搜档网
当前位置:搜档网 › 三 角 形 的 内 角 和

三 角 形 的 内 角 和

三 角 形 的 内 角 和
三 角 形 的 内 角 和

浅议极大似然估计(MLE)背后的思想原理

1. 概率思想与归纳思想

0x1:归纳推理思想

所谓归纳推理思想,即是由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理。抽象地来说,由个别事实概括出一般结论的推理称为归纳推理(简称归纳),它是推理的一种例如:直角三角形内角和是180度;锐角三角形内角和是180度;钝角三角形内角和是180度;直角三角形,锐角三角形和钝角三角形是全部的三角形;所以,一切三角形内角和都是180度。

这个例子从直角三角形,锐角三角形和钝角三角形内角和分别都是180度这些个别性知识,推出了"一切三角形内角和都是180度"这样的一般性结论,就属于归纳推理。

1. 归纳推理的分类

传统上,根据前提所考察对象范围的不同,把归纳推理分为

1. 完全归纳推理:考察某类事物的全部对象

2. 不完全归纳推理:仅考虑某类事物的部分对象,并进一步根据:所依据的前提是否揭示对象与其属性间的因果联系,把不完全归纳推理分为1)简单枚举归纳推理:在经验观察基础上所做出的概括

2)科学归纳推理:在科学实验基础上所做出的概括

这里的所谓的“对象与其属性间的因果联系”即归纳推理强度,归纳推理的强度彼此间差异很大,根据归纳强度可分为

1. 演绎推理:必然性推理

2. 归纳推理:或然性推理

而现代归纳推理的主要形式有

1. 枚举论证

3. 比喻论证

4. 统计论证

5. 因果论证

2. 归纳推理的必要条件

归纳推理的前提是其结论的必要条件,但是归纳推理的前提必须是真实的,否则归纳就失去了意义

3. 归纳推理的结论 - 即样本

归纳推理里的结论指的是观测到了已经发生的事物结果,具体到机器学习领域就是我们常说的样本。需要特别注意的是,前提是真不能保证结论也一定是真,有时候归纳推理的结论可能是假的,或者不完全是真的。如根据某天有一只兔子撞到树上死了,推出每天都会有兔子撞到树上死掉,这一结论很可能为假,除非一些很特殊的情况发生

0x2:枚举推理 - 不完全推理的一种

在日常思维中,人们常根据对一类事物的部分对象具有某种属性的考虑,推出这一类事物的全部对象或部分对象也具有该属性的结论,这种推理就是枚举推理,即从特殊到一般的推理过程

例如:数目有年轮,从它的年轮知道树木生长的年数;动物也有年轮,从乌龟甲上的环数可以知道它的年龄,牛马的年轮在牙齿上,人的年轮在

脑中。从这些事物推理出所有生物都有记录自己寿命长短的年轮。

我们称被考察的那部分对象为样本(S),样本中某一个对象为样本个体(s),称这一类事物的全部对象为总体(A),样本属性(P),总体所具有的属性称为描述属性

枚举推理是从所考察的样本属性概括出总体属性的推理,其推理形式如下:

A 的 S 都具有 P 属性 = 所有 A 都具有 P 属性

枚举推理是典型的归纳推理,因为它体现了归纳概括这个概念的实质。从哲学的认识论意义上说,演绎体现了由一般到个别的认识过程,归纳体现了由个别到一般的认识过程,二者是互相联系、互相补充的如果一个总体中的所有个体在某一方面都具有相同的属性,那么任意一个个体在这方面的属性都是总体的属性(普遍寓于特殊中)例如医生为病人验血只需抽取病人血液的一小部分。母亲给婴儿喂奶只要尝一小口就能知道奶的温度,不同的个体在某方面所具有的无差别的属性称为同质性,有差别的属性称为异质性。比较而言,在科学归纳中,样本属性与描述属性具有同质性的概率较高,而在简单枚举法中,样本属性与描述属性具有同质性的概率较低

1. 全称枚举推理的批判性准则

1. 没有发现与观测结论相关的反例:只要有与结论相关的反例,无论有多少正面支持结论的实例,结论都是不真实的

2. 样本容量越大,结论的可靠型就越大:基于过少的样本所作出的概括是容易犯错误的,我们需要足够大的样本容量,也就是样本内所含个体

的数量,才能确立我们对所作出的概括的信心

3. 样本的个体之间的差异越大,结论的可靠性就越大:样本个体之间的差异通常能反映样本个体在总体中的分布情况,样本个体之间的差异越大说明样本个体在总体中的分布越广。这条准则涉及样本的代表性问题

4. 样本属性与描述属性有同质性的概率越大,结论的可靠性越大:从逻辑上说,样本属性与结论所概括概括的总体属性应当具有同质性,否则就一定会有反例。对于机器学习来说,就是我们取的样本一定要是最终实际线上模型的获取方式、特征抽取提取方式等方面一定要保持一致,这样才能保证同质性

2. 特称枚举与单称枚举

在一类事物中,根据所观察的样本个体具有某种属性的前提,得出总体中的其他一些个体也具有这种属性的结论,这种推理就是特称枚举推理,例如

1. 在亚洲观察到的天鹅是白色的,在欧洲和非洲观察到的天鹅也是白色的。所以美洲的天鹅也是白的:特称枚举是从样本到样本的推理

2. 在亚洲观察到的天鹅是白色的,在欧洲和非洲观察到的天鹅也是白色的,所以隔壁小李叔叔救回来的那只受伤的天鹅也会是白的:单称推理是从已考察的样本S到未知个体

需要注意的是,上面提到的4个全称枚举的准则都同样应用于特征枚举与单称枚举,但是存在几个问题

1. 由于单称枚举和特称枚举的结论是对未知个体做出的断定,结论超出了前提的断定范围,其结论面临着更大的反例的可能性,例如小李叔叔

救回来的天鹅不是白色的,或者根本就不是天鹅

2. 在日常思维实际中,单称枚举和特称枚举所推断的情况往往在未来才会出现。因而也称之为预测推理,其中单称枚举推理是最常用的形式,例如:从过去太阳总是从东方升起,推断出明天太阳也将从东方升起0x3:完全归纳法 - 枚举推理的极限

如果前提所包含的样本个体穷尽了总体中的所有个体,则其结论具有必然的性质。完全归纳法的特点是前提所考察的一类对象的全部,结论断定的范围没有超出前提的断定范围,本质上属于演绎推理

0x4:概率思想和归纳思想的联系

概率思想与归纳思想之间存在密切联系。归纳法中的概率归纳推理是从归纳法向概率法发展的标志。概率归纳推理是根据一类事件出现的概率,推出该类所有事件出现的概率的不完全归纳推理,是由部分到全体的推理,其特点是对可能性的大小作数量方面的估计,它的结论超出了前提所断定的范围,因而是或然的。

从某种程度上来说,归纳是一种特殊的概率,概率方法是归纳方法的自然推广,概率是归纳法发展到一定程度的必然产物

1. 概率法

1)概率法本身是对大量随机事件和随机现象所进行的一种归纳,是对随机事件发生的结果的归纳,它并不关心事件发生的具体过程2)而概率方法则主要适用于多变量因果关系的复杂事件所决定的问题

2. 归纳法

2)归纳法主要适用于少变量因果关系的简单事件所决定的问题0x5:统计思想(数理统计)与特殊化思想的联系

特殊化思想是将研究对象或问题从一般状态转化为特殊状态进行考察和研究的一种思想方法。特殊化思想方法的哲学基础是矛盾的普遍性寓于特殊性之中。

而数理统计思想方法是通过对样本的研究来把握总体内在规律的一种研究方法,换句话说,统计是通过对特殊事物的认识来把握一般规律,因此它也是一种特殊思想方法

特殊化方法主要处理确定性问题,更侧重过程和对具体方法的把握;而统计法则主要研究随机对象,它更强调对结果和整体的把握。

数量统计思想并不局限在具体的方法层次,它主要是从思想层面来把握问题,是一种真正意义上的特殊化方法

Relevant Link:?

2. 概率论和统计学的关系

来自于微博的一张图:

1. 概率论是统计推断的基础,在给定数据生成过程下观测、研究数据生成的性质;

2. 而统计推断则根据观测的数据,反向思考其数据生成过程。预测、分类、聚类、估计等,都是统计推断的特殊形式,强调对于数据生成过程的研究。

例如:在医院会对过去有糖尿病的所有病人进行归纳总结(建立模型,即统计归纳);当有一个新的病人入院时,就可以用之前的归纳总结来判

断该病人是否患糖尿病,然后就可以对症下药了。统计里常说的“分类”就是这个过程(即根据已知条件进行预测未来)。

统计=样本(回顾过去的数据)归纳出总体(总结)

概率率=总体(给定条件)对样本进行预测

统计和概率是方法论上的区别,概率是演绎(分析),统计是归纳(总结)

1. 概率论研究的是一个白箱子,你知道这个箱子的构造(里面有几个红球、几个白球,也就是所谓的联合概率分布函数),然后计算下一个摸出来的球是红球的概率(求具体条件概率)

2. 而统计学面对的是一个黑箱子,你只看得到每次摸出来的是红球还是白球,然后需要猜测这个黑箱子的内部结构,例如红球和白球的比例是多少?(参数估计)能不能认为红球40%,白球60%?(假设检验)概率 =? = 统计归纳:概率值统计的理论依据,在样本量足够且分布范围足够广的时候,它们之间可以互相推导

而概率论中的许多定理与结论,如大数定理、中心极限定理等保证了统计推断的合理性。即从理论上证明支撑了为什么我们通过统计归纳可以获得对整体概率分布上的情况。为了理解这个概念,我们先来讨论下相关的数学定理

0x1:统计归纳合理性的理论基石 - 概率正态分布定理和概率期望定理

1. 小数定理

小数定律是说,如果统计数据很少,那么事件就表现为各种极端情况,

而这些情况都是偶然事件,跟它的期望值一点关系都没有

如果统计数据不够大,就什么也说明不了

小数定律里的“跟它的期望值一点关系都没有”,这里的期望值就是接下来要讨论的“大数定律”。

2. 大数定理 - 随机变量的平均结果问题

大数定律是我们从统计数字中推测(归纳)真相的理论基础。

大数定律说如果统计数据足够大,那么事物出现的频率(统计)就能无限接近他的期望值(概率)

所谓期望,在我们的生活中,期望是你希望一件事情预期达到什么样的效果。例如,你去面试,期望的薪水是1万5。

在统计概率里,期望也是一样的含义,表示的也是事件未来的预期值,只不过是用更科学的方式来计算出这个数值。某个事件的期望值,也就是收益,实际上是所有不同结果的和,其中每个结果都是由各自的概率和收益相乘而来。

假设你参与了一个掷骰子的游戏,游戏规则是掷出1点可以获得1元,掷出2点可以获得2元,掷出3点可以获得3元,以此类推。那么在这个游戏中,掷一次骰子的期望值是多少?即掷一次骰子所有所有可能的结果来说,能获得的预期收益是多少?

1-6*1元+1-6*2元+1-6*3美元)+1-6*4元+1-6*5元+1-6*6元

这个期望3.5元代表什么意思呢?

可能你某一次抛筛子赢了1元,某一次抛筛子赢了6元,但是长期来看(假设玩了无数盘),你平均下来每次的收益会是3.5元。

我们可以看出来:期望的本质是概率的平均值。

上图是掷骰子游戏的动态演示过程,横轴表示抛筛子次数,纵轴表示期望值

1. 我们发现当抛筛子次数少数,期望波动很大。这就是小数定律,如果统计数据很少,那么事件就表现为各种极端情况,而这些情况都是偶然事件,跟它的期望值一点关系都没有。

2. 但是当你抛筛子次数大于60次后,就会越来越接近它的期望值

3.5。

大数定律的核心思想即:如果统计数据足够大,那么事物出现的统计期望(基于频率)就能无限接近他的理论期望。

3. 概率中的收敛定理 - 随机变量的概率分布问题

按分布收敛 - 中心极限定理

在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。根据中心极限定理,我们通过大量独立随机变量的统计归纳,可以得到概率分布密度函数的近似值

列维-林德伯格定理?

是中心极限定理的一种,就是独立同分布的中心极限定理

棣莫弗—拉普拉斯定理

证明的是二项分布的极限分布是正态分布,也告诉了我们实际问题时可以用大样本近似处理。

0x2:为什么在大量实验中随机变量的统计结果可以归纳推理出概率密度函数?

有了上一小节讨论的大数定理和概率收敛定理,我们实际上是知道概

率密度函数平均期望和大致分布的,对于高斯分布来说(不一定就是高斯分布),就是均值和方差这两个关键指标。同时我们知道,根据均值和方差,我们可以大致描绘出一个对应概率密度函数的分布情况和值情况了,也即我们可以近似得到概率密度函数

继续回到我们上面讲到黑白箱子猜球的问题,我们的实验(统计过程)只告诉我们拿出的求的颜色,要我们归纳推断出黑白盒子里求球的分布情况

做统计推断一般都需要对那个黑箱子做各种各样的假设,这些假设都是概率模型(可以是高斯正态分布模型),统计推断实际上就是在估计这些模型的参数

0x3:机器学习场景中大多数是统计归纳问题,目的是近似得到概率统计是由样本信息反推概率分布,如概率分布参数的点估计、区间估计,以及线性回归、贝叶斯估计等

Relevant Link:

3. 似然函数

前面两个章节讨论了统计归纳可以推导出概率密度,以及背后的数学理论支撑基础。所以接下来的问题就是另一个问题了,how?我们如何根据一个实验结果进行统计归纳计算,得到一个概率密度的估计?根据实验结果归纳统计得到的这个计算得到的是一个唯一确定值吗?

0x1:似然与概率密度在概念上不等但是在数值上相等 - 因果论的一种典型场景

首先给出一个等式:

等式左边表示给定联合样本值条件下关于未知参数的函数;等式右边的是一个密度函数,它表示给定参数下关于联合样本值的联合密度函数从数学定义上,似然函数和密度函数是完全不同的两个数学对象:是关于的函数,是关于的函数,但是神奇地地方就在于它们的函数值形式相等,实际上也可以理解为有因就有果,有果就有因

这个等式表示的是对于事件发生的两种角度的看法,本质上等式两边都是表示的这个事件发生的概率或者说可能性

1. 似然函数 L(θ|x):再给定一个样本x后,我们去想这个样本出现的可能性到底是多大。统计学的观点始终是认为样本的出现是基于一个分布的。那么我们去假设这个分布为 f,里面有参数theta。对于不同的theta,样本的分布不一样,所有的theta对应的样本分布就组成了似然函数

2. 概率密度函数 f(x|θ):表示的就是在给定参数theta的情况下,x出现的可能性多大。

所以其实这个等式要表示的核心意思都是在给一个theta和一个样本

x的时候,整个事件发生的可能性多大。

0x2:概率密度函数和似然函数数值相等的一个例子

以伯努利分布(Bernoulli distribution,又叫做两点分布或0-1分布)为例:

也可以写成以下形式:

,表示观测结果的不确定性

1. 从概率密度函数角度看

上面这个公式可以看成是关于参数 p 的函数,即 f 依赖于?p 的值。

对于任意的参数?pp?我们都可以画出伯努利分布的概率图,当?p = 0.5 时:f(x) = 0.5。这表明参数 p = 0.5时,观测结果的不确定性是对半开的

我们可以得到下面的概率密度图:

可以看到,参数 p 的取值越偏离0.5,则意味着观测结果的不确定性越低

2. 从似然函数角度看

从似然的角度出发,假设我们观测到的结果是?x = 0.5(即某一面朝上的概率是50%,这个结果可能是通过几千次几万次的试验得到的),可以得到以下的似然函数:

注意:这里的π描述的是伯努利实验的性能而非事件发生的概率(例如π = 0.5 描述的一枚两面均匀的硬币)

对应的似然函数图是这样的:

我们很容易看出似然函数的极值(也是最大值)在?p = 0.5 处得到,通常不需要做图来观察极值,令似然函数的偏导数为零即可求得极值条件。偏导数求极值是最最大似然函数的常用方法

0x3:似然函数的极大值

似然函数的最大值意味着什么?让我们回到概率和似然的定义,概率描述的是在一定条件下某个事件发生的可能性,概率越大说明这件事情越可能会发生;而似然描述的是结果已知的情况下,该事件在不同条件下发生的可能性,似然函数的值越大说明该事件在对应的条件下发生的可能性越大。

现在再来看看之前提到的抛硬币的例子:

上面的π(硬币的性质)就是我们说的事件发生的条件,描述的是性质不同的硬币,任意一面向上概率为50% 的可能性有多大,0x4:对数化的似然函数

对数似然函数并不是一个新的概念,它只是一个具体实现上的优化做法,因为实际问题往往要比抛一次硬币复杂得多,会涉及到多个独立事件,在似然函数的表达式中通常都会出现连乘:

对多项乘积的求导往往非常复杂,但是对于多项求和的求导却要简单的多,对数函数不改变原函数的单调性和极值位置,而且根据对数函数的性质可以将乘积转换为加减式,这可以大大简化求导的过程:在机器学习的公式推导中,经常能看到类似的转化。

0x5:概率密度函数和似然函数数值相等的另一个例子 - 掷硬币问题考虑投掷一枚硬币的实验。通常来说,已知投出的硬币正面朝上和反面朝上的概率各自是,便可以知道投掷若干次后出现各种结果的可能性比如说,投两次都是正面朝上的概率是0.25。用条件概率表示,就是:,其中H表示正面朝上。

在统计学中的大多数场景中,我们关心的是在已知一系列投掷的结果时,关于硬币投掷时正面朝上的可能性的信息。我们可以建立一个统计模型:假设硬币投出时会有?的概率正面朝上,而有?的概率反面朝上。这时,条件概率可以改写成似然函数:

也就是说,对于取定的似然函数,在观测到两次投掷都是正面朝上时,?的似然性是0.25(这并不表示当观测到两次正面朝上时?的概率是0.25)。

如果考虑,那么似然函数的值也会改变。

这说明,如果参数?的取值变成0.6的话,结果观测到连续两次正面朝上的概率要比假设?时更大。也就是说,参数?取成0.6 要比取成0.5 更有说服力,更为“合理”

仔细思考,我们就会发现,L 是关于 PH的单调递增函数,如下图:怎么理解这张图?即在实验结果已知的 HH 情况下,最大似然估计认为最有可能的情况是PH的概率为1,即这个硬币100%都是正面(虽然我们知道这不合理,但是反映了实验样本对似然估计合理性的影响)总之,似然函数的重要性不是它的具体取值,而是当参数变化时函数到底变小还是变大。对同一个似然函数,如果存在一个参数值,使得它的函数值达到最大的话,那么这个值就是最为“合理”的参数值。

Relevant Link:

4. 极大似然估计

极大似然估计是一种估计数据参数的常见统计方法,它遵循的准则是极大似然准则。极大似然准则和经验风险最小化准则一样,都是一种计算模型概率分布参数的准则,我们后面会讨论它们的区别。

0x1:从模型参数估计的角度谈极大似然估计

笔者观点:最大似然估计是利用已知的样本的结果,在使用某个模型的基础上,反推最有可能导致这样结果的模型参数值。

1. 伯努利分布下的极大似然参数估计

假设一个袋子装有白球与红球,比例未知,现在抽取10次(每次抽完都放回,保证事件独立性)。

假设抽到了7次白球和3次红球,在此数据样本条件下,可以采用最大似然估计法求解袋子中白球的比例(最大似然估计是一种“模型已定,参数未知”的方法)。

我们知道,一些复杂的问题,是很难通过直观的方式获得答案的,这时候理论分析就尤为重要了,我们可以找到一个"逼近模型"来无限地逼近我们要处理的问题的本质

我们可以定义2次实验中从袋子中抽取白球和红球的概率如下

x1为第一次采样,x2为第二次采样,f为模型, theta为模型参数,X1,X2是独立同分布的

其中theta是未知的,因此,我们定义似然L为:

L为似然的符号

因为目标是求最大似然函数,因此我们可以两边取ln,取ln是为了将右边的乘号变为加号,方便求导(不影响极大值的推导)

两边取ln的结果,左边的通常称之为对数似然

最大似然估计的过程,就是找一个合适的theta,使得平均对数似然的值为最大。因此,可以得到以下公式:

最大似然估计的公式

我们写出拓展到n次采样的情况

最大似然估计的公式(n次采样)

我们定义M为模型(也就是之前公式中的f),表示抽到白球的概率为theta,而抽到红球的概率为(1-theta),因此10次抽取抽到白球7次的概率可以表示为:

10次抽取抽到白球7次的概率

将其描述为平均似然可得:

那么最大似然就是找到一个合适的theta,获得最大的平均似然(求最大极值问题)。因此我们可以对平均似然的公式对theta求导,并另导数为0

求导过程

由此可得,当抽取白球的概率为0.7时,最可能产生10次抽取抽到白球7次的事件。

笔者思考:

如果我们的实验结果是:前10次抽到的球都是白球,则对对数似然函数进行求导,并另导数为0,得出theta为1,即当取白球的概率是100%时,最有可能10次都抽到白球。

显然,这种"推测结果"很容易"偏离真实情况",因为很可能是因为10次都抽到白球这种小概率事件导致我们基于观测值的最大似然推测失真,即产生了过拟合,但是造成这种现象的本质是因为"我们的训练样本未能真实地反映待推测问题的本质",在一个不好的样本集下,要做出正确的预测也就变得十分困难。

2. 正态分布下的极大似然参数估计

我们前面说了,事物的本来规律是很复杂的,我们很难用一个百分百准确的模型去描述事物的本质,但是我们可以用一些类似的通用模型去"尽可能逼近"事物的本质。

高斯分布(正态分布)一种非常合理的描述随机事件的概率模型。

假如有一组采样值(x1.,xn),我们知道其服从正态分布,且标准差已知。当这个正态分布的期望和方差为多少时,产生这个采样数据的概率为最大?

继续上个小节的例子:

基于n次实验观测值对参数theta预测的的似然函数

正态分布的公式,当第一参数(期望)为0,第二参数(方差)为1时,分布为标准正态分布

把高斯分布函数带入n次独立实验的似然函数中

对上式求导可得,在高斯分布下,参数theta的似然函数的值取决于实验观测结果,这和我们上例中抽球实验是一致的

笔者思考:根据概率原理我们知道,如果我们的实验次数不断增加,甚至接近无限次,则实验的观测结果会无限逼近于真实的概率分布情况,这个时候最大似然函数的估计就会逐渐接近真实的概率分布,也可以这么理解,样本观测量的增加,会降低似然函数过拟合带来的误差。

0x2:极大似然估计和经验风险最小化准则的关系

极大似然估计准则和经验风险最小化准则(ERM),是具有一定的相似性的。

在经验风险最小化原则中,有一个假设集,利用训练集进行学习,选取假设,实现使得经验风险最小化。实际上,极大似然估计是对于特定的损失函数的经验风险最小化,也就说,极大似然估计是一种特殊形式的经验风险最小化。

对于给定的参数和观测样本 x,定义损失函数为:

也就是说,假设观测样本 X 服从分布,损失函数与 x 的对数似然函数相差一个负号。该损失函数通常被称为对数损失。

在基础上,可以验证,极大似然准则等价于上式定义的对数损失函数的经验风险最小化(仅限于对数损失函数)

这里我们可以这么理解:经验风险最小化是一种泛化的模型求参法则,它的核心是求极值。而极大似然是一种特殊的形态,即使用对数这种形式来进行极值求导。

数据服从的潜在分布为 P(不必满足参数化形式),参数的真实风险为:其中,称为相对熵,H 称为熵函数。

相对熵是描述两个概率分布的差异的一种度量。对于离散分布,相对熵总是非负的,并且等于 0 当且仅当两个分布是相同的。

由此可见,当时,真实风险达到极小值。

同时,上式还刻画了生成式的假设对于密度估计的影响,即使是在无穷多样本的极限情况下,该影响依然存在。如果潜在分布具有参数化的形式,那么可以通过选择合适的参数,使风险降为潜在分布的熵。

然而,如果潜在分布不满足假设的参数化形式,那么即使由最优参数所确定的模型也可能是较差的,模型的优劣是用熵刻画的。

上面的讨论总结一下本质就是估计风险和逼近风险的概念:

1. 估计风险:我们的生成式假设是否足够逼近真实的潜在分布?

2. 逼近风险:我们的训练样本能否支持模型得到合适的模型参数?

0x3:最大似然估计和最小二乘法的联系

线性回归中的最小二乘(OLSE)的策略思想是使拟合出的目标函数和

所有已知样本点尽量靠近,本质上我们可以将拟合线(linear function)看成是一种对样本概率密度分布的表示,这样有利于我们去思考最大似然和最小二乘法在本质上的联系。

1. 最大似然估计: 现在已经拿到了很多个样本(数据集中包含所有因变量),这些样本值已经实现,最大似然估计就是去找到那个(组)参数估计值,使得前面已经实现的样本值发生概率最大。因为你手头上的样本已经实现了,其发生概率最大才符合逻辑。这时是求样本所有观测的联合概率最大化,是个连乘积,只要取对数,就变成了线性加总。此时通过对参数求导数,并令一阶导数为零,就可以通过解方程(组),得到最大似然估计值。

2. 最小二乘: 找到一个(组)估计值,使得实际值与估计值的距离最小。这里评估实际值和估计值之间距离的函数就叫“损失函数”,一个常用的损失函数是平方和损失,找一个(组)估计值,使得实际值与估计值之差的平方加总之后的值最小,称为最小二乘。这时,将这个差的平方的和式对参数求导数,并取一阶导数为零,就是OLSE。

论及本质,其实两者只是用不同的度量空间来进行的投影:

最小二乘(OLS)的度量是L2 norm distance;

而极大似然的度量是Kullback-Leibler divergence(KL散度);

1. 一个例子说明最大似然和最小二乘区别

设想一个例子,教育程度和工资之间的关系。我们可以观察到的数据是:教育程度对应着一个工资的样本数据

1)OLS的做法

我们的目标是找到两者之间的规律,如果样本集中只有2个点,则计

算是非常简单的,既不需要OLS也不需要最大似然估计,直接两点连成一条线即可。但是我们知道OLS和最大似然都是一种数学工具,它要解决的情况就是大量样本集时的数学计算问题。

如果我们的学历-工资样本集大数量到达3个点,且这3个点不共线,那显然我们就无法通过肉眼和直觉判断直接得到linear regression function了。如下图:

如果这三个点不在一条线上,我们就需要作出取舍了,如果我们取任意两个点,那么就没有好好的利用第三个点带来的新信息,并且因为这三个点在数据中的地位相同,我们如何来断定应该选用哪两个点来作为我们的基准呢?这就都是问题了。

这个时候我们最直观的想法就是『折衷』一下,在这三个数据,三条线中间取得某种平衡作为我们的最终结果,类似于上图中的红线这样。

那接下来的问题就是,怎么取这个平衡了?

我们需要引入一个数学量化的值:误差,也就是我们要承认观测到的数据中有一些因素是不可知的,不能完全的被学历所解释。而这个不能解释的程度自然就是每个点到红线在Y轴的距离。

有了误差这个度量的手段,即我们承认了有不能解释的因素,但是我们依然想尽可能的让这种『不被解释』的程度最小,于是我们就想最小化这种不被解释的程度。因为点可能在线的上面或者下面,故而距离有正有负,取绝对值又太麻烦,于是我们就直接把每个距离都取一个平方变成正的,然后试图找出一个距离所有点的距离的平方最小的这条线,这就是最小二乘法了。

各种三角形边长的计算公式

各种三角形边长的计算公式 解三角形 解直角三角形(斜三角形特殊情况): 勾股定理 ,只适用于直角三角形(外国叫“毕达哥拉斯定理”) a^2+b^2=c^2, 其中 a 和 b 分别为直角三角形两直角边,c 为斜边 .勾股弦数是指一组能使勾股定理关系成立的三个正整数.比如:3,4,5. 他们分别是 3,4 和 5 的倍数 .常见的勾股弦数有: 3,4,5 ;6,8,10 ; 5,12,13;10,24,26; 等等 . 解斜三角形: 在三角形ABC a/SinA=b/SinB=中 , 角A,B,C c/SinC=2R 的对边分别为a,b,c. 则有 (R 为三角形外接圆半径 ) ( 1 )正弦定理 ( 2 )余弦定理 a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC注:勾股定理其实是余弦定理的一种特殊情况(.3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab 斜三角形的解法: 已知条件定理应用一般解法 一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出 b 与 c,在有解时有一解. 两边和夹角(如 a、b 、c) 余弦定理由余弦定理求第三边c,由正弦定理求出小边 所对的角 ,再由 A+B+C=180˙求出另一角,在有解时有一解. 三边 (如 a、 b、 c) 余弦定理由余弦定理求出角 A 、B,再利用 A+B+C=180˙,求出角 C 在有解时只有一解 .

两边和其中一边的对角( 如 a 、 b 、 A)正弦定理由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解. 勾股定理(毕达哥拉斯定理) 内容:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平 方.几何语言:若△ABC 满足∠ABC=90 °,则 AB2+BC 2=AC 2 勾股定理的逆定理也 成立 ,即两条边长的平方之和等于第三边长的平方 ,则这个三角形是直角三角形几 何语言:若△ABC 满足 ,则∠ABC=90 °. [3] 射影定理(欧几里得定理) 内容:在任何一个直角三角形中 ,作出斜边上的高 ,则斜边上的高的平方等于高所 在斜边上的点到不是两直角边垂足的另外两顶点的线段长度的乘积 .几何语言:若△ABC 满足∠ABC=90 °,作 BD ⊥AC,则 BD2 =AD ×DC 射影定理的拓展:若△ ABC满足∠ABC=90°,作BD ⊥ AC,(1)AB 2 =BD ·BC(2)AC 2 ;=CD ·BC (3)ABXAC=BCXAD 正弦定理 内容:在任何一个三角形中,每个角的正弦与对边之比等于三角形面积的两倍与 三边边长和的乘积之比几何语言:在△ABC 中,sinA/a=sinB/b=sinC/c=2S三 角形 /abc结合三角形面积公式,可以变形为a/sinA=b/sinB=c/sinC=2R(R是 外接圆半径) 余弦定理 内容:在任何一个三角形中,任意一边的平方等于另外两边的平方和减去这两边 的 2 倍乘以它们夹角的余弦几何语言:在△ABC中,a2=b 2+c 2-2bc×cosA此定 理可以变形为: cosA= ( b 2+c 2-a 2 )÷2bc

三角形外角定理.doc

北师大版八上第七章第五节 《三角形内角和定理2》 教学设计 郑州市第七十五中学郑红莉

《三角形内角和定理2》教学设计 郑州市第七十五中学郑红莉 一课标要求 掌握三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和,证明三角形任意两边之和大于第三边。 二基于对教材的理解 本节课是北师大版八年级上册第七章第五节《三角形内角和定理》第2 课时的内容,学生在前一节课中已经学习了三角形内角和定理的证明和应用,因此本节课是对三角形知识学习的延伸,主要涉及三角形的外角定义,三角形两个外角定理及应用,同时进一步熟悉和掌握证明的步骤、格式、方法、技巧。 三基于对考试要求的分析 能利用三角形内角和定理推论进行角度计算和角度数量关系证明。 四基于对学情的分析 1、学生已有知识基础。 学生对于平行线相关知识以及三角形内角和定理的灵活运用已经有了深入的了解,为今天的学习奠定了知识基础,并且他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力。 2、已有的活动经验 具备一定的学习能力,包括自学和交流,具备有条理的思考分析和表达能力,思维正逐步由具体走向抽象,当然依然倾向于通过形象

的材料来理解相关知识和概念。 3、学习本节可能出现的难点 学生仅具备初步的利用定理推理证明的能力,但如何证明几何中的不等关系可能存在困难,另外证明的方法、技巧有待提高。 4、学生座次表 A C A C A B B D B D B D A C A C A C B D B D B D A C A C A C 前后四人为一组,A 为组长,每一组课堂表现有积分累计 B D B D B D AB 层通过预习能描述判断三角形外角,并能推理证明三角形外角有关定理及进行有关应用, CD层通过自学及与同桌交流能说出三角形 外角定义,并能结合图形会描述三角形外角的两个定理及简单的应用。五学习目标 1.通过视频引入活动一,会判断和作出三角形的外角; 2.通过猜想、同桌交流,能描述有关三角形外角的两个定理及推理验证过程; 3.通过小组合作,会运用三角形内角和定理的两个推论解决相关问题 【学习重点】三角形有关外角的两个定理的应用 【学习难点】会用三角形的内角和定理的两个推论解决几何证明和几

角平分线定理

角平分线定理 角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。 ■ 三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。 【注】三角形的角平分线不是角的平分线,是线段。角的平分线是射线。 ■拓展:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。 ■定理1:在角平分线上的任意一点到这个角的两边距离相等。 ■逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。 ■定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例, 如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC 提供四种证明方法: 已知,如图,AM为△ABC的角平分线,求证AB/AC=MB/MC 已知和证明1图 证明:方法1:(面积法) S△ABM=(1/2)·AB·AM·sin∠BAM, S△ACM=(1/2)·AC·AM·sin∠CAM, ∴S△ABM:S△ACM=AB:AC 又△ABM和△ACM是等高三角形,面积的比等于底的比,

证明2图 即三角形ABM面积S:三角形ACM面积S=BM:CM ∴AB/AC=MB/MC 方法2(相似形) 过C作CN‖AB交AM的延长线于N 则△ABM∽△NCM ∴AB/NC=BM/CM 又可证明∠CAN=∠ANC ∴AC=CN ∴AB/AC=MB/MC 证明3图 方法3(相似形) 过M作MN‖AB交AC于N 则△ABC∽△NMC, ∴AB/AC=MN/NC,AN/NC=BM/MC 又可证明∠CAM=∠AMN ∴AN=MN ∴AB/AC=AN/NC ∴AB/AC=MB/MC

角平分线的性质定理教案

角平分线的性质定理教案 慧光中学:王晓艳 教学目标:(1)掌握角平分线的性质定理; (2)能够运用性质定理证明两条线段相等; 教学重点:角平分线的性质定理及它的应用。 教学难点:角平分线定理的应用; 教学方法:引导学生发现、探索、研究问题,归纳结论的方法 教学过程: 一,新课引入: 1.通过复习线段垂直平分线的性质定理引出角平分线上的点具有什么样的特点 操作:(1)画一个角的平分线; (2)在这条平分线上任取一点P,画出P点到角两边的距离。 (3)说出这两段距离的关系并思考如何证明。 2.定理的获得: A、学生用文字语言叙述出命题的内容,写出已知,求证并给予证明, 得出此命题是真命题,从而得到定理,并写出相应的符号语言。 B、分析此定理的作用:证明两条线段相等; 应用定理所具备的前提条件是:有角的平分线,有垂直距离。 3.定理的应用 二.例题讲解: 例1:已知:如图,点B、C在∠A的两边上,且AB=AC,P为∠A内一点,PB=PC,PE⊥AB,PF⊥AC,垂足分别是E、F。 求证:PE=PF (此题已知中有垂直,缺乏角平分线这个条件)

例2:已知:如图,⊙O与∠MAN的边AM交于点B、C,与边AN交于点 E、F, 圆心O在∠MAN的角平分线AQ上。 求证:BC=EF (此题已知中有角平分线,缺乏垂直这个条件) 三:课堂小结: ①应用角平分线的性质定理所具备的前提条件是:有角的平分线,有垂 直距离; ②若图中有角平分线,,可尝试添加辅助线的方法:向角的两边引垂线段.四:巩固练习 1.已知:如图,△ABC中,D是BC上一点,BD=CD,∠1=∠2求证:AB=AC 分析:此题看起来简单,其实不然。题中虽然有三个条件(∠1= ∠2;BD=CD,AD=AD),但无法证明△ABD ≌△ACD,所以必须添加一些线帮助解题。

三角形边长的计算公式

解三角形 解直角三角形(斜三角形特殊情况): 勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)a^2+b^2=c^2,其中a和b 分别为直角三角形两直角边,c为斜边.勾股弦数是指一组能使勾股定理关系成立的三个正整数.比如:3,4,5.他们分别是3,4和5的倍数.常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等. 解斜三角形: 在三角形ABC中,角A,B,C的对边分别为a,b,c.则有(1)正弦定理a/SinA=b/SinB= c/SinC=2R (R为三角形外接圆半径) (2)余弦定理a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC 注:勾股定理其实是余弦定理的一种特殊情况.(3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab 斜三角形的解法: 已知条件定理应用一般解法 一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时有一解. 两边和夹角(如a、b、c) 余弦定理由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180˙求出另一角,在有解时有一解. 三边(如a、b、c) 余弦定理由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解时只有一解. 两边和其中一边的对角(如a、b、A) 正弦定理由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解.

角平分线定理

2 1O E D A B C 第十一讲 角平分线定理 【学习目标】 1、掌握角平分线的定理和逆定理。 2、能应用角平分线定理和逆定理进行作图和证明。 3、进一步掌握推理证明的方法,拓发展演绎推理能力,培养思维能力。 【知识要点】 1、 角平分线性质定理的证明及应用。 定理:角平分线上的点到这个角的两边的距离相等。 定理解释:“点到这个角边的距离”实际上就是“点到这角两边所作垂线段的长度”,定理即表明这两条垂线段相等。 2、 角平分线的性质定理的逆定理的证明以及应用。 逆定理:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。 3、 定理:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。 4、用尺规作角的平分线: 【典型例题】 例1、 如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于O ,且∠1 =∠2。 求证:OB = OC 。 例2、已知,如图,CE ⊥AB ,BD ⊥AC ,∠B =∠C ,BF =CF 。求证:AF 为∠BAC 的平分线。

例3、如下图,一个工厂在公路西侧,在河的南岸,工厂到公路的距离与到河岸的距离相等,且与河上公路桥南首(点A )的距离为300米.请用量角器和刻度尺在图中标出工厂的位置. 例4、如右图,E 、D 分别是AB 、AC 上的一点,∠EBC 、∠BCD 的角平分线交于点M ,∠BE D 、∠EDC 的角平分线交于N . 求证:A 、M 、N 在一条直线上. 证明:过点N 作NF ⊥AB ,NH ⊥ED ,NK ⊥AC ,过点M 作MJ ⊥BC ,MP ⊥AB ,MQ ⊥AC ∵EN 平分∠BED ,DN 平分∠EDC ∴NF __________NH ,NH __________NK ∴NF __________NK ∴N 在∠A 的平分线上 又∵BM 平分∠ABC ,CM 平分∠ACB ∴__________=__________,__________=__________ ∴__________=__________ ∴M 在∠A 的__________上 ∴M 、N 都在∠A 的__________上 ∴A 、M 、N 在一条直线上 例5、如图1,OC 平分∠A O B ,P 是OC 上一点,D 是OA 上一点,E 是OB 上一点,且PD =PE ,求证:∠+∠=?P D O P E O 180。

初中数学三角形内外角平分线有关命题的证明及应用

三角形内外角平分线 一.命题的证明及应用 在中考常有及三角形内外角平分线有关的题目,若平时不注意总结是很难一下子解决的.下面来一起学习一下. 命题1 如图1,点D是△ABC两个内角平分线的交点,则∠D=90° +∠A. 证明:如图1: ∵∠1=∠,∠2=∠, ∴2∠1+2∠2+∠A=180°① ∠1+∠2+∠D=180°② ①-②得: ∠1+∠2+∠A=∠D③ 由②得: ∠1+∠2=180°-∠D④ 把③代入④得: ∴180°-∠D+∠A=∠D

∠D=90°+∠A. 点评利用角平分线的定义和三角形的内角和等于180°,不难证明. 命题2 如图2,点D是△ABC两个内角平分线的交点,则∠D=90°-∠A. 证明:如图2: ∵DB和DC是△ABC的两条外角平分线, ∴∠D=180°-∠1-∠2 =180°-(∠DBE+∠DCF) =180°-(∠A+∠4+∠A+∠3) =180°-(∠A+180°) =180°-∠A-90°

=90°-∠A; 点评利用角平分线的定义和三角形的一个外角等于及它不相邻两外角的和以及三角形的内角和等于180°,可以证明. 命题3 如图3,点E是△ABC一个内角平分线及一个外角平分线的交点,则∠E=∠A. 证明:如图3: ∵∠1=∠2,∠3=∠4, ∠A+2∠1=2∠4① ∠1+∠E=∠4② ①×代入②得: ∠E=∠A. 点评利用角平分线的定义和三角形的一个外角等于及它不相邻两外角的和,很容易证明.

命题4 如图4,点E是△ABC一个内角平分线BE及一个外角平分线CE的交点,证明:AE是△ABC的外角平分线. 证明:如图3: ∵BE是∠ABC的平分线,可得:EH=EF CE是∠ACD的平分线, 可得:EG=EF ∴过点E分别向AB、AC、BC所在的直线引垂线,所得的垂线段相等. 即EF=EG=EH ∵EG=EH ∴AE是△ABC的外角平分线. 点评利用角平分线的性质和判定能够证明. 应用上面的结论能轻松地解答一些相关的比较复杂的问题,下面来一起看. 例1如图5,PB和PC是△ABC的两条外角平分线. ①已知∠A=60°,请直接写出∠P的度数. ②三角形的三条外角平分线所在的直线形成的三角形按角分类属于什么三角形? 解析:①由命题2的结论直接得:∠P=90°-∠A=90°-×60°=60°

角平分线定理专题

1.如图,2是/ DE = DG* △ ADG*U A AED 的而枳分别为 35,见I △ EDF 的而积为( ) 2 - A ?25 B ? 5.5 C ? 7.5 2?如图f 是ZAOB 平分线OC 上一点f D 丄OB,垂足为D, 若PD=2M 点P 到边OA 的距离是 3?如图,AABC 的三边AB,BC,CA 长分别是20,30,40,M 三条角平分线将Z\ABC 分为 三个三角形,则 S. .ABO : S A BCO : S/.CAO ,: .r \ ' _______________ ? 4. (2016?怀化)如图,OP 为Z AOB 的角平分线,PC 丄OA, PD 丄OB,垂足分别是C, D,则下 列结论错误的是() 4 PC=PD B ? ZCPD=Z DOP C ? ZCPO = Z DPO D ? OC = OD 5. (2016?淮安)如图,在PtAABC 中,ZC=90°,以顶点A 为圆心,适当长为半径画弧,分 别交AC, AB 于点M, N,再分别以点M, N 为圆心,大于扌MN 的长为半径画弧,两弧交于 点P ,作射线AP 交边BC 于点D,若CD=4, AB = 15,则厶ABD 的面积是( 6. 如图,AABC 中,ZC=90°, AD 平分Z BAC 交BC 于点D ?已知BD : CD = 3 : 2,点D 到 AB 的距禽是6,则BC 的长是 _________ 7. 如图所示,已知AABC 的周长是20, OB, OC 分别平分Z ABC 和Z ACB, OD 丄BC 于点D, 且OD = 3,贝U ABC 的面积是. _______ 之定理专题(基础题) B.2 C. 4 1 5 B. 30 C ? 45 D ? 60 () 為DF 丄AB ,垂足为& A D. B D B O A D H

三角形内外角平分线定理上课讲义

三角形内外角平分线 定理

三角形内角与外交平分线定理 一、内角平分线定理 已知:如图所示,AD 是△ABC 的内角∠BAC 的平分线。 求证: BA/AC=BD/DC; 思路1:过C 作角平分线AD 的平行线。 证明1:过C 作CE ∥DA 与BA 的延长线交于E 。 则: BA/AE=BD/DC; ∵ ∠BAD=∠AEC ;(两线平行,同位角相等) ∠CAD=∠ACE ;(两线平行,内错角相等) ∠BAD=∠CAD ;(已知) ∴ ∠AEC=∠ACE ;(等量代换) ∴ AE=AC ; ∴ BA/AC=BD/DC 。 结论1:该证法具有普遍的意义。 引出三角形内角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比。 思路2:利用面积法来证明。 已知:如图8-4乙所示,AD 是△ABC 的内角∠BAC 的平分 线。 ABC AD BAC AB BD AC CD ∠=在中,若为的平分线,则:

求证: BA/AC=BD/DC 证明2:过D作DE⊥AB于E,DF⊥AC于F; ∵∠BAD=∠CAD;(已知) ∴ DE=DF; ∵ BA/AC=S△BAD/S△DAC;(等高时,三角形面积之比等于底之比) BD/DC=S△BAD/S△ABCDAC;(同高时,三角形面积之比等于底之比)∴ BA/AC=BD/DC 结论2:遇到角平分线,首先要想到往角的两边作平行线,构造等腰三角形或菱形,其次要想到往角的两边作垂线,构造翻转的直角三角形全等,第三,要想到长截短补法。 二、外角平分线定理 已知:如图所示,AD是△ABC中∠BAC的外角∠CAF的平分线。 求证: BA/AC=BD/DC 思路1:作角平分线AD的平行线。 证明1:过C作CE∥DA与BA交于E。则: BA/AE=BD/DC ∵∠DAF=∠CEA;(两线平行,同位角相等) ∠DAC=∠ECA;(两线平行,内错角相等) ∠DAF=∠DAC;(已知) ∴∠CEA=∠ECA;(等量代换) ∴ AE=AC; ∴ BA/AC=BD/DC 。

第二节角平分线定理

第二节角平分线定理 【知识点拨】 1、三角形内角平分线的性质定理: 三角形内角的平分线内分对边所成的两条线段和相邻两边对应成比例。(试证明) 2、三角形外角平分线性质定理: 三角形外角平分线分对边所得的两条线段和相邻的两边对应成比例。 3、常见问题 对于涉及角平分线的相关计算,常由角平分线性质定理列出比例式进行计算,对于关于角平分线的证明题,常由角平分线性质定理列出比例式进行代换,达到证明的目的。 【赛题精选】 例1、在△ABC中,∠C=900,CD是∠C的平分线,且CA=3,CB=4。 求CD的长。 例2、若PA=PB,∠APB=2∠ACB,AC与PB相交于点D,且PB=4,PD=3。 求A D·DC的值。(2001年全国竞赛题)

【说明】角平分线性质定理又提供计算线段的方法,解题时要注意应用。计算时要注意对应关系,正确书写比例式。 对于求线段ab 的值的题目,常由相关定理证出等积式ab =cd ,求出cd 的值即可。 例3、I 是△ABC 内角平分线的交点,AI 交对应边于D 。 求证:BC AC AB ID AI +=。 例4、Rt △ABC 中,∠ACB =900,CD ⊥AB 于D ,AF 平分 ∠CAB 交CD 于E ,交CB 于F ,且EG ∥AB 交CB 于G 。 试求:CF 与GB 的大小关系如何?(1998年“希望杯”邀 请赛题) 【说明】欲证线段a =b ,由线段成比例定理得出含a 、b 的比例式,111n m x a =、222n m x b =, 然后证2 211n m n m =,从而得到21x b x a =,再证21x x =,从而得到a =b 。 本题证法较多,如过点E 作EH ∥BC 交AB 于H ,则EH =GB ,再证EH =EC 、EC =CF ;或过F 作FM ⊥AB 于M ,证Rt △CEG ≌Rt △FMB 。 例5、在△ABC 中,AD 平分∠BAC ,CE ⊥AD 交AB 于G ,AM 是BC 边的中线,交CG 于F 。求证:AC ∥DF 。

(名师整理)最新中考数学专题复习《角平分线定理》精品教案

中考数学人教版专题复习:角平分线定理 考点考纲要求分值考向预测 角平分 定理 1. 理解并掌握角平线定义、角 平分线定理及逆定理; 2. 应用定理解决问题。 3~5 分 本类问题主要考查填空、选 择题,内容以角平分线定理 为主,难度不大,各省市题 量也不多,但要注意在综合 性问题中应用这一知识点。 1. 角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。 2. 三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。 【重要提示】 ①三角形的角平分线不是角的平分线,是线段。角的平分线是射线。 1

②三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等(即内心)。 3. 角平分线定理:角平分线上的点到这个角的两边的距离相等。(利用全等三角形进行证明ASA) 4. 角平分线定理的逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。 【方法指导】 1. 三角形的三条内角平分线交于一点,并且到三条边的距离相等。有时候做三角形面积问题时经常使用。 2. 当题目中有角的平分线时,可根据角的平分线性质证明线段或角相等,或利用角的平分线构造全等三角形或等腰三角形来寻找解题思路。 3. 有角平分线考虑向角两边作垂线。 4. 三角形中有时候从内角平分线作垂线,有时候作外角平分线,注意区分。 【随堂练习】 如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线。若CD=3,则△ABD的面积为。 2

答案:解:作DE⊥AB于E。∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3。∴△ABD的面积为1 ×3×10=15。故答案是15。 2 思路分析:要求△ABD的面积,现有AB=7可作为三角形的底,只需求出该底上的高AB于E。根据角平分线的性质求得DE的长,即可求解。 即可,需作DE⊥ 典例精析 例题1 如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是() D. 5 A. 3 B. 4 C. 6 思路分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可。 3

角平分线定理

角平分线定理 目录 编辑本段角平分线的定义 ■ 角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。 ■ 三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。 【注】三角形的角平分线不是角的平分线,是线段。角的平分线是射线。 ■拓展:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。 ■定理1:在角平分线上的任意一点到这个角的两边距离相等。 ■逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。 ■定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例, 如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC 编辑本段提供四种证明方法: 已知,如图,AM为△ABC的角平分线,求证AB/AC=MB/MC

已知和证明1图 证明:方法1:(面积法) S△ABM=(1/2)·AB·AM·sin∠BAM, S△ACM=(1/2)·AC·AM·sin∠CAM, ∴S△ABM:S△ACM=AB:AC 又△ABM和△ACM是等高三角形,面积的比等于底的比, 证明2图 即三角形ABM面积S:三角形ACM面积S=BM:CM ∴AB/AC=MB/MC 方法2(相似形) 过C作CN‖AB交AM的延长线于N 则△ABM∽△NCM ∴AB/NC=BM/CM 又可证明∠CAN=∠ANC ∴AC=CN ∴AB/AC=MB/MC

证明3图 方法3(相似形) 过M作MN‖AB交AC于N 则△ABC∽△NMC, ∴AB/AC=MN/NC,AN/NC=BM/MC 又可证明∠CAM=∠AMN ∴AN=MN ∴AB/AC=AN/NC ∴AB/AC=MB/MC 方法4(正弦定理) 作三角形的外接圆,AM交圆于D, 由正弦定理,得, 证明4图 AB/sin∠BMA=BM/sin∠BAM, ∴AC/sin∠CMA=CM/sin∠CAM 又∠BAM=∠CAM,∠BMA+∠AMC=180° sin∠BAM=sin∠CAM,sin∠BMA=sin∠AMC, ∴AB/AC=MB/MC

三角形的面积计算公式

三角形的面积计算公式 三角形的面积计算公式1.已知三角形底a,高h,则 S=ah/22.已知三角形三边a,b,c,则(海伦公式)(p=(a+b+c)/2)S=√[p(p-a)(p-b)(p-c)]=(1/4)√[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]3.已知三角形两边a,b,这两边夹角C,则S=1/2 * absinC4.设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/25.设三角形三边分别为a、b、c,外接圆半径为R则三角形面积=a bc/4R6.S△=1/2 *| a b 1 || c d 1 || e f 1 || a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!7.海伦--秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三角形的中线长.8.根据三角函数求面积S= ½ab sinC=2R² sinAsinBsinC= a²sinBsinC/2sinA注:其中R为外切圆半径。9.根据向量求面积SΔ)= ½√(|AB|*|AC|)²-(AB*AC)

三角形内角平分线的性质定理的证明

三角形内角平分线的性质定理的证明 一、定理 三角形内角平分线分对边为两部分与两邻边成比例. 二、证明 已知:如图,2∠1∠=. 求证: BC AC BD AD =. 方法一:利用平行线作等比代换. 证明:作DE//BC ,DE 交AC 于点E ,则EC AE BD AD =.3∠2∠=,BC AC DE AE = 又2∠1∠=,∴3∠1∠=,于是DE=EC. ∴BC AC DE AE BD AD == 方法二:应用平行线分线段成比例定理,等比代换中辅以等量代换. 如图,作BE//DC ,BE 交AC 的延长线于点E ,则CE AC BD AD =,E ∠1∠=,3∠2∠=.

又2∠1∠=,得E ∠3∠=,于是 BC=CE , 则BC AC BD AD =. 方法三:进行逆推分析,若在AC 的延长线上作一个CE=BC ,则只要BE//DC. 延长AC 到点E ,使CE=BC ,连接BE ,则)(E ∠3∠21 3∠+=.又∠ACB 2 12∠=, ∠E ∠3∠+=ACB ,∴3∠2∠=,于是 BE//DC. 则CE AC BD AD ==BC AC . 证法4:如图20.改变△ADC 的一个内角的大小,把它改造为△AEC ,使之与△BDC 相似并作等量代换. 第一种情况:当BC AC ≠ 时,不妨设BC AC >,B CAB ∠∠<,以AC 为一边,在CAB ∠的同侧,作B CAE ∠∠=,AE 与CD 的延长线交于点E.又2∠1∠=,∴△ACE ∽△BCD. 则BC BD AC AE =,而E CA E B ∠∠-1∠-180∠-2∠-1804∠3∠=°=°==. ∴AE=AD ,于是 BC BD AC AD =,即BC AC BD AD =.

三角形的周长公式和面积公式

三角形的周长公式和面积公式 周长公式 1,a平方+b平方-2ab*cosC=c平方 a,b,c为边长A,B,C为角. a/sinA=b/sinB=c/sinC 和起来就可以算了. 回答者:200512013 - 见习魔法师二级2-11 14:10 2.L=a+b+c L是周长,a、b、c是三边长 面积公式 (1)S=ah(a是三角形的底,h是底所对应的高)注释:三边均可为底,应理解为:三边与之对应的高的积的一半是三角形的面积。这是面积法求线段长度的基础。 (2)S=中位线×高 (3)S=(acsinB)/2=(bcsinA)/2=(absinC)/2(三个角为∠A∠B∠C,对边分别为a、b、c。参见三角函数) (4)S=√[p(p-a)(p-b)(p-c)] [p=1/2(a+b+c)](海伦--秦九韶公式) (5)S=abc/(4R) (R是外接圆半径) (6)S=[(a+b+c)r]/2 (r是内切圆半径)

(7)a b 1s△=1/2 c d 1 e f 1|为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d),C(e,f), 这里ABC选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但只要取绝对值就可以了,不会影响三角形面积的大小) (8)S=sinAsin sin(A+B) (9)S=()/4](正三角形面积公式,a是三角形的边长) [海伦公式(3)特殊情况]: (10)S=Rr(sinA+sinB+sinC) (R是外接圆半径;r是内切圆半径) (11)S=cot cot cot (12)S=(cotA+cotB+cotC)

三角形角平分线性质资料讲解

三角形内角平分线定理 三角形任意两边之比等于它们夹角的平分线平分对边之比。即在ΔABC中,若AD是∠A的平分线,则 BD/DC=AB/AC 应用:不用计算即可将一条线段按要求分成任意比例三角形内角平分线内平分对边,所得的两条线段与这个角的两边对应成比例. 三角形外角平分线的性质定理: 三角形外角平分线平分对边,所得的两条线段与其内角的两边对应成比例,均可以用相似△证明. 角平分线性质定理 角平分线的性质: 1.角平分线可以得到两个相等的角。 2.角平分线上的点到角两边的距离相等。 3.三角形的三条角平分线交于一点,称作三角形内心。三角形的内心到三角形三边的距离相等。 4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。 证明 ●三角形内角平分线分对边所成的两条线段,和两条

邻边成比例. 即在三角形ABC中,当AD是顶角A的角平分线交底边于D时,BD/CD=AB/AC. 证明:如图,AD为△ABC的角平分线,过点D向边AB,AC分别引垂线DE,DF.则DE=DF. S△ABD:S△ACD=BD:CD 又因为S△ABD:S△ACD=[(1/2)AB×DE]:[(1/2)AC ×DF]=AB:AC 所以BD/CD=AB/AC. 1.角平分线可以得到两个相等的角。 角平分线,顾名思义,就是将角平分的射线。 如右图,若射线AD是角CAB的角平分线,则角CAD 等于角BAD。 2.角平分线线上的点到角两边的距离相等。 如右上图,若射线AD是∠CAB的角平分线,求证:

CD=BD ∵∠DCA=∠DBA ∠CAD=∠BAD AD=AD ∴△ACD≌△ABD ∴CD=BD 3.三角形的三条角平分线交于一点,称作三角形的内心。三角形的内心到三角形三边的距离相等。 这一条是第二条的引申,详细证明过程参照第二条和三角形内心。 4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。 如右下图,平面内任意一小于180度的∠MAN,AS 平分∠MAN,直线BC分别交射线AM、AN、AS于B、C、D,求证:AB/BD=AC/CD: 作BE=BD交射线AS于E,如图1: ∵BE=BD, ∴∠BED=∠BDE, ∴∠AEB=∠ADC 又∵∠BAE=∠CAD,

三角形内外角平分线定理

三角形内角与外交平分线定理 一、内角平分线定理 已知:如图所示,AD 是△ABC 的内角∠BAC 的平分线。 求证: BA/AC=BD/DC; 思路1:过C 作角平分线AD 的平行线。 证明1:过C 作CE ∥DA 与BA 的延长线交于E 。 则: BA/AE=BD/DC; ∵ ∠BAD=∠AEC ;(两线平行,同位角相等) ∠CAD=∠ACE ;(两线平行,内错角相等) ∠BAD=∠CAD ;(已知) ∴ ∠AEC=∠ACE ;(等量代换) ∴ AE=AC ; ∴ BA/AC=BD/DC 。 结论1:该证法具有普遍的意义。 引出三角形内角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比。 思路2:利用面积法来证明。 已知:如图8-4乙所示,AD 是△ABC 的内角∠BAC 的平分线。 求证: BA/AC=BD/DC 证明2:过D 作DE ⊥AB 于E ,DF ⊥AC 于F ; ∵ ∠BAD=∠CAD ;(已知) ∴ DE=DF ; ∵ BA/AC=S △BAD/S △DAC ; (等高时,三角形面积之比等于底之比) BD/DC=S △BAD/S △ABCDAC ;(同高时,三角形面积之比等于底之比) ∴ BA/AC=BD/DC 结论2:遇到角平分线,首先要想到往角的两边作平行线,构造等腰三角形或菱形,其次要想到往角的两边作垂线,构造翻转的直角三角形全等,第三,要想到长截短补法。 二、外角平分线定理 已知:如图所示,AD 是△ABC 中∠BAC 的外角∠CAF 的平分线。 求证: BA/AC=BD/DC 思路1:作角平分线AD 的平行线。 证明1:过C 作CE ∥DA 与BA 交于E 。则: BA/AE=BD/DC ∵ ∠DAF=∠CEA ;(两线平行,同位角相等) ∠DAC=∠ECA ;(两线平行,内错角相等) ∠DAF=∠DAC ;(已知) ∴ ∠CEA=∠ECA ;(等量代换) ∴ AE=AC ; ∴ BA/AC=BD/DC 。 ABC AD BAC AB BD AC CD ∠=在中,若为的 平分线,则:

角平分线定理

【知识点拨】 1、三角形内角平分线的性质定理: 三角形内角的平分线内分对边所成的两条线段和相邻两边对应成比例。(试证明) 2、三角形外角平分线性质定理: 三角形外角平分线分对边所得的两条线段和相邻的两边对应成比例。 3、常见问题 对于涉及角平分线的相关计算,常由角平分线性质定理列出比例式进行计算,对于关于角平分线的证明题,常由角平分线性质定理列出比例式进行代换,达到证明的目的。 【赛题精选】 例1、在△ABC中,∠C=900,CD是∠C的平分线,且CA=3,CB=4。 求CD的长。 例2、若PA=PB,∠APB=2∠ACB,AC与PB相交于点D,且PB=4,PD=3。 求AD·DC的值。(2001年全国竞赛题) 【说明】角平分线性质定理又提供计算线段的方法,解题时要注意应用。计算时要注意对应关系,正确书写比例式。

对于求线段ab 的值的题目,常由相关定理证出等积式ab =cd ,求出cd 的值即可。 例3、I 是△ABC 内角平分线的交点,AI 交对应边于D 。 求证:BC AC AB ID AI +=。 例4、Rt △ABC 中,∠ACB =900,CD ⊥AB 于D ,AF 平分∠CAB 交CD 于E ,交CB 于F ,且 EG ∥AB 交CB 于G 。 试求:CF 与GB 的大小关系如何?(1998年“希望杯”邀请赛题) 【说明】欲证线段a =b ,由线段成比例定理得出含a 、b 的比例式,111n m x a =、222n m x b =, 然后证2211n m n m =,从而得到2 1x b x a =,再证21x x =,从而得到a =b 。 本题证法较多,如过点E 作EH ∥BC 交AB 于H ,则EH =GB ,再证EH =EC 、EC =CF ;或过F 作FM ⊥AB 于M ,证Rt △CEG ≌Rt △FMB 。 例5、在△ABC 中,AD 平分∠BAC ,CE ⊥AD 交AB 于G ,AM 是BC 边的中线,交CG 于F 。求证:AC ∥DF 。 【说明】三角形角平分线的性质为比例关系的转化提供了新的方法,从而开阔了解题思路,另外在证明几何题时,还应注意合比、等比性质的应用。 本题是由线段成比例证明两条直线平行的,这是证两条直线平行的新方法,对于题设

三角形内外角平分线定理

三角形内外角平分线定 理 -CAL-FENGHAI.-(YICAI)-Company One1

三角形内角与外交平分线定理 一、内角平分线定理 已知:如图所示,AD 是△ABC 的内角∠BAC 的平分线。 求证: BA/AC=BD/DC; 思路1:过C 作角平分线AD 的平行线。 证明1:过C 作CE ∥DA 与BA 的延长线交于E 。 则: BA/AE=BD/DC; ∵ ∠BAD=∠AEC ;(两线平行,同位角相等) ∠CAD=∠ACE ;(两线平行,内错角相等) ∠BAD=∠CAD ;(已知) ∴ ∠AEC=∠ACE ;(等量代换) ∴ AE=AC ; ∴ BA/AC=BD/DC 。 结论1:该证法具有普遍的意义。 引出三角形内角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比。 思路2:利用面积法来证明。 已知:如图8-4乙所示,AD 是△ABC 的内角∠BAC 的平分 线。 求证: BA/AC=BD/DC 证明2:过D 作DE ⊥AB 于E ,DF ⊥AC 于F ; ∵ ∠BAD=∠CAD ;(已知) ∴ DE=DF ; ∵ BA/AC=S △BAD/S △DAC ; (等高时,三角形面积之比等于底之比) BD/DC=S △BAD/S △ABCDAC ;(同高时,三角形面积之比等于底之比) ∴ BA/AC=BD/DC 结论2:遇到角平分线,首先要想到往角的两边作平行线,构造等腰三角形或菱形,其次要想到往角的两边作垂线,构造翻转的直角三角形全等,第三,要想到长截短补法。 二、外角平分线定理 已知:如图所示,AD 是△ABC 中∠BAC 的外角∠CAF 的平分线。 求证: BA/AC=BD/DC 思路1:作角平分线AD 的平行线。 证明1:过C 作CE ∥DA 与BA 交于E 。则: BA/AE=BD/DC ∵ ∠DAF=∠CEA ;(两线平行,同位角相等) ABC AD BAC AB BD AC CD ∠=在中,若为的 平分线,则:

三角形外角的定理教案

第2课时三角形外角的定理 【学习目标】 1.了解三角形的外角定义,掌握三角形外角的两个定理. 2.能综合运用三角形内角和定理及外角的两个定理进行几何证明与计算. 【学习重点】 三角形外角的性质定理. 【学习难点】 运用三角形外角性质定理进行有关计算时能准确地推理. 学习行为提示:每组抽一位学生上黑板做,其余学生在座位上完成,组长检查每组完成情况,最后老师给每组评分. 学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案. 教会学生落实重点.情景导入生成问题 旧知回顾: 1在△ABC中,若∠A+∠B=∠C,则△ABC的形状是直角三角形. 2.一个三角形的三个内角中,至少有(B) A.一个锐角B.两个锐角C.一个钝角D.一个直角 3.如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为(C) A.50°B.55°C.60°D.65° 自学互研生成能力 知识模块一三角形外角的定理

先阅读教材第181页例2上面的内容,然后完成下面的问题: △ABC内角的一条边与另一条边的反向延长线组成的角,称为△ABC的外角.如图,∠1是△ABC的外角. 学习行为提示:教师结合各组反馈的疑难问题分配展示任务,各组展示过程中,教师引导其他组进行补充、纠错,最后进行总结评分. 展示目标:通过知识模块一的展示掌握证明三角形外角定理的方法;通过对知识模块二的展示,总结运用三角形外角的定理进行几何证明和计算的一般方法和步骤.问题1你能在图中画出△ABC的其他外角吗?∠1与其他角有什么关系?能证明你的结论吗? 【说明】结合图形,学生通过观察、思考、讨论等一系列活动,既巩固了对概念的理解,又让学生进行证明,培养了学生的推理论证能力. 【归纳结论】三角形内角和定理的推论:①三角形的一个外角等于与它不相邻的两个内角的和;②三角形的一个外角大于任何一个与它不相邻的内角. 知识模块二运用三角形外角的定理进行证明 你能运用所学的知识解决下面的问题吗? 问题2(1)已知:在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC. 第(1)题图第(2)题图 (2)已知如图,P是△ABC内一点,连接PB、PC.求证:∠BPC>∠A.

解三角形的角平分线问题(最新版)

解三角形专题------角平分线与三角形4心 秒杀秘籍一:张角定理 在△ABC 中,D 为BC 边上的一点,连接AD ,设βα=∠=∠CAD BAD ,,则一定有 AB AC AD β αβαsin sin )sin(+ =+,(证明:等积法) 【例1】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,△ABC=120°,BD△BC 交AC 于点D ,且BD=1,则2a +c 的最小值为 . 【例2】在在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知点D 在BC 边上,AD△AC ,sin△BAC= 3 2 2,AB=23,AD=3,则CD 的长为 【例3】(2015年全国课标卷II )在△ABC 中,D 是BC 上的点,AD 平分△BAC ,△ABD 的面积是△ACD 面积的2倍.(1)求 C B sin sin 的值;(2)若22,1==DC AD ,求BD 和AC 的长. 秒杀秘籍二:角平分线张角定理,当βα=时, ①)(21cos c AD b AD +=α(角平分线张角定理) ②ααtan sin )(2 1 2AD c b AD S ABC ≥+=?(角平分线面积) 证明: ααα ααααtan sin 2sin 2sin sin )(21sin )11(212sin 21?? ==≥+=+?== S AD S AD bc AD c b AD AD c b bc bc S 【例4】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,b cosC=a ,点M 在线段AB 上,且△ACM=△BCM ,若b=6CM=6,则cos△BCM=( )4 6. 4 7. 4 3. 4 10 . D C B A 【例5】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3 2π =∠ABC ,△ABC 的平分线交AC 于点D ,BD=1,则a +c 的最小值为 . 【例6】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,32π =∠ABC ,BD 平分△ABC 交AC 于点D ,BD=2,则△ABC 的面积的最小值为( )36.3 5.3 4.33.D C B A 秒杀秘籍3:角平分线之斯库顿定理 如图,AD 是△ABC 的角平分线,则DC BD AC AB AD ?-?=2 .就其位置关系而言:中方=上积-下积 求证:AC AB DC BD AD ?=?+2

相关主题