搜档网
当前位置:搜档网 › 风扇寿命计算方式

风扇寿命计算方式

风扇寿命计算方式
风扇寿命计算方式

※風扇壽命計算方式

依固定時間及固定數量在固定測試時間結束後,分別用高溫及低溫下產生的失效故障風扇數量,再依加速模式去推估風扇的壽命。

※公式參數的意義及計算方式

A.F =e ??? ??K ?H ??? ??+-+Th Tl 27312731

A.F : 加速因子(倍數)

△ H: 活化能

K(波氏常數)=8.623×10-5

TL: 測試時低溫溫度

TH: 測試時高溫溫度

?△H 之計算

若烤箱#1之故障數為r1,烤箱#2之故障數為r2,則

r1/r2=e ??? ??K ?H ??

? ??+-+Th Tl 27312731-------------------------(1)式

∵r1、r2已知,e(自然對數)=2.713….,K(波氏常數)=8.623×10-5, TL ,TH 代入(1)式 △H 即可求得。

將△H 、Tl =30、40、50、60、70及分別代入(2)式, A.F =e ??? ??K ?H ??? ??+-+Th Tl 27312731-------------------------(2)式

可得到30、40、50、60℃對70℃之加速倍數。

?70℃ 90﹪信賴水準MTTF 值之計算

先算出總試驗時間T=(100–r)×試驗時數+r1+r2+r3……..

*註:r 代表烤箱#1之總故障數,r1、r2、r3……分別代表烤箱#1

之第一個故障時間、第二個故障時間、第三個故障時間…。

當r=0時,M=2.3026 ,r=1時,M=3.8897,……如下表GEM TABLE 在90﹪信賴水準

所以70℃90﹪信賴水準MTTF =T/r,r以GEM TABLE之M值代入求得。?L10 計算方式:

將各溫度MTTF值除以2.445係數即得之。

?λ(故障率):單位時間內可能故障的機率

λ= 1除以各溫度MTTF值

?以上加速壽命試驗方式依美軍MIL-HDBK-781規範。

滚动轴承的寿命计算

滚动轴承的寿命计算 1 基本额定寿命和基本额定动载荷 轴承中任一元件出现疲劳点蚀前的总转数或一定转速下工作的小时数称为轴承寿命。大量实验证明,在一批轴承中结构尺寸、材料及热处理、加工方法、使用条件完全相同的轴承寿命是相当离散的(图1是一组20套轴承寿命实验的结果),最长寿命是最短寿命的数十倍。对一具体轴承很难确切预知其寿命,但对一批轴承用数理统计方法可以求出其寿命概率分布规律。轴承的寿命不能以一批中最长或最短的寿命做基准,标准中规定对于一般使用的机器,以90%的轴承不发生破坏的寿命作为基准。 (1)基本额定寿命 一批相同的轴承中90%的轴承在疲劳点蚀前能够达到或 超过的总转数r L (610转为单位)或在一定转速下工作的小时数()h h L 。 图1 轴承寿命试验结果 可靠度要求超过90%,或改变轴承材料性能和运转条件时,可以对基本额定寿命进行修正。 (2)基本额定动载荷 滚动轴承标准中规定,基本额定寿命为一百万转 时,轴承所能承受的载荷称为基本额定动载荷,用字母C 表示,即在基本额定动载荷作用下,轴承可以工作一百万转而不发生点蚀失效的概率为90%。基本额定动载荷是衡量轴承抵抗点蚀能力的一个表征值,其值越大,轴承抗疲劳点蚀能力越强。基本额定动载荷又有径向基本额定动载荷(r C )和轴向基本额定

动载荷(a C )之分。径向基本动载荷对向心轴承(角接触轴承除外)是指径向载荷,对角接触轴承指轴承套圈间产生相对径向位移的载荷的径向分量。对推力轴承指中心轴向载荷。 轴承的基本额定动载荷的大小与轴承的类型、结构、尺寸大小及材料等有关,可以从手册或轴承产品样本中直接查出数值。 2 当量动载荷 轴承的基本额定动载荷C (r C 和a C )是在一定条件下确定的。对同时承受径向载荷和轴向载荷作用的轴承进行寿命计算时,需要把实际载荷折算为与基本额定动载荷条件相一致的一种假想载荷,此假想载荷称为当量动载荷,用字母P 表示。 当量动载荷P 的计算方法如下: 同时承受径向载荷r F 和轴向载荷a F 的轴承 ()P r a P f XF YF =+ (1) 受纯径向载荷r F 的轴承(如N 、NA 类轴承) P r P f F = (2) 受纯轴向载荷a F 的轴承(如5类、8类轴承) P a P f F = (3) 式中:X ——径向动载荷系数,查表1; Y ——轴向动载荷系数,查表1; P f 冲击载荷系数,见表2。 载荷系数P f 是考虑了机械工作时轴承上的载荷由于机器的惯性、零件的误差、轴或轴承座变形而产生的附加力和冲击力,考虑这些影响因素,对理论当量动载荷加以修正。 表中e 是判断系数。0/a r F C 为相对轴向载荷,它反映轴向载荷的相对大小,其中0r C 是轴承的径向基本额定载荷。表中未列出0/a r F C 的中间值,可按线性插值法求出相对应的e 、Y 值。

轴承寿命计算

一、某减速器输入轴由一对6206型深沟球轴承支承,轴的转速n =960 r/min ,轴上齿轮受力情况如下:切向力3000t F =N ,径向力1200r F =N , 轴向力650a F =N ,在进行结构设计时设定轴向力由右端轴承2承受, 齿轮分度圆直径d =40 mm 。齿轮中点至两支点距离为 50 mm ,载荷平稳,常温工作。(已知:C = 19.5kN ;e = 0.26;F a / F r ≤ e 时,X = 1,Y = 0;F a / F r >e 时,X = 0.56 ,Y = 1.71;计算中取f d = 1.1,f t = 1.0)试确定:(1) 该轴承内径为多少。(2) 若要求轴承寿命不低于9000小时,试校核是否满足使用要求? 解:1该深沟球轴承内径为6×5=30mm 。(1分) 2. 两轴承所受径向载荷(4分) 1) 轴垂直面支点反力.由力矩平衡条件

F rV1=(F r ×50-F a ×20)/100=470N F rV2=(F r ×50+F a ×20)/100= 730N (1分) 2) 轴水平面支点反力.由力矩平衡条件 F rH1= F rH2 =F t /2=1500N (1分) 3)两轴承所受径向载荷 11572r F ==N (1分) 21668r F ==N (1分) 2.计算当量动载荷(4分) (1)轴承所受轴向载荷为0。 1 1 00.26a r F e F =<=故X = 1,Y = 0 111572r P F ==N (2分) (2)轴承所受轴向载荷为F a2= 650N 22650 0.390.261668 a r F e F ==>= 故X = 0.56,Y =1.71 N =?+?=+=6.204565071.1166856.0222A R YF XF P (2分) 3. 寿命计算(3分) P 2>P 1,按P 2进行寿命计算 3 1021666716667 1.019500()()11299960 1.12045.6 T h d f C L n f P ε?= ==?小时>9000小时(2分) 寿命高于9000h,故满足寿命要求.(1分)

滚动轴承地寿命计算

滚动轴承的寿命计算 一、基本额定寿命和基本额定动载荷 1、基本额定寿命L10 轴承寿命:单个滚动轴承中任一元件出现疲劳点蚀前运转的总转数或在一定转速下的工作小时数称轴承寿命。由于材料、加工精度、热处理与装配质量不可能相同,同一批轴承在同样的工作条件下,各个轴承的寿命有很大的离散性,所以,用数理统计的办法来处理。 基本额定寿命L10——同一批轴承在相同工作条件下工作,其中90%的轴承在产生疲劳点蚀前所能运转的总转数(以106为单位)或一定转速下的工作时数。(失效概率10%)。 2、基本额定动载荷C 轴承的基本额定寿命L10=1(106转)时,轴承所能承受的载荷称基本额定动载荷C。在基本额定动载荷作用下,轴承可以转106转而不发生点蚀失效的可靠度为90%。 基本额定动载荷C (1)向心轴承的C是纯径向载荷; (2)推力轴承的C是纯轴向载荷; (3)角接触球轴承和圆锥滚子轴承的C是指引起套圈间产生相对径向位移时载荷的径向分量。 二、滚动轴承的当量动载荷P 定义:将实际载荷转换为作用效果相当并与确定基本额定动载荷的载荷条件相一致的假想载荷,该假想载荷称为当量动载荷P,在当量动载荷P作用下的轴承寿命与实际联合载荷作用下的轴承寿命相同。 1.对只能承受径向载荷R的轴承(N、滚针轴承)P=F r 2.对只能承受轴向载荷A的轴承(推力球(5)和推力滚子(8))P= F a 3.同时受径向载荷R和轴向载荷A的轴承P=X F r+Y F a X——径向载荷系数,Y——轴向载荷系数,X、Y——见下表。 径向动载荷系数X和轴向动载荷系数

表12-3 考虑冲击、振动等动载荷的影响,使轴承寿命降低,引入载荷系数fp—见下表。载荷系数fp 表12-4

电机的寿命和可靠性

电机的寿命和可靠性标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

电机的寿命和可靠性 绝缘——影响寿命和可靠性的关键因素 在国民经济和社会生活领域里,电机已经得到了越来越广泛的应用,电机的寿命及使用可靠性也越来越被人们所关注。在正常使用的条件下,电机的寿命一般定义为10——15年。传统的观念认为,影响电机寿命的主要因素是绝缘的老化,因此绝缘结构的确定、绝缘材料的选用,就成为电机设计制造的首要任务之一。 绝缘系统的选择主要取决于电机的电压等级和耐温要求,而同一等级使用哪一种绝缘材料,则要综合考虑其耐温要求,机械性能,电气性能及使用工艺性能等因素后最终选定。 电机对地绝缘(亦称主绝缘)的等级决定了电机的绝缘等级,一台电机上可以按不同部位的发热状况和使用要求,来选用不同等级的绝缘材料,而不必规定一台电机上所有的部位必须选用同一等级的绝缘材料。 微电机常用电气绝缘材料的耐热等级和允许的极限使用温度见下表: 表1

电机各导电部件由于电位不同,因此须用绝缘材料将其分隔开。按使用部位及功能的不同,常分为以下几种: 1、对地绝缘:指电机带电部位与接地部位(如铁芯、机壳、轴等)之间隔开所用的绝缘,为环氧粉沫涂敷,DMD纤维纸,聚酯薄膜纸,尼龙一体成型槽绝缘等。 2、匝间绝缘:指一个多匝绕成的线圈,电位不同相邻匝间的绝缘,微电机中一般是漆包线本身的外包漆作为匝间绝缘。 3、层间绝缘:指电枢线圈在槽内或端部上下层之间分隔开所用的绝缘,微电机中常用漆包线本身的外包漆作为层间绝缘。 4、相间绝缘:指放置于同一部位的电位不等的几种线圈之间隔离所用的绝缘,如交流电机不同相(A、B、C相)之间,不同激磁方式直流电机的激磁绕组(串激、复激、他激)及不同转速档(高速、中速、低速)各激磁线圈之间所用的绝缘。

电动机试验报告

设备名称;#3炉一次风机试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#3炉二次风机试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 四、交流耐压: 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#3炉引风机A试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#3炉引风机B试验性质预试试验日期:2009 年03月11 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:MΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、张剑荣、朱文凡、任国东

设备名称;#1机电动给水泵A试验性质预试试验日期:2009 年04月14 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:GΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、任国东

设备名称;#1机电动给水泵B试验性质预试试验日期:2009 年04月14 日铭牌:气温:12 ℃ 一、直流电阻测州量:(单位:mΩ) 二、绝缘电阻及吸收比测量:(单位:GΩ) 结论:合格 审批:审核:整理:刘霞 试验人员:刘霞、李爱云、任国东

电机的寿命和可靠性

精心整理 电机的寿命和可靠性 绝缘——影响寿命和可靠性的关键因素 在国民经济和社会生活领域里,电机已经得到了越来越广泛的应用,电机的寿

电机各导电部件由于电位不同,因此须用绝缘材料将其分隔开。按使用部位及功能的不同,常分为以下几种: 1、对地绝缘:指电机带电部位与接地部位(如铁芯、机壳、轴等)之间隔开所 2 3 4 场合,负荷大小,工作环境条件,工作制长短等,通过电路、磁路计算选取合理的发热和磁路参数,决定电机各主要零部件的关键尺寸,并通过这些主要条件进行机械强度计算,最终绘制电机主要零部件的工作图及总装图,设计时必须同时考虑到制作时良好的工艺性及制造成本的经济合理性。 下面列出一些直流微电机中常用的电磁计算公式及应控制的电磁设计参数。

1、 P N =0.1047n N T N 其中:P N ——额定功率(瓦) T N ——额定转矩(牛·米) n N ——额定转速(转/分) 2、N n N P aE N N ???=Φ81060 3、4 5、P l =U N I N 其中:P l ——电机输入功率(瓦) 6、l P P ∑-=1η 其中:∑P ——电机总损耗(瓦)

电机的主要发热和磁路参数有定子电流密度,转子电流密度,电枢线负载,电枢发热因素,每极磁通量,气隙磁通密度,电枢齿部磁通密度等。 7、321016.0-?=a a i N l D AB T δα 其中 i α——电机计算极弧系数 δB ——气隙磁通密度(高斯) l D 1、换向器精车:换向器是一个高速运转的部件,其工作面与电刷滑动接触并传送电能,因此要求其工作面必须是一个稳定的圆柱体,径向跳动小于等于0.01,不得有凹片和凸片,表面光洁度要达到Ra0.8以下(相当于原87~??) 换向器精车必须使用高精度的车床,床身和传动机构牢固、可靠、且应避免默默振动的影响。切屑量、切屑速度和走刀量要选取合理。金刚石车刀由于硬度高、耐

MTBF寿命计算公式

寿命计算公式 MTBF (平均间隔失效时间)预估 概述 MTBF之计算系依据军用手册MIL-HDBK-217F “电子设备之可靠性预估”来进行,此部份涵盖了电子 零件实际的应力关系、失效率。MIL-HDBK-217的基本版本将保持不变,只有失效率的资料会更新。 在评估过程之前,应确定各元器件的相关特性(如基本失效率、质量等级,环境等级等等)。 定义 “MTBF”的解释为“平均间隔失效时间”而MTBF是由MIL-HDBK-217E.F 计算,以25 C环境温度为参考温度。 电解电容寿命预测 Rubycon品牌的电解电容的寿命计算公式 L X= Lr x2【(To-Tx)/10] x2(A Ts/Ao- A Tj/A) L X:预测寿命(Hr ), Lr:制造商承诺的在最高工作温度(To)及额定纹波电流(Io)下的寿命, To:最高工作温度一105C或85C, Tx:实际外壳温度(°C), △Ts:额定纹波电流(Io)下的电解电容中心温升(C), △Tj:实际纹波电流(lx)下的电解电容中心温升(C), A: A= 10 —0.25 XA Tj,(0

期望寿命的概念及计算方法

期望寿命的概念及计算方法 一、期望寿命的概念及相关 期望寿命(life expectancy)又称平均预期寿命,或预期寿命。X岁时平均预期寿命表示X岁尚存者预期平均尚能存活的年数。刚满X岁者的平均预期寿命受X岁以后各年龄组死亡率的综合影响。出生时的期望寿命简称平均寿命,它是各年龄死亡率的综合,综合反映了居民的健康状况,是反映人群健康状况的综合指标,但是,它只综合了有关死亡的信息,未包含疾病和伤残的情况,更未反映疾病伤残结果的严重性。 期望寿命是评价居民健康状况、社会经济发展和人群生存质量的重要指标,它不受人口年龄构成的影响,因此各地区平均期望寿命可以直接比较。对一个地区人口学特征、期望寿命及影响因素进行研究,可为制定科学、切合实际的卫生工作计划提供科学依据。 而另一个概念?健康期望寿命?(active life expectancy,ALE),它是指人们能维持良好日常生活活动(ADL)功能的年限,健康期望寿命与普通的期望寿命的差别是:普通的期望寿命是以死亡为终点,而健康期望寿命以丧失日常生活能力为终点,它不仅能客观反映人群生存质量,亦有助于卫生政策与卫生规划的制定。因此2000年世界卫生组织推荐用?健康期望寿命?来反映居民健康综合情

况。 二、期望寿命的计算 我区期望寿命是由统计分析软件DeathReg 2005计算而来,原理是编制我区居民简略寿命表。 寿命表又称为生命表(life table)是根据特定人群的年龄组死亡率编制出来的一种统计表。寿命表有两种主要形式,队列寿命表和现时寿命表。应用较广的是现时寿命表。它反映一定时期某地区实际人口的死亡经历.是从一个断面来看当年一定时间段内人口的死亡和生存经历,它完全取决于制表这一年的人口年龄别死亡率。现时寿命表计算所得的预期寿命是假定一批婴儿在其一生中都遵从当年资料所呈现的年龄别死亡率而死亡、生存的平均预期寿命,即该预期寿命是该人群的平均水平.并不是每一个人的实际存活年龄。现时寿命表的最大优点是不同地城、不同时期的寿命表指标可以直接比较,不受原来的人口性别、年龄别构成的影响。目前人们常说的预期寿命,基本上就是指现时寿命表的平均预期寿命。 队列和现时寿命表都有完全和简略寿命表之分。完全寿命是以0岁为起点,逐年计算各种指标,直至生命的极限,其年龄的区间是[x,x+1)。而简略寿命表的年龄区间则是(x,x+n),n除第一年外均大于1年.典型的年龄区间是0一,1一,5一.10一,…,85一,即每5岁一个间隔,直至最后

MTBF寿命计算公式

寿命计算公式MTBF(平均间隔失效时间)预估 概述 MTBF之计算系依据军用手册MIL-HDBK-217F“电子设备之可靠性预估”来 进行,此部份涵盖了电子零件实际的应力关系、失效率。MIL-HDBK-217的 基本版本将保持不变,只有失效率的资料会更新。在评估过程之前,应确 定各元器件的相关特性(如基本失效率、质量等级,环境等级等等)。 定义 “MTBF”的解释为“平均间隔失效时间”而MTBF是由MIL-HDBK-217E.F 计算,以25℃环境温度为参考温度。 电解电容寿命预测 Rubycon品牌的电解电容的寿命计算公式 L X=Lr×2[(To-Tx)/10]×2(ΔTs/Ao-ΔTj/A), L X:预测寿命(Hr), Lr:制造商承诺的在最高工作温度(To)及额定纹波电流(Io)下的寿命, To:最高工作温度—105℃或85℃, Tx:实际外壳温度(℃), ΔTs:额定纹波电流(Io)下的电解电容中心温升(℃), ΔTj:实际纹波电流(Ix)下的电解电容中心温升(℃), A:A=10-0.25×ΔTj,(0≤ΔTj≤20) Ao:Ao=10-0.25×ΔTs, 其中 ΔTs=α×ΔTco=α×Io2×R/(β×S), ΔTj=α×ΔTcx=α×Ix2×R/(β×S), ΔTco:额定纹波电流(Io)下的电解电容外壳温升(℃), ΔTcx:实际纹波电流(Ix)下的电解电容外壳温升(℃), α:电解电容中心温升与外壳温升的比例系数, Ix:纹波电流的实际测量值(Arms), Io:额定的纹波电流值(Arms), R:电解电容的等效串连阻抗(Ω), S:电解电容的表面积(cm2),S=πD×(D+4L)/4,

人的平均寿命计算方法 平均寿命计算公式一览

人的平均寿命计算方法平均寿命计算公式一览 如何计算人的平均寿命 我们经常看到报纸上说中国人的平均寿命是多少多少。前不久中国科学院院士钟南山严正指出我国人均寿命远没达到75岁,原因是计算的方法不对。但他没有告诉我们正确的计算方法,以及他计算出的结果。 所谓人均75岁,即平均每个人的预期寿命为75岁。我们以75岁为基数,凡是寿命低于75岁的,其岁数差额总和必须与寿命大于75岁人的岁数差额总和相等。假如寿命低于75岁的人数是总人口的X1,他们平均寿命与75岁的差额为Y1,而寿命大于75的人数为总人口的X2,他们的平均寿命与75岁的差额为Y2,则X1Y1=X2Y2。一般来说,X1与X2的和就是总人口的数量。当X1=X2=50%时,则Y2=Y1。设Y1=10岁,则寿命大于75岁的人平均寿命与75岁的差额Y2也应该为10岁,就是说现在应该看到大约有一半的人的寿命大于75岁,且平均寿命在85岁左右,超过85岁,乃到100多岁的人应该比比皆是。显然,这与事实相差太远。 那么如何估算某个瞬间人的平均寿命,才能尽可能与事实相符呢?这的确是个很困难的事。因为不断有人出生,有人死亡,活着的还能活多久?都难以估算。 下面,我试着给出几种计算方法,供大家参考。 一、对固定人群平均寿命的计算 即将这固定人群的所有人的寿命总和除以这批人总人数,就得这批人的平均寿命。 例:某张姓家族(自一对夫妻开始繁衍),自1908年到2007年,100年间全部死亡人数(包括嫁出的张姓姑娘,不包括娶进张家的外姓媳妇)为100人,这些亡人的寿命总和为5873岁,则可得出该张姓家族100年来的家族平均寿命: S=5873÷100=58.73(岁) 其中S为平均寿命,下同。 诸位读者也不妨用此法对自己的家族计算一下本家族的平均寿命,时间跨度越大,计算出

轴承寿命

§12—3-3 滚动轴承的寿命计算 一、基本额定寿命和基本额定动载荷 1、基本额定寿命L10 轴承寿命:单个滚动轴承中任一元件出现疲劳点蚀前运转的总转数或在一定转速下的工作小时数称轴承寿命 ....。由于材料、加工精度、热处理与装配质量不可能相同,同一批轴承在同样的工作条件下,各个轴承的寿命有很大的离散性,所以,用数理统计的办法来处理。 基本额定寿命L10——同一批轴承在相同工作条件下工作,其中90%的轴承在产生疲劳点蚀前所能运转的总转数(以106为单位)或一定转速下的工作时数。(失效概率10%)。 2、基本额定动载荷C 轴承的基本额定寿命L10=1(106转)时,轴承所能承受的载荷称基本额定动载荷C。在基本额定动载荷作用下,轴承可以转106转而不发生点蚀失效的可靠度为90%。 基本额定动载荷C (1)向心轴承的C是纯径向载荷; (2)推力轴承的C是纯轴向载荷; (3)角接触球轴承和圆锥滚子轴承的C是指引起套圈间产生相对径向位移时载荷的径向分量。 二、滚动轴承的当量动载荷P 定义:将实际载荷转换为作用效果相当并与确定基本额定动载荷的载荷条件相一致 的假想载荷,该假想载荷称为当量动载荷 .....P,在当量动载荷P作用下的轴承寿命与实际联合载荷作用下的轴承寿命相同。 1.对只能承受径向载荷R的轴承(N、滚针轴承)P=F r 2.对只能承受轴向载荷A的轴承(推力球(5)和推力滚子(8))P= F a 3.同时受径向载荷R和轴向载荷A的轴承P=X F r +Y F a X——径向载荷系数,Y——轴向载荷系数,X、Y——见下表。 径向动载荷系数X和轴向动载荷系数

表12-3 考虑冲击、振动等动载荷的影响,使轴承寿命降低,引入载荷系数fp—见下表。载荷系数fp 表12-4

寿命计算

Nmax=3600rpm, n=223rpm, C=57.21kn, P=8.21KN, T=80℃, 润滑脂寿命计算: 25.0062.03600/223max <==N n ,取n/Nmax=0.25 1. MOL YKOTE G-4700 温度范围在-40~177℃,属合成油类润滑脂,选用油脂润滑脂公式计算 ) (2818445.480*)25.0*006.0018.0(25.0*4.112.6)max 006.0018.0(max 4.112.6log h t T N n N n t ==---=---= 2. SKF LGEM2 温度范围在-20~120℃,属锂基润滑脂,选用通用润滑脂公式计算 ) (1349013.480*)25.0*012.0025.0(25.0*6.254.6)max 012.0025.0(max 6.254.6log h t T N n N n t ==---=---= 轴承寿命计算 3610)(6010P C n L = =(1000000/(60*223))*(57.21/8.21)^3 =25289 (h)

滚动轴承的基本额定寿命系指一批轴承90%的轴承在疲劳剥落前能够达到或超过的运转的总转数(以106转计),或在一定转速下的工作小时数。 基本额定寿命的公式为 ε)/(10P C L = 式中 L 10——可靠性为90%的滚动轴承基本额定寿命(106r ); C ——滚动轴承基本额定动负荷(N ); P ——滚动轴承当量动负荷(N ); ε——寿命指数,对球轴承ε=3,对滚子轴承ε=10/3。 在实际计算中,一般用工作小时数表示轴承的寿命,这时式(1)可改写成 ε)(6010610P C n L = 式中L 10——以工作小时数表示的基本额定寿命(h ) n ——轴承工作转速(r/min )。 修正的额定疲劳寿命公式: Ln 10=a1*a2*a3*L 10 a1: 可靠系数。 a2:轴承材料系数。 a3:使用条件系数。

电机温升测试

电机温升试验 电机中绝缘材料的寿命与运行温度有密切的关系,为保证电机安全、合理的使用,需要监视与测量电机绕组、铁心等其他部分的温度。按国家标准规定,不通绝缘等级的电机绕组有不同的允许温升,如下表所示 若超过规定值,如对B级绝缘的电机,温升每增加10度,电机的寿命将降低一半。因此电机的温升试验,准确的测取个部件的温度,对改进电机的设计和制造工艺,提高电机的质量是非常重要的对电机绕组和其他各部分的温度测量,目前虽已采用不少先进技术,仍可归纳为电阻法、温度计法、埋置检温计法三种基本方法。 一、电阻法 在一定的温度范围内,电机绕组的电阻值将随着温度的上升而相应的增加,而且其阻值与温度之间存在着一定的函数关系。根据这一原理,可以通过测定电机绕组的电阻来确定其温度,故称电阻测量法。 当绕组温度在-50~150度范围时,其温升有下式确定

Δθ=(R f-R0)(k+θ0)/R0+θ0-θf 式中R0、θ0分别为绕组的实际冷态电阻和环境温度;R f、θf分别为绕组热态式电阻和环境温度;k为常数,对铜绕组为235,对铝绕组225 如果不能采用带电测量装置,可采用较先进的快捷、准确、数字显示的各种毫欧表或微欧计等直流电阻测量仪。其基本工作原理是采用高准确度、高稳定度的恒流电源所产生的直流电流通到被测电阻上,则电阻两端的电压降将严格的按照电阻值变化 二、温度计法 对电机中不能采用电阻法测量的部位,如定子铁心,轴承及冷却介质等,可采用温度计法来测量。 温度计法是用温度计贴附在可接触的表面来测量温度,所测得的温度是被测点的表面温度。为了减小误差,从被测点到温度计的热传导尽可能的良好,将温度计球面部分用绝热材料覆盖,以免周围冷却介质的影响。温度计除包括水银、酒精等膨胀式温度计外,也包括半导体温度计及非埋置的热电耦或电阻温度计。在电机中存在交变磁场的部分,不可采用水银温度计,因为交变磁场在水银中产生涡流会发热,以致影响测量的准确性。 三、埋置检温计法 埋置检温计法是讲电阻检温计、热电耦或半导体热敏元件埋植于电机内部不能触及的部位,如定子绕组的槽部和铁心内等,经连接导线引到电机外的二次仪表,从而测定温度值。在测量时应控制测量

人类寿命计算公式_图文.doc

人类寿命计算公式 彩响人类寿命长短的因素有很多,但这并不妨碍人们预测自己的寿命。美国坦普尔大学神经学系教授黛安娜?伍得拉夫I■専士在对长寿者进行数十年跟踪调查后,推出了一套氏寿测验题,这套测试就像一个计算器,在测验的同吋,也是对于健康生活方式的拷问,想长寿的你,赶紧准备好笔和纸算算吧。 首先记卜'你的基础寿命,如卜',如果你现在年龄在20-29岁Z间,男性的基础寿命为73岁, 女性为79岁。

+父母亲年龄…? ?母亲活到80岁, +4岁;: ?父亲活到80岁,+2岁。! +亲属疾病- 有在50岁前死于心脏病的/每 有一人~3岁; ?有在60岁舸死于糖尿病 或消化性溃疡的, 一3岁; 有在60岁前死于胃癌, -2岁。 基础寿命 +: ?祖父祖母活到80岁以; 祖父母年龄…*.十霊宙L人| 1 +0.5 岁。[ ?祖父母"父母.兄弟、姐妹中 ?有在60岁前死于该病的,

智力…体重. ?有女性近亲在60岁前死于乳 腺Si -2 岁。 ?有近亲在60岁前死于自杀或其他疾病, -1岁。 对女性来说, ; ?不能生育、不打算要孩子, [ 或在40岁后仍没有生育,[ 『?如果你的智力超过一[ 1 般人,+2岁。j ?你的一生中,有任何时候 BMI 指数(体重kg/身高肿)大于24.9,或体重比18岁时重10 斤以上,一2岁。

- 母亲的生育年龄1 / ............................ . 一巴」毛冃千S | ?母亲在生育你时超过35 . 计岁或 小于18岁,-1岁; I ]?如果你是家中的长子或 i 长女,+1岁。 + 饮食…:i?喜欢吃换菜、水果及天然] :i食物,不爱吃高脂肪、高i 糖 食物,而且吃饱后就不I !再吃,+1岁。j ?一天抽烟超过2 a (40 支h ?一天抽1~2包,-7岁;| ?一天抽烟不超过20支, -2 岁。

电机的寿命和可靠性

电机的寿命和可靠性 绝缘——影响寿命和可靠性的关键因素 在国民经济和社会生活领域里,电机已经得到了越来越广泛的应用,电机的寿命及使用可靠性也越来越被人们所关注。在正常使用的条件下,电机的寿命一般定义为10——15年。传统的观念认为,影响电机寿命的主要因素是绝缘的老化,因此绝缘结构的确定、绝缘材料的选用,就成为电机设计制造的首要任务之一。 绝缘系统的选择主要取决于电机的电压等级和耐温要求,而同一等级使用哪一种绝缘材料,则要综合考虑其耐温要求,机械性能,电气性能及使用工艺性能等因素后最终选定。 电机对地绝缘(亦称主绝缘)的等级决定了电机的绝缘等级,一台电机上可以按不同部位的发热状况和使用要求,来选用不同等级的绝缘材料,而不必规定一台电机上所有的部位必须选用同一等级的绝缘材料。 微电机常用电气绝缘材料的耐热等级和允许的极限使用温度见下表: 表1

电机各导电部件由于电位不同,因此须用绝缘材料将其分隔开。按使用部位及功能的不同,常分为以下几种: 1、对地绝缘:指电机带电部位与接地部位(如铁芯、机壳、轴等)之间隔开所用的绝缘,为环氧粉沫涂敷,DMD纤维纸,聚酯薄膜纸,尼龙一体成型槽绝缘等。 2、匝间绝缘:指一个多匝绕成的线圈,电位不同相邻匝间的绝缘,微电机中一般是漆包线本身的外包漆作为匝间绝缘。 3、层间绝缘:指电枢线圈在槽内或端部上下层之间分隔开所用的绝缘,微电机中常用漆包线本身的外包漆作为层间绝缘。 4、相间绝缘:指放置于同一部位的电位不等的几种线圈之间隔离所用的绝缘,如交流电机不同相(A、B、C相)之间,不同激磁方式直流电机的激磁绕组(串激、复激、他激)及不同转速档(高速、中速、低速)各激磁线圈之间所用的绝缘。 二、合理设计——电机寿命和可靠性的先天保证 电机设计是产品质量链中的第一环节,如果设计不合理,甚至不

直流马达寿命测试规程

1 目的 1.1 直流马达寿命测试的目的就是通过直流马达在模拟工作条件下的正常寿 命,来判断其是否达到设计或改进的预期效果,以完成设计或改进之验 证和确认的目的。 2 范围 2.1 此标准仅适用于低伏直流马达。 2.2 本标准是依据马达的实际应用情况制定。 3 定义 3.1 额定电压:客家指定或设计指定的、可使马达正常工作的电压。一般是 指马达两端的电压。(单位:V或 mV) 3.2 额定电流:额定电压下的电流值或在最低的额定电压范围,在电器用品 上所注明之实际用电流。(单位:A 或 mA) 3.3 额定转速:客家指定或设计指定的、马达工作在额定电压和额定负载下 的转速。(单位:rpm) 3.4 额定负载:客家指定或设计指定的、作为马达承受的负荷(单位:g-cm或 N –cm)。负载力矩=砝码重量(g或N)×力矩轮半径即力臂(cm)。 3.5 马达转向:从输出端看,顺时针方向旋转为CW,逆时针方向旋转为 CCW。 4 仪器清单 4.1 电源供应器(MEILI 牌 MCH-305DB )给马达提供工作电压(精确度: 0.01V)。 4.2 微电机寿命测试仪(欧捷电子)控制马达运转时间和停止时间及转动方向 (精确度:1S)。 4.3 力矩轮和吊线砝码作为马达的模拟负载(精确度:0.01g-cm)。 4.4 专用的夹具。 4.5 万用表(EZ牌DM-341T和VICTOR牌VC-9806+)使测量数据更为准 确(精确度:0.01V&0.01A)。 4.6 示波器(OSCILLOSCOPE牌V-212)使马达的真实性能反映的更为准 确。

5 准备工作 5.1 环境条件 除非有特殊注明之外,所有测试要在室温为15℃—35℃,相对湿 度在45%—75%的条件下进行. 5.2 夹具: 夹具一定要达到将马达固定的作用,避免在测试的过程中影响其 真实性能. 5.3 负载点: 根据性能测试实验的基本要求,测试的负载点要选性能曲线图中 最高效率的负载点 6 测试程序 6.1仔细阅读《马达测试工作单》,认真检查测试发起人所提供被测试之马 达是否与工作单一致,注意其它测试要求,并将《马达测试工作单》在 明显位置悬挂。 6.2挑选合适的负载(力矩轮,砝码) 6.1.1 力矩轮和砝码是提供标准负载的设备,为达到满足测试要 求的目的,一般情况下,砝码的选用请参照下列“表格一”中的 数据进行。 附表一

期望寿命的概念及计算方法

期望寿命的概念及计算 方法 -CAL-FENGHAI.-(YICAI)-Company One1

期望寿命的概念及计算方法 一、期望寿命的概念及相关 期望寿命(life expectancy?)又称平均预期寿命,或预期寿命。X岁时平均预期寿命表示X岁尚存者预期平均尚能存活的年数。刚满X岁者的平均预期寿命受X岁以后各年龄组死亡率的综合影响。出生时的期望寿命简称平均寿命,它是各年龄死亡率的综合,综合反映了居民的健康状况,是反映人群健康状况的综合指标,但是,它只综合了有关死亡的信息,未包含疾病和伤残的情况,更未反映疾病伤残结果的严重性。 期望寿命是评价居民健康状况、社会经济发展和人群生存质量的重要指标,它不受人口年龄构成的影响,因此各地区平均期望寿命可以直接比较。对一个地区人口学特征、期望寿命及影响因素进行研究,可为制定科学、切合实际的卫生工作计划提供科学依据。 而另一个概念“健康期望寿命”(active life expectancy,ALE),它是指人们能维持良好日常生活活动(ADL)功能的年限,健康期望寿命与普通的期望寿命的差别是:普通的期望寿命是以死亡为终点,而健康期望寿命以丧失日常生活能力为终点,它不仅能客观反映人群生存质量,亦有助于卫生政策与卫生规划的制定。因此2000年

世界卫生组织推荐用“健康期望寿命”来反映居民健康综合情况。 二、期望寿命的计算 我区期望寿命是由统计分析软件DeathReg 2005计算而来,原理是编制我区居民简略寿命表。 寿命表又称为生命表(life table)是根据特定人群的年龄组死亡率编制出来的一种统计表。寿命表有两种主要形式,队列寿命表和现时寿命表。应用较广的是现时寿命表。它反映一定时期某地区实际人口的死亡经历.是从一个断面来看当年一定时间段内人口的死亡和生存经历,它完全取决于制表这一年的人口年龄别死亡率。现时寿命表计算所得的预期寿命是假定一批婴儿在其一生中都遵从当年资料所呈现的年龄别死亡率而死亡、生存的平均预期寿命,即该预期寿命是该人群的平均水平.并不是每一个人的实际存活年龄。现时寿命表的最大优点是不同地城、不同时期的寿命表指标可以直接比较,不受原来的人口性别、年龄别构成的影响。目前人们常说的预期寿命,基本上就是指现时寿命表的平均预期寿命。 队列和现时寿命表都有完全和简略寿命表之分。完全寿命是以0岁为起点,逐年计算各种指标,直至生命的极限,其年龄的区间是[x,x+1)。而简略寿命表的年龄区间则是(x,x+n),n除第一年外均大于1年.典型的年龄区间是0

轴承寿命计算

轴承寿命计算 1、已知条件 根据“一、花键的强度校核”中花键简图和风扇机械参数知: 轴承内径d=50 转速n=2100 径向载荷F r=G风扇+ G轴套=50N 轴向载荷F a=352.6N 要求寿命L h=20000h 2、计算参考依据 《机械设计手册》单行本轴承成大先主编 ISBN 978- 7-122-07140-8 3、选轴承、计算 根据已知条件查《机械设计手册》p7-277 表7-2-66 选择6010轴承单列i=1 C r=22.0kN=22000N C or=16.2kN=16200 N Z=13 D w=9 极限转速=7000n/mim 查《机械设计手册》p7-274 表7-2-65 相对轴向载荷=F a/iZ D w2 即352.6/1×13×92=0.334 继续查表7-2-65 e=0.22 F a/F r=352.6/50≈7>e 继续查表7-2-65 X=0.56 Y=1.99 根据p7-274 径向当量动载荷和静载荷P r=XF r+Y F a P o r=0.6F r+0.5F a 则:P r=0.56×50+1.90×352.6=698.0N P o r=0.6×50+0.5×352.6=206.3N 根据p7-232 公式(7-2-1)C=f h f m f d P/f n f T<C r公式(7-2-6)C o=S o P o<C or 查表7-2-23 f h=3.42 查p7-232 f m=1.5查表7-2-24 f n=0.251 查表7-2-25 f d=1.5 查表7-2-26 f T=1.0 P= P r P o= P o r查表7-2-31 S o=1 则:C=3.42×1.5×1.5×698.0/0.251×1=21399 N<C r=22000N C o=1×206.3=206.3N<C or=16200 N ∴选择6010轴承能满足寿命20000h的要求。 1

产品寿命可靠性试验MTBF计算规范

产品寿命可靠性试验MTBF计算规范 一、目的: 明确元器件及产品在进行可靠性寿命试验时选用标准的试验条件、测试方法 二、范围: 适用于公司内所有的元器件在进行样品承认、产品开发设计成熟度/产品成熟度(DMT/PMT)验证期间的可靠性测试及风险评估、常规性ORT例行试验 三、职责: DQA部门为本文件之权责单位,责权主管负责本档之管制,协同开发、实验室进行试验,并确保供应商提交的元器件、开发设计产品满足本文件之条件并提供相关的报告。 四、内容: MTBF:平均无故障时间 英文全称:Mean Time Between Failure 定义:衡量一个产品(尤其是电器产品)的可靠性指标,单位为“小时”.它反映了产品的时间质量,是体现产品在规定时间内保持功能的一种能力.具体来说,是指相邻两次故障之间的平均工作时间,也称为平均故障间隔,它仅适用于可维修产品,同时也规定产品在总的使用阶段累计工作时间与故障次数的比值为MTBF

MTBF测试原理 1.加速寿命试验 (Accelerated Life Testing) 1.1执行寿命试验的目的在于评估产品在既定环境下之使用寿命. 1.2 常規试验耗時较长,且需投入大量的金钱,而产品可靠性资讯又不能及时获得并加以改善. 1.3 可在实验室时以加速寿命试验的方法,在可接受的试验时间里评估产品的使用寿命. 1.4 是在物理与时间基础上,加速产品的劣化肇因,以较短的时间试验来推定产品在正常使用状态的寿命或失效率.但基本条件是不能破坏原有设计特性. 1.5 一般情況下, 加速寿命试验考虑的三个要素是环境应力,试验样本数和试验时间. 1.6 一般电子和工控业的零件可靠性模式及加速模式几乎都可以从美軍规范或相关标准查得,也可自行试验分析,获得其数学经验公式. 1.7 如果溫度是产品唯一的加速因素,則可采用阿氏模型(Arrhenius Model),此模式最为常用. 1.8 引进溫度以外的应力,如湿度,电压,机械应力等,則为爱玲模型(Eyring Model),此种模式适用的产品包括电灯,液晶显示元件,电容器等. 1.9反乘冪法則(Inverse Power Law)适用于金属和非金属材料,如轴承和电子装备等.

轴承设计寿命计算公式(教学备用)

资料公式c 1 一、滚动轴承承载能力的一般说明 滚动轴承的承载能力与轴承类型和尺寸有关。相同外形尺寸下,滚子轴承的承载能力约为球轴承的 1.5~3倍。向心类轴承主要用于承受径向载荷,推力类轴承主要用于承受轴向载荷。角接触轴承同时承受径向载荷和轴向载荷的联合作用,其轴向承载能力的大小随接触角α的增大而增大。 二、滚动轴承的寿命计算 轴承的寿命与载荷间的关系可表示为下列公式: 或 式中: ──基本额定寿命(106转); ──基本额定寿命(小时h );C ──基本额定动载荷,由轴承类型、尺寸查表获得;P ─ ─当量动载荷(N ),根据所受径向力、轴向力合成计算; ──温度系数,由表1查得;n ──轴承工作转速(r/min ); ──寿 命指数(球轴承 ,滚子轴承 )。 三、温度系数f t 当滚动轴承工作温度高于120℃时,需引入温度系数(表1) 表1 温度系数 工作温度/℃ <120 125 150 175 200 225 250 300 f t 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.60

四、当量动载荷 当滚动轴承同时承受径向载荷和轴向载荷时,当量载荷的基本计算公式为 式中:P——当量动载荷,N;——径向载荷,N;——轴向载荷,N;X——径向动载荷系数;Y——轴向动载荷系数;——负荷系数 五、载荷系数f p 当轴承承受有冲击载荷时,当量动载荷计算时,引入载荷系数(表2) 表2 冲击载荷系数f p 载荷性质f p举例 无冲击或轻微冲击 1.0~1.2 电机、汽轮机、通风机、水泵等 中等冲击 1.2~1.8 车辆、机床、起重机、内燃机等 强大冲击 1.8~3.0 破碎机、轧钢机、振动筛等 六、动载荷系数X、Y 表3 深沟球轴承的系数X、Y 资料公式c 2

电容寿命计算公式

RIFA、Nichicon、Rubycon的电解电容计算公式 电解电容寿命计算是电容电路设计的最关键的一步,它直接考量电容的设计寿命,电容寿命主要受到温度的影响,所以在设计时候考虑到热源和风道,是提高电容寿命的有效方式,在设计时尽量让电容远离热源,通风好,有时利用强制风冷的方式,尽量让电容工作于低温情况下。关于电容的寿命计算步骤这里不详述,请参考“电解电容寿命设计步骤”一文,以下主要介绍rifa ,nichicon ,Rubycon 电容寿命得计算公式。 1、nichicon 的电解电容寿命计算公式 nichicon 的电解电容寿命计算公式分为两种:a 、大封装电解电容(large can type );b 、小封装(miniature type )的电容,以下针对两种电容分别列出其计算公式。 A、large can type 电容结算公式如下: 其中: Ln: 估算之寿命(在环境温度Tn 和总纹波In ) Lo: 在最大允许工作温度To 和最大允许工作纹波Im 条件下的额定寿命 To: 最大允许工作温度 Tn: 环境温度 to: 在最大允许工作温度To 和最大允许工作纹波电流Im 条件下内部温升量 Im :在最大允许工作温度To 条件下的最大允许工作纹波电流有效值(在标准频率条件下的正弦波) In :实际应用的纹波电流有效值 Δ tn: 在环境温度Tn 和纹波电流In 条件下致使的内部温升 K: 因纹波损耗引起温升的加速系数

(Tn 从实际应用环境获得,In 根据其规格书中的纹波系数将实际纹波有效值归一到标准频率上的有效值。其它参数可从规格书中得到) 以上公式给出的是一个基本寿命与环境温度函数、热点温度及纹波电流函数之积。其内部温升Δ tn 估算并非由电阻损耗计算方式,而是提供了一个参考点值和相应的比例转换公式。此公式关键点是归一到标准频率的等效电流有效值In 的求解。 B、miniature type 对小封装的电容有两种情况,对应不同情况有两种计算公式 (a)使用规格书的L 值 L: 在最大允许工作温度To 和额定DC 电压条件下的额定寿命 Bn: 因实际应用纹波损耗引起温升的加速系数; α:寿命常数。 其它参数与“ Large Can type ”相同。 2、rifa 电容的寿命计算公式 rifa 电容的寿命计算公式利用阿列纽斯理论来计算,其原意为温度每升高10 度,电解电容寿命降低一半,RIFA 电容中计算中不一定都是10 度,有些是12 度或别的,具体参考规格书。 其寿命计算公式如下:

相关主题