搜档网
当前位置:搜档网 › 城市交通控制在线仿真系统[1]

城市交通控制在线仿真系统[1]

城市交通控制在线仿真系统[1]
城市交通控制在线仿真系统[1]

0引言

城市交通仿真就是运用计算机技术,动态地、逼真地仿真交通流和交通事故等各种交通现象,复现交通流的时空变化,深入地分析车辆、驾驶员和行人、道路以及交通的特征,找出问题的症结,对所研究的交通系统进行优化。交通仿真技术具有经济、安全、可重复等多种特点,大大降低了现场试验的要求,现已成为分析各种交通参数和优化交通控制等研究的有力工具。

1国内外现状

目前国外比较流行的交通仿真系统主要有德国的VlSSlM,美国的CORSIM、Synchro/SimTraffic和TransModeler,西班牙的AIMSUN,英国的PARAM-ICS,加拿大的DYNAMEQ,等等。这些软件在欧美交通界已经得到了普遍的应用,商业化多年,在ITS研究和应用中使用频率较高。与国外相比,国内在城市道路交通系统仿真方面的研究起步较晚。直到20世纪90年代,国内交通工程界才逐渐意识到道路交通仿真系统研究的重要性并予以重视,目前总体上仍处于应用进口软件系统阶段,还未形成商品化的交通仿真软件。

2传统交通仿真模型的不足

根据仿真模型对交通系统描述程度的不同,道路交通仿真可分为宏观仿真、中观仿真和微观仿真三种。

微观仿真模型主要包括路网模型、车辆参数模型、车辆行为模型和信号控制模型,其中车辆行为模型是最主要的模型。每辆车的当前速度和位置是模型的重要参数,什么时间、哪种类型的车、以什么速度进入路网,在路网中是如何行驶的,是否超车换道,这些参数是否与实际相符将直接影响到仿真的结果。在目前的交通仿真中,为了尽可能反映现实情况,通常会对车辆和司机进行统计分析,找出它们所符合的随机分布概率。

城市交通控制在线仿真系统

张永忠,郑媛元,李正熙

(北方工业大学,北京100041)

摘要:交通在线仿真系统通过交通数据接口部件和控制数据接口部件将仿真软件VISSIM与真实的交通数据连接起来,

实现了仿真与现实的同步进行,使交通区域得到了真实再现。

关键词:在线仿真;实时交通数据;VISSIM;SCOOT;接口

中图分类号:U491文献标识码:A文章编号:1002-4786(2008)09-0087-03

OnlineSimulationSystemofUrbanTrafficControl

ZHANGYong-zhong,ZHENGYuan-yuan,LIZheng-xi

(NorthChinaUniversityofTechnology,Beijing100041,China)

Abstract:TheonlinetrafficsimulationsystemconnectsthesimulationsoftwareVISSIMandthereal

trafficdataviathecomponentoftrafficdatainterfaceandthecomponentofcontroldatainterface.This

systemcansynchronizesimulationsandactualities,thusreproducetrafficareasfactually.

Keywords:onlinesimulation;real-timetrafficdata;VISSIM;SCOOT;interface

87

信号控制机

接口设备

真实交通信号

仿真控制软件

实时交通数据采集

接口软件

真实车辆

检测数据

仿真系统

图1VISSIM仿真系统工作原理图

从以上可以看出,传统的交通仿真纯粹依赖虚拟的交通数据和虚拟设定的交通控制方法进行仿真。这种仿真方法本质上是一种很空泛的研究手段,只适用于对交通现象进行概括性的、定性的分析,无法对当前正在进行中的交通现场进行仿真分析,无法完全真实地仿真实际运行的交通控制系统。另一方面,传统的交通控制策略与对交通设备的评估,通常采用的是在交通现场进行实地运行测试的方法,这种方法不仅成本高,容易造成交通混乱,而且由于单一的现场无法产生各种复杂交通环境下的交通态势,因此,这种评估方法存在很大的局限性。

3交通在线仿真系统

交通在线仿真系统是指采用专门的接口技术和

设备,将仿真系统与真实的交通现场设备连接起来,通过对真实交通现场车辆信息及信号控制系统数据的收集与仿真,真实地再现交通现场,实时预测交通状况,从而进行交通控制和交通诱导。这种方法克服了现有交通控制系统测试评估方法的低准确性、低效率、高成本、评估指标不全面等缺点,提供了一种基于仿真技术的新型测试、评估方法,通过仿真系统、接口系统不仅能够仿真各种复杂的交通现场,而且能够利用接口数据对各种交通控制系统、控制方法与策略进行评估。

交通在线仿真系统由VISSIM仿真系统、交通信号控制系统(SCOOT)、仿真系统控制软件、交通数据接口部件、控制数据接口部件、控制策略评估系统等6个部分组成,其工作原理如图1所示。

3.1VISSIM仿真系统

在线仿真系统采用德国交通仿真系统PTV-

VlSSlM作为仿真平台,VISSIM是一种微观的、时

间驱动、基于驾驶行为的仿真建模工具,用于建模和分析各种交通条件下,城市交通和公共交通的运行状况,是评价交通工程设计和城市规划方案的有

效工具。

VlSSlM能够模拟许多城市内和非城市内的交

通状况,特别适合模拟各种城市交通控制系统,其主要应用有:

a)对交通信号配置方案的评价和改善;

b)适用于各种不同类型的信号控制模拟,除了

软件中原本设置好的数据外,用户还可以根据需要添加新的要素,每种信号控制方案都能被很好地模拟,例如SCATS和SCOOT系统;

c)可以对将信号联动控制应用于城市街道网络

的可行性和影响进行全面而有效的评价和分析;

d)可以对慢速车流的交织汇合地带的运行状况

进行模拟和分析;

e)可以对交叉口、转弯路段、立体交叉口的信

号控制和停车标志方案进行比较和选择;

f)可以对轻轨和公交系统的设计容量、运行过

程及状况进行分析;

g)可以提供公交优先的处理方法,例如可以不

按次序排队、拓宽道路、设立公交车专用车道等。

VISSIM的核心由交通仿真器和信号状态产生

两部分组成,它们之间能够交换检测器数据和信号状态信息。VISSIM的跟车模型采用Wiedemann的“

生理-心理”驾驶行为模型。车辆的纵向运动采用了基于规则的算法。驾驶员行为的模拟分为保守型和冒险型,每一个驾驶员对应一辆具体的车,驾驶员的行为与车辆的特性相符合。

VISSIM还提供了一个COM接口,允许高级用

户和研究人员运用VisualBasic、VisualC++以及其他应用宏语言(如MSEXCEL)来编写大型应用程序。该COM接口提供了与路网几何结构、信号灯控制、路径流、车辆行驶行为以及评价数据之间联

系的通道,例如:用户可以通过编程实现自由调度路网内的每一辆车,包括车辆类型、行驶路径、发车时间、车速等。

仿真系统首先根据实际情况建立路网结构,包括交叉口形状、道路中心线、停车线、车道宽度等,然后利用采集到的交通数据和信号控制数据,对仿真系统路网内的车辆、信号灯等进行编程就可以在线生成可视化的交通运行状况。如当实际路网的检测器检测到车辆,则VISSIM的COM接口通过读取数据包中提供的进入路网的车辆的信息(包括车辆产生的时间、位置、型号、速度、行驶方向

88

接收数据,并控制仿真组件状态

读取数据并发送到接口设备

接口系统有数据

仿真平台产生事件

循环扫描虚拟路网中的信号机、检测器等目标,形成列表

建立数据与虚拟设备

的对应关系

打开配置文件、虚拟路网文件

引入仿真组件

开始

图2VISSIM仿真系统控制软件流程图

等),就可以在VISSIM的仿真界面上产生符合情况的车辆。VISSIM也可以离线输出各种统计数据,如:行程时间、排队长度等。

3.2交通信号控制系统

交通信号控制是交通仿真的重要组成部分,本

系统采用德国SIEMENS公司的SCOOT系统进行数据采集和信号控制。SCOOT(Split,CycleandOffset

OptimizationTechnique,即绿信比、周期和相位差

优化技术)是由英国运输研究所在TRANSYT基础上研制的自适应控制系统,目前已在多个国家运行。

SCOOT系统是两级结构,上一级为中央计算机,下

一级为路口信号机。中央计算机负责配时方案,信号机负责信号控制和数据采集、处理及通信。信号机通过车辆检测器获得交通量、延误、停车次数、阻塞等数据,通过对这些数据的提取就可以获得实时的交通数据,为仿真提供了可靠的数据来源。

3.3仿真系统控制软件

仿真系统控制软件是整个系统的核心,使用

VisualBasic语言编写。该软件负责信号控制系统、

交通仿真软件、交通数据采集、控制数据传输等单元的数据传输和过程协调。通过仿真控制软件的协调,系统中各部件形成整体工作机制,进行以实际控制系统、实际交通数据、条件交通数据(人工给定)为基础的在线式交通仿真系统,提供了一个非常接近现实的交通状况分析平台。仿真系统控制软件流程如图2所示。

控制软件将仿真软件VISSIM以COM组件的形

式内嵌到系统中,根据实际情况配置路网情况并读入到VISSIM中,将路网内的信号机、检测器的情况形成列表待用,之后开始采集交通数据及信号控制数据,根据这些数据控制仿真组件的状态,并将信号机、检测器的相关信息读入列表中,包括各个信号机的编号、状态、绿信比,各个检测器的编号,以及占用率、交通流量等信息。车辆进入路网后的行为遵从VISSIM自带的行驶规则,当仿真平台产生事件时,则读取信息并发送到接口设备,如发生堵车事件时,将排队长度、排队时间及平均延误时间等信息发送到接口设备,这些数据可以用来对不同的交通策略进行评价。

3.4交通数据接口部件

交通数据接口部件与交通控制系统通过网络监

听、终端连接或其他接口模式等多种方法获取交通数据,这些数据包括真实的交通数据、信号机状态、相位变化状态等,如SCOOT系统中的sitracs软件就可以提供标准数据输出,通过其接口就可以获得实时的交通数据。

3.5控制数据接口部件

来自仿真系统的各种虚拟交通数据,通过控制

软件传输到专用的接口设备。接口设备将这些数据转换为各种真实的电信号输出至信号控制机,作为信号机车辆检测的输入。

3.6控制策略评估系统

通过对交通现状的实时仿真,可以形象、直观

地看出交通状况的运行情况,从而对道路服务水平(levelofservice)进行评估。通过对交通流量,车辆通过路段的旅行时间、延误时间、停车次数等数据的统计,将其折算为相应的经济损失,就可以对运

行中的控制策略进行评估优化。通过在线仿真的评估结果,将交通诱导、交通疏导系统与之连接,可以实现综合交通数据发布。

4总结

交通在线仿真系统能够有效地指导交通规划的

建设,使高性能的系统得到最为充分的利用,从而

降低管理成本,最大限度地解决实际交通问题。参考文献

[1]张永忠,张福生.道路交通在线仿真及控制策略优化系统研制报告[R].无锡:公安部交通管理科学研究所,2006.

[2]裴玉龙,张亚平,等.道路交通系统仿真[M].北

89

京:人民交通出版社,2004.

[3]魏明,杨方廷,曹正清.交通仿真的发展及研究现状[J].系统仿真学报,2003,15(8):1179-1183.[4]李世松,吕洪燕,陈春,等.城市道路交叉口

流量仿真及评估初探[J].技术与应用,2003,(7):

53-54.

[5]王玉鹏.基于VISSIM仿真的交叉口延误分析[J].中国市政工程,2006,(2):85-87.

[6]AnthonyTheodoreChronopoulos,CharlesMichaelJohnston.AReal-TimeTrafficSimulationSystem[J].IEEETransactionsonVehicularTechnology,1998,47(1):321-331.

[7]PTVPlanungTransportVerkehrAG.VISSIM4.10UserManual[R].Karlsruhe:PTVCorporation,2005.

[8]PTVPlanungTransportVerkehrAG.VISSIM———

现代化的多方式模拟软件[R].Karlsruhe:PTVCor-

poration,2005.

[9]PTVPlanungTransportVerkehrAG.VISSIMCOMUserManualfortheVISSIMCOMinterface[R].Karl-sruhe:PTVCorporation,2006.

基金项目:北京市创新团队专项基金项目(7035-50420-

05080201)

作者简介:张永忠(1971-),男(汉族),甘肃兰州人,北方工业大学智能交通系统研究所成员,完成多项国家和省部级研究项目,获得5项专利,省部级科技奖2项,国家科技进步奖1项;郑媛元(1983-),女(汉族),山东莱州人,北方工业大学智能交通系统研究所成员,检测技术与自动化专业硕士,研究方向为交通管理与控制;李正熙(1955-),男(朝鲜族),工学博士,北方工业大学副校长,教授,硕士研究生导师,北京市现场总线技术和自动化重点实验室主任,智能交通系统研究所带头人,主要研究方向为工业自动化系统、电气传动技术、控制工程。收稿日期:2007-12-25

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

水泥稳定碎石基层的压实检测与

控制

余海妮

(河南省许昌市公路管理局,河南许昌461000)

摘要:针对基层压实度实际检测中经常出现的不准确情况,分析其原因,可提出有效的方法用于基层压实度的检测与控制。

关键词:基层;压实度;检测;控制中图分类号:U416.216

文献标识码:B

文章编号:1002-4786(2008)09-0090-03

CementStabilizedMacadamBaseCompactionInspection

andControl

YUHai-ni

(HenanProvincialXuchangCityHighwayAdministrationBureau,Xuchang461000,China)

Abstract:Inallusiontotheinaccuracyininspectingthebasecompactionsometimes,thepaperana-lyzesthecausesandputsforwardeffectivemethodsusedincompactioninspectionandcontrol.

Keywords:base;compaction;inspection;control90

控制系统数字仿真

现代工程控制理论 实验报告 实验名称:控制系统数字仿真技术 实验时间: 2015/5/3 目录 一、实验目的 (2) 二、实验容 (3)

三、实验原理 (3) 四、实验方案 (6) 1、分别离散法; (6) 2、整体离散法; (7) 3、欧拉法 (9) 4、梯形法 (9) 5、龙格——库塔法 (10) 五、实验结论 (11) 小结: (14) 一、实验目的 1、探究多阶系统状态空间方程的求解; 2、探究多种控制系统数字仿真方法并对之进行精度比较;

二、 实验容 1、 对上面的系统进行仿真,运用分别离散法进行分析; 2、 对上面的系统进行仿真,运用整体离散法进行分析; 3、 对上面的系统进行仿真,运用欧拉法进行分析; 4、 对上面的系统进行仿真,运用梯形法进行分析; 5、 对上面的系统进行仿真,运用龙泽——库塔法进行分 析; 6、 对上面的几种方法进行总计比较,对他们的控制精度分 别进行分析比较; 三、 实验原理 1、 控制系统状态空间方程整体离散法的求解; 控制系统的传递函数一般为 x Ax Bu Y Cx Du ? =+=+ 有两种控制框图简化形式如下: KI 控制器可以用框图表示如下:

惯性环节表示如下: 高阶系统(s)(1)n K G T = +的框图如下 对于上面的框图可以简写传递函数 x Ax Bu Y Cx Du ? =+=+ 根据各环节间的关系可以列写出式子中出现的系数A 、B 、C 和D ,下面进行整体离散法求传递函数的推导

00 ()0 ...*()...()(t)(0)...*(t)(0)(t)(0)()(0)At At At At At t t At t t A AT t AT A At t t At At A At A t x Ax Bu e e x e Ax e Bu d e x dt Bue dt dt e x Bue dt e x x Bue d e x x e e Bue d x x e Bue d t KT x kT x e τ ττ τττττ ? -? -----------=+=+=?=?=+=+?=+==????? ?①①得②③ ③得令()0 (1)(1)[(1)]0 (1)[(1)]0 ...(1)[(1)](0)...*(1)()(1)T (1)()()() ,kT A kT A kT k T A k T A k T AT k T AT A k T kT T T AT At AT At AT Bue d t K T x k T x e Bue d e x k e x k Bue d k t x k e x k e Budt e x k e Bdt u k e ττττττ τ?-+?++-++-+=++=+-+-=+-=+=+=+?Φ=? ? ? ??④ 令⑤ ⑤④得令令0 (1)()(1) T At m m e Bdt x k x k x k Φ=+=Φ?+Φ?+?得 这样,如果知道系数,就可以知道高阶系统的传递函数和状态空间方程。 2、 在控制系统的每一个环节都加一个采样开关,构成分别 离散法求解系统的状态空间方程; 采样开关其实是一个零阶保持器

控制系统数字仿真-上海交通大学

上海市高等教育自学考试 工业自动化专业(独立本科段)(B080603)控制系统数字仿真 (02296) 自学考试大纲 上海交通大学自学考试办公室编上海市高等教育自学考试委员会组编 2013年

I、课程的性质及其设置的目的和要求 (一)本课程的性质与设置的目的 “控制系统数字仿真”是利用数字计算进行各种控制系统分析、设计、研究的有力工具,是控制系统工程技术人员必须掌握的一门技术。 本课程是工业自动化专业的专业课程,也是一门理论和实际紧密结合的课程。 通过本课程的学习,学生能掌握系统仿真的基本概念、基本原理及方法;掌握基本的仿真算法及能用高级编程语言在微机上编程实现,学会使用常用的仿真软件。为学习后继课程、从事工程技术工作、科学研究以及开拓性技术工作打下坚实的基础。 (二)本课程的基本要求 1.要求掌握系统、模型、仿真的基本概念,这是学好仿真这门课程的概念基础。 2.掌握常用的连续系统数学仿真算法及能用某种高级编程语言上机实现。 3.初步掌握利用微机来分析、设计、研究控制系统的方法与仿真技术。 (三)本课程与相关课程的联系 先修课程:自动控制原理、现代控制理论基础、高级编程语言。

II、课程内容与考核目标 第1章概论 (一)学习目的和要求 通过本章学习,了解系统的概念,系统的分类方法及特点,仿真的应用目的。了解模型的基本概念,熟悉模型的分类方法及特点。掌握仿真的基本概念,仿真的分类方法及特点。熟悉仿真的一般步骤,仿真技术的应用,熟悉计算机仿真的三要素及基本活动。 (二)课程内容 第一节系统、模型与仿真 1.系统 2.模型 3.仿真 4.仿真科学与技术的发展沿革 第二节系统仿真的一般知识 1.相似理论 2.基于相似理论的系统仿真 3.系统仿真的类型 4.系统仿真的一般步骤 第三节仿真科学与技术的应用 1.仿真在系统设计中的应用 2.仿真在系统分析中的应用 3.仿真在教育与训练中的应用 4.仿真在产品开发及制造过程中的应用 第四节当前仿真科学与技术研究的热点 1.网络化仿真技术 2.复杂系统/开放复杂巨系统的建模与仿真

控制系统数字仿真题库

控制系统数字仿真题库 填空题 1.定义一个系统时,首先要确定系统的;边界确定了系统的范围,边界以外对系统的作用称为系统的,系统对边界以外环境的作用称为系统的。 1.定义一个系统时,首先要确定系统的边界;边界确定了系统的范围,边界以外对系统的作用称为系统的输入,系统对边界以外环境的作用称为系统的输出。 2.系统的三大要素为:、和。 2.系统的三大要素为:实体、属性和活动。 3.人们描述系统的常见术语为:、、和 3.人们描述系统的常见术语为:实体、属性、事件和活动。 4.人们经常把系统分成四类,分别为:、、和 4.人们经常把系统分成四类,它们分别为:连续系统、离散系统、采样数据系统和离散-连续系统。 5、根据系统的属性可以将系统分成两大类:和。 5、根据系统的属性可以将系统分成两大类:工程系统和非工程系统。 6.根据描述方法不同,离散系统可以分为: 和。 6.根据描述方法不同,离散系统可以分为:离散时间系统和离散事件系统。 7. 系统是指相互联系又相互作用的的有机组合。 7. 系统是指相互联系又相互作用的实体的有机组合。 8.根据模型的表达形式,模型可以分为和数学模型二大类,期中数学模型根据数学表达形式的不同可分为二种,分别为:和。8.根据模型的表达形式,模型可以分为物理模型和数学模型二大类,期中数学模型根据数学表达形式的不同可分为二种,分别为:静态模型和动态模型。 9.连续时间集中参数模型的常见形式为有三种,分别为:、和。 9.连续时间集中参数模型的常见形式为有三种,分别为:微分方程、状态方程和传递函数。 10、采用一定比例按照真实系统的样子制作的模型称为,用数学表达式来描述系 统内在规律的模型称为。 10、采用一定比例按照真实系统的样子制作的模型称为物理模型,用数学表达式来描述系统 内在规律的模型称为数学模型。 11.静态模型的数学表达形式一般是方程和逻辑关系表达式等,而动态模型的数学表达形式一般是方程和方程。 11.静态模型的数学表达形式一般是代数方程和逻辑关系表达式等,而动态模型的数

城市交通与道路系统规划试题选

道路与交通系统规划试题选 一、填空题 1、城市交通系统是由城市运输系统、城市道路系统和城市交通管理系统组成。 2、一条自行车道的通行能力为 500-1000 辆/小时,宽度为 1 _。 3、《周礼》中把城市道路网分为经涂、纬涂、环涂和野涂四个部分。 4、城市道路衔接的原则是:低速让高速、次要让主要、生活性让交通性和适当分离。 5、平面环形交叉口的通行能力较低,一般不适用于快速路和主干路的交叉口。当进入交叉口的混行交通量超过 2700 辆当量小汽车/小时或环形交叉口任何一个交织路段通过的交通量超过 1400 辆当量小汽车/小时时,不宜采用平面环形交叉。 6、平面弯道设计时在限界内必须清除高于米的障碍物,包括灌木和乔木。 7、各类机动车分到行驶时,小客车每条车到宽度米;其他车型当设计车速小于40km/h 时每条车到宽度米,当设计车速大于40km/h时每条车道宽度米。 8、机动车道的车道条数常采用偶数,路段上机动车道的车道数不宜过多,单向车道一般不超过 4 条。 9、一般城市公共交通线网类型有:棋盘型、中心放射型、环线型、混合型和主辅线型五种。 10、从地域关系上,城市综合交通可分为:城市对外交通和城市交通两大部分。 11、城市交通的四个基本因素:用地、人、车和路。其中,城市用地是产生交通、吸引交通的“源”和“泽”。 12、道路红线内的用地包括车行道、步行道、绿化带和_ 分隔带_ 四部分。 13、临近建筑交通组织和规划的主要任务是把建筑内部的交通流线与外部城市道路的交通流线合理地组织成为有机整体。 14、横断面设计就是根据城市规划确定的道路性质、功能要求和规划交通量,合理确定道路各组成部分的相互位置、宽度和高差。 15、按修筑路面的材料,路面可分为:水泥混凝土路面、沥青路面和砂石路面。 16、《马丘比丘宪章》强调公共交通是城市发展和城市增长的基本要素。

我国城市交通信号控制现状与发展

我国城市交通信号控制的现状与发展 二零一二年四月

本论文的背景和意义 背景:我国近年城市交通信号控制的情况 意义:1、减少交通事故,增加交通安全。 2、缓和交通拥挤、堵塞,提高运行效率。 3、节约能耗,降低车辆对环境的污染。 本论文的主要内容 分析我国城市交通信号控制的现状、存在问题以及发展趋势。 本论文的结构安排 本论文主要分为两大部分: 第一部:分分析我国交通信号控制的现状以及存在问题; 1、我国城市交通状况 2、城市交通信号控制系统应用现状 3、国内交通信号控制系统问题分析 第二部分:分析我过交通信号控制的发展趋势。 1、交通系统的发展历程 2、我国一些城市的发展计划和目标

正文 第一部分:分析我国交通信号控制的现状以及存在问题 1、我国城市交通状况 我国城市交通面临的总体形势:城市化势头迅猛、机动车拥有量增长迅速、道路交通基础设施落后、交通结构和路网结构不尽合理、市民的交通法规意识和交通安全常识缺乏,交通管理措施不完善、管理效率低下、城市交通拥挤严重、社会消耗巨大、交通事故多发、汽车废气对城市环境污染严重。因此,在对我国城市交通目前的状况进行全面把握和详细解剖的基础上,探索解决我国城市交通问题行之有效的办法,展望城市道路交通的发展趋势和特点,探讨适合我国城市道路交通特点的道路交通管理发展战略,具有重要意义。而交通控制实际上属于交通管理的范畴,交通控制是交通管理的某一表现方式。 将城市道路互相连起来构成道路交通网的城市道路平面交叉口,是造成车流中断、事故增多、延误严重的问题所在,是城市交通运输的瓶颈。交叉口的通行能力又是决定道路通行能力的关键所在,对城市交通网络的交叉口信号控制系统进行协调优化控制,对提高道路通行能力和服务水平具有重要意义。 2、城市交通信号控制系统应用现状 交通控制的发展经历了点控、线控和面控3个阶段。把控制对象区域内全部交通信号的控制作为一个交通控制中心管理下的整体控制系统,是单点信号、干线信号和网络信号系统的综合控制系统。 随着计算机技术和自动控制技术的发展,以及交通流理论的不断完善,交通运输组织与优化理论的不断提高,世界上出现了多种城市交通信号控制系统——澳大利亚的SCATS系统、加拿大的RTOP系统、英国的TRANSYT系统和SCOOT系统、美国的UTCS-3GC系统以及ASCOT系统,其中TRANSYT系统、SCOOT系统和SCATS系统正在实践中取得了较好的应用效果,并在世界上很多城市得到广泛应用。 3、国内交通信号控制系统问题分析 上个世纪八十年代至今,北京、上海、天津、沈阳、南宁等中大城市先后引进SCOOT、SCATS、TELVENT等先进的城市交通控制系统,迄今国内已经有30多个城市引进类似系统。本土企业如青岛海信、上海宝康等自1990年后也先后进行了交通信号系统的研发,但总体的技术指标和应用范围与国外系统仍有一定差距。 交通信号系统建设工程是一项投资大、周期长和社会公益性强的系统工程,但目前无论是建设中国本土系统还是引进国外先进系统,许多城市建成后投入应用的城市交通信号系统普遍存在效能发挥不佳、使用不方便、经济效益差等问题,究其原因,排除系统产品本身的质量和功能因素外主要涉及一下几个方面: 1、轻视前期调查。交通调查和基于交通调查数据的交通工程设计是交通信号系 统是否个性化、适应性和效能发挥的关键性工作。遗憾的是,相对信号配时设计,中国内陆城市交通管理者和系统设计施工者对设计前期的交通现场调查、交通流组织、交通流量等分析工作普遍认识不足、重视不够。对交通调查的方法、内容、时间和数据分析缺乏针对性和系统性,导致受控区域的交

交通信号控制系统解决实施方案

交通信号控制系统解决方案 1概述 交通信号控制系统,是智能交通系统(ITS)在交通管理工作中的基本应用,也是城市智能交通管控系统中最直接、最基础的应用系统。通过建设信号控制系统,实现信号路口联网远程控制、交通流量的采集、路口自适应控制、绿波协调控制以及区域的自适应控制,有效减少车辆的停车次数,节省旅行时间;后台实时调整信号配时,采取多时段控制方式,必要时,可通过智能交通管理中心人工干预,直接控制路口交通信号机执行指定相位,有效的疏导交通,减少行车延误,提高通行能力,缓解日益严峻的城区道路交通拥堵压力,提高城区交通综合管理能力,减少汽车尾气排放,美化环境,提升城区形象。 2系统结构设计 系统结构划分为3级:分别为中心控制级设备、区域控制级设备以及路口控制级设备。交通信号控制系统设备主要包括中心设备、前段设备和通信设备。

(1)中心控制级设备 中心控制级设备作用主要是: ?监控整个系统的运行。 ?协调区域控制级的运行。 ?具备区域控制级的所有功能。(2)区域控制级设备 区域控制级设备作用主要是: ?监控受控区域的运行。

?对路口交通信号进行协调控制。 ?对路口交通信号机的工作状态和故障情况进行监视。 ?通过人机回话对路口交通信号机进行人工干预。 ?监视和控制区域级外部设备的运行。 ?进行交通流量统计处理。 (3)路口控制级设备 路口控制级设备即信号机,其作用主要是: ?控制路口交通信号灯。 ?接收处理来自车辆检测器的交通流信息,并定时向区域计算机发送。 ?接收处理来自区域计算机的命令,并向区域计算机反馈工作状态和故障信息。 ?具有单点优化能力。 3系统功能设计 3.1基础功能 (1)区域自适应控制 系统以控制子区作为基本控制单元,综合考虑子区内的交通运行状态(如交通阻塞、交通拥挤、交通顺畅)、交叉口的关联性大小、交叉口的实际交通量,确定公共信号周期与相位差的决策模型,并运用智能优化算法实时优化子区协调控制配时参数,实现控制子区交叉口的协调控制功能。 系统的区域交叉口协调控制能够确保控制区域内的交通流时刻处于最佳运行状态,相邻交叉口之间协调方向的行驶车流可以获得尽可能不停顿的通行权,大大降低车辆在交叉口频繁加减速所产生的交通污染,减少区域交通总的车辆燃油

城市交通与道路系统规划复习资料老师总结自己整理

第一章 城市交通规划的概念:(1)通过对城市交通需求量发展的预测,为较长时期内城市的各项交 通用地,交通设施,交通项目的建设与发展提供综合布局与统筹规划,并进行综合评价,是 解决城市交通问题最有效的途径之一。(2)城市交通规划是以城市总体规划和城市交通活动 特点的调查资料为基础,对城市未来交通进行研究的过程和对未来交通的安排。 城市交通规划编制的核心内容:一个战略:城市交通发展战略;两张网:城市道路网,城 市公交网。 城市四大基本活动:交通、居住、工作、游憩。 城市道路的概念及其功能:城市道路是指城市城区内的道路。功能:为地上地下工程管线 和其它市政公用设施铺设提供空间; 是城市的骨架,建筑物的依托,分别用地各地块的边界; 是商贸活动的场所之一;是城市居民交通与活动的空间;城市防灾避难提供场所;为城市通 风新鲜空气的流通提供渠道;反映了城市的风貌,反映了城市的历史文化,又是显示当代精 神文明的场所,是组织城市景观的导线。 城市道路按国标、按功能、按目的分类:(1)国标(作为城市骨架)的分类:快速路、主 干路、次干路、支路;(2)按道路功能的分类:交通性道路、生活性道路;(3)按交通目的的分类:疏通性道路、服务性道路。 我国城市交通和道路系统存在的问题、原因和对策:问题及原因:(1)人口密集与城市用 地的矛盾:由于人口稠密,国家又实行劳动力密集、广就业、低工资的政策,所以中国城市发展的最大问题是人口密集而城市用地紧张,从而导致交通密度大。(2)城市用地布局带来 的交通分布的合理性问题:我国城市发展的基本模式是单一中心的同心圆式发展,由于在城 市的发展建设上缺乏远见,缺乏清晰的规划思想,城市布局的不合理性也越来越明显,从而直接影响着城市交通的分布和合理性。(3)城市综合交通系统落后带来的系统性问题:城市道路交通设施建设不能适应现代城市发展的需要;运输体系和交通结构缺乏科学性。 (4) 城市交通管理的科学性问题:我国城市中城市运输、城市道路、城市交通管理三个系统分别 由多个部门管理,思想认识不尽统一,城市的交通管理系统与城市规划、城市建设脱节,城市交通管理跟不上城市交通发展需要。(5)居民交通意识问题:交通意识是衡量国民素质和 城市居民意识水平的重要方面,违章是事故的根源,事故是交通阻塞的主要原因。对策:(1) 研究城市交通机动化的发展趋势,规律及城市的需求,因地制宜地制定科学的城市交通发展 战略和城市交通政策。(2)立足于城市布局向合理化转化,从根本上减少交通量,使交通分 布趋于合理。(3)优化城市道路系统结构,一是适应时代发展,满足现代化城市交通需求,二是要与用地布局相协调。(4)搞好交通规划与用地规划、道路交通系统规划的结合。 (5) 实施科学的现代化交通管理。 第二章 人的交通活动特性的 4项要素:出行目的、出行方式、平均出行距离、日平均出行次数。交通生成指标的用地相关因素有:城市用地性质、面积、居住人口密度、就业人口密度(就 业岗位密度)。 描述道路上车流的三项参数:速度V、流量Q、密度D ; D=Q/V 动力净空长度:即一辆车所需的净空长度 L,动力净空长度为 L=l+lt+lr+IO ; I—车长;10 —安全

控制系统数字仿真自考题型举例与解答

控制系统数字仿真 题型举例与总复习 一、填空题 A类基本概念题型 1、系统是指相互联系又相互作用的实体的有机组合。 2、定义一个系统时,首先要确定系统的边界;边界确定了系统的范围,边界以外对系统的作用称为系统的输入,系统对边界以为环境的作用称为系统的输出。 3、系统的三大要素为:实体、属性和活动。 4、根据系统的属性可以将系统分成两大类:工程系统和非工程系统。 5、相似原理用于仿真时,对仿真建模方法的三个基本要求是稳定性、准确性和快速性。 6、根据模型种类不同,系统仿真可分为三种:物理仿真、数字仿真和半实物仿真。 7、按照系统模型特征分类,仿真可分为连续系统仿真及离散事件系统仿真两大类。 8、采用一定比例按照真实系统的样子制作的模型称为物理模型,用数学表达式来描述系统内在规律的模型称为数学模型。 9、计算机仿真是指将模型在计算机上进行试验的过程。 10、系统仿真的三个基本活动是系统建模、仿真建模和仿真试验,计算机仿真的三个要素为:系统、模型与计算机。 11、如果某数值计算方法的计算结果对初值误差和计算误差不敏感,则称该计算方法是稳定的。 12、数值积分法步长的选择应遵循的原则为计算稳定性及计算精度。 13、采样数值积分方法时有两种计算误差,分别为截断误差和舍入误差。 14、三阶隐式啊达姆氏算法的截断误差为O(?4),二阶龙格-库塔法的局部截断误差为O(?3),四阶龙格-库塔法的局部截断误差为O(?5)。 15、在判定数值积分方法的稳定域时,使用的测试方程为y?=μy。 16、龙格-库塔法的基本思想是用几个点上函数值的线性组合来避免计算函数的高阶导数,提高数值计算的精度。 17、连续系统仿真中常见的一对矛盾为计算速度和计算精度。 18、离散相似法在采样周期的选择上应当满足采样定理。 19、保持器是一种将离散时间信号恢复成连续信号的装置,零阶保持器能较好地再现阶跃信号,一阶保持器能较好地再现斜坡信号。 20、实际信号重构器不可能无失真地重构信号,具体表现为信号重构器会对被重构的信号产生相位的滞后和幅度的衰减。 21、一般将采样控制系统的仿真归类为连续系统仿真。 22、在控制理论中,由系统传递函数来建立系统状态方程的问题被称为“实现问题”。 23、常用的非线性环节包括:饱和非线性、失灵非线性、迟滞回环非线性。

智能交通信号灯控制系统设计

编号: 毕业论文(设计) 题目智能交通信号灯控制系统设计 指导教师xxx 学生姓名杨红宇 学号201321501077 专业交通运输 教学单位德州学院汽车工程系(盖章) 二O一五年五月十日

德州学院毕业论文(设计)中期检查表

目 录 1 绪论............................................................................................................................ 1 1.1交通信号灯简介...................................................................................................... 1 1.1.1 交通信号灯概述.................................................................................................. 1 1.1. 2 交通信号灯的发展现状...................................................................................... 1 1.2 本课题研究的背景、目的和意义 ......................................................................... 1 1. 3 国内外的研究现状 ................................................................................................. 1 2 智能交通信号灯系统总设计.................................................................................... 2 2.1 单片机智能交通信号灯通行方案设计 ................................................................. 2 2.2 功能要求 ............................................................................... 错误!未定义书签。 3 系统硬件组成............................................................................................................ 4 4 系统软件程序设计.................................................................................................... 5 5 结论和展望................................................................................................................ 6 参考文献...................................................................................... 错误!未定义书签。 杨红宇 要: 但是传统的交通信号灯不已经不能满足于现代日益增长的交通压力,这些缺点体现在:红绿 以及车流量检测装置来实现交通信号灯的自控制,随着车流量来改变红绿灯1 绪论 1.1 1.1.1 为现代生活中必不可少的一部分。

城市交通与道路系统规划

第一章 1.概念解释:交通、城市交通系统、城市道路。 交通:是指“人和物的流动”,是采用一定的方式,在一定的设备条件下,完成一定的运输任务。交通更为广义的概念是“人、物、信息的流动”,是以某种确定的目标,按照一定的方式,通过一定的空间进行的,涵盖了航空、水运、铁路等不同的交通方式。 城市交通系统:是城市大系统中的一个子系统,体现了城市生产、生活的动态的功能关系。城市交通系统主要由城市运输系统、城市道路系统和城市交通管理系统所组成。城市交通系统是为城市运输系统完成交通服务的,城市交通管理系统则是整个城市交通系统正常、高效运转的保证。 城市道路:是城市中担负城市交通的主要设施,是行人和车辆往来的专用地。 2.城市道路如何分类分级,城市道路的功能有哪些? 城市道路分级:快速路、主干路、次干路、支路 城市道路的功能:①城市交通的主要措施,是行人和车辆往来的专用地②组织城市布局结构的骨架③是通风、采光和防火的通道④公共工程基础设施(地上、地下管线)的主要空间⑤是城市面貌和建筑风格的媒介,是城市景观的组成媒介 3. 现代道路系统规划思想是什么? ①城市道路系统的交通分流②疏通性和服务性的分离是现代化城市交通和城市道路系统演变的必然和特点③注重城市非机动交通环境的营造④城市快速路与高架路:快速路应该与到达性的机动车流分离,采用立交或联系匝道的方式实现快速路交通与常速路交通之间的转换。高速道路在城市中的建设应该慎之又慎。 第二章 1. 名词解释:交通生成指标;车流密度;动力净空长度;停车视距;道路容量。 交通指标生成:确定不同性质、不同分类的城市用地生产和吸引交通的数量的指标,表示交通的生产和吸引量与城市用地等相关因素的关系。 人的交通活动特性:出行目的;出行方式;平均出行距离;日平均出行次数。 车流密度:车流密度D指道路单位长度上的车辆数,D=Q/Vs(V速度.Q流量) 动力净空长度:保证前后两车之间安全的车头距(车头间距)的长度,即一辆车所需的净空长度L。 停车视距:ST是司机发现前方障碍物进行制动时所需要的最小安全距离,相当于动力净空长度减去车的长度。 道路容量C:指在通常的道路条件下,可以合理期望在单位时间内通过车道或车行道某一断面的单向或双向最多的车辆数(相当于通行能力)。 论述交通规划方法:出行生成;出行分布;出行方式划分;交通分配 2. 说明居民出行和货运OD调查的内容和方法。 居民(OD调查)出行调查:目的:为了取得客流的出行生成规律以及土地使用特征、社会经济条件等。调查的内容包括家庭地址(交通区)、用地性质、家庭成员情况、经济收入、出行目的、每日出行次数、出行时间、出行线路、出行方式等。调查方法:家庭是居民出行的主要来源,所以一般都采用抽样家访的方法进行调查。 货运调查:方法:采用抽样发调查表或深入单位访问的方法。内容:调查各工业企业、仓库、批发部、货运交通枢纽和专业运输单位的土地使用特征、产销储运情况、货物种类、运输方式、运输能力、吞吐情况、货运车种、出行时间、线路、空驶率以及发展趋势等情况。目的:在于取得出行率生成规律以及土地使用特征和社会经济条件的资料。

控制系统数字仿真大作业.

《控制系统数字仿真》课程 大作业 姓名: 学号: 班级: 日期: 同组人员:

目录 一、引言 (2) 二、设计方法 (2) 1、系统数学模型 (2) 2、系统性能指标 (4) 2.1 绘制系统阶跃响应曲线、根轨迹图、频率特性 (4) 2.2 稳定性分析 (6) 2.3 性能指标分析 (6) 3、控制器设计 (6) 三、深入探讨 (9) 1、比例-微分控制器(PD) (9) 2、比例-积分控制(PI) (12) 3、比例-微分-积分控制器(PID) (14) 四、设计总结 (17) 五、心得体会 (18) 六、参考文献 (18)

一、引言 MATLAB语言是当今国际控制界最为流行的控制系统计算机辅助设计语言,它的出现为控制系统的计算机辅助分析和设计带来了全新的手段。其中图形交互式的模型输入计算机仿真环境SIMULINK,为MATLAB应用的进一步推广起到了积极的推动作用。现在,MATLAB语言已经风靡全世界,成为控制系统CAD领域最普及、也是最受欢迎的软件环境。 随着计算机技术的发展和应用,自动控制理论和技术在宇航、机器人控制、导弹制导及核动力等高新技术领域中的应用也愈来愈深入广泛。不仅如此,自动控制技术的应用范围现在已发展到生物、医学、环境、经济管理和其它许多社会领域中,成为现代社会生活中不可或缺的一部分。随着时代进步和人们生活水平的提高,在人类探知未来,认识和改造自然,建设高度文明和发达社会的活动中,控制理论和技术必将进一步发挥更加重要的作用。作为一个自动化专业的学生,了解和掌握自动控制的有关知识是十分必要的。 利用MATLAB软件及其SIMULINK仿真工具来实现对自动控制系统建模、分析与设计、仿真,能够直观、快速地分析系统的动态性能和稳态性能,并且能够灵活的改变系统的结构和参数,通过快速、直观的仿真达到系统的优化设计,以满足特定的设计指标。 二、设计方法 1、系统数学模型 美国卡耐尔基-梅隆大学机器人研究所开发研制了一套用于星际探索的系统,其目标机器人是一个六足步行机器人,如图(a)所示。该机器人单足控制系统结构图如图(b)所示。 要求: (1)建立系统数学模型; (2)绘制系统阶跃响应曲线、根轨迹图、频率特性; (3)分析系统的稳定性,及性能指标; (4)设计控制器Gc(s),使系统指标满足:ts<10s,ess=0,,超调量小于5%。

控制系统数字仿真题库

控制系统数字仿真题库 一、填空题 1. 定义一个系统时,首先要确定系统的边界;边界确定了系统的范围,边界以外对系统的作用称为系统的输入,系统对边界以为环境的作用称为系统的输出。 2.系统的三大要素为:实体、属性和活动。 3.人们描述系统的常见术语为:实体、属性、事件和活动。 4.人们经常把系统分成四类,它们分别为:连续系统、离散系统、采样数据系统和离散-连续系统。 5、根据系统的属性可以将系统分成两大类:工程系统和非工程系统。 6.根据描述方法不同,离散系统可以分为:离散时间系统和离散事件系统。 7. 系统是指相互联系又相互作用的实体的有机组合。 8.根据模型的表达形式,模型可以分为物理模型和数学模型二大类,其中数学模型根据数学表达形式的不同可分为二种,分别为:静态模型和动态模型。 9、采用一定比例按照真实系统的样子制作的模型称为物理模型,用数学表达式来描述系统内在规律 的模型称为数学模型。 10.静态模型的数学表达形式一般是代数方程和逻辑关系表达式等,而动态模型的数学表达形式一般是微分方程和差分方程。 11.系统模型根据描述变量的函数关系可以分类为线性模型和非线性模型。 12 仿真模型的校核是指检验数字仿真模型和数学模型是否一致。 13.仿真模型的验证是指检验数字仿真模型和实际系统是否一致。 14.计算机仿真的三个要素为:系统、模型与计算机。 15.系统仿真的三个基本活动是系统建模、仿真建模和仿真试验。 16.系统仿真根据模型种类的不同可分为:物理仿真、数学仿真和数学-物理混合仿真。 17.根据仿真应用目的的不同,人们经常把计算机仿真应用分为四类,分别为: 系统分析、系统设计、理论验证和人员训练。 18.计算机仿真是指将模型在计算机上进行实验的过程。 19. 仿真依据的基本原则是:相似原理。 20. 连续系统仿真中常见的一对矛盾为计算速度和计算精度。 21.保持器是一种将离散时间信号恢复成连续信号的装置。 22.零阶保持器能较好地再现阶跃信号。 23. 一阶保持器能较好地再现斜坡信号。 24. 二阶龙格-库塔法的局部截断误差为O()。 25.三阶隐式阿达姆斯算法的截断误差为:O()。

智能交通信号控制系统发展史

智能交通信号控制系统发展史 交通信号是汽车工业发展所带来的产物,凡在道路上用以传达具有法定意义、指挥交通行、止、左、右的手势、声响、灯光等都是交通信号。但目前使用的最为普遍、效果最好的是灯光交通信号。 色灯交通信号控制技术的发展是随着现代科学与汽车技术的发展,汽车数量增长,路口冲突矛盾激化,人们为了安全、迅速通过,不得不将最新的科技成果用以解决路口的交通阻塞问题,从而推动了自动控制技术在交通领域的迅速发展。 1886年伦敦的威斯敏斯特教堂安装了一台红绿两色煤气照明灯,用以指挥路口马车的通行,不幸发生意外爆炸,遭到人们反对而夭折。 1917年美国盐湖城开始使用联动式信号系统,将六个路口作为一个系统,用人工手动方式加以控制。 1918年初纽约街头出现了新的人工手动红黄绿三色信号灯,同现在的信号机基本相似。 1922年美国休斯顿建立了一个同步控制系统,以一个岗亭为中心控制几个路口。 1926年英国伦敦成立了第一台自动交通信号机在大街上使用,可以说是城市交通自动控制信号机的开始。 1928年人们在上述各种信号机的基础上,制成“灵活步进式”适时系统。由于其构造简单、可靠、价廉,很快得到推广普及,以后经不断改进、更新、完善,发展成现在的交通协调控制系统。 在计算机应用方面的发展也很快,先是模拟式电子计算机,1952年美国丹佛市首先安装,经过改进成为“PR”(program register),在美国发展很快,至1962年已经安装了100多个“PR”系统。以后数字计算机也进入了交通控制领域,1963年多伦多市第一个完成了以数字计算机为核心的城市交通控制系统(UTC系统)。接着西欧、北美、日本很快也建立了改进式的UTC系统。 在软件开发方面,1967年英国运输与道路研究实验室的专家们研制了“TRANSYT”(TRAFFIC NETWORK STUDY TOOL)。它是一个脱机仿真优化的配时程序,应用很广,效果很好。 TRANSYT主要由两部分组成。一部分为仿真模型,其目的使用数学方法模拟车流在交通网上的运行状态,研究交通网配时参数的改变对车流运行的影响,能够对不同配时方案控制下的车流运行参数作出可靠地估算;另一部分为优化,将仿真所得到的性能指标送入优化

控制系统数字仿真与CAD第一二章习题答案

1-1什么是仿真?它所遵循的基本原则是什么? 答:仿真是建立在控制理论,相似理论,信息处理技术和计算技术等理论基础之上的,以计算机和其他专用物理效应设备为工具,利用系统模型对真实或假想的系统进行试验,并借助专家经验知识,统汁数据和信息资料对试验结果进行分析和研究,进而做出决策的一门综合性的试验性科学。 它所遵循的基本原则是相似原理。 1-2在系统分析与设计中仿真法与解析法有何区別?各有什么特点? 答:解析法就是运用已掌握的理论知识对控制系统进行理论上的分析,il?算。它是一种纯物理意义上的实验分析方法,在对系统的认识过程中具有普遍意义。由于受到理论的不完善性以及对事物认识的不全而性等因素的影响,其应用往往有很大局限性。 仿真法基于相似原理,是在模型上所进行的系统性能分析与研究的实验方法。 1-3数字仿真包括那几个要素?其关系如何? 答:通常情况下,数字仿真实验包括三个基本要素,即实际系统,数学模型与让算机。由图可见,将实际系统抽象为数学模型,称之为一次模型化,它还涉及到系统辨识技术问题,统称为建模问题:将数学模型转化为可在计算机上运行的仿真模型,称之为二次模型化,这涉及到仿真技术问题,统称为仿真实验。 1-4为什么说模拟仿真较数字仿真精度低?其优点如何?o 答:由于受到电路元件精度的制约和容易受到外界的下?扰,模拟仿真较数字仿真精度低 但模拟仿真具有如下优点: (1)描述连续的物理系统的动态过程比较自然和逼真。 (2)仿真速度极快,失真小,结果可信度髙。 (3)能快速求解微分方程。模拟汁算机运行时0运算器是并行工作的,模拟机的解题速度与原系统的复杂程度无关。 (4)可以灵活设置仿真试验的时间标尺,既可以进行实时仿真,也可以进行非实时仿真。 (5)易于和实物相连。 1-5什么是CAD技术?控制系统CAD可解决那些问题? 答:CAD技术,即计算机辅助设计(Computer Aided Design),是将计算机高速而精确的计算能力, 大容量存储和数据的能力与设讣者的综合分析,逻辑判断以及创造性思维结合起来,用以快速设计进程,缩短设计周期,提髙设计质量的技术。 控制系统CAD可以解决以频域法为主要内容的经典控制理论和以时域法为主要内容的现代控制理论。此外,自适应控制,自校正控制以及最优控制等现代控制测略都可利用CAD技术实现有效的分析与设计。 1-6什么是虚拟现实技术?它与仿真技术的关系如何? 答:虚拟现实技术是一种综合了计算机图形技术,多媒体技术,传感器技术,显示技术以及仿真技术等多种学科而发展起来的高新技术。 1-7什么是离散系统?什么是离散事件系统?如何用数学的方法描述它们? 答:本书所讲的“离散系统”指的是离散时间系统,即系统中状态变量的变化仅发生在一组离散时刻上的系统*它一般采用差分方程.离散状态方程和脉冲传递函数来描述。 离散事件系统是系统中状态变量的改变是由离散时刻上所发生的事件所驱动的系统。这种系统的输入输出是随机发生的,一般采用概率模型来描述。 1-8如图1-16所示某卫星姿态控制仿真实验系统,试说明: (1)若按模型分类,该系统属于那一类仿真系统? (2)图中“混合汁算机”部分在系统中起什么作用? (3)与数字仿真相比该系统有什么优缺点? 答:(1)按模型分类,该系统属于物理仿真系统“ (2)混合计算机集中了模拟仿真和数字仿真的优点,它既可以与实物连接进行实时仿真,计算一些复杂函数,又可以对控制系统进行反复迭代讣算。其数字部分用来模拟系统中的控制器,而模拟部分用于模拟控制对象。(4)与数字仿真相比,物理仿真总是有实物介入,效果逼真,精度高,具有实时性与在线性的特点, 但其构成复杂,造价较髙,耗时过长,通用性不强。

控制系统数字仿真

控制系统数字仿.. 交卷时间:2016-04-01 21:13:58 一、单选题 1. (2分) 列出工作内存中的变量名称以及细节,只需在命令窗口输入________。 ? A. what ? B. who ? C. echo on ? D. whose 得分:0知识点:控制系统数字仿真作业题 答案D解析 2. (2分) 在Simulink中,运行系统仿真的工具栏图标为 ? A. ? B. ? C. ? D. 得分:0知识点:控制系统数字仿真作业题 答案C解析 3. (2分) 设A=[0 2 3 4;1 3 5 0],B=[1 0 5 3;1 5 0 5]则A>=B的结果为________。

? A. ? B. ? C. ? D. 得分:0知识点:控制系统数字仿真作业题 答案B解析 4. (2分) 若B=[3 2 7 4 9 6 1 8 0 5],则B([end-3:end])为________。 ? A. 3 7 1 ? B. 3 2 7 4 9 9 4 7 2 3 ? C. 3 4 ? D. 1 8 0 5 得分:0知识点:控制系统数字仿真作业题 答案D解析 5. (2分) 执行以下指令之后E,F的值分别为________。 A=[1 2 3; 4 5 6]; B=[3 4 5; 7 8 9]; C=3; E = A+B; F = B+C ? A. E=[4 5 6;7 8 9] F=[6 7 8;10 11 12] ? B. E=[6 7 8;10 11 12] F=[4 5 6;7 8 9] ? C. E=[4 5 6;7 8 9 F=[6 4 5;10 8 9] ? D. E=[4 5 6;7 8 9] F=[3 4 8;7 8 12]

控制系统数字仿真实验报告

控制系统数字仿真实验报告 班级:机械1304 姓名:俞文龙 学号: 0801130801

实验一数字仿真方法验证1 一、实验目的 1.掌握基于数值积分法的系统仿真、了解各仿真参数的影响; 2.掌握基于离散相似法的系统仿真、了解各仿真参数的影响; 3.熟悉MATLAB语言及应用环境。 二、实验环境 网络计算机系统(新校区机电大楼D520),MATLAB语言环境 三实验内容 (一)试将示例1的问题改为调用ode45函数求解,并比较结果。 实验程序如下; function dy = vdp(t,y) dy=[y-2*t/y]; end [t,y]=ode45('vdp',[0 1],1); plot(t,y); xlabel('t'); ylabel('y');

(二)试用四阶RK 法编程求解下列微分方程初值问题。仿真时间2s ,取步长h=0.1。 ?????=-=1 )0(2y t y dt dy 实验程序如下: clear t0=0; y0=1; h=0.1; n=2/h; y(1)=1; t(1)=0; for i=0:n-1 k1=y0-t0^2; k2=(y0+h*k1/2)-(t0+h/2)^2; k3=(y0+h*k2/2)-(t0+h/2)^2;

k4=(y0+h*k3)-(t0+h)^2; y1=y0+h*(k1+2*k2+2*k3+k4)/6; t1=t0+h; y0=y1; t0=t1; y(i+2)=y1; t(i+2)=t1; end y1 t1 figure(1) plot(t,y,'r'); xlabel('t'); ylabel('y'); (三)试求示例3分别在周期为5s的方波信号和脉冲信号下的响应,仿真时间20s,采样周期Ts=0.1。

城市道路智能交通信号控制系统

城市道路智能交通信号控制系统 智能交通信号控制系统是城市道路交通管理系统中对交叉路口、行人过街,以及环路出入口采用信号控制的子系统,是运用了交通工程学、心理学、应用数学、自动控制与信息网络技术以及系统工程学等多门学科理论的应用系统。 主要包括交通工程设计、车辆信息采集、数据传输与处理、控制模型算法与仿真分析、优化控制信号调整交通流等。国内外各大中城市已有的交通信号控制系统就是根据不同环境条件,基于各自城市道路的规划和发展水平建立起来的。 国家重点基础研究规划(973)项目“信息技术与高性能软件”中设立的二级课题“城市交通监控系统”,结合我国城市交通发展的特点,确定了建立实时自适应的城市道路智能交通信号控制系统的智能化管理的发展方向。 智能交通信号控制系统的基本组成 智能交通信号控制系统的基本组成是主控中心、路口交通信号控制机以及数据传输设备。其中主控中心包括操作平台、交互式数据仓、效益指标优化模型、数据(图象)分析处理等。具体结构框架见下图。

城市道路智能交通信号控制系统框架 智能交通信号控制系统的核心 智能交通信号控制系统的核心是控制模型算法软件,是贯穿规划设计在内的信号控制策略的管理平台,体现着交通管理者的控制思想,它包括信号控制系统将起到的作用和地位。 目前,国内外已应用的信号控制系统大多是以优化定周期方案、优化路口绿信号配比以及协调相关路口通行能力为基础的,是根据历史数据和自动检测到的车流量信息,通过设置的控制模型算法选取适当的信号配比控制方案,是被动的控制策略。 应用较多的核心软件即效益指标优化模型的是英国运输和道路研究所(TRRL)

研制的SCOOT系统(Split Cycle Offset Optimization Technique)和澳大利亚悉尼为应用背景开发的SCATS系统 (Sydney Coordinated Adaptive Traffic System),他们是动态的实时自适应控制系统的早期代表,也是未来一个时期交通信号控制系统智能化发展的开发基础。 随着网络技术的发展,交互式控制策略使信号控制由感控到诱导实现了真正的智能,交通信号控制系统不仅可以检测到车流量等交通信息参数,调控路口绿信号配比,变化交通限行、禁行等指路标志,还可以根据系统联接的数据仓完成与交通参与者之间的信息交换,向交通参与者显示道路交通信息、停车场信息,提供给交通参与者合理的行驶线路,以达到均衡道路交通负荷的主动的控制策略。 尤其重要的是计算机网络技术和数字化使数据传输和信息利用得到了可靠保证。可以说,城市道路智能交通信号控制系统是城市道路交通管理随着信息产业技术迅猛发展的综合产物。 交通信号控制系统的主要术语和参数 周期:是指信号灯色发生变化,显示一个循环所需的时间,也称周期长,即红、黄、绿灯时间之和。 相位:即信号相位,是指在周期时间内按需求人为设定的,同时取得通行权的一个或几个交通流的序列组。 相位差:具有相同周期长的相关路口,在同方向上的两个相关相位的启动时间差,称为相位差。 绿信比:是指在周期长内的各相位绿灯时间与周期长之比。 饱和流量:是衡量路口交通流施放能力的重要参数,通常是指一个绿灯时间内的连续通过路口的最大车流量。 流量系数:是实际流量与饱和流量的比值。既是计算信号配时的重要参数,又是衡量路口阻塞程度的一个尺度。 绿灯间隔时间:是指从失去通行权的相位的绿灯结束,到下一个得到通行权的相位绿灯开始所用的时间。 有效绿灯时间:是指被有效利用的实际车辆通行时间。它等于绿灯时间与黄灯

相关主题