搜档网
当前位置:搜档网 › 2 遗传算法种群多样性的分析研究

2 遗传算法种群多样性的分析研究

2 遗传算法种群多样性的分析研究
2 遗传算法种群多样性的分析研究

遗传算法综述

遗传算法综述 摘要:遗传算法(genetic algorithms,GA)是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法,适用于处理传统搜索方法难以解决的复杂和非线性优化问题。遗传算法可广泛应用于组合优化、机器学习、自适应控制、设计和人工生命等领域,是21世纪有关智能计算中的重要技术之一。 本文通过对相关论文的查阅和整理,对遗传算法的研究现状和发展趋势进行了综述并谈论了一些自己的看法。 关键词:遗传算法研究现状发展趋势 引言:遗传算法是模拟遗传选择和自然淘汰的生物进化过程的计算模型,由美国Michigan大学的Holland教授于1969年提出,后经DeJong、Goldberg 等人归纳总结,形成一种新的全局优化搜索算法[1]。遗传算法以其简单通用、鲁棒性强、适于并行处理以及高效、实用等显著特点,在各个领域得到了广泛应用,取得了良好效果,并逐渐成为重要的智能算法之一。 1、遗传算法的基本原理 与传统搜索算法不同, 遗传算法从一组随机产生的初始解,称为群体, 开始搜索过程。群体中的每个个体是问题的一个解,称为染色体。这些染色体在后续迭代中不断进化, 称为遗传。遗传算法主要通过交叉、变异、选择运算实现。交叉或变异运算生成下一代染色体, 称为后代。染色体的好坏用适应度来衡量。根据适应度的大小从上一代和后代中选择

一定数量的个体, 作为下一代群体, 再继续进化, 这样经过若干代之后, 算法收敛于最好的染色体, 它很可能就是问题的最优解或次优解。“遗传算法中使用适应度这个概念来度量群体中的各个个体的在优化计算中有可能到达最优解的优良程度。度量个体适应度的函数称为适应度函数。适应度函数的定义一般与具体求解问题有关”[2]。 遗传算法包含两个数据转换操作,一个是从表现型到基因型的转换,将搜索空间的参数或解转换成遗传空间中的染色体或个体,这个过程称为编码(coding)。另一个是从基因型到表现型的转换,即将个体转化成搜索空间中的参数,这个过程称为译码(decode)。 图1展示了遗传算法的运行过程。 图1 遗传算法的运行过程示意图 2、遗传算法的研究现状 2.1 遗传算法研究方向[3] 在遗传算法的研究中,目前主要有三类研究方向: ⑴研究遗传算法本身的理论基础。 ⑵用遗传算法作为工具解决工程问题。主要是进行优化,关心的是能

遗传算法综述

3D S可以方便灵活地实现对动画帧中的节点、平面、边界、颜色和轨迹的控制,同时对于物体变形测试,轴心点设置以及段信息的获取和设置也能方便准确地进行。而keyscri p t语言的优点体现在于其精确的数值计算,它可以对大量的复杂无序的动作进行随机计算,节省了制作时间。利用keyscri p t编辑器还能方便地进行语法检查并能直接执行无语法错误的keyscri p t程序。3 内存管理方式 3D S使用了独特的Pharlap的虚拟内存管理技术(VMM 386),该技术使3D—Studi o能使用比物理内存RAM更大的空间。这种内存管理方式与W indow2 s T M的内存管理方式不同,因此一般不在W indow s T M中使用3D S,若要在W indow s T M中使用,则必须在W in2 dow s T M的system1in i中的[386Enh]段加入device= Pharlap1386,使W indow s T M可以使用Pharlap的内存管理方式。这种内存管理方式也有一些不足,如内存一旦被3D S使用将不被释放。 4 硬件环境 使用3D—Studi o410的最低配制要求是386(带协处理器)的主机,至少8兆的内存,20兆以上的硬盘空间,DO S313以上的操作系统。由于3D S中的许多图形渲染时都必须使用256色,且观看3D S自带的一些图片也必须在256色的模式下进行,所以需要SV GA或TV GA的显示器。输入系统除了键盘外还必须配有鼠标,也可选配数字化仪。由于3D S在进行图形渲染需要大容量的内存,同时还需要CPU进行大量的浮点运算,因此当CPU为Pen tium T M、内存为16兆以上,并使用高性能的显示卡时,3D S的动画制作功能才能得到完美体现。由于ln tel公司生产的CPU兼容的Cyrix、AM D等公司生产的CPU浮点运算能力较差,因此CPU首选还是ln tel公司的产品。外设还可选配数字化仪等设备,对于需要直接输出到磁带上,并使用电视进行播发的动画,则可选用专业用户级以上的逐帧录向设备。 总之,3D S是一个庞大的图形工作平台,学会使用它的各种命令,发挥软件的强大功能绘制出优秀的动画和图象,还需要有很多技巧。随着人们对3D S认识加深,以它为平台开发的动画产品必将更加丰富多彩。 参考文献 1 [美]S1D1E lli o t,P1L1M iller,G1G1Pyro s著1黄心渊等译《3D—Studi o技术精粹》1北京:清华大学出版社。 19951 2 黄心渊 左正兴编著1《3D—Studi o(310—410)技术与应用》1北京:清华大学出版社,19961 收稿日期:1996年11月18日 遗传算法综述 艾丽蓉 何华灿 (西北工业大学计算机系 西安710072) 摘 要 本文从计算智能与进化计算谈起,论述了遗传算法产生的思想及背景,遗传算法的应用与研究现状,以及遗传算法研究的基本内容与问题,最后对GA与传统搜索算法做一比较,并概述了GA在并行处理应用中的潜在优势。 关键词 计算智能 进化计算 遗传算法(GA) 0 序言 长久以来,人们一谈到人工智能就马上想到逻辑、规则、推理,而一谈到计算就联想到矩阵运算、解微分方程,似乎智能和计算是两股道上跑的车。人工智能在走过几十年的曲折道路之后,人们经过认真反思,不断探索新的研究途径,于是一个新的研究方向——计算智能应运而生。 研究思维模拟主要的道路有四条:基于心理学的符号处理方法,基于社会学层次型的智能体方法,基于生物进化的进化计算与自适应方法,以及基于生理学的人工神经网络方法。目前聚集在计算智能大旗下的主要是后两个学派的学者(加上从事模糊计算和混沌计算等方面的学者)。实际上,只要在计算机上,模拟人类思想,不管用什么方法,其本质的基础还是二进制数字计算,在当前符号处理主宰人工智能的情况下,更应强调遗传算法等以数字计算为基础的方法对推动人工智能发展有着特殊的作用。 计算技术的飞速发展使大规模的现实模拟成为可能,而针对社会和生物现象的模拟,对人类认识自身及其环境具有重大意义,进化是其中最为诱人的领域之一。人的智能是从哪里来的?归根结底是从生物进化中得来的,反映在遗传基因中,脑的结构变化也是通过基

基于Matlab的遗传算法研究研究背景及研究意义

基于Matlab的遗传算法研究研究背景及研究意义 1.1.1研究背景 伴随着工业化时代的到来,人们的生产生活有了更多更高的要求,很多工业过程的实际问题得不到解决,以及随后达尔文的适者生存,优胜劣汰的自然科学规律的提出,人们借助达尔文的发现,提出了遗传算法这样一种新的算法来解决很多工业过程的实际的问题。遗传算法英文全称是Genetic Algorithm,是在1975年的时候,由美国科学家J.Holland从生物界的进化规律之中发现并且提出来的,借助适者生存,优胜劣汰的自然科学规律运用到科学的训练方法之中,对于对象直接进行操作的一种算法。这种算法不用跟其他算法一样,需要对于模型进行求导和连续性的限制,遗传算法本身就可以借助概率化的求算工具进行全局寻优,并且可以自动的获取并且指导需要优化的搜索区域,如果搜索区域产生偏差,会自动的进行调整。因此,遗传算法本质上不需要跟其他算法一样,不必须有一种明确的规则进行指导进行。 并且可以说与传统的优化相比,在求取符合运行要求的全局最优解时,遗传算法作为一种搜索的方法,已经成为成熟的具有良好收敛性、极高鲁棒性和广泛适用性的优化方法,很好的解决了电力系统的多变量、非线性、不连续、多约束的优化控制问题。现在遗传算法的这些优良的性质被逐渐的开发出来,已经被运用的越来越广泛,不仅可以应用在化工过程的各种生产过程的求解之中,更是可以用在现在最火热的机器学习的领域之中,对于信号处理这一块还有自适应控制这一块的应用也得到了推广,就连比较冷门的人工生命等学科也可以说是有比较广的涉及,可以说遗传算法已经发展成为现当今时代有关智能计算中的一种不容忽视的算法技术。作为当今最火热的一种算法,有必要对于遗传算法进行一些更深入的了解。本文就是基于遗传算法的研究,并且将遗传算法运用在路径规划的问题上进行具体的研究。 1.1.2研究意义 遗传算法作为一种搜索的方法,已经成为成熟的具有良好收敛性、极高鲁棒性和广泛适用性的优化方法,很好的解决了电力系统的多变量、非线性、不连续、多约束的优化控制问题。由于遗传算法的优良性能的存在,因此,对于遗传算法

遗传算法

遗传算法发展前景概况 (华北电力大学电气与电子工程学院,北京102206) 摘要:遗传算法是一种基于生物进化自然选择和群体遗传机理的,适合于复杂系统优化的自适应概率优化技术,近年来,因为遗传算法求解复杂优化问题的巨大潜力和在工业工程领域的成功应用,这种算法受到了国内外学者的广泛关注,本文介绍了遗传算法研究现状和发展的前景,概述了它的理论和技术,并对遗传算法的发展情况发表了自己的看法。 关键词:遗传算法; 遗传算子;进化计算;编码 GENERAL GENETIC ALGORITHM DEVELOPMENT PROSPECT (North China Electric Power University Electrical And Electronic Engineering Institute,Beijing102206) ABSTRACT: Genetic algorithm is a kind of natural selection and based on biological evolution of genetic mechanism, group suitable for complex system optimization adaptive probability optimization technique, in recent years, because genetic algorithm for solving complex optimization problem in the huge potential and the successful application of industrial engineering, this algorithm was wide attention of scholars at home and abroad, this paper introduces the current research status and development of genetic algorithm, summarizes the prospect of its theory and technology of genetic algorithm and the development of published opinions of his own. KEY WORD: Genetic algorithm; Genetic operator; Evolutionary computation; coding 1.引言 现在,遗传算法正在迅速发展,遗传算法与其很强的解决问题能力和适合于复杂系统的自适应优化技术渗透到研究和工业工程领域,在电力系统,系统辨识,最优控制,模式识别等领域有了很广泛的应用,取得了很好的效果。 2.遗传算法基本思想 遗传算法是建立在自然选择和群体遗传学基础上的随机,迭代和进化,具有广泛适用性的搜索方法,所有的自然种类都是适应环境而生存,这一自然适用性是遗传算法的主要思想。 遗传算法是从代表问题可能潜在解集的一个种群开始的,而一个种群则经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体。染色体作为遗传物质的主要载体,其内部基因决定了个体的外部表现。因此,在一开始就要实现外部表现到内部基因的映射,即编码工作,通常采用二进制码。初始种群产生之后,按照适者生存和优胜劣汰的原则,逐代演化产生出越来越好的近似解。在每一代,根据问题域中个体的适应度大小选择个体,并借助自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集和种群,这种过程将导致种群像自然进化那样产生比前代更适应于环境的后代种群,末代种群中的最有个体经过解码,可以作为问题近似最优解。 遗传算法采纳了自然进化模型,如选择,交叉,变异等,计算开始时,种群随机初始化产生一定数目的N个个体,并计算每个个体的适应度函数,如果不满足优化准则,就开始新一代的计算。为了产生下一代,按照适应度选择个体父代进行基因重组二产生子代。所有的子代按一定的概率进行变异,子代取代父代构成新一代,然后重新计算子代的适应度。这一过程循环执行,直到满足优化准则为止。 3.遗传算法基本操作

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

GATBX遗传算法工具箱函数及实例讲解 基本原理: 遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期望的终止条件。 运算流程: Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概 率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。

Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 运用遗传算法工具箱: 运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS就是大家所看到的Matlab中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。 以GATBX为例,运用GATBX时,要将GATBX解压到Matlab下的toolbox文件夹里,同时,set path将GATBX文件夹加入到路径当中。 这块内容主要包括两方面工作:1、将模型用程序写出来(.M文件),即目标函数,若目标函数非负,即可直接将目标函数作为适应度函数。2、设置遗传算法的运行参数。包括:种群规模、变量个数、区域描述器、交叉概率、变异概率以及遗传运算的终止进化代数等等。

多种群遗传算法的函数优化算法

多种群遗传算法的函数优化算法 多种群遗传算法的函数优化算法2010年12月15日星期三21:30【注】原帖网址:、案例背景 针对遗传算法所存在的问题,一种多种群遗传算法结构模型(Multiple Population GA,简称MPGA)可以用来取代常规的标准计算模型(SGA)。 MPGA在SGA的基础上主要引入了以下几个概念: (1)突破SGA仅靠单个群体进行遗传进化的框架,引入多个种群同时进行优化搜索;不同的种群赋以不同的控制参数,实现不同的搜索目的。 (2)各个种群之间通过移民算子进行联系,实现多种群的协同进化;最优解的获取是多个种群协同进化的综合结果。 (3)通过人工选择算子保存各种群每个进化代中的最优个体,并作为判断算法收敛的依据。 2、案例目录: 第7章多种群遗传算法的函数优化算法 7.1理论基础 7.1.1遗传算法早熟问题 7.1.2多种群遗传算法概述 7.2案例背景 7.2.1问题描述 7.2.2解决思路及步骤 7.3 MATLAB程序实现

7.3.1移民算子 7.3.2人工选择算子 7.3.3目标函数 7.3.4标准遗传算法主函数 7.3.5多种群遗传算法主函数 7.3.6结果分析 7.4延伸阅读 7.5参考文献 3、主程序: %%多种群遗传算法 clear; clc close all NIND=40;%个体数目 NVAR=2;%变量的维数 PRECI=20;%变量的二进制位数 GGAP=0.9;%代沟 MP=10;%种群数目 FieldD=[rep(PRECI,[1,NVAR]);[-3,4.1;12.1,5.8];rep([1;0;1;1],[1,NVAR])];%译码矩阵 for i=1:MP Chrom{i}=crtbp(NIND,NVAR*PRECI);%创建初始种群

遗传算法概述

第1期作者简介:李红梅(1978-),女,湖南湘潭人,硕士,广东白云学院讲师,研究方向为演化计算。 1遗传算法的发展史 遗传算法(Genetic Algorithms )研究的历史比较短,20世纪 60年代末期到70年代初期,主要由美国家Michigan 大学的John Holland 与其同事、学生们研究形成了一个较完整的理论 和方法,遗传算法作为具有系统优化、适应和学习的高性能计算和建模方法的研究渐趋成熟。我国对于GA 的研究起步较晚,不过从20世纪90年代以来一直处于不断上升中。 2遗传算法的基本思想 遗传算法是从代表问题可能潜在解集的一个种群(popu- lation )开始的,而一个种群则由经过基因(gene )编码(coding ) 的一定数目的个体(individual )组成。每个个体实际上是染色体(chromosome )带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现是某种基因组合,它决定了个体的形状的外部表现。初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation )演化产生出越来越好的近似解。在每一代中,根据问题域中个体的适应度(fitness )、大小挑选(selection )个体,借助于自然遗传学的遗传算子(genetic operators )进行组合交叉(crossover )和变异(mutation ),产生出代 表新的解集的种群。这个过程将导致后生代种群比前代更加适应环境,末代种群中的最优个体经过解码(decoding ),可以作为问题近似最优解。 3遗传算法的一般流程 (1)随机产生一定数目的初始种群,每个个体表示为染色 体的基因编码; (2)计算每个个体的适应度,并判断是否符合优化准则。若符合,输出最佳个体及其代表的最优解并结束计算,否则转向第3步; (3)依据适应度选择再生个体,适应度高的个体被选中的概率高,适应度低的个体可能被淘汰; (4)执行交叉和变异操作,生成新的个体;(5)得到新一代的种群,返回到第2步。 4遗传算法的特点 传统的优化方法主要有三种:枚举法、启发式算法和搜索 算法: (1)枚举法 可行解集合内的所有可行解,以求出精确最 优解。对于连续函数,该方法要求先对其进行离散化处理,这样就可能因离散处理而永远达不到最优解。此外,当枚举空间比较大时,该方法的求解效率比较低,有时甚至在目前先进计算机工具上无法求解。 (2)启发式算法 寻求一种能产生可行解的启发式规则, 以找到一个最优解或近似最优解。该方法的求解效率比较高,但对每一个需求解的问题必须找出其特有的启发式规则。这个启发式规则一般无通用性,不适合于其它问题。 (3)搜索算法 寻求一种搜索算法,该算法在可行解集合 的一个子集内进行搜索操作,以找到问题的最优解或者近似最优解。该方法虽然保证不了一定能够得到问题的最优解,但若适当地利用一些启发知识,就可在近似解的质量和效率上达到一种较好的平衡。 遗传算法不同于传统的搜索和优化方法。主要区别在于: ①遗传算法直接处理问题参数的适当编码而不是处理参数集 本身。②遗传算法按并行方式搜索一个种群数目的点,而不是 遗传算法概述 李红梅 (广东白云学院计算机系,广东广州510450) 摘要:遗传算法是一种全局优化的随机搜索算法。它是解决复杂优化问题的有力工具。在工程设计、演化硬件电路 设计以及人工智能等方面应用前景广阔。系统地介绍了遗传算法的发展史、基本思想、特点、主要应用领域等相关方 面。 关键词:遗传算法;搜索;进化;最优解;种群中图分类号:TP312 文献标识码:A 文章编号:1672-7800(2009)01-0067-02 第8卷第1期2009年1月 Vol.8No.1Jan.2009 软件导刊 Software Guide

遗传算法的研究及应用

龙源期刊网 https://www.sodocs.net/doc/9a8787390.html, 遗传算法的研究及应用 作者:彭志勇邓世权 来源:《计算机光盘软件与应用》2013年第07期 摘要:遗传算法是一种典型的优化搜索算法,它的构造是使用人工的方式,并对生物遗传学和自然选择机理来进行模仿,是一种典型的数学仿真,而这种数学仿真是通过生物进化的过程来进行的,它是进化计算的一种非常重要的形式,它可以应用与生活中的很多领域。 关键词:遗传算法;函数优化;生产调度;自动控制 中图分类号:TP183文献标识码:A文章编号:1007-9599 (2013) 07-0000-02 遗传算法是一种典型的优化搜索算法,它的构造是使用人工的方式,并对生物遗传学和自然选择机理来进行模仿,是一种典型的数学仿真,而这种数学仿真是通过生物进化的过程来进行的,它是进化计算的一种非常重要的形式。与传统的数学模型进行比较,遗传算法有很多的不同的地方,因为它能够解决很多复杂的问题,而传统的数学模型却没办法做到。 1遗传算法的理论研究 1.1遗传算法的由来。美国密西根大学的霍兰德(Holland)将该算法应用于自然和人工系统的自适应行为的研究之中,并且在二十世纪七十年代中期,出版他的第一部著作《自然与人工系统中的适应》。随后,Holland与他的学生们将该算法进行了大力的推广,并把它应用到优化及机器学习等问题之中,而且正式定名为遗传算法。 1.2遗传算法的发展。遗传算法的兴起于20世纪70年代,而到了20世纪80年代的时 候,它正好属于一个发展中的过程,到了20世纪90年代时,它已经发展到了颠疯时刻。为一种实用性较强而又很有效率的优化技术,遗传算法的发展还是非常迅速,在国内外已经造成了非常大的影响力。 1.3遗传算法的基本思想。遗传算法是从一个种群(population)开始的,而这个种群代表问题可能潜在解集的,一个种群是由经过基因(gene)编码(coding)的一定数目的个体(individual)所组成。染色体是遗传物质的主要载体,它是由多个基因的集合,其内部表现是某种基因组合决定的。自从初始种群产生以后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解。在每一代,根据问题域中个体的适应度(fitness)大小来挑选(selection)个体,遗传算法是采纳了选择、交叉、变异、迁移、局域 与邻域等自然进化模型,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),从而产生出代表新的解集的种群。 遗传算法和传统搜索算法有很大的不同,它是通过一组随机产生的初始解开始搜索过程。染色体是类似于二进制串的一串符号,对于染色体的测量,我们通常是用适应度来它的好坏

遗传算法研究方向

遗传算法研究方向 遗传算法是多学科结合与渗透的产物,已经发展成一种自组织、自适应的综合技术,广泛应用在计算机科学、工程技术和社会科学等领域。其研究工作主要集中在以下几个方面 1.基础理论 包括进一步发展遗传算法的数学基础,从理论和试验研究它们的计算复杂性。在遗传算法中,群体规模和遗传算子的控制参数的选取非常困难,但它们又是必不可少的试验参数。在这方面,已有一些具有指导性的试验结果。遗传算法还有一个过早收敛的问题,怎样阻止过早收敛也是人们正在研究的问题之一。 2.分布并行遗传算法 遗传算法在操作上具有高度的并行性,许多研究人员都在探索在并行机和分布式系统上高效执行遗传算法的策略。对分布并行遗传算法的研究表明,只要通过保持多个群体和恰当控制群体间的相互作用来模拟并行执行过程,即使不使用并行计算机,也能提高算法的执行效率。 3.分类系统 分类系统属于基于遗传算法的机器学习中的一类,包括一个简单的基于串规则的并行生成子系统、规则评价子系统和遗传算法子系统。分类系统被人们越来越多地应用在科学、工程和经济领域中,是目前遗传算法研究中一个十分活跃的领域。

4.遗传神经网络 包括连接权、网络结构和学习规则的进化。遗传算法与神经网络 相结合,正成功地用于从时间序列分析来进行财政预算。在这些系统中,训练信号是模糊的,数据是有噪声的,一般很难正确给出每个执行 的定量评价。如果采用遗传算法来学习,就能克服这些困难,显著提高 系统性能。Muhlenbein分析了多层感知机网络的局限性,并猜想下一 代神经网络将是遗传神经网络。 5.进化算法 模拟自然进化过程可以产生鲁棒的计算机算法--进化算法。遗 传算法是其三种典型的算法之一,其余两种算法是进化规划(Evolutio nary Programming,EP)和进化策略(Evolutio nary Strategies,ES) 。这三种算法是彼此独立地发展起来的。进化规划最早由美国的L.J. Fogel、A.J.Owens和M.J.Walsh提出;进化策略则由德国的I.Rechenb erg和H.P.Schwefel建立。

多种群遗传算法的函数优化算法

多种群遗传算法的函数优化算法 1、案例背景 针对遗传算法所存在的问题,一种多种群遗传算法结构模型(Multiple Population GA,简称MPGA)可以用来取代常规的标准计算模型(SGA)。 MPGA在SGA的基础上主要引入了以下几个概念: (1)突破SGA仅靠单个群体进行遗传进化的框架,引入多个种群同时进行优化搜索;不同的种群赋以不同的控制参数,实现不同的搜索目的。 (2)各个种群之间通过移民算子进行联系,实现多种群的协同进化;最优解的获取是多个种群协同进化的综合结果。 (3)通过人工选择算子保存各种群每个进化代中的最优个体,并作为判断算法收敛的依据。 图 7-1 MPGA的算法结构示意图 复杂二元函数求最值:

图 7-2 二元函数图像 2、案例目录: 第7章多种群遗传算法的函数优化算法7.1 理论基础 7.1.1遗传算法早熟问题 7.1.2多种群遗传算法概述 7.2案例背景 7.2.1问题描述 7.2.2解决思路及步骤 7.3 MATLAB程序实现 7.3.1移民算子 7.3.2人工选择算子 7.3.3目标函数 7.3.4标准遗传算法主函数 7.3.5多种群遗传算法主函数 7.3.6结果分析 7.4延伸阅读 7.5 参考文献 3、主程序: %% 多种群遗传算法 clear; clc close all NIND=40; %个体数目

NVAR=2; %变量的维数 PRECI=20; %变量的二进制位数 GGAP=0.9; %代沟 MP=10; %种群数目 FieldD=[rep(PRECI,[1,NVAR]);[-3,4.1;12.1,5.8];rep([1;0;1;1],[1,NVAR])]; %译码矩阵 for i=1:MP Chrom{i}=crtbp(NIND, NVAR*PRECI); %创建初始种群 end pc=0.7+(0.9-0.7)*rand(MP,1); %在【0.7,0.9】范围i内随机产生交叉概率 pm=0.001+(0.05-0.001)*rand(MP,1); %在【0.001,0.05】范围内随机产生变异概率 gen=0; %初始遗传代数 gen0=0; %初始保持代数 MAXGEN=10; %最优个体最少保持代数 maxY=0; %最优值 for i=1:MP ObjV{i}=ObjectFunction(bs2rv(Chrom{i}, FieldD));%计算各初始种群个体的目标函数值 end MaxObjV=zeros(MP,1); %记录精华种群 MaxChrom=zeros(MP,PRECI*NVAR); %记录精华种群的编码 while gen0<=MAXGEN gen=gen+1; %遗传代数加1 for i=1:MP FitnV{i}=ranking(-ObjV{i}); % 各种群的适应度 SelCh{i}=select('sus', Chrom{i}, FitnV{i},GGAP); % 选择操作 SelCh{i}=recombin('xovsp',SelCh{i}, pc(i)); % 交叉操作 SelCh{i}=mut(SelCh{i},pm(i)); % 变异操作 ObjVSel=ObjectFunction(bs2rv(SelCh{i}, FieldD)); % 计算子代目标函数值 [Chrom{i},ObjV{i}]=reins(Chrom{i},SelCh{i},1,1,ObjV{i},ObjVSel); %重插入操作 end [Chrom,ObjV]=immigrant(Chrom,ObjV); % 移民操作 [MaxObjV,MaxChrom]=EliteInduvidual(Chrom,ObjV,MaxObjV,MaxChrom); % 人工选择精华种群YY(gen)=max(MaxObjV); %找出精华种群中最优的个体 if YY(gen)>maxY %判断当前优化值是否与前一次优化值相同 maxY=YY(gen); %更新最优值 gen0=0; else gen0=gen0+1; %最优值保持次数加1 end end %% 进化过程图 plot(1:gen,YY) xlabel('进化代数') ylabel('最优解变化') title('进化过程')

遗传算法开题报告

毕业设计(论文)开题报告 学院:计算机与信息工程学院2015 年 3 月23日(学生填表)课题名称遗传算法在玻璃原料配送中的应用 学生姓名专业班级计算机科学 与技术课题类型软件工程 指导教师职称高工课题来源工程 1. 综述本课题国内外研究动态,说明选题的依据和意义 1.1国内外研究动态 遗传算法(GeneticAlgorithms,简称GA)是人工智能的一个重要分支,它是基于Darwin的进化论,在计算机上模拟生命进化机制而发展起来的一门新学科,是生命科学与工程科学互相交叉、互相渗透的产物[21。遗传算法由美国J.H.Holland博士1975年提出,随后经过多年的发展,取得了丰硕的应用成果和理论研究的进展。从1985年在美国卡耐基一梅隆大学召开的第一届国际遗传算法会议到1997年,遗传算法作为具有系统优化、适应和学习高性能计算和建模方法的研究渐趋成熟。 遗传算法本质上是一种求解问题的高度并行性全局搜索算法,它能在搜索过程中自动获取和积累有关搜索空间的知识,并自适应地控制搜索过程以求得最优解。遗传算法提供了一种求解复杂系统优化问题的通用框架,它不依赖于问题的具体领域,对问题种类有很强的鲁棒性,因此能够广泛应用于很多学科。目前,遗传算法已在函数优化、组合优化、生产调度问题、自动控制、机器人智能控制、图像处理、模式识别、人工智能、遗传程序设计和机器学习等领域投入应用并取得了一定的成果。 旅行商问题(Traveling Salesman Problem,简记TSP)是组合数学中一个古老而又困难的问题,也是一个典型的组合优化问题,现已归入NP完备问题类。TSP问题的历史可以分成以下几个阶段:1800—1900年,首次描述TSP;1920.1950年;开始意识到TSP是“难"的问题;1954年,42城市的TSP求得最优解。从1954年以后,求得最优解的TSP规模越来越大,在1998年,求得了模拟美国13509个城镇的最优解,在2001年,求得了模拟德国15112个城镇的最优解,但这一工程代价也是巨大的,据报道,解决15112个城镇问的TSP共使用了美国Rice大学和普林斯顿大学之间网络互连的、由速度为500MHz的CompaqEV6 Alpha处理器组成的110台计算机,所有计算机花费的时间之和为22.6年。在2004年5月,瑞典求得了模拟24978城镇的最优解。TSP可能的路径总数与城市数目n是成阶乘数增长的,故一般很难精确地求出其最优解。对于这个问题,不论是传统的动态规划、分枝定界法、贪婪法等方法,还是在近些年的研究过程中采用的各种智能优化算法(禁忌搜索(tabusearch)、模拟退火(simulated annealing)、遗传算法(genetic algorithms)、人工神经网络(neural networks)、蚂蚁算法(ant algorithms)以及它们的混合算法等),都存在解的质量不高或者需要的时空开销太大等问题。 1.2选题依据及意义

遗传算法代码

%求下列函数的最大值% %f(x)=10*sin(5x)+7*cos(4x)x∈[0,10]% %将x的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01。% %将变量域[0,10]离散化为二值域[0,1023],x=0+10*b/1023,其中b是[0,1023]中的一个二值数。 %2.1初始化(编码) %initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), %长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name:initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength));%rand随机产生每个单元为{0,1}行数为popsize,列数为chromlength的矩阵, %roud对矩阵的每个单元进行圆整。这样产生的初始种群。 %2.2计算目标函数值 %2.2.1将二进制数转化为十进制数(1) %遗传算法子程序 %Name:decodebinary.m %产生[2^n2^(n-1)...1]的行向量,然后求和,将二进制转化为十进制function pop2=decodebinary(pop) [px,py]=size(pop);%求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2);%求pop1的每行之和 %2.2.2将二进制编码转化为十进制数(2) %decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置 %(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1), %参数1ength表示所截取的长度(本例为10)。 %遗传算法子程序 %Name:decodechrom.m

遗传算法综述

随着经济社会的迅猛发展, 人类科学研究与生产活动的广度与深度都大大拓展了,其中涌现出的大量具有各种非线性、不确定、不能精确解析以及建模机理复杂的新课题对信息与控制科学提出了前所未有的挑战。正是在这种背景下, 各种智能信息处理算法如雨后春笋般涌现出来。作为智能信息处理算法中的重要一员, 遗传算法近年来以其独特而卓越的性能引起了人们的广泛关注。 对于以往难以解决的函数优化问题,复杂的多目标规划问题,工农业生产中的配管、配线问题,以及机器学习,图象识别,人工神经网络的权系数调整,模糊规则的优化和网络构造等诸多问题,GA遗传算法以其出色的表现,已成为人们最常用也最有效的方法之一。虽然GA在许多优化问题中都有成功的应用,但其本身也存在一些不足,主要有:局部搜索能力弱、存在早熟成熟现象、收敛于局部最优解、随机漫游或振荡等现象,从而影响算法的收敛性能,降低了遗传算法的可信度。如何改善遗传算法的搜索能力和提高算法的收敛速度,使其更好地解决实际问题,是各国学者一直努力探索的一个主要课题。纵观成百上千的对遗传算法进行改进研究文献,其主要改进措施多集中在以下几个方面: 1.对遗传算法本身缺点的改进 1.1对遗传算法本身单一缺点的改进 种群人们主要关心的是种群中个体分布的多样性,这决定着运行遗传算法的效率,与种群相关的因素有种群个数,种群大小及初始种群三方面。

种群个数采用多个子种群并行搜索思想,有效避免了欺骗问题,提高了算法成功的概率。典型应用就是小生境技术,种群由M个子种群组成,每个子种群独立进化,种群间通过种群迁移∕移民等机制完成个体信息的交换。借鉴子种群并行的思想,发展出了思维进化计算,文献【】和量子衍生遗传算法或量子衍生进化计算,文献【】【】。 种群大小大致有固定种群和动态种群两种。 初始种群对于初始种群的生成主要是改变了以往单靠随机生成的缺点,引进了解空间格点化法或数论中均匀设计法,使产生的点集能均匀地分布于解空间。当然采用随机与均匀混合生成的初始种群,可以包含更丰富的解空间模式。文献【】,给出了用点的低序列差均匀生成初始种群的方法。(当然这些方法 编码经典的标准遗传算法( SGA )中,Holland运用模式定理分析编码机制时,建议采用二进制编码,其优点是简易稳定,但二进制编码具有不能直接反映问题的固有结构,解码复杂,精度不高,个体长度太长,占用计算机内存多和空间效率不高的缺点。它早已不能适应人们处理问题多样化的事实。 针对上述缺陷, 人们采用Gray编码和动态编码等方法成功地减少了编码的尺寸和复杂度,提高了局部搜索性能和速度。文献【】,给出了采用了性别编码,检测仿真表明其性能优于二进制和格雷码;采用染色体隐式解码算法,使得解码速度提高了6~50倍[9];采用实数或浮点数的矩阵形式或复数形式的编码方法,实现了无需解码可直

遗传算法简介及代码详解

遗传算法简述及代码详解 声明:本文内容整理自网络,认为原作者同意转载,如有冒犯请联系我。 遗传算法基本内容 遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。 遗传学与遗传算法中的基础术语比较 染色体:又可以叫做基因型个体(individuals) 群体/种群(population):一定数量的个体组成,及一定数量的染色体组成,群体中个体的数 量叫做群体大小。 初始群体:若干染色体的集合,即解的规模,如30,50等,认为是随机选取的数据集合。适应度(fitness):各个个体对环境的适应程度 优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码/译码,因为优化后要进行评价(此时得到的解是否较之前解优越),所以要返回问题空间,故要进行解码。SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;如果直接生成二进制初始种群,则不必有编码过程,但要求解码时将染色体解码到问题可行域内。 遗传算法的准备工作: 1) 数据转换操作,包括表现型到基因型的转换和基因型到表现型的转换。前者是把求解空间中的参数转化成遗传空间中的染色体或者个体(encoding),后者是它的逆操作(decoding) 2) 确定适应度计算函数,可以将个体值经过该函数转换为该个体的适应度,该适应度的高低要能充分反映该个体对于解得优秀程度。非常重要的过程。 遗传算法基本过程为: 1) 编码,创建初始群体 2) 群体中个体适应度计算 3) 评估适应度 4) 根据适应度选择个体 5) 被选择个体进行交叉繁殖 6) 在繁殖的过程中引入变异机制 7) 繁殖出新的群体,回到第二步

关于遗传算法研究的内容调研设计毕业论文

关于遗传算法研究的容调研设计毕业论文 目录 摘要.......................................................... I Abstract ....................................................... II 第一章遗传算法概论. (1) 1.1 遗传算法的产生和国外研究现状 (1) 1.2 遗传算法的基本原理 (2) 1.3遗传算法的特点 (3) 1.4遗传算法的应用 (4) 1.5课题的任务 (6) 第二章基本遗传算法 (7) 2.1 基本遗传算法简介 (7) 2.2 基本遗传算法描述 (7) 2.3 基本遗传算法的实现 (10) 第三章遗传算法求解TSP (15) 3.1 旅行商问题概述 (15) 3.2 使用改进的遗传算法求解TSP (16) 第四章求解TSP的实验结果及分析 (26) 4.1实验环境 (26) 4.2算法在求解不同规模下的TSP的实验结果 (26)

4.3改良的遗传算法和其它智能优化算法的比较 (27) 4.4使用单一变异算子和混合变异算子的实验结果对比分析 (28) 第五章总结 (30) 参考文献 (32) 附录1 改良遗传算法求解TSP Java源程序 (33) 附录2 英文文献翻译 (50) 致谢 (56)

第一章遗传算法概论 1.1 遗传算法的产生和国外研究现状 遗传算法(Genetic Algorithm简称GA)美国的J. Holland教授于1975年在他的专著《自然界和人工系统的适应性》中首先提出的,它是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法[1]。 遗传算法模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体(优胜劣汰),利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。最后一代候选解群中的最优解就是所求得的最优解。 1991年D.Whitey在他的论文中提出了基于领域交叉的交叉算子(Adjacency based crossover),这个算子是特别针对用序号表示基因的个体的交叉,并将其应用到了(旅行商)TSP问题中,通过实验对其进行了验证。 D.H.Ackley等提出了随机迭代遗传爬山法(Stochastic Iterated Genetic Hill-climbing,SIGH)采用了一种复杂的概率选举机制,此机制中由m个“投票者”来共同决定新个体的值(m表示群体的大小)。实验结果表明,SIGH与单点交叉、均匀交叉的神经遗传算法相比,所测试的六个函数中有四个表现出更好的性能,而且总体来讲,SIGH比现存的许多算法在求解速度方面更有竞争力 [2]。 H.Bersini和G.Seront将遗传算法与单一方法(simplex method)结合起来,形成了一种叫单一操作的多亲交叉算子(simplex crossover),该算子在根据两个母体以及一个额外的个体产生新个体,事实上他的交叉结果与对三个个体用选举交叉产生的结果一致。同时,文献还将三者交叉算子与点交叉、均匀交叉做了比较,结果表明,三者交叉算子比其余两个有更好的性能。 国也有不少的专家和学者对遗传算法的交叉算子进行改进。2002年,戴晓明等应用多种群遗传并行进化的思想,对不同种群基于不同的遗传策略,如变

相关主题