然,模型是在网格划分前假定的,因此,最合理的网格划分也无法修正一个简化不合理的数学模型。 A SYSTEMATIC APPROACH 一个系统的方法 确保模型误差较小的唯一方式是把所需研究的数据放在对模型假设不敏感之处。类似地,通过把所需研究的数据放在对离散不敏感之处(不敏感的表现是:结果对更细的网格划分或更大的p值并不发生明显的改变),以减少离散误差。举个例子:比如说我们对一块简支板沿着边缘方向的剪力感兴趣,那么经典的克西霍夫板模型(Kirchhoff’s plate)是不可用的,可以通过一个Reissner模型或一个全3D的弹性模型轻而易举地检验出来。一个关于板弯曲的Reissner模型假设所有平面内位移沿厚度方向呈线性变化、剪应变沿厚度方向保持不变。若采用更厚的板的话会迫使人们去置疑简支的意义、同时会置疑是否可以给出一

焊点可靠性之焊点寿命预测

— 1 — 焊点可靠性之焊点寿命预测 在产品设计阶段对SMT 焊点的可能服役期限进行预测,是各大电子产品公司为保证电子整机的可靠性所必须进行的工作,为此提出了多种焊点寿命预测模型。 (1) 基于Manson-Coffin 方程的寿命预测模型 M-C 方程是用于预测金属材料低周疲劳失效寿命的经典经验方程[9]。其基本形式如下: C N p f =ε?β (1-1) 式中 N f — 失效循环数; ?εp — 循环塑性应变范围; β, C — 经验常数。 IBM 的Norris 和Landzberg 最早提出了用于软钎焊焊点热疲劳寿命预测的M-C 方程修正形式[2]: )/exp()(max /1kT Q Cf N n p m f -ε?= (1-2) 式中 C, m, n — 材料常数; Q — 激活能; f — 循环频率; k — Boltzmann 常数; T max — 温度循环的最高温度。 Bell 实验室的Engelmaier 针对LCCC 封装SMT 焊点的热疲劳寿命预测对M-C 方程进行了修正[10]: c f f N /1'221???? ??εγ?= (1-3) )1ln(1074.1106442.024f T c s +?+?--=-- (1-4) 式中 ?γ — 循环剪切应变范围; f 'ε— 疲劳韧性系数,2f 'ε=0.65; c — 疲劳韧性指数; T s — 温度循环的平均温度。 采用M-C 型疲劳寿命预测方程,关键在于循环塑性应变范围的确定。主要有两种方法:一种是解析法[10,11],通过对焊点结构的力学解析分析计算出焊点在热循环过程中承受的循环应变范围,如Engelmaier 给出[10]:

基于有限元法的运载火箭管路随机振动疲劳寿命分析

2017年第4期 导 弹 与 航 天 运 载 技 术 No.4 2017 总第354期 MISSILES AND SPACE VEHICLES Sum No.354 收稿日期:2016-08-21;修回日期:2017-05-26 作者简介:方红荣(1978-),男,高级工程师,主要研究方向为火箭增压输送系统设计与仿真 文章编号:1004-7182(2017)04-0107-04 DOI :10.7654/j.issn.1004-7182.20170424 基于有限元法的运载火箭管路随机振动疲劳寿命分析 方红荣,薛立鹏,李朝晖 (北京宇航系统工程研究所,北京,100076) 摘要:采用有限元法,基于ABAQUS 和nCode 开展了火箭增压输送管路随机振动疲劳寿命仿真研究,建立了典型输送管路的有限元分析模型,计算得到了管路结构的频响特性,在此基础上基于频域随机振动疲劳寿命分析方法,计算了输送管路在随机振动条件下的疲劳寿命。研究结果表明,该分析方法可用于指导运载火箭的增压输送系统管路疲劳耐久性的设计和分析,具有一定的工程应用价值。 关键词:增压输送管路;随机振动;疲劳寿命;仿真 中图分类号:V421.4 文献标识码:A Research on Simulation of Launch Vehicle Pipeline Structure’s Random Vibration Fatigue Lifetime Based on Finite Element Method Fang Hong-rong, Xue Li-peng, Li Zhao-hui (Beijing Institute of Astronautical Systems Engineering, Beijing, 100076) Abstract: Using the finite element method, adopted the ABAQUS and nCode, simulation of launch vehicle pressurization system transport pipeline’s random vibration fatigue lifetime is studied, the FEM model used for calculating frequency response property of typical transport pipeline is established, then the random vibration fatigue lifetime of transport pipeline based on frequency was calculated by giving vibration property. The method in this paper can provide guidance for the design and analysis of launch vehicle pressurization system transport pipeline, it also has worth in engineering application. Key words: Pressurization system transport pipeline; Random vibration; Fatigue lifetime; Simulation 0 引 言 火箭增压输送系统管路结构在工作过程中要承受复杂的随机振动载荷,边界条件复杂,极易发生疲劳破坏,在中国新型运载火箭增压输送系统管路单机试验中曾多次发生结构随机振动疲劳破坏的现象。目前在液体火箭增压输送系统管路设计中主要依靠振动试验的方法对产品进行考核验证,没有比较成熟的方法对管路全域动态疲劳寿命进行分析和预测,这种分析方法周期长、成本高,因此迫切需要研究一种能有效分析预测增压输送系统管路全域结构随机振动疲劳寿命的分析方法[1]。振动疲劳问题在工程实际中广泛存在,结构的振动疲劳涉及结构力学、振动力学以及材料学等,结构的随机振动属于高周疲劳。随机振动是一种非确定性振动,振动幅值及频率是随机变化的,振动疲劳的响应为随机过程,它的特性只能用统计参数描述,结构的随机振动疲劳寿命分析方法主要包括 时域分析法和频域分析法,对于有限元分析来说,处理较长的时域加载信号非常困难,而获取一个功率谱密度应力信号易于获取一个时域应力信号,基于频域法的结构随机振动疲劳寿命分析方法具有计算量小、思路简单等特点,目前对随机振动疲劳寿命分析多采用频域法[2~5]。 1 基于有限元法的增压输送管路随机振动疲劳寿命分析 基于有限元方法的结构振动疲劳寿命分析首先要进行振动载荷作用下结构的动力学响应分析,一般多采用有限元分析方法计算结构的动力学响应,然后基于动力学响应分析结果选择合适的疲劳分析模型进行结构的振动疲劳寿命估算和评估,利用有限元方法进行疲劳分析的基本流程如图1所示。

有限元法分析过程

有限元法分析过程 有限元法分析过程大体可分为:前处理、分析、后处理三大步骤。 对实际的连续体经过离散化后就建立了有限元分析模型,这一过程是有限元的前处理过程。在这一阶段,要构造计算对象的几何模型,要划分有限元网格,要生成有限元分析的输入数据,这一步是有限元分析的关键。 有限元分析过程主要包括:单元分析、整体分析、载荷移置、引入约束、求解约束方程等过程。这一过程是有限元分析的核心部分,有限元理论主要体现在这一过程中。 有限元法包括三类:有限元位移法、有限元力法、有限元混合法。 在有限元位移法中,选节点位移作为基本未知量; 在有限元力法中,选节点力作为未知量; 在有限元混合法中,选一部分基本未知量为节点位移,另一部分基本未知量为节点力。 有限元位移法计算过程的系统性、规律性强,特别适宜于编程求解。一般除板壳问题的有限元应用一定量的混合法外,其余全部采用有限元位移法。因此,一般不做特别声明,有限元法指的是有限元位移法。 有限元分析的后处理主要包括对计算结果的加工处理、编辑组织和图形表示三个方面。它可以把有限元分析得到的数据,进一步转换为设计人员直接需要的信息,如应力分布状态、结构变形状态等,并且绘成直观的图形,从而帮助设计人员迅速的评价和校核设计方案。 附:FELAC 2.0软件简介 FELAC 2.0采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的并行有限元计算C程序。 FELAC 2.0的目标是通过输入微分方程表达式和算法之后,就可以得到所有有限元计算的程序代码,包含串行程序和并行程序。该系统采用一种语言(有限元语言)和四种技术(对象技术、组件技术、公式库技术生成器技术)开发而成。并且基于FELAC 1.0的用户界面,新版本扩充了工作目录中右键编译功能、命令终端输入功能,并且丰

1有限元法简介

1有限元法简介 1.1有限单法的形成 在工程技术领域内,经常会遇到两类典型的问题。其中的第一类问题,可以归结为有限个已知单元体的组合。例如,材料力学中的连续梁、建筑结构框架和桁架结构。我们把这类问题,称为离散系统。如图1-1所示平面桁架结构,是由6个承受轴向力的“杆单元”组成。尽管离散系统是可解的,但是求解图1-2所示这类复杂的离散系统,要依靠计算机技术。 图1-1 平面桁架系统

图1-2 大型编钟“中华和钟”的振动分析及优化设计(曾攀教授) 第二类问题,通常可以建立它们应遵循的基本方程,即微分方程和相应的边界条件。例如弹性力学问题,热传导问题,电磁场问题等。由于建立基本方程所研究的对象通常是无限小的单元,这类问题称为连续系统。 图1-3 V6引擎的局部 下面是热传导问题的控制方程与换热边界条件: t T c Q z T z y T y x T x ??=+??? ??????+??? ? ??????+??? ??????ρλλλ (1- 1) 初始温度场也可以是不均匀的,但各点温度值是已知的: () 00 x,y,z T T t == (1- 2) 通常的热边界有三种,第三类边界条件如下形式: ()f T-T h n T λ=??- (1- 3) 尽管我们已经建立了连续系统的基本方程,由于边界条件的限制,通常只能得到少数简单问题的精确解答。对于许多实际的工程问题,还无法给出精确的解答,例如,图1-3所示V6引擎在工作中的温度分布。这为解决这个困难,工程师们和数学家们提出了许多近似方法。 在寻找连续系统求解方法的过程中,工程师和数学家从两个不同的路线得到了相同的结果,即有限元法。有限元法的形成可以回顾到二十世纪50年代,来源于固体力学中矩阵结构法的发展和工程师对结构相似性的直觉判断。从固体力学的角度来看,桁架结构等标准离散系统与人为地分割成有限个分区后的连续系统在结构上存在相似性。 1956年M..J.Turner, R.W.Clough, H.C.Martin, L.J.Topp 在纽约举行的航空学会年会上介

焊点可靠性之焊点寿命改善

焊点可靠性之焊点寿命改善 提高SMT焊点可靠性的方法主要有以下四种: (1) 研制开发新型基板材料以减小陶瓷芯片载体与树脂基板之间的热膨胀系数差。研究主要集中于印刷电路板材料,已经研制开发了42%Ni-Fe合金(CTE=5ppm/o C)、Cu-因瓦合金-Cu复合材料板(CTE=2.8~13ppm/o C)等新型基板材料,效果较好[41]。但是由于新型材料制作工艺复杂、价格昂贵,其实用性受到很大限制,90年代起极少有此类研究见于文献。 (2) 提高软钎料合金自身的力学性能,向Sn-Pb共晶合金基体中加入微量合金元素以实现合金强化。由于实际生产中需综合考虑成本、工艺性等多方面问题,对Sn-Pb基钎料合金而言,这方面的工作较少,主要是添加Ag[42]。朱颖博士开发了Sn-Pb-RE系列钎料合金,不仅提高表面组装焊点热循环寿命2-3倍,而且在成本和工艺性方面均有很好的应用前景[43]。近年来,随着环境保护呼声的日益提高,开发无铅钎料(Lead-Free Solder)成为了软钎焊材料研究的热点,HP公司的Glazer对此作了很好的综述[44],焦点在于新型无铅钎料合金在保证润湿性的前提下,其熔点要与现有工艺条件匹配且其力学性能要优于Sn-Pb共晶合金。 (3) 焊点形态优化设计。作为承受载荷的结构件,不同的焊点形态将导致焊点内部不同的热应力-应变分布,从而导致不同的焊点热疲劳性能。焊点形态优化设计包括两方面的内容:一是焊点形态预测,即在钎料量、焊点高度、焊盘几何、软钎焊规范等工艺参数确定的条件下,借助于焊点成型的数学物理模型计算出焊点的最终形态。近年来提出了多种基于能量最小原理的焊点形态预测模型[45-47]。二是优化设计,即何种焊点形态才具有最优的热疲劳性能。优化判据的确定是一个涉及到焊点失效机制的理论问题,目前还远没有 —1 —

有限元+螺栓简化

1 概述 螺栓是机载设备设计中常用的联接件之一。其具有结构简单,拆装方便,调整容易等优点,被广泛应用于航空、航天、汽车以及各种工程结构之中。在航空机载环境下,由于振动冲击的影响,设备往往产生较大的过载,对作为紧固件的螺栓带来强度高要求。螺栓是否满足强度要求,关系到机载设备的稳定性和安全性。 传统力学的解析方法对螺栓进行强度校核,主要是运用力的分解和平移原理,解力学平衡方程,借助理论和经验公式,理想化和公式化。没有考虑到连接部件整体性、力的传递途径、部件的局部细节(如应力集中、应力分布)等等。通过有限元法,整体建模,局部细化,可以弥补传统力学解析的缺陷。用有限元分析软件MSC.Patran/MSC.Nastran提供的特殊单元来模拟螺栓连接,过程更方便,计算更精确,结果更可靠。因此,有限元在螺栓强度校核中的应用越来越广泛。 2 有限元模型的建立 对于螺栓的模拟,有多种模拟方法,如多点约束单元法和梁元法等。 多点约束单元法(MPC)即采用特殊单元RBE2来模拟螺栓连接。在螺栓连接处,设置其中一节点为从节点(Dependent),另外一个节点为主节点(Independent)。主从节点之间位移约束关系使得从节点跟随主节点位移变化。比例因子选为1,使从节点和主节点位移变化协调一致,从而模拟实际工作状态下,螺栓对法兰的连接紧固作用。 梁元法模拟即采用两节点梁单元Beam,其能承受拉伸、剪切、扭转。通过参数设置,使梁元与螺栓几何属性一致。 本文分别用算例来说明这两种方法的可行性。 2.1 几何模型 如图1所示组合装配体,底部约束。两圆筒连接法兰通过8颗螺栓固定。端面受联合载荷作用。

相关主题