搜档网
当前位置:搜档网 › 物理-经典力学和量子力学中的谐振子

物理-经典力学和量子力学中的谐振子

物理-经典力学和量子力学中的谐振子
物理-经典力学和量子力学中的谐振子

目录

摘要(关键词) (1)

Abstract(Key words) (1)

前言 (1)

1.经典力学中的谐振子 (1)

1.1简谐振子 (1)

1.2受驱谐振子 (2)

1.3阻尼谐振子 (3)

1.4受驱阻尼谐振子 (3)

1.5数学描述 (3)

1.6经典谐振子的计算 (4)

2.量子力学中的谐振子 (5)

2.1一维谐振子 (5)

2.1.1哈密顿算符和能量本征态 (5)

2.1.2 阶梯算符方法 (6)

2.1.3自然长度和自然能量 (8)

2.2三维谐振子 (8)

2.3谐振子的相干态 (9)

2.3.1降算符的本征态 (9)

2.3.2相干态的性质 (10)

3.经典谐振子和量子谐振子的比较 (10)

3.1能级 (10)

3.1.1能级取值点 (10)

3.1.2零点能 (10)

3.2波函数 (11)

参考文献 (13)

致谢 (13)

经典力学和量子力学中的谐振子

摘要:谐振子在经典力学和量子力学中都是比较重要的问题,原因在于简谐振动广泛存在于自然界中,而许多体系都可以看成谐振子。本文着重介绍了经典力学中谐振子的的几种类别及其相关物理量的求解和量子力学中一维谐振子、三维谐振子以及相干态的相关知识,最后对经典和量子两个范畴内的谐振子进行了比较。 关键字:谐振子;经典力学;量子力学;相干态

Abstract :Harmonic oscillator is important in both classical and quantum mechanics. The reason is that simple harmonic oscillation widely exists in nature, and many systems can be viewed as harmonic oscillator system. In this paper, we mainly introduce the solution of the several categories and their relating physics terms of oscillator in classical mechanics and the relevant property of one-dimensional harmonic oscillator, the three dimensional harmonic oscillator, and its coherent state in quantum mechanics, finally compare harmonic oscillator in classical mechanics with that in quantum mechanics.

Key words :Harmonic oscillator ;Classical mechanics ;Quantum mechanics ;Coherent states

前言

何为谐振?在运动学就是简谐振动,该振动是物体在一个位置附近往复偏离该振动中心位置(即平衡位置)进行运动,在这个振动形式下,物体受力的大小总是和他偏离平衡位置的距离成正比,并且受力方向总是指向平衡位置。何为谐振子?把振动物体看作不考虑体积的微粒或者质点的时候,这个振动物体就叫谐振子。

1.经典力学中的谐振子

经典力学中,一个谐振子就是一个系统,当其从平衡位置发生位移,就会受到一个正比于位移x 的恢复力F ,并遵守胡克定律:

kx F -=

其中k 是一个大于零的常数,由系统决定。

如果F 是系统所受到的唯一的力,则系统被称作简谐振子。而其进行的往复运动称作简谐运动——正中央为平衡点的正弦或余弦的振动,且振幅与频率都是常数。

若同时存在一个正比于速度的摩擦力,则会存在阻尼现象,那么这种谐振子称为阻尼振子。在这种情况下,其振动频率小于无阻尼情况的振子,且振幅随着时间减小。

或者,若同时存在一个与时间相依的外力,该谐振子称为受驱振子。

1.1简谐振子

简谐振子没有驱动力,也没有摩擦,所以合力单纯为:

kx F -= (1.1.1) 利用牛顿第二定律,有: kx ma F -== (1.1.2)

而且加速度a 等于x 的二次微分导数,得: kx dt

x

d m -=22 (1.1.3)

02

0=+x ω (1.1.4)

2

20=?+?=+dx x x x d x x dx x d ωω

?

ω?ω+=+=t A

x

t A

00arccos arcsin

(1.1.8)

并有一般解为:

)cos(0?ω+=t A x (1.1.9) 其中振幅以及相位可过初始条件来决定。 另外也可以将一般解写成: )(sin ?ω+=

t A x (1.1.10)

00 (1.1.11) 其中A 与B 为透过初始条件决定的常数,以替代前面形式的A 与?。 其振动频率则为: ω0

=f (1.1.12) 动能为:以及势能为:

)(cos 22022

2?ω+==t kA kx U (1.1.14) 所以系统总能为定值: 2

2

1kA E =

(1.1.15) 1.2受驱谐振子

0在交流LC (电感L-电容C )电路以及理想化的弹簧系统(没有内部力学阻力或外部的空

气阻力)。

,与初始条件相关;另一个为稳态解(非齐次常微分方程的特殊解),与初始条件无关,

)

n(?

ω-t(1.4.2)

(1.4.3)

多数谐振子,基本上满足以下的微分方程:

)

cos(

2

2

2

t

A

x

dt

dx

m

b

dt

x

d

ω

ω=

+

+(1.5.1)

其中t 是时间,b 是阻尼常数,0ω是本征角频率,而)cos(0t A ω代表驱动系统的某种事物,其振幅为0A ,角频率为ω,x 是进行振荡的被测量量,可以是位置、电流或其他任何可能的物理量。角频率与频率f 有关,关系式为 π

ω

2=

f (1.5.2) 经典振子描述中的重要术语有: 振幅:偏离平衡点的最大的位移量。

周期:系统完成一个振荡循环所需的时间,为频率的倒数。

频率:单位时间内系统执行的循环总数量(通常以1赫兹 = 1/秒为量度)。 角频率:ω = 2πf

相位:系统完成了循环的多少(开始时,系统的相位为零;完成了循环的一半时,系统的相位为π)。

初始条件:t = 0时系统的状态。

1.6经典谐振子的计算

一质量为m 的质点沿ox 轴运动,它所受到的回复力()x F

可从势函数的微商得到。势函数为:

()22

1

kx x U = (1.6.1)

力()x F

的表达式为:

()i kx dx

dv

x F -=-= (1.6.2)

i 是沿ox 轴的单位矢量。运动方程可以写成:

kx dt x

d m -=22 (1.6.3)

令 m

k =2

0ω (1.6.4)

(1.6.3)式可变为: 02

022=+x dt

x d ω (1.6.5)

方程(1.6.5)的解具有下列形式:)sin(00o t x x ?ω+= (1.6.6) 它表示一个正弦运动,其振幅为0x ,相位为0?,角频率为0ω,相应的频率是:

πω20=

f m

k

π21=

(1.6.7) f 只与质点的质量m 和恢复力常数k 有关,而振幅0x 和相位o ?都与运动初始条件有关。

振子的总能量E 是:P E E E +=0 (1.6.8) 动能e E 和势能P E 的表达式为:

)(cos 2

)(20022

2

02?ωω+==t x m dt dx m E e (1.6.9)

)(sin 2

2100220

2

02?ωω+==t x m kx E P (1.6.10)

显然总能量在运动中是不变的,即

2

2

02

02

12kx x m E E E p e ==+=ω (1.6.11) 且由(1.6.9)(1.6.10)式知:当000=+?ωt 时,势能有最小值0,而此时动能具

有最大值202021x m ω;而当200π?ω=+t 时,势能具有最大值2

0202

1x m ω,

最小为0。

进一步,对于经典振子:)sin(00o t x x ?ω+= (1.6.12)

经典振子的速度v 为;)cos(0000?ωω+==t x dt

dx

v (1.6.13) 利用αα2sin 1cos -=,且已知:0

00)sin(x x

t =+?ω (1.6.14)

)00200(sin 1?ωω+-=t x v

001x x

x -

=ω (1.6.15) 其中0x 为振幅,平衡点为原点。当0=x 时,由(1.6.15)式知此时经典振子的速度v 有最大值00ωx v =,即经典振子在0=x 处逗留时间最短,出现的几率最小。

2.量子力学中的谐振子

2.1一维谐振子

2.1.1哈密顿算符与能量本征态

和经典力学中的一样,一维谐振子的总能量也为:

222122

p E m x m ω=+ (2.1)

二一维谐振子的哈密顿量为:

2221

p H m x ω=

+

(2.2) 214()exp())2n n m m x x H ωωψπ=?-? (2.4) 其中0,1,2...n =。

函数n H 为厄米多项式 :2

2

()(1)m n

x x n n d H x e e dx

-=- 所以,我们得到的谐振子的能级为:

1

()2

n E n ω=+ , 1,2,3,n =??? (2.5)

由(2.5)式。我们可以得知以下几点:

首先,能量是量子化的,只有离散的值——即 ω 乘以1/2, 3/2, 5/2……。这是许多量子力学系统的特征。

再者,其基态能量(当 n = 0 时的能量)不为零,即

012

E ω=

这是粒子波动性的必然结果,这一结果表明静止的波是不存在的。在基态中,根据量子力学,我们知道一振子执行所谓的“零振动” 且其平均动能为正值。最后,谐振子的能阶值是等距的,与波尔模型和盒中粒子问题不同。

引入厄米多项式,我们最后得到谐振子对应于能量本征值n E 的能量本征函数为:

22211

2

2

()()()a x n n n n n N e

H N e

H ax ξψξξ--== (2.6)

我们会注意到基态的概率密度集中在原点。这表示粒子多数时间处在势阱的底部,合乎对于一几乎不带能量状态的预期。当能量增加时,概率密度变成集中在“经典转向点”,其中状态能量等同于势能。这样的结果与经典谐振子相一致;经典的描述下,粒子多数时间处在(或更有机会被发现在)转向点,因为在此处粒子速度最慢。因此满足对应原理。 2.1.2阶梯算符方法

上述的幂级数解法虽然直观,但是却显得相当复杂。阶梯算符方法允许我们不用解

微分方程,就能直接求得能量本征值。首先,我们定义算符?a

与其伴随算符??a :

?))

i

a

x P m i P m ω

ω

=+- (2.7)

??并不相同。

???)x a a =

+

?

??(12)??,1

H a

a a a ω=+??=?? (2.10)

于是引入一个厄米算符

[]2

?

222???????()(),2211?2

m p i N a a x x

p m H ωωω≡=++=-

(2.11)

即:

1??()2

H

N ω=+

(2.12) ?H

既然与?N 有简单的线性关系,它们必可同时对角化。记?N 的一个本征值为n 的本征

态为n :

?N

n n n = (2.13)

1?()2

H

n n ω=

+ n 态的能量本征值为:

1

()n E n ω=+ (2.15)

0tan x Cons t dx m ω

=-+

(2.17)

经过归一化,这个方程的解为:

21

240()()m x m x e ωωψπ-=

(2.18)

2.1.3自然长度与自然能量

22

2

11

22

d H u

du =-+ (2.19) 且能量本征态与本征值变成:

12exp(()

n n x u H u ψ-=

- (2.20)

n E n =+2.2三维谐振子

三位谐振子的能量本征值方程为:

22222221()02m E m x y z ψωψ???+

-++=????

(2.22) 其中

22221

(,,)()2

V x y z m x y z ω=++

(2.23)

为谐振子的势。引进无量纲参数ξ、η、ζ,并定义

,,,ax ay az a ξηζ===≡

(2.24)

则能量本征值方程简化为:

222222

222()0ψψψλξηζψξηζ

?????+++-++=????? (2.25) 设(,,)()()()X Y Z ψξηζξηζ=,分离变量得到的整个体系的能量本征函数为:

22221()2

(,,)()()()

()()()x y z a x y z n n n n x y z X ax Y ay Z az N H ax H ay H az e

ψ-++== (2.26)

其中,x y z n n n n N N N N =。谐振子的能量本征值为:

121

()2

3

()2

x y z x y z E n n n λω

λλλω

ω

==++=+++ (2.27) 由此可见,三位谐振子的基态能量03

2

E ω=

。 2.3谐振子的相干态

相干态是量子力学中量子谐振子能够达到的一种特殊的量子状态。量子谐振子的动力学性能和经典力学中的谐振子很相似。1926年埃尔温·薛定谔在解满足对应原理的薛定谔方程时找到的第一个量子力学解就是相干态。 2.3.1降算符的本征态

做一维运动的粒子,坐标与动量的差方平均值满足下列不确定关系:

222

1()()4

x p ???≥

, (2.28) 上式表明粒子的坐标和动量不能同时取确定值,且两者的差方平均值之积不小于

2

14

。也就是说,它表明只有在某个态上这种误差取最小值214 ,即最小不确定态,它

是不确定程度的最小的状态,就是相干态。相干态也可以理解为最接近经典状态的量子状态。

对于线谐振子而言,在粒子数表象中,基态0下的不确定关系为:

2

2

2

1()()4

x p ???

= (2.29) 而0是降算符?_A

的本征态,相应的本征值为0,即 ?_00A = (2.30) 于是,可以推测?_A

的本征态为最小不确定态。 设降算符?_A

满足本征方程: ?_A

z z z = (2.31) 降算符不是厄米算符,一般情况下,它的本征值z 是复数。在粒子数表象中,将其本征

矢z 向?H

的本征矢展开: 0

n

n z c

n ∞

==

∑ (2.32)

为了求出展开系数,将上式代入(2.31)左端,得到:

??__1n n n n n A z c A n c c ∞

+=====-=∑∑∑ (2.33)

将其与(2.31)式右端比较,得到:

n n n n c

n c n ∞

+===∑∑ (2.34)

继而得到展开系数的递推关系:

1n zc c += (2.35)

将上式代入(2.32)式,得到:

00

n z c n ∞

== (2.36)

再利用归一化条件1z z =定出0c ,最后得到降算符的本征态为:

20

1exp()2n z z n ∞==- (2.37) 2.3.2相干态的性质 a.相干态满足

2

1?exp()exp()02

z z zA +

=-

b.相干态不是粒子数算符???n

A A +-=的本征态,但有确定的粒子数。

c.在相干态中,

n

出现的频率为

exp()!

n

n Wn n n =- d.不同的相干态一般并不正交,且满足

221exp[()]2

βαβααβ*

=-++

其中α与β为降算符?_A

的两个不同的本征值。 e.全部(无限多)相干态构成完备系,即

21

1d z z z π

=?

3.经典谐振子与量子谐振子的比较

经典谐振子与量子谐振子有着本质的区别,下面将逐一进行比较:

3.1能级

3.1.1能量取值点

由(1.6.9)(1.6.10)式可知经典谐振子的能量取值是连续的,而由(2.5)式可知量子谐振子的取值不是连续的,是分立的,即是量子化的,其中n 为量子数。而且量子谐振子的能级是等间距的,间距是ω 。能量取分立值是由于微观粒子具有波粒二象性这一量子特征。 3.1.2零点能

由(1.6.9)式可知当0)cos(0=+?wt 时,经典谐振子的最低动能为零,而由(2.5)

式可知,量子谐振子在基态的能量不为零。即当n=0时,ω 2

1

0=E ,0E 被称为零点能。

它与无限势阱总粒子的基态能量(2

2

222m a

n E n π = n=1,2,3…….)不为零是很相似的,这是一种量子效应,也是由于微观粒子具有波粒二象性。

同样,也可用不确定度关系进行定性说明。 利用坐标和动量的不确定关系,可得:

4

)()(22

2 ≥???p x 谐振子的能量不确定度关系:

2

222222)

(2

1)(8)(212)(x x x p E ?+?≥?+?=?μωμμωμ 使E ?极小的2)(x ?的值可由极值条件,得到:

0)

(821)()(4

22

2=?-=??x x d E d μμω 可求得,μω2)(2

=?x ,因此谐振子的零点能为:

2

44ωωω =+=?E

可见谐振子的基态是谐振子问题的最小不确定态,这是由其量子本性所决定的。

3.2波函数

经典力学中,谐振子表现为质点沿一条直线的振动,它没有轨道的概念,没有波函数。而量子力学的谐振子就用波函数来描述。在量子力学中波函数)(x ?本身无意义,但波函数的绝对值平方2

)(x ?与粒子在空间某点出现的几率成正比。

首先我们以基态进行讨论。 对于量子谐振子的基态:

2

4

102

2)(x e x α

π

α?-=

, ω 2

1

0=

E 其相应的几率密度为:

2

22

00)()(x

e x x W απ

α?-=

= 容易得知其在x=0处0W 有最大值:π

α

即在原点找到粒子的概率最大,由于能量ω 2

1

0=

E ,可知此时的经典回转点为0x m x ==

ω

。根据经典力学,能量为E 的谐振子所能达到离平衡位置最远的距离是A x m E

A x ±===,22

ω称为谐振子的经典回转点。

a 、由于经典谐振子在x=0处势能最小,并由(1.6.9)(1.6.10)式可知,此时的动能必定最大(机械能守恒),即谐振子的速度最大,见(1.6.11)式,振子在x=0处逗留时间最短,因此经典谐振子在x=0处的几率最小。而按量子力学计算,由上述关系

知,在x=0处的几率却是最大的(见图1).经典力学中与量子力学中刚好相反。

b 、当经典谐振子的能量为ω 21时,经典回转点α1±,经典振子只能处于α

1

≤x 的

区域中。应该在1=x α处,势能ωα 2

1

2121)(22==

=k kx x V ,即等于总能量。在这点速度减慢为零,不能再继续往外跑。而按照量子力学计算,粒子在α

1

>x 的区域,仍有不

为零的几率。对于基态,概率为:

1573.02

21

20

2

==

??∞

-∞

ξπ

?ξd e

dx x

对于第一激发态1?,粒子在经典禁区出现的概率为0.1116。

这种明显的量子效应在基态表现的特别突出,对于量子谐振子大约有16%的粒子跑到了

α

1

>x 的区域以外,这是与经典不同的地方。当线性谐振子在前几个态时,几率密度与

经典情况毫无相似之处,而随着量子数n 增加,相似性也随着增加。 图2和图3画出了n=0及n=10是线性谐振子的几率密度:

2

图3

图中虚线表示经典线性谐振子的几率密度,实线表示量子谐振子的几率密度。由图3可见当n=10时,量子和经典的情况在平均上已经相当符合,差别只在于2

0)(x α?迅速振荡而已。

在以上的讨论中,我们发现经典谐振子与量子谐振子既有明显的区别又存在某些必然的联系,对其中的思考与研究将会进一步促进人们对量子物理的理解与认识。

参考文献:

[1] 倪光炯,陈苏卿.高等量子力学.复旦大学出版社,2004.1第二版 [2] 喀兴林,高等量子力学.高等教育出版社,2001.8第二版 [3] 曾谨言.量子力学.科学出版社,2000.7第三版 [4] 张永德.高等量子力学.科学出版社,2010.8第二版

[5] 井孝功,张井波.高等量子力学导论.哈尔滨工业大学出版社,2004.6第一版 [6] 张林芝. 量子力学. 东北师范大学出版社, 1986第一版 [7] 曾谨言. 量子力学教程. 科学出版社, 2003 [8] [法]萨尔蒙. 量子力学. 科学出版社, 1981

[9] 宋鹤山. 量子力学. 大连理工大学出版社, 2004. [10] 姚玉洁. 量子力学. 吉林大学出版社, 1988.

文献不够

量子力学思考题及解答

1、以下说法是否正确: (1)量子力学适用于微观体系,而经典力学适用于宏观体系; (2)量子力学适用于η不能忽略的体系,而经典力学适用于η可以忽略的体系。 解答:(1)量子力学是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。 (2)对于宏观体系或η可以忽略的体系,并非量子力学不能适用,而是量子力学实际上已 经过渡到经典力学,二者相吻合了。 2、微观粒子的状态用波函数完全描述,这里“完全”的含义是什么? 解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。如已知单粒子(不考虑自旋)波函数)(r ? ψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其他力学量的概率分布也均可通过)(r ? ψ而完全确定。由于量子理论和经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。 3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。 解答:设1ψ和2ψ是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ和2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不是概率相加,而是波函数的叠加,屏上粒子位置的概率分布由222112 ψψψ c c +=确定,2 ψ中 出现有1ψ和2ψ的干涉项]Re[2* 21* 21ψψc c ,1c 和2c 的模对相对相位对概率分布具有重要作用。 4、量子态的叠加原理常被表述为:“如果1ψ和2ψ是体系的可能态,则它们的线性叠加 2211ψψψc c +=也是体系的一个可能态”。 (1)是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=; (2)对其中的1c 与2c 是任意与r ? 无关的复数,但可能是时间t 的函数。这种理解正确吗? 解答:(1)可能,这时)(1t c 与)(2t c 按薛定谔方程的要求随时间变化。

物理学史10.7 关于量子力学完备性的争论史

10.7关于量子力学完备性的争论 玻恩、海森伯、玻尔等人提出了量子力学的诠释以后,不久就遭到爱因斯坦和薛定谔等人的批评,他们不同意对方提出的波函数的几率解释、测不准原理和互补原理。双方展开了一场长达半个世纪的大论战,许多理论物理学家、实验物理学家和哲学家卷入了这场论战,这一论战至今还未结束。现在正在进行的关于隐参量的辩论就是他们论战的继续。 早在1927年10月召开的第五届索尔威会议上就爆发了公开论战。那次会议先由德布罗意介绍自己对波动力学的看法,提出了所谓的导波理论。在讨论中泡利对他的理论进行了激烈的批评,于是德布罗意声明放弃自己的观点。接着,玻恩和海森伯介绍矩阵力学波函数的诠释和测不准原理。最后他们说:“我们主张,量子力学是一种完备的理论,它的基本物理假说和数学假设是不能进一步被修改的。”玻尔也在会上发表了上节提到的演讲内容。这些话显然是说给爱因斯坦听的,但爱因斯坦一直保持沉默。只是在玻恩提到爱因斯坦的工作时,才起来作了即席发言,他用一个简单的理想实验来说明他的观点。 “设S是一个遮光屏,在它上面开一个不大的孔O(见图10-1),P是一个大半径的半球面形的照相胶片。假定电子沿着箭头所指示的方向落到遮光屏S 上。 这些电子的一部分穿过孔O,由于孔小,而电子具有速度,因此它们均匀地分布在(按:即衍射到)所有的方向从而作用在胶片上。” 这一事件的发生几率可由衍射的球面波在所考虑的点上的强度来量度。爱因斯坦说,可以有两种不同的观点来解释实验结果。按照第一种观点,德布罗意-薛定谔的ψ波不是代表一个电子,而是一团分布在空间中的电子云;量子论对于任何单个过程是什么也没有说的。它只给出关于一个相对说来无限多个基元过程的集合的知识。按照第二种观点,量子论可以完备地描述单个过程。落到遮光屏上的每个粒子,不是由位置和速度来表征而是用德布罗意-薛定谔波束来描述,这些描述概括了全部的事实和规律性。

量子力学初步-作业(含答案)

量子力学初步 1. 设描述微观粒子运动的波函数为(),r t ψ ,则ψψ*表示______________________________________;(),r t ψ 须满足的条件是_______________________________; 其 归 一 化 条 件 是 _______________________________. 2. 将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将_______________________________. (填入:增大D 2倍、增大2D 倍、增大D 倍或不变) 3. 粒子在一维无限深方势阱中运动(势阱宽度为a ),其波函数为 ()()30x x x a a πψ= << 粒子出现的概率最大的各个位置是x = ____________________. 4. 在电子单缝衍射实验中,若缝宽为a =0.1 nm (1 nm = 10-9 m),电子束垂直射在单缝面上,则衍射的电子横向动量的最小不确定量y p ?= _________N·s. (普朗克常量h =6.63×10-34 J·s) 5. 波长λ= 5000 ?的光沿x 轴正向传播,若光的波长的不确定量λ?= 10-3 ?,则利用不确定关系式x p x h ??≥可得光子的x 坐标的不确定量至少为_________. 6. 粒子做一维运动,其波函数为 ()00 x Axe x x x λψ-≥= ≤ 式中λ>0,粒子出现的概率最大的位置为x = _____________. 7. 量子力学中的隧道效应是指______________________________________ 这种效应是微观粒子_______________的表现. 8. 一维无限深方势阱中,已知势阱宽度为a ,应用测不准关系估计势阱中质量为m 的粒子的零点能量为____________. 9. 按照普朗克能量子假说,频率为ν的谐振子的能量只能为_________;而

《大学物理aii》作业 no08 量子力学基出 参考解答

《大学物理AII 》作业No.08量子力学基础 班级________学号________姓名_________成绩_______-------------------------------------------------------------------------------------------------------****************************本章教学要求**************************** 1、掌握物质波公式、理解实物粒子的波粒二象性特征。 2、理解概率波及波函数概念。 3、理解不确定关系,会用它进行估算;理解量子力学中的互补原理。 4、会用波函数的标准条件和归一化条件求解一维定态薛定谔方程。 5、理解薛定谔方程在一维无限深势阱、一维势垒中的应用结果、理解量子隧穿效应。 ------------------------------------------------------------------------------------------------------- 一、填空题 1、德布罗意在爱因斯坦光子理论的启发下提出,具有一定能量E 和动量P 的实物粒子也具波动性,这种波称为(物质)波;其联系的波长λ和频率ν与粒子能量E 和动量P 的关系为(νh E =)、(λh p =)。德布罗意的假设,最先由(戴维 孙-革末)实验得到了证实。因此实物粒子与光子一样,都具有(波粒二象性)的特征。 2、玻恩提出一种对物质波物理意义的解释,他认为物质波是一种(概率波),物质波的强度能够用来描述(微观粒子在空间的概率密度分布)。 3、对物体任何性质的测量,都涉及到与物体的相互作用。对宏观世界来说,这种相互作用可以忽略不计,但是对于微观客体来说,这种作用却是不能忽略。因此对微观客体的测量存在一个不确定关系。其中位置与动量不确定关系的表达式为(2 ≥???x p x );能量与时间不确定关系的表达式为(2 ≥???t E )。 4、薛定谔将(德布罗意公式)引入经典的波函数中,得到了一种既含有能量E 、动量P ,又含有时空座标的波函数),,,,,(P E t z y x ψ,这种波函数体现了微观粒子的波粒二象的特征,因此在薛定谔建立的量子力学体系中,就将这种波函数用来描述(微观粒子的运动状态)。

从经典力学到量子力学的思想体系探讨

从经典力学到量子力学的思想体系探讨 一、量子力学的产生与发展 19世纪末正当人们为经典物理取得重大成就的时候,一系列经典理论无法解释的现象 一个接一个地发现了。德国物理学家维恩通过热辐射能谱的测量发现的热辐射定理。德国物理学家普朗克为了解释热辐射能谱提出了一个大胆的假设:在热辐射的产生与吸收过程中能量是以 h为最小单位,一份一份交换的。这个能量量子化的假设不仅强调了热辐射能量的不连续性,而且与辐射能量和频率无关由振幅确定的基本概念直接相矛盾,无法纳入任何一个经典范畴。当时只有少数科学家认真研究这个问题。 著名科学家爱因斯坦经过认真思考,于1905年提出了光量子说。1916年美国物理学家密立根发表了光电效应实验结果,验证了爱因斯坦的光量子说。 1913年丹麦物理学家玻尔为解决卢瑟福原子行星模型的不稳定(按经典理论,原子中 电子绕原子核作圆周运动要辐射能量,导致轨道半径缩小直到跌落进原子核,与正电荷中和),提出定态假设:原子中的电子并不像行星一样可在任意经典力学的轨道上运转,稳定轨道的作用量fpdq必须为h的整数倍(角动量量子化),即fpdq=nh,n称之为量子数。玻尔又提出原子发光过程不是经典辐射,是电子在不同的稳定轨道态之间的不连续的跃迁过程,光的频率由轨道态之间的能量差△E=hV确定,即频率法则。这样,玻尔原子理论以它简单明晰的图像解释了氢原子分立光谱线,并以电子轨道态直观地解释了化学元素周期表,导致了72号元素铅的发现,在随后的短短十多年内引发了一系列的重大科学进展。这在物理学史 上是空前的。 由于量子论的深刻内涵,以玻尔为代表的哥本哈根学派对此进行了深入的研究,他们对对应原理、矩阵力学、不相容原理、测不准关系、互补原理。量子力学的几率解释等都做出了贡献。 1923年4月美国物理学家康普顿发表了X射线被电子散射所引起的频率变小现象,即 康普顿效应。按经典波动理论,静止物体对波的散射不会改变频率。而按爱因斯坦光量子说这是两个“粒子”碰撞的结果。光量子在碰撞时不仅将能量传递而且也将动量传递给了电子,使光量子说得到了实验的证明。 光不仅仅是电磁波,也是一种具有能量动量的粒子。1924年美籍奥地利物理学家泡利 发表了“不相容原理”:原子中不能有两个电子同时处于同一量子态。这一原理解释了原子中电子的壳层结构。这个原理对所有实体物质的基本粒子(通常称之为费米子,如质子、中

量子力学总结

量子力学总结 第一部分 量子力学基础(概念) 量子概念 所谓“量子”英文的解释为:a fixed amount (一份份、不连续),即量子力学是用不连续物理量来描述微观粒子在微观尺度下运动的力学,量子力学的特征简单的说就是不连续性。 描述对象:微观粒子 微观特征量 以原子中电子的特征量为例估算如下: ○1“精细结构常数”(电磁作用常数), 1371~ 10297.73 2-?==c e α ○ 2原子的电子能级 eV a e me c e mc E 27~~02242 2 2==??? ? ?? 即:数10eV 数量级 ○ 3原子尺寸:玻尔半径: 53.0~2 2 0me a =?,一般原子的半径1?

○4速率:26 ~~ 2.210/137 e c V c m s c ?-? ○5时间:原子中外层电子沿玻尔轨道的“运行”周期 秒 160 0105.1~2~-?v a t π 秒 角频率16 102.4~~?a v c ω, 即每秒绕轨道转1016圈 (电影胶片21张/S ,日光灯频率50次/S ) ○6角动量: =??2 2 20~~e m me mv a J 基本概念: 1、光电效应 2、康普顿效应 3、原子结构的波尔理论 波尔2个假设: 定态轨道 定态跃迁 4、物质波及德布洛意假设(德布洛意关系)

“任何物体的运动伴随着波,而且不可能将物质的运动和波的传播分开”,认为物体若以大小为P 的动量运动时,则伴随有波长为λ的波动。 P h =λ,h 为普朗克常数 同时满足关系ω ==hv E 因为任何物质的运动都伴随这种波动,所以称这种波动为物质波(或德布罗意波)。 称P h h E v ==λ 德布罗意波关系 例题:设一个粒子的质量与人的质量相当,约为50kg ,并以12秒的百米速度作直线运动,求粒子相应的德布罗意波长。说明其物理意义。 答:动量v p μ= 波长m v h p h 3634101.1)1250/(1063.6)/(/--?=??===μλ 晶体的晶格常数约为10-10m ,所以,题中的粒子对应的德布罗意波长<<晶体的晶格常数,因此,无法观测到衍射现象。 5、波粒二象性 (1)电子衍射实验 1926年戴维逊(C ·J ·Davisson )和革末(L ·H ·Gevmer )第一个观察到了电子在镍单晶表面的衍射现象,证实了电子的波动性,求出电子的波长λ

量子力学与能带理论

量子力学与能带理论 孟令进 专业: 应用物理 班级:1411101 学号:1141100117 摘要:曾谨言先生在《量子力学》一书中用量子力学解释了能带的形成,从定态薛定谔方程出发,将原子中原子实假定固定不动,并且在结构上呈现周期性排列,那么电子则可以看成在原子实以及其他电子的周期性的势场中运动,利用定态薛定谔方程可以解出其能级结构,从而得到能带理论。 一、定态薛定谔方程 1.一维定态薛定谔方程 我们首先利用薛定谔方程解决一类简单的问题,一维定态问题,即能量一定的状态。我们设粒子质量为m ,沿着x 方向运动,势场的势能为V(x),那么薛定谔方程可以写为 ),()(2),(222t x x V x m t x t i ψψ?? ????+??-=?? ,因为处于一定的能量E 状态,定态的波函数可以写为 /)(),(iEt e x t x -=ψψ,两式整理可得,)(x ψ满足的能量本征方程)(),()(2222x E t x x V x m ψψ=?? ????+??- ,或称为一维定态薛定谔方程。求解这个方程时,我们需要带入边界条件,连接条件。 2.定态薛定谔方程与方势垒 在经典力学当中,当一个具有能量E 的粒子射向高度为V 的势垒时,如果E>V ,则粒子能够顺利的越过这个势垒,如果E0的粒子从左方入射,那么在前两个区域的波函数可以用一维定态薛定谔方程解除来,结果如下:

量子力学和经典力学联系的实例分析

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 量子力学与经典力学的联系的实例分析 摘要:量子力学与经典力学研究的对象不同,范围不同,二者之间是不是不可逾越的?当然不是,在一定条件下,二者可以过渡.本文首先对量子力学和经典力学的关系进行了分析,其次通过具体的实例来说明量子力学过渡到经典力学的条件,最后分析出从运动学角度,经典力学向量子力学过渡可归结为从泊松括号向对易得过渡.

关键词:量子力学;经典力学;过渡 从高中到大学低年级,我们所涉及的物理学内容均为经典物理学范畴,经典物理学理论在宏观低速范围内已是相当完善,正如十九世纪末一些物理学家所描述的那样,做机械运动的物体,当运动速度小于真空中的光速时准确地遵从牛顿力学规律;分子热运动的规律有完备的热力学和统计力学理论;电磁运动有麦克斯韦方程加以描述;光的现象有光的波动理论,整个物理世界的重要规律都已发现,以后的工作只要重复前人的实验,提高实验精度,在测量数据后面多添加几个有效数字而已.正因如此为何在学完经典物理学以后还要继续学习近代物理学,如何引入近代物理学就显得格外重要. 毫无疑问近代物理学的产生是物理学上号称在物理学晴朗的天空上“两朵小小的乌云”造成的[1],正是这引发了物理学的一场大革命.这“两朵小小的乌云”即黑体辐射实验和迈克尔逊-莫雷实验.1900年为了解释黑体辐射实验,普朗克能量子的假设,导致了量子理论思想的萌芽,接着光电效应、康普顿效应以及原子结构等一系列问题上,经典物理都碰到了无法克服的困难,通过引入量子化思想,这些问题都迎刃而解,这就导致了描述微观世界的理论-量子力学的建立. 在经典物理十分成熟、完备的情况下引入静近代物理学,毫无疑问必须强调以下问题:(1)经典物理学的适用范围是宏观低速运动;(2)19世纪末20世纪初,物理学已经研究到微观现象和高速运动的新阶段;(3)新的研究范畴必须引入新的理论,这样,近代物理学的出现也就顺理成章了. 尽管强调经典物理学的适用范围是宏观低速运动,但碰到微观高速问题,人们依旧习惯于首先用已知非常熟悉的经典物理来解决物理学家如此,我们也不例外.无疑用经典物理学去解决高速微观问题最终必将以失败而告终.然而在近代物理学课程的研究中有意识地首先让经典物理学去碰壁,去得出结论,但结论是矛盾的和错误的,然后,引出近代物理学的有关理论,问题最后迎刃而解[2]. 经典物理学是在宏观和低速领域物理经验的基础上建立起来的物理概念和理论体系,其基础是牛顿力学和麦克斯韦电磁学.近代物理学则是在微观和高速领域物理实验的基础上建立起来的概念和理论体系,其基础是相对论和量子力学,必须指出,在相对论和量子力学建立以后的当代物理学研究中.虽然大量的是近代物理学问题,但也有不少属于经典物理学问题.因此不能说有了近代物理学就可抛弃经典物理学. 量子力学是物理学研究的经验扩充到微观领域的结果.因此,量子力学的建立必然是以经典力学为基础,它们之间存在必然的联系,量子力学修改了物理学中关于物理世界的描述以及物理规律陈述的基本概念.量子力学关于微观世界的各种规律的研究给

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

一、选择题 1.4185:已知一单色光照射在钠表面上, 测得光电子的最大动能是1.2 eV ,而钠的红限波 长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金 属片,其红限波长为λ0。今用单色光照射,发现 有电子放出,有些放出的电子(质量为m ,电荷 的绝对值为e )在垂直于磁场的平面内作半径为 R 的圆周运动,那末此照射光光子的能量是: (A) (B) (C) (D) [ ] 3.4383:用频率为ν 的单色光照射某种金 属时,逸出光电子的最大动能为E K ;若改用频 率为2ν 的单色光照射此种金属时,则逸出光电 子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光 波长是入射光波长的1.2倍,则散射光光子能量 ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 0λhc 0λhc m eRB 2)(2+0λhc m eRB +0λhc eRB 2+

5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光(B) 两种波长的光(C) 三种波长的光(D) 连续光谱[] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV,当氢原子从能量为-0.85 eV的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV,10.2 eV和1.9 eV (D) 12.1 eV,10.2 eV和 3.4 eV [] 9.4241:若 粒子(电荷为2e)在磁感应

《量子力学》考试知识点(精心整理)

《量子力学》考试知识点 第一章:绪论―经典物理学的困难 考核知识点: (一)、经典物理学困难的实例 (二)、微观粒子波-粒二象性 考核要求: (一)、经典物理困难的实例 1.识记:紫外灾难、能量子、光电效应、康普顿效应。 2.领会:微观粒子的波-粒二象性、德布罗意波。 第二章:波函数和薛定谔方程 考核知识点: (一)、波函数及波函数的统计解释 (二)、含时薛定谔方程 (三)、不含时薛定谔方程 考核要求: (一)、波函数及波函数的统计解释 1.识记:波函数、波函数的自然条件、自由粒子平面波 2.领会:微观粒子状态的描述、Born几率解释、几率波、态叠加原理(二)、含时薛定谔方程 1.领会:薛定谔方程的建立、几率流密度,粒子数守恒定理 2.简明应用:量子力学的初值问题 (三)、不含时薛定谔方程 1. 领会:定态、定态性质 2. 简明应用:定态薛定谔方程 第三章:一维定态问题

一、考核知识点: (一)、一维定态的一般性质 (二)、实例 二、考核要求: 1.领会:一维定态问题的一般性质、束缚态、波函数的连续性条件、反射系数、透射系数、完全透射、势垒贯穿、共振 2.简明应用:定态薛定谔方程的求解、 第四章量子力学中的力学量 一、考核知识点: (一)、表示力学量算符的性质 (二)、厄密算符的本征值和本征函数 (三)、连续谱本征函数“归一化” (四)、算符的共同本征函数 (五)、力学量的平均值随时间的变化 二、考核要求: (一)、表示力学量算符的性质 1.识记:算符、力学量算符、对易关系 2.领会:算符的运算规则、算符的厄密共厄、厄密算符、厄密算符的性质、基本力学量算符的对易关系 (二)、厄密算符的本征值和本征函数 1.识记:本征方程、本征值、本征函数、正交归一完备性 2.领会:厄密算符的本征值和本征函数性质、坐标算符和动量算符的本征值问题、力学量可取值及测量几率、几率振幅。 (三)、连续谱本征函数“归一化” 1.领会:连续谱的归一化、箱归一化、本征函数的封闭性关系

经典力学与量子力学中的一维谐振子

经典力学与量子力学中的一维谐振子 [摘要]一维谐振动是一种最简单的振动形式,许多复杂的运动都可分析为一维谐振动。本文以一维谐振子为研究对象,首先讨论经典力学与量子力学中的一维谐振子的运动方程和能量特征,然后分析坐标表象以及粒子数表象下的一维谐振子,最后讨论经典力学与量子力学中的一维谐振子的区别与联系。 [关键词]谐振子经典力学量子力学运动方程能量分布 1 前言 所谓谐振,在运动学中就是简谐振动。一个劲度系数为k的轻质弹簧的一端固定,另一端固结一个可以自由运动的质量为m的物体,就构成一个弹簧振子[1]。该振子是在一个位置(即平衡位置)附近做往复运动。在这种振动形式下,物体受力的大小总是和它偏离平衡位置的距离成正比,并且受力方向总是指向平衡位置。这种情况即为一维谐振子。 一维谐振子在应用上有很大价值,因为经典力学告诉我们只要选择适当的坐标,任意粒子体系的微小振动都可以认为是一些相互独立的振子的运动的集合。普朗克在他的辐射理论中将辐射物质的中心当作一些谐振子,从而得到和实验相符合的结果。在分子光谱中,我们可以把分子的振动近似地当作谐振子的波函数。另外在量子场论中电磁场的问题也能归结成谐振子的形式。因此在量子力学中,谐振子问题的地位较经典物理中来得重要。应用线性谐振子模型可以解决许多量子力学中的实际问题。 本文将以一维谐振子为研究对象,首先分别讨论经典力学与量子力学中一维谐振子的运动方程和能量特征,然后讨论坐标表象以及粒子数表象下的一维谐振子,最后分析经典力学与量子力学中的一维谐振子的区别与联系并简要讨论经典力学与量子力学的过渡问题。从而帮助我们更加深入的理解一维谐振子的物理实质,充分认识微观粒子的波粒二象性。 2 经典力学中的一维谐振子 在经典力学中基本方程以牛顿定律为基础,研究质点位移随时间变化的规

经典力学与量子力学中的一维谐振子

经典力学与量子力学中的一维谐振子 物理与电子信息工程学院物理学 [摘要]一维谐振动是一种最简单的振动形式,许多复杂的运动都可分析为一维谐振动。本文以一维谐振子为研究对象,首先讨论经典力学与量子力学中的一维谐振子的运动方程和能量特征,然后分析坐标表象以及粒子数表象下的一维谐振子,最后讨论经典力学与量子力学中的一维谐振子的区别与联系。 [关键词]谐振子经典力学量子力学运动方程能量分布 1 前言 所谓谐振,在运动学中就是简谐振动。一个劲度系数为k的轻质弹簧的一端固定,另一端固结一个可以自由运动的质量为m的物体,就构成一个弹簧振子[1]。该振子是在一个位置(即平衡位置)附近做往复运动。在这种振动形式下,物体受力的大小总是和它偏离平衡位置的距离成正比,并且受力方向总是指向平衡位置。这种情况即为一维谐振子。 一维谐振子在应用上有很大价值,因为经典力学告诉我们只要选择适当的坐标,任意粒子体系的微小振动都可以认为是一些相互独立的振子的运动的集合。普朗克在他的辐射理论中将辐射物质的中心当作一些谐振子,从而得到和实验相符合的结果。在分子光谱中,我们可以把分子的振动近似地当作谐振子的波函数。另外在量子场论中电磁场的问题也能归结成谐振子的形式。因此在量子力学中,谐振子问题的地位较经典物理中来得重要。应用线性谐振子模型可以解决许多量子力学中的实际问题。 本文将以一维谐振子为研究对象,首先分别讨论经典力学与量子力学中一维谐振子的运动方程和能量特征,然后讨论坐标表象以及粒子数表象下的一维谐振子,最后分析经典力学与量子力学中的一维谐振子的区别与联系并简要讨论经典力学与量子力学的过渡问题。从而帮助我们更加深入的理解一维谐振子的物理实质,充分认识微观粒子的波粒二象性。

(完整word版)量子力学所有简答题答案(2)

简答题 1 ?什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:光照射到某些物质上,引起物质的电性质发生变化,也就是光能量转换成电能。这类光致电变的现象被人们统称为光电效应。或光照射到金属上,引起物质的电性质发生变 化。这类光变致电的现象被人们统称为光电效应。 光电效应规律如下: 1.每一种金属在产生光电效应时都存在一极限频率(或称截止频率),即照射光的频率不能低于某一临界值。当入射光的频率低于极限频率时,无论多强的光都无法使电子逸出。 2.光电效应中产生的光电子的速度与光的频率有关,而与光强无关。 3.光电效应的瞬时性。实验发现,只要光的频率高于金属的极限频率,光的亮度无论强弱,光子的产生都几乎是瞬时的。 4?入射光的强度只影响光电流的强弱,即只影响在单位时间内由单位面积是逸出的光电 子数目。 爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的。(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。(3)光子能量与其频率成正 比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。逸出电子的动能、光子能量和逸出功之间的关系可以表示成: 1 2 h A -mv2这就是爱因斯坦光电效应方程。其中,h是普朗克常数;f是入射光子的 2 频率。 2. 写出德布罗意假设和德布罗意公式。 德布罗意假设:实物粒子具有波粒二象性。 h 德布罗意公式:E h P k 3. 简述波函数的统计解释,为什么说波函数可以完全描述微观体系的状态。几率波满足的条件。 波函数在空间中某一点的强度和在该点找到粒子的几率成正比。因为它能根 据现在的状态预知未来的状态。波函数满足归一化条件。 4. 以微观粒子的双缝干涉实验为例,说明态的叠加原理。 答:设1和2是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说

量子力学的发展史及其哲学思想

十九世纪末期,物理学理论在当时看来已发展到相当完善的阶段.那时,一般的物理现象都可以从相应的理论中得到说明:物体的机械运动比光速小的多时,准确地遵循牛顿力学的规律;电磁现象的规律被总结为麦克斯韦方程;光的现象有光的波动理论,最后也归结为麦克斯韦方程;热的现象理论有完整的热力学以及玻耳兹曼,吉不斯等人建立的统计物理学.在这种情况下,当时有许多人认为物理现象的基本规律已完全被揭露,剩下的工作只是把这些基本规律应用到各种具体问题上,进行一些计算而已。 这种把当时物理学的理论认作”最终理论”的看法显然是错误的,因为:在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在”绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识具有相对的真理性.”生产力的巨大发展,对科学试验不断提出新的要求,促使科学试验从一个发展阶段进入到另一个新的发展阶段。就在物理学的经典理论取得上述重大成就的同时,人们发现了一些新的物理现象,例如黑体辐射,光电效应,原子的光谱线系以及固体在低温下的比热等,都是经典物理理论所无法解释的。这些现象揭露了经典物理学的局限性,突出了经典物理学与微观世界规律性的矛盾,从而为发现微观世界的规律打下基础。黑体辐射和光电效应等现象使人们发现了光的波粒二象性;玻尔为解释原子的光谱线系而提出了原子结构的量子论,由于这个理论只是在经典理论的基础上加进一些新的假设,因而未能反映微观世界的本质。因此更突出了认识微观粒子运动规律的迫切性。直到本世纪二十年代,人们在光的波粒二象性的启示下,开始认识到微观粒子的波粒二象性,才开辟了建立量子力学的途径。 量子力学诞生和发展的过程,是充满着矛盾和斗争的过程。一方面,新现象的发现暴露了微观过程内部的矛盾,推动人们突破经典物理理论的限制,提出新的思想,新的理论;另一方面,不少的人(其中也包括一些对突破经典物理学的限制有过贡献的人),他们的思想不能(或不完全能)随变化了的客观情况而前进,不愿承认经典物理理论的局限性,总是千方百计地企图把新发现的现象以及为说明这些现象而提出的新思想,新理论纳入经典物理理论的框架之内。虽然本书中不能详细叙述这个过程。尽管这些新现象在十九世纪末就陆续被发现,而量

量子力学和经典力学的区别与联系(完整版)

量子力学和经典力学的区别与联系 量子力学和经典力学在的区别与联系 摘要 量子力学是反映微观粒子结构及其运动规律的科学。它的出现使物理学发生了巨大变革,一方面使人们对物质的运动有了进一步的认识,另一方面使人们认识到物理理论不是绝对的,而是相对的,有一定局限性。经典力学描述宏观物质形态的运动规律,而量子力学则描述微观物质形态的运动规律,他们之间有质的区别,又有密切联系。本文试图通过解释、比较,找出它们之间的不同,进一步深入了解量子力学,更好的理解和掌握量子力学的概念和原理。 经过量子力学与经典力学的对比我们可以发现,量子世界真正的基本特性:如果系统真的从状态A跳跃到B的话,那么我们对着其中的过程一无所知。当我们进行观察的时候,我们所获得的结果是有限的,而当我们没有观察的时候系统正在做什么,我们都不知道。量子理论可以说是一门反映微观运动客观规律的学说。经典物理与量子物理的最根本区别就是:在经典物理中,运动状态描述的特点为状态量都是一些实验可以测量得的,即在理论上这些量是描述运动状态的工具,实际上它们又是实验直接可测量的量,并可以通过测量这些状态量来直接验证理论。在量子力学中,微观粒子的运动状态由波函数描述,一切都是不确定的。但是当微观粒子积累到一定量是,它们又显现出经典力学的规律。 关键字:量子力学及经典力学基本内容及理论量子力学及经典力学的区别与联系 三、目录 摘要............................................................ ............ ... ... ...... (1) 关键字.................................................................. ...... ... ... ...... (1) 正文..................................................................... ...... ... ... ...... (3) 一、量子力学及经典力学基本内容及理论...... ............ ... ............ ...... ... (3) 经典力学基本内容及理论........................... ...... ......... ...... (3) 量子力学的基本内容及相关理论.................................... ...... (3) 二、量子力学及经典力学在表述上的区别与联系.................. ...... ... ...... (4)

量子力学基础概念试题库完整

一、概念题:(共20分,每小题4分) 1、何为束缚态? 2、当体系处于归一化波函数ψ(,)?r t 所描述的状态时,简述在ψ(,)? r t 状态中测量力学量F 的可能 值及其几率的方法。 3、设粒子在位置表象中处于态),(t r ? ψ,采用 Dirac 符号时,若将ψ(,)? r t 改写为ψ(,)? r t 有何不 妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 4、简述定态微扰理论。 5、Stern —Gerlach 实验证实了什么? 一、20分,每小题4分,主要考察量子力学基本概念以及基本思想。 1. 束缚态: 无限远处为零的波函数所描述的状态。能量小于势垒高度,粒子被约束在有限的空间内运动。 2. 首先求解力学量F 对应算符的本征方程:λλλφφφλφ==F F n n n ??,然后将()t r ,? ?按F 的本征态展开: ()?∑+=λφφ?λλd c c t r n n n ,? ,则F 的可能值为λλλλ,,,,n 21???,n F λ=的几率为2 n c ,F 在λλλd +~范围内 的几率为λλd c 2 3. Dirac 符号是不涉及任何表象的抽象符号。位置表象中的波函数应表示为?r ? 。 4. 求解定态薛定谔方程ψψE H =∧ 时,若可以把不显含时间的∧ H 分为大、小两部分∧ ∧ ∧ '+=H H H ) (0,其中(1) ∧) (H 0的本征值)(n E 0和本征函数)(n 0ψ 是可以精确求解的,或已有确定的结果)(n )(n )(n ) (E H 0000ψ ψ =∧,(2)∧ 'H 很 小,称为加在∧) (H 0上的微扰,则可以利用) (n 0ψ和) (n E 0构造出ψ和E 。 5. Gerlack Stein -实验证明了电子自旋的存在。 一、概念题:(共20分,每小题4分) 1、一个物理体系存在束缚态的条件是什么? 2、两个对易的力学量是否一定同时确定?为什么? 3、测不准关系是否与表象有关? 4、在简并定态微扰论中,如?()H 0的某一能级)0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…, f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 5、在自旋态χ12 ()s z 中,?S x 和?S y 的测不准关系(?)(?)??S S x y 22?是多少? 一、20分,每小题4分,主要考察量子力学基本概念以及基本思想。 1、条件:①能量比无穷远处的势小;②能级满足的方程至少有一个解。 2、不一定,只有在它们共同的本征态下才能同时确定。 3、无关。 4、因为作为零级近似的波函数必须保证()()()()()()()()011 1 00E H E H n n n n ??φφ--=-有解。 5、16 4 η。

量子力学习题

河 北 大 学 课 程 考 核 试 卷 — 学年第 学期 级 专业(类) 考核科目 量子力学 课程类别 必修课 考核类型 考试 考核方式 闭卷 卷别 A (注:考生务必将答案写在答题纸上,写在本试卷上的无效) 一、概念题:(共20分,每小题4分) 1、简述波函数的统计解释; 2、对“轨道”和“电子云”的概念,量子力学的解释是什么? 3、力学量G ?在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系; 5、电子在位置和自旋z S ?表象下,波函数??? ? ??=ψ),,(),,(21z y x z y x ψψ如何归一化?解释 各项的几率意义。 二(20分)设一粒子在一维势场c bx ax x U ++=2)(中运动(0>a )。求其定态能级和波函数。 三(20分)设某时刻,粒子处在状态)cos (sin )(212kx kx B x +=ψ,求此时粒子的平均动量和平均动能。 四(20分)某体系存在一个三度简并能级,即E E E E ===)0(3)0(2 )0(1。在不含时微扰H '?作用下,总哈密顿算符H ?在)0(?H 表象下为????? ? ?=**2110 0E E E H βαβα。求 受微扰后的能量至一级。 五(20分)对电子,求在x S ?表象下的x S ?、y S ?、z S ?的矩阵表示。 A —1—1 河 北 大 学 课 程 考 核 试 卷 — 学年第 学期 级 专业(类) 考核科目 量子力学 课程类别 必修课 考核类型 考试 考核方式 闭卷 卷别 B (注:考生务必将答案写在答题纸上,写在本试卷上的无效) 一、概念题:(共20分,每小题4分)

量子力学和经典力学的区别与联系

量子力学和经典力学在的区别与联系 摘要 量子力学是反映微观粒子结构及其运动规律的科学。它的出现使物理学发生了巨大变革,一方面使人们对物质的运动有了进一步的认识,另一方面使人们认识到物理理论不是绝对的,而是相对的,有一定局限性。经典力学描述宏观物质形态的运动规律,而量子力学则描述微观物质形态的运动规律,他们之间有质的区别,又有密切联系。本文试图通过解释、比较,找出它们之间的不同,进一步深入了解量子力学,更好的理解和掌握量子力学的概念和原理。 经过量子力学与经典力学的对比我们可以发现,量子世界真正的基本特性:如果系统真的从状态A跳跃到B的话,那么我们对着其中的过程一无所知。当我们进行观察的时候,我们所获得的结果是有限的,而当我们没有观察的时候系统正在做什么,我们都不知道。量子理论可以说是一门反映微观运动客观规律的学说。经典物理与量子物理的最根本区别就是:在经典物理中,运动状态描述的特点为状态量都是一些实验可以测量得的,即在理论上这些量是描述运动状态的工具,实际上它们又是实验直接可测量的量,并可以通过测量这些状态量来直接验证理论。在量子力学中,微观粒子的运动状态由波函数描述,一切都是不确定的。但是当微观粒子积累到一定量是,它们又显现出经典力学的规律。 关键字:量子力学及经典力学基本内容及理论量子力学及经典力学的区别与联系

目录 三、目录 摘要 (1) 关键字 (1) 正文 (3) 一、量子力学及经典力学基本内容及理论……………………………………………… 3 经典力学基本内容及理论 (3) 量子力学的基本内容及相关理论 (3) 二、量子力学及经典力学在表述上的区别与联系 (4) 微观粒子和宏观粒子的运动状态的描述 (4) 量子力学中微观粒子的波粒二象性 (5) 三、结论:量子力学与经典力学的一些区别对比 (5) 参考文献 (6)

量子力学讲义第4章

第四章 量子力学的表述形式 (本章对初学者来讲是难点) 表象:量子力学中态和力学量的具体表示形式。 为了便于理解本章内容,我们先进行一下类比: 矢量(欧几里德空间) 量子力学的态(希尔伯特空间) 基矢),,(321e e e ~三维 本征函数,...),...,,(21n ψψψ~无限维 任意矢展开∑=i i i e A A 任意态展开 ∑=n n n a ψψ ),,(z y x e e e ),...)(),...,(),((21x x x n ψψψ 取不同坐标系 ),,(?θe e e r 取不同表象 ),...)(),...,(),((21p C p C p C n ………. ………. 不同坐标之间可以进行变换 不同表象之间可以进行变换 由此可见,可以类似于矢量A ,将量子力学“几何化”→在矢量空间中建立它的一般形式。 为此,我们将 ① 引进量子力学的矢量空间~希尔伯特空间; ② 给出态和力学量算符在该空间的表示; ③ 建立各种不同表示之间的变换关系。 最后介绍一个典型应用(谐振子的粒子数表象)和量子力学的三种绘景。 4.1希尔伯特空间 狄拉克符号 狄拉克符号“ ”~类比: ),,(z y x A A A 欧氏空间的矢量 A →坐标系中的分量 ),,(?θA A A r ………. )(r ψ →表象下的表示 )(p C ……….

引入狄拉克符号的优点:①运算简洁;②勿需采用具体表象讨论。 一、 希尔伯特空间的矢量 定义:希尔伯特空间是定义在复数域上的、完备的、线性内积空间,并且一般 是无限维的。 1、线性:①c b a =+;②a b λ=。 2、完备性:∑=n n n a a 。 3、内积空间: 引入与右矢空间相互共轭的左矢空间 ∑ ==? +n n n a a a a * ; )(:。 定义内积:==* a b b a 复数,0≥a a 。 1=a a ~归一化;b a b a ,~0=正交; m n n m δ=~正交归一;)(x x x x '-='δ~连续谱的正交归一。 二、 量子体系的态用希尔伯特空间的矢量表示 (此属“符号问题”,仅作简要介绍,主要由学生自己通过练习来熟悉符号) 1、态矢符合线性空间的要求:?λψψψψ=+=21。 2、任意态矢可用一组完备的基矢展开: nm m n n n n f f f a δψ==∑, 。 ∑∑ =→====n n n n m mn n n m n m n f a a a f f a f a ψδψ? 。 3、态可以求内积: ??==dx x x dx x x )(,)(??ψψ ~ 以}{x 为基, 其中 ??ψψx x x x ==)()(。 取ψ的左矢:?=dx x x )(*ψψ,有内积 ????='''='''=dx x x dx x d x x x x x d x x dx x x )()()()()()(***?ψ?ψ?ψ?ψ 上式已利用了连续谱的正交归一性)(x x x x '-='δ。 三、 希尔伯特空间的算符 算符 ψ?F F =: 1、算符对左矢的作用: F b 存在,其意义(定义)为 )()(a F b a F a F ==。

相关主题