搜档网
当前位置:搜档网 › 关于盾构机实时姿态测量和计算方法的研究正式版

关于盾构机实时姿态测量和计算方法的研究正式版

关于盾构机实时姿态测量和计算方法的研究正式版
关于盾构机实时姿态测量和计算方法的研究正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal.

关于盾构机实时姿态测量和计算方法的研究正式版

关于盾构机实时姿态测量和计算方法

的研究正式版

下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。

随着社会经济的发展和城市建设的加快,城市规模不断扩大,人口不断增多,交通越来越来拥挤。一些地方的城市建设者为了治理交通拥堵,分散交通压力。不断寻求解决方式,修建地铁成为了一些城市建设者的主要的选择方式。但是在修建地铁的过程中,工程量非常大,施工难度相对较高。在地铁施工过程中,采用盾构技术,与传统的施工技术相比,有着许多优势,逐渐成为地铁修建过程中的主要施工方法。本文将主要分析盾构姿态的测量的原理和方法,探究盾构姿态的测量的精

度分析。

盾构机姿态简介

盾构施工过程就像生活中的目标运动,先进行重心平移,然后在运动的过程中偏航,最后进行自身重心的滚动。因此,在盾构施工过程中,需要监测的数据是盾构机位置和姿态的参数。主要是三维坐标和滚动角、偏航角和俯仰角。

盾构机姿态的控制对整个工程施工意义重大,它决定着施工的质量和隧道推进方向的精度。一旦控制不好,容易导致隧道偏差过大和盾尾间隙过小而相碰。

盾构机液压系统

液压系统是盾构机的核心部分,盾构机的工作机构主要是由液压系统驱动完

成,对盾构机系统的运行起着很大的作用。盾构机的液压系统主要包括两大系统,一是推进系统,二是主动铰接系统。

2.1.推进系统

盾构机的主要工作系统是推进系统,它主要是通过油缸作用于成型观片,以此来实现盾构前进。推进系统的动力单元是一台80L/min旋转柱塞泵,执行元件是24个油缸,调节和控制部分包括方向的控制、油缸电磁阀的选择、安全阀、节流阀等。盾构机工作时的最大工作压力是

35MPa,液压泵最大推进流量是80L/min,推进油缸是240/180-1950(mm)。

2.1.1.推力计算

盾构机共有推进油缸24个,总推力是

这24个油缸的推力之和,那么在液压系统的最大推力F最大-24×P×Sn中,P表示油缸的最大压强,S表示活塞面积,因此,F最大-24×35×106Pa×3.14×0.122㎡

≈37981t

2.1.2.推进速度计算

盾构机的最大推进速度就是油缸的最大伸长速度,S-1/T,T-V/S1,在这个公式中,S表示最大推进速度,T表示伸长1mm 所需要的时间,V表示伸长1mm需要的油液体积,S1为推进流量,S为74mm/min。因此,当前的盾构机最大推力是1200kN,掘进速度是40—65mm/min,推进系统的设计完全符合要求。

2.2.铰接系统

盾构机的调向主要使用铰接系统,通过调向,使得盾构机形成一定角度,便于控制。铰接系统的动力单元是一台25L/min 的高压泵,执行元件是16个270/160-190(mm)的油缸。

铰接系统的最大压力是35MPa,液压泵的最大流量是25L/min,铰接油缸是

270/160-190(mm),铰接力F最大-

P×S≈2003kN,其中,P是最大压强,S是活塞面积,盾构机自身重量是300t,钢和土体之间的摩擦系数是0.5,前盾和土体的摩擦力是Fˊ-G×ц-150t≈1500kN,G表示前盾自重,ц表示静摩擦系数。盾构机实时姿态的计算方法

3.1.测量原理和方法

盾构机姿态测量的原理: 盾构机前体位置上要选择两个控制点,这两个控制点不能在同一条直线上,在控制点上还要安上反射片。在测量过程中,为了保证测量的便捷性,应当尽量保证这些控制点和盾尾通视,同时要保证在测量过程中,控制点上的反射片不能脱落或者是移动位置。为了保证盾构机上的控制点、刀盘中心和初始姿态的相对关系,在盾构机上已经安装好的前基准点、后基准点以及刀盘上方应当各布置一个临时观测点,并且要在盾构机的前体位置上设置一些其它观测点。盾构机工作前,应当对盾构机上的所有控制点以及临时观测点进行初始坐标测量,这样就可以测量出盾构机的具体姿态和位

置信息。

3.2.分析姿态测量的精度

盾构体的姿态测量的观测值是由两棱镜的坐标和滚动角、俯仰角组成,坐标的误差是由全站仪的精度决定的;而滚动角、俯仰角是通过双轴倾斜仪进行测量的,它的误差是由倾斜仪的精度决定的。全站仪是一种智能仪器,它主要由三部分组成,分别是电子经纬仪、光电测距仪和数据处理系统。

两棱镜安装位置的确定是很困难的,因为在安装时没有参照物,很难求得偏航角。因此,在安装两棱镜的时候,往往采取的是坐标转换的办法,通过坐标转换,就可以定位两棱镜的相对位置。盾构机的

测量过程以及计算过程必然会产生误差,因此,需要对误差进行评估。

3.3.提高精度测量的办法

3.3.1.使用高精度测量仪器

如果使用测量精度为3mm的仪器,处于刀盘中心的Z坐标的误差平均值会达到5.8mm,这个数值大约是仪器误差的两倍;如果使用精度为5mm的仪器,误差平均值会达到34mm。所以,如果能够使用高精度测量仪器,将会有效的减少盾构机的测量误差。

3.3.2.采用多点复核测量

采用多点符合测量就需要在盾构机上的控制点至少要在5个以上,这样既可以为符合测量做准备,也可以防止施工的时

候被意外损坏的现象。

3.3.3.测量控制点的布置要合理

测量结果在很大程度上受控制点的位置影响,因此,在一般情况下,控制点应当布置在盾构机上的比较稳固的位置上,这样在一定程度上就能保证盾构机在施工过程中不会被意外碰到,并且能够保证和盾尾相通视。除此之外,三个控制点的位置应当尽量使他们呈三角形,并且最大程度上保证他们的边最长。

由于盾构技术具有自动化程度高、施工速度快、对周围的环境影响小等优势,施工过程中能够获得良好的综合效益,盾构技术现在已经发展成地铁施工过程中主要采用的办法。盾构技术的姿态控制对整

个施工过程影响非常大,它控制着整个施工过程的质量和精度。此外,应当建立维护液压系统的保护方案,掘进参数的设定要合理,避免长时间负荷运行,以降低设备运行风险。

——此位置可填写公司或团队名字——

关于盾构机实时姿态测量和计算方法的研究.docx

关于盾构机实时姿态测量和计算方法的研究 随着社会经济的发展和城市建设的加快,城市规模不断扩大,人口不断增多,交通越来越来拥挤。一些地方的城市建设者为了治理交通拥堵,分散交通压力。不断寻求解决方式,修建地铁成为了一些城市建设者的主要的选择方式。但是在修建地铁的过程中,工程量非常大,施工难度相对较高。在地铁施工过程中,采用盾构技术,与传统的施工技术相比,有着许多优势,逐渐成为地铁修建过程中的主要施工方法。本文将主要分析盾构姿态的测量的原理和方法,探究盾构姿态的测量的精度分析。 盾构机姿态简介 盾构施工过程就像生活中的目标运动,先进行重心平移,然后在运动的过程中偏航,最后进行自身重心的滚动。因此,在盾构施工过程中,需要监测的数据是盾构机位置和姿态的参数。主要是三维坐标和滚动角、偏航角和俯仰角。 盾构机姿态的控制对整个工程施工意义重大,它决定着施工的质量和隧道推进方向的精度。一旦控制不好,容易导致隧道偏差过大和盾尾间隙过小而相碰。 盾构机液压系统 液压系统是盾构机的核心部分,盾构机的工作机构主要是由液压系统驱动完成,对盾构机系统的运行起着很大的作用。盾构机的液压系统主要包括两大系统,一是推进系统,二是主动铰接系统。 2.1.推进系统 盾构机的主要工作系统是推进系统,它主要是通过油缸作用于成型观片,以此来实现盾构前进。推进系统的动力单元是一台80L/min旋转柱塞泵,执行元件是24个油缸,调节和控制部分包括方向的控制、油缸电磁阀的选择、安全阀、节流阀等。盾构机工作时的最大工作压力是35MPa,液压泵最大推进流量是80L/min,推进油缸是240/180-1950(mm)。 2.1.1.推力计算 盾构机共有推进油缸24个,总推力是这24个油缸的推力之和,那么在液压系统的最大推力F最大-24×P×Sn中,P表示油缸的最大压强,S表示活塞面积,因此,F最大-24×35×106Pa ×3.14×0.122㎡≈37981t 2.1.2.推进速度计算 盾构机的最大推进速度就是油缸的最大伸长速度,S-1/T,T-V/S1,在这个公式中,S表示最大推进速度,T表示伸长1mm所需要的时间,V表示伸长1mm需要的油液体积,S1为推进流

盾构施工控制测量

中铁三局西南公司盾构施工作业指导书 盾构施工控制测量 中铁三局西南公司盾构工程段

1.盾构施工控制测量 1.1 目的和适用范围 为了保证盾构机准确定位始发,根据设计蓝图计算出的隧道中心线在规范偏差允许范围内掘进并准确贯通,制定本作业指导书。 本作业指导书适用于采用盾构施工的区间隧道工程。 1.2 工作内容及技术要点 盾构施工测量主要分为四部分:地面控制、联系测量、洞内控制和竣工测量,具体内容及技术要求见表1.2-1。 表1.2-1 盾构施工测量内容及技术要点 1.3 测量前准备工作 1.3.1盾构施工前,项目部应成立专门的测量组织机构,测量人员应具备相应的测量技能等级及执业资格。 1.3.2项目应配置精度满足要求的测量仪器,全站仪测角精度不低于2″,测距精度不低于Ⅱ级(5~10mm)。

1.3.3盾构施工前,应编制测量方案,并按程序经过审查、批准后方可实施。1.4 测量作业 1.4.1 交接桩及复测 1 项目中标后,交接桩资料包括平面控制点坐标及高程以及相应的“点之记”,经业主方代表(或者业主委托的第三方测量(以下简称“业主测量队”)单位代表)、施工承包方代表签字确认后生效,并到各控制桩点现场确认。 2 施工承包方完成接桩后,应及时编写复测方案并组织实施。复测成果上报监理及业主(或业主测量队)审查。如发现有交桩控制点精度不满足要求,应在复测报告中明确申请业主测量队进行复测确认。 3 一条区间隧道交桩控制点应不少于6个,即在隧道两端各有2个以上平面控制点和1个以上水准点。 4 按照精密导线的要求进行控制导线复测,具体要求按照《城市轨道交通工程测量规范》(GB 50308-2008)“3.3精密导线测量”执行。 1.4.2 地面控制点加密 1 加密导线点与交桩控制点宜形成附合导线,附合导线的边数宜少于12个,相邻的短边不宜小于长边的1/2,个别短边的边长不应小于100m。 2 受条件限制,加密导线点与交桩控制点只能形成闭合导线时,应在《城市轨道交通工程测量规范》(GB 50308-2008)要求基础上增加至少一倍的观测频率。 3 加密水准点应设置在施工影响范围之外且比较稳固的地方,至少每半年对加密水准点与交桩水准点进行一次联测。 1.4.3 平面联系测量 1 平面联系测量一般可采用一井定向(如图 1.4.3-1)、两井定向(如图 1.4.3-2),投点方式可采用钢丝或者投点仪。 2 一井定向联系三角形测量具体要求按照《城市轨道交通工程测量规范》(GB 50308-2008)“9.3联系三角形测量”执行。 3 两井定向联系测量 1)在盾构施工时,可以利用车站两个端头井或者是一个端头井和中间的出土口位置进行两井定向。 2)左右线的地下控制边可以同时测量,但应分开计算。

盾构姿态控制

复合地层长距离小半径曲线隧道盾构姿态控制 一、工程概况 大连市地铁二号线西安路站~交通大学站区间,本区间隧道起讫里程为DK16+803.630~CK18+462.893。本区间主要采用盾构法施工,在靠近交通大学站一端采用矿山法。本盾构区间隧道起讫里程为DK16+803.630~DK18+130.000,右线全长1326.370m,区间在DK16+796.63处设盾构始发井,在DK18+135.5处设盾构接收井。 西安路站至交通大学站区间平面线路出西安路站后沿南北向向南,通过半径为300m的曲线转入偏东西方向,再通过半径450m曲线接入黄河路,到达交通大学站。区间纵断布置形式呈“V”字形,最大纵坡为25‰。区间为双线地下隧道,左右线路为上下重叠至区间终点左右线逐渐分离并行。盾构段隧道开挖断面直径为6m,盾构隧道衬砌的管片采用厚300mm,宽1200mm,每环由6片管片拼装而成,拼装方式采用错缝拼装。 图1-1 西安路站至交通大学站区间平面

二、工程重、难点 2.1小半径(300m半径)曲线始发 由于受线路和现场条件限制,盾构机设计在线路为300m小半径曲线段上的竖井始发进洞,保证开挖隧道轴线在规范允许范围内是一项技术难题。 2.2复合地层长距离小半径R300曲线掘进 在硬岩地层或岩土复合地层小半径曲线掘进,对盾构掘进姿态的控制提出极高的要求。主要问题有: (1)风化岩地层基本无压缩性,在风化岩中刀具磨损较快,当边缘滚刀磨损5-8mm后盾构即出现卡盾及转向困难趋势;在曲线外侧超差时盾构需要以更小的转弯半径才能回正; (2)掘进中对盾构姿态控制的要求高,操作者对超差趋势需极其敏感。边缘滚刀的磨损检查及更换频率高。 (3) 推进油缸的推力方向为线路的切线方向,因此对管片有1个向外的分力,导致管片发生偏移,故油缸推力要合理设置 (4) 转弯过程中,盾尾和管片有一定的夹角,导致盾尾密封刷局部防水效果不理想,易发生盾尾漏浆。 (5)盾尾密封刷局部受压容易使盾尾密封损坏,同时管片外边缘易受损,铰接油缸及纠偏强度需合理设置 2.3长距离硬岩段掘进施工 相比上软下硬、砂层推进中可能导致的地面环境灾害,在长距离硬岩段中掘进主要的困难在于盾构穿越硬层时会出现刀具磨损快、掘进效率低下以及管片上浮等问题。硬岩段地层推进时管片脱出盾尾后上浮现象明显,下坡变坡段时尤盛。出现管片上浮的原因在于赋存与岩层中的地下水、壁后注浆浆液以及向工作面注入的改良性液体等汇集到盾尾处,这些带有一定压力的液体会使脱出盾尾的管片悬浮。在此过程中,应根据管片测量成果,对盾构姿态进行预压,保证在管片浮动后,成型隧道轴线与设计轴线偏差保持在规范允许范围内。

盾构机姿态人工测量方案

盾构机姿态人工测量方案 由于ELS靶被送往德国进行例行的检修,大汉盾构区间右线暂时无法使用SLS-T 导向系统,为保证盾构日常掘进的需要,确保盾构机按设计轴线前进,拟采用人工测量的办法测量出盾构机当前的姿态,以指导盾构机的掘进。以下对盾构机姿态的人工测量方案进行说明: §1原理 盾构机在出厂时,开发SLS-T导向系统的VMT公司就根据盾构机的设计与加工尺寸,在盾构机中体的隔板上布置了12~16个测点,所有的测点都在出厂前详细测设了每一个测点与刀盘中心的相对位置。盾构机姿态人工测量就是利用人工直接采用控制导线的测量办法详细测出这些测点中的部分点位的绝对坐标,然后根据测点与刀盘中心的空间关系,反算出刀盘中心坐标,最后根据设计线路参数与刀盘中心的绝对坐标的空间关系推算出盾构机的三维控制姿态。 §2适用范围 2.1盾构机始发姿态测量 盾构机始发姿态便是由人工测量出的盾构机姿态。盾构机始发定位时需精确测定ELS靶相对于盾构机主机的相对位置关系,其方法便是根据人工测量出的盾构机姿态,在SLS-T导向系统的微机中调整ELS靶的位置参数,以改变微机上显示的盾构机姿态,当盾构机上显示的姿态与人工测量出的盾构机姿态一致时,便可认为当前ELS靶的位置参数是正确的,ELS靶始发定位调试顺利完成。 2.2对S L S-T导向系统的复核 在掘进施工中,利用人工测量的办法测量出盾构机当前的姿态,与SLS-T导向系统显示的盾构机姿态进行比较,来复核导向系统的测量成果。 2.3盾构掘进施工测量 利用人工测量出的盾构机姿态可指导盾构机的掘进施工,保证盾构机按设计轴线前进。盾构掘进施工中,人工测量盾构机姿态的测量频率为每环1次。

盾构管片拼装和姿态控制的要点

盾构管片拼装和姿态控制的要点盾构管片拼装质量和姿态控制是相互关联,密不不可分的。为保证拼装质量和姿态,我们可以从人、机、物、法、环几个方面进行控制。 1、人的控制首先人是控制工程质量的第一因素,在这里我认为主要是责任心和技能素质。责任心与自身所受的教育,家庭责任感和社会责任感及公司的管理制度有很大的关系。你的用心操作和一丝不苟的作风,将直接影响到拼装质量。所以拼装 负责人和机械操作手要掌握质量标准,以质量求进度,质量不达标准不进行下一环的拼装。 在技能方面,你们公司是第一次在上海做盾构,盾构机又是新购进的,人员也是新配备的,机械性能等方面都需要调试和一个熟悉的过程。这里固然有有利的因素,那就是机械性能先进,自动化程度高。但我们也要看到不利的因素,就是新的人员要驾御这匹性能还不完全熟悉的盾构机。一是需要专家的现场指导,二是在干中学学中干。并要结合实际,积累经验,达到熟练操作的程度。 2、管片拼装 1)、管片拼装的前期准备盾构推进的后座应与后壁密实贴紧,后座的环面应与推进轴线垂直,同时开口段的上半部应设有稳固的后座支撑体系。 盾构在基座导轨上推进时应同步垫实管片脱出盾尾后与导轨之间的空隙,不使管片下沉,垫实材料宜用木楔。 盾构的出洞施工由于后座条件的限制,一般盾构的上部千斤顶在一定期间内不能使用,为此要精心调整盾构正面土体反力以少用或不用底部范围千斤顶,防止盾构上飘以及后座因受力不均而遭破坏。当上飘较大而开口副环又没到位时,要临时在上部加支撑和使用上部千斤顶。. 盾构管片的第一环(包括副环),管片的横向轴线一定要垂直于隧道设计的纵向轴线。这一环致关重要,首次拼装一定要千万注意。 施工人员要加强对前一环管片环面进行质量检查和确认,及时通知地面管片进行调整接缝弹性密封垫厚度的调整。同时本环的第一块管片定位前,应观察管片与盾构四周的空隙情况及上环管片的成果报表来决定本环的纠偏方法和纠偏量,然后确定本环第一块的拼装位置。 送到盾构后续车架内的管片,要按先后顺序——由下而上,待拱底块管片就位

姿态测量方法

盾构机姿态测量实例 德国VMT公司制造的盾构机掘进姿态测量方法。 1,德国VMT公司制造的盾构机。在盾构机主机横向截面上有18个由螺母构成的测量标志点,这些点在盾构机构建之时就已经定位,每个点相对于盾构机的轴线有一定的几何关系,并在由盾构机轴线构成的坐标系中有坐标数据。盾构机轴线坐标数据如下图:

2 测量标志点 对于德国VMT公司制造的盾构机上有18个点,单只要测出其中任意3个点(最好取左中右3个点)的实际三维坐标,就可以计算出盾构机的姿态,在进行测量时,当盾首中心为坐标原点,其三维坐标为(0,0,0)盾首与盾尾的距离为4.34m,盾尾中心的三维坐标为(—4.34,0,0)。同样在该坐标系中,从表中可以查出3,8,15三个点的三维坐标分别为(X1,Y1,Z1),(X2,Y2,Z2),(X3,Y3,Z3,) .由此可以列出利用该三个点计算盾首中心的三维坐标 (X首,Y首,Z首)和盾尾中心三维坐标(X尾Y尾Z尾)的两组三元二次方程组的数学表达方式。 计算盾首中心三维坐标数学方程组为: (X1?X首)2 +(Y1?Y首)2+(Z1?Z首)2 =(?3.9567)2+(?1.9917)2+(1.6565)2 (X2?X首)2 +(Y2?Y首)2+(Z2?Z首)2 =(?3.9701)2+(?0.3638)2+(2.8150)2

(X3?X首)2 +(Y3?Y首)2+(Z3?Z首)2 =(?3.9560)2+(2.3056)2+(1.1695)2计算盾尾中心三维坐标数学方程组为: (X1?X尾)2 +(Y1?Y尾)2+(Z1?Z尾)2 =(?3.9567+4.34)2+(?1.9917)2+(1.6565)2 (X2?X尾)2 +(Y2?Y尾)2+(Z2?Z尾)2 =(?3.9701+4.34)2+(?0.3638)2+(2.8150)2 (X3?X尾)2 +(Y3?Y尾)2+(Z3?Z尾)2 =(?3.9560+4.34)2+(2.3056)2+(1.1695)2 上述3.8.15三个点是在以盾构机轴线构成的坐标系中,盾首中心为坐标原点(0,0,0)盾尾为(-34.4,0,0)的条件下的坐标系。当盾构掘进过程中实测出该三个点的某一里程的大地坐标非别为 X1=45336.775,X2=45336.610,X3=45336.461 Y1=29534.236,Y2=29535.846,Y3=29538.525 Z1=-1.434 Z2=-0.236 Z3=-1.885 把以上数据代入第一组方程组,可解算出盾首中心在某一里程的大地三维坐标: X首=45340.608,Y首=29536.538,Z首=-2.975 在该里程上盾首中心的设计大地三维坐标为: X首=45340.610,Y首=29536.520,Z首=-2.945 由此得到三维坐标较差: △X=-2mm,△Y=18mm, △Z=-30mm 则可计算出盾首中心左右上下偏差,其分别为:

盾构姿态实时监控原理与方法

盾构姿态实时监控原理与方法 摘要:本文着重介绍盾构姿态自动监测与控制的原理与方法,并对系统软、硬件组成及运行界面进行简略说明。 关键词:盾构姿态自动监控 1引言 盾构姿态的良好保持是盾构法施工的重要控制目标,它直接关系到隧道质量与施工成败,如何实现高水平的盾构姿态实时监控一直是盾构施工人员关心的工程难题,盾构姿态实时监控技术的重要性不言而喻。 完整的盾构姿态实时监控系统包括盾构姿态偏差自动监测和自动控制两方面内容。国内使用的盾构姿态监测系统多为国外产品,主要有德国VMT公司的SLS-T系统、英国的ZED系统和日本TOKIMEC的TMG-32B(陀螺仪)系统等,许多地方还在使用人工测量;国内使用的盾构姿态控制系统大多取之于国外盾构生产厂家成套盾构产品中提供的控制功能(注:目前国内也有较成熟的盾构引导控制系统,如我公司使用的上海米度与上海力信两家公司研制生产盾构导向、顶管导向系统、隧道精灵软件等均已较成熟,本人现在使用中,欢迎探讨交流)。由于盾构控制系统富含PLC可编程控制器控制代码及上位控制计算机控制程序,又与具体的控制器件和动力设备的关系极为密切,因而具有一定的技术含量和非标准性。 国外有全自动盾构的研究,但少有成功应用的实例。在科学技术突飞猛进的今天,研究先进、自主的盾构姿态实时监控技术,建立盾构姿态实时监控理论、方法,对改善盾构施工水平有着深刻的现实意义。介绍盾构姿态自动监测与控制的原理与方法。 2盾构姿态监测系统原理 根据公路、轨道交通设计规范,公路、轨道交通的设计路线由平曲线和竖曲线组成,平曲线一般包括直线、缓曲线、圆曲线三种,竖曲线一般包括直线、圆曲线(凸曲线、凹曲线)两种。盾构根据公路、地铁隧道设计路线向前推进,盾

盾构施工人工测量与自动测量技术探讨

盾构施工人工测量与自动测量技术探讨 发表时间:2018-09-17T09:47:03.810Z 来源:《基层建设》2018年第20期作者:王强1 毛俊涛2 [导读] 摘要:随着城市建设的飞速发展,我国在各大城市都开展了地铁建设,为了满足盾构掘进按设计要求贯通(贯通误差必须小于 ±50mm),必须研究每一步测量工作所带来的误差,包括地面控制测量,竖井联系测量,地下导线测量,盾构机姿态定位测量4个阶段。 1浙江省大成建设集团有限公司 310012;2杭州市地铁集团有限责任公司运营分公司 310014 摘要:随着城市建设的飞速发展,我国在各大城市都开展了地铁建设,为了满足盾构掘进按设计要求贯通(贯通误差必须小于 ±50mm),必须研究每一步测量工作所带来的误差,包括地面控制测量,竖井联系测量,地下导线测量,盾构机姿态定位测量4个阶段。 关键词:盾构施工;人工测量;自动测量技术 盾构法具有施工速度快、机械化程度高、人员配备少、不影响地面交通等优点,所以在地铁区间施工中得到广泛应用。盾构施工测量是盾构施工中最重要的环节之一。 1工程概况 上海市轨道交通12号线顾戴路站~东兰路站区间:区间出顾戴路站端头井后下穿顾戴路北侧规划公园,自顾戴路折向万源路,然后沿万源路下向北进行,下穿万源路地块后,线路左、右线分离,分别从东西侧绕僻万源路桥桩基,下穿漕河泾港。过东兰路后进入东兰路站。本段区间较长,里程范围为SK+411.527~SK5+080.520,长度为1668.993。上行线有5段曲线,曲线半径依次为370m、1200m、650m、 1000m、1000m。线路纵断面最小坡度2‰,最大坡度25‰。隧道覆土最小为10.0m,最大为22.2m。本区间为双线单圆盾构区间,在最低点设置旁通道(兼排水泵站)1座。 2盾构掘进测量 2.1人工测量 (1)盾构测量标志的安装及测定测量标志由前靶、后靶、横向坡度、纵向坡度组成,具体实物为前后测量徕卡反射贴片和坡度板(纵向和横向坡度都可测),进行安装时,先测量出盾构的轴线,并把贴片和坡度板固定在盾构中心线上,前标后标应具有足够的长度,前靶距切口越近越好。测量出前靶、后靶到盾构中心线的距离以及前靶到切口的距离、后靶到盾尾距离,以确定前后靶与切口盾尾坐标归算的几何关系。为确保整个施工期间不被破坏,设置保护记号,此项工作应有原始记录和校核记录,以免盾构标志数据中存在系统误差。初次测量时,用仪器照准前、后占牌各测量一个测回,再根据坡度板的数值确定盾构的初始姿态,方便盾构始发及时纠正。(2)人工测量的相关计算确定好前后靶与切口盾尾坐标归算的几何关系后,编制相关计算器程序,人工测量主要测设前标水平角,后标水平角,前标垂直角,后标垂直角,坡度和转角。人工测量仪器为经纬仪和坡度板。测设完相关数据后进行计算。①盾构计算:坡度W和转角U在坡度板上直接读出;设W=2.546m为前标至盾构中心轴线的距离,Z=2.391为后标至盾构中心轴线的距离;G、H为经纬仪所在测站X、Y坐标,L为测站到后标方位角,R为经纬仪棱镜高程;I=1.2×T-x:I为经纬仪所在测站到前标的平距,T为当前环号,根据所测当前环号,反算得x,x是测站到第一环的距离。每次转站都要更新。N=1.2×T-y:N为经纬仪所在测站到后标的平距,原理同上;K=测站里程+I+5.308:K为切口里程,5.308是前标到切口的距离。测站的里程,是从第一个测站开始累加起来,每次加上新测站到上一测站的平距;E=X-arcsin ((sinU×Z)÷N)+L-180:X为后标水平角,E为修正过的测站到后标的水平方位角;F=Y-arcsin((sinU×W)÷I)+L-180:Y为前标水平角,F为修正过的测站到前标的水平角;A=G+I×cosF:B=H+I×sinF:C=G+N×cosE:D=H+N×sinE;"QKZ"=R+I×cosQ+(1-cosU)×W-W+5.3082"DWZ"=R+I×cosQ+(1-cosU)×W-W-3.8252Q为前标垂直角;POL(C-A,D-B): E=J+180"QKX"=A+5.308×cosE"QKY"=B+5.308×cosE"DWX"=C+1.326×cosE"DWY"=D+1.326×cosE得出三维坐标与设计轴线比较即可得出偏差。②管片姿态测量管片姿态=盾构轴线上管片拼装位置的偏离值计算+管片偏离盾构轴线计算的叠加。A、B、C、D分别为管片拼装完成后上右下左与盾壳之间间隙;E、O为切口平偏和高偏,G、Q为盾尾平偏和高偏;K=测站里程+I+5.308-6.73;K为管片里程,6.73为切口至当前环拼装好的管片的距离;"SPZJ"=5550-A-C;为水平直径"CZZJ"=5550-B-D;为垂直直径"GPC"=(L-S) ÷L×G+S÷L×E+(C-A)÷2000"GGC"=S÷L×O+(L-S)÷L×Q+(B-D)÷2000L为盾构长度,S为管片前端至盾尾的距离。 2.2自动测量 为了做到对盾构机姿态的实时控制,盾构机掘进中采用盾构姿态自动监测系统。该系统是盾构机自动导向测量系统,采用ROBOTEC 隧道导向系统,具有国际先进水平,适用于隧道工程施工控制的自动测量系统。采用该系统能够确保实时、准确地控制隧道掘进,保证贯通的精度。(1)自动测量导向系统本自动测量系统安装了3个棱镜,前靶一个,后靶两个(只用一个,一个备用),安装测定与人工测量相同。在盾构始发前,对整条隧道每一米的三维坐标计算出来,输入自动测量系统,方便实测数据与其对比计算偏差。(2)自动测量盾构姿态计算原理盾构机作为一个近似的圆柱体,在开挖掘进过程中我们不能直接测量其刀盘及盾尾的中心坐标,只能用间接法来推算出中心的坐标。A点是盾构机刀盘中心,E点是盾构机盾尾断面中心点,即AE连线为盾构机的中心轴线,布置三个自动棱镜B、C、D。由A、B、C、D、四点构成一个四面体,在盾构始发前测量出B、C、D三个角点的三维坐标(xi,yi,zi)和刀盘盾尾中心的三维坐标,建立几何关系。根据三个点的三维坐标(xi,yi,zi)分别计算出LAB,LAC,LAD,LBC,LBD,LCD,四面体中的6条边长,作为以后计算的初始值,在盾构机掘进过程中Li是不变的常量,通过对B、C、D三点的三维坐标测量来计算出A点的三维坐标。同理,B、C、D、E四点也构成一个四面体,相应地求得E点的三维坐标。由A、E两点的三维坐标就能计算出盾构机刀盘中心的水平偏航,垂直偏航,由B、C、D三点的三维坐标就能确定盾构机的仰俯角和滚动角,从而达到检测盾构机姿态的目的。 3两套测量控制技术的比较 两套测量系统、相互校核,不断修正,主要相互验证测量数据计算的准确性和测量仪器的误差。通过比较两者最大相差在2厘米左右,在规定的容许范围之内。依据自动测量系统提供的数据进行推进,管片脱出盾尾后对管环进行复测,可发现偏差基本都在5cm之内,所以本工程大部分数据依据自动测量系统,节省大量劳动力。 4总结 上海市轨道交通12号线顾戴路站~东兰路站区间区间长度为1668.993m,是一般隧道的2倍左右,且曲线多、部分曲线急且长,导致导线边数多且部分导线长度较短,而这些导线又不能闭合,直接导致盾构贯通误差的增大。在半径为350m的小曲线推进时,由于隧道曲率大,前方可视距离短,导致自动与人工测量移站频繁。在本工程中,在R=350m的圆曲线隧道上,平均要20环(24m)换站一次。每次换站

地铁盾构施工人工测量方法探讨

地铁盾构施工人工测量方法探讨 摘要:本文结合合肥地铁项目,讲述了地面控制测量、联系测量盾构机人工测量和管片测量 关键词:地铁;盾构;人工测量 盾构法具有施工速度快、机械化程度高、人员配备少、不影响地面交通等优点,所以在地铁区间施工中得到广泛应用。盾构施工测量是盾构施工中最重要的环节之一。现以合肥市地铁一号线9标南宁路站~贵阳路站盾构区间(以下简称南贵区间)介绍盾构施工人工测量方法。 一、控制测量 1、地面控制测量 地面控制测量分为地面平面控制测量和地面高程控制测量,本工程控制点是合肥轨道公司提供的覆盖线路的整体控制网。 2、联系测量 首先测设近井点。根据地面控制点在贵阳路站区间布设两个近井点,形成闭合导线,导线变数4条。高程按照二等水准进行加密。通过近井点用两井定向把控制点加密到贵阳路站底板。 为提高精度,盾构始发点采用强制对中装置(如图1所

示)。高程传递采用吊钢尺的方法。 从始发到接收共做了三次联系测量,三次测量方位角差值不到1″(表1所示)。 3、洞内导线测量 本工程隧道长度582米,则隧道导线加密采用支导线往返测的方法进行。 二、盾构机始发前测量 1、在盾构机始发前利用联系测量控制点,满足盾构机组装、反力架、轨道安装的需要。其三维坐标值测设值与设计值较差小于3毫米。 2、盾构机姿态测量。在盾构始发前测设盾构机初始位置和盾构机姿态。盾构机自身导向系统成果必须和人工测量结果一致。本工程使用的是力信RMS-D导向系统。盾构初始姿态我们利用特征点发和分中发分别独立测量了,两次结果一致。盾构初始姿态测量,是盾构测量独有的测量。 三、盾构管片测量 盾构机在推进过程中,利用力信RMS-D导向系统,控制盾构机本身姿态。但是管片测量也不可忽视。可以利用管片测量结果观察隧道推进情况。做到多重复合。人工测量管片使用的是标尺法(如图2所示),测设出反射片的三维坐标,根据隧道半径算出隧道中心。 现已310环隧道导向系统测量姿态和人工测量管片姿态

关于盾构机实时姿态测量和计算方法的研究

编订:__________________ 审核:__________________ 单位:__________________ 关于盾构机实时姿态测量和计算方法的研究Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5971-19 关于盾构机实时姿态测量和计算方 法的研究 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 随着社会经济的发展和城市建设的加快,城市规模不断扩大,人口不断增多,交通越来越来拥挤。一些地方的城市建设者为了治理交通拥堵,分散交通压力。不断寻求解决方式,修建地铁成为了一些城市建设者的主要的选择方式。但是在修建地铁的过程中,工程量非常大,施工难度相对较高。在地铁施工过程中,采用盾构技术,与传统的施工技术相比,有着许多优势,逐渐成为地铁修建过程中的主要施工方法。本文将主要分析盾构姿态的测量的原理和方法,探究盾构姿态的测量的精度分析。 盾构机姿态简介 盾构施工过程就像生活中的目标运动,先进行重心平移,然后在运动的过程中偏航,最后进行自身重

心的滚动。因此,在盾构施工过程中,需要监测的数据是盾构机位置和姿态的参数。主要是三维坐标和滚动角、偏航角和俯仰角。 盾构机姿态的控制对整个工程施工意义重大,它决定着施工的质量和隧道推进方向的精度。一旦控制不好,容易导致隧道偏差过大和盾尾间隙过小而相碰。 盾构机液压系统 液压系统是盾构机的核心部分,盾构机的工作机构主要是由液压系统驱动完成,对盾构机系统的运行起着很大的作用。盾构机的液压系统主要包括两大系统,一是推进系统,二是主动铰接系统。 2.1.推进系统 盾构机的主要工作系统是推进系统,它主要是通过油缸作用于成型观片,以此来实现盾构前进。推进系统的动力单元是一台80L/min旋转柱塞泵,执行元件是24个油缸,调节和控制部分包括方向的控制、油缸电磁阀的选择、安全阀、节流阀等。盾构机工作时的最大工作压力是35MPa,液压泵最大推进流量是

学习盾构机始发时的测量姿态

操作系统学习 主要任务:继续将管片姿态测完,学习操作系统,以及学习盾构机始发时的测量姿态。 建立人工导向的意义 所有盾构(TBM)都必须建立人工导向系统,做为机器自身导向系统的检查和备份系统。 一、搬站 (1)根据设计专门的搬站记录表,包括全站仪托架和后视棱镜托架编号、坐标和高程(搬站前后)、机器姿态数据(搬站前后)、搬站前后各项姿态数据较差的限差等数据。 (2)搬站前,应提前做好准备工作。 (3)首先关闭导向系统前,应保证其在正常工作状态,记录下

搬站前机器姿态并截屏保存; (4)从关闭导向系统到搬站结束后再开机,直到导向系统工作正常的过程中,盾构(TBM)位置不能变化、刀盘不能转动、不可进行调向操作、更不可盲推。 (5)搬站时,可以利用已有的全站仪托架向前传递坐标、高程,但只能一次;下一次搬站就应从地面控制点用导线测量托架和后视棱镜坐标。 (6)利用已有的托架传递时,可按导向系统搬站程序(自动测量)进行,也可用导线方式测量; (7)搬站结束,导向系统开机正常工作后,再次记录搬站后的机器姿态并截屏保存。 (8)对比搬站前后机器姿态数据,如果各项偏差小于限差,则说明搬站成果合格。否则应查找原因,必要时重测。 二:操作系统主要学习了全站仪搬站后在操作室仪器上的数据输入。

(1)关于搬站首要要做的是在拱顶处选择一合理的位置,装上事先准备好的用来放一起的架子。将棱镜放 在上面。然后将用全站仪测出棱镜的坐标以及高程。 (2)将测出来的坐标在导向系统上输入作为新的站点坐标。将以前旧的的站点坐标勾选为新的后视坐标。 (3)操作系统将提醒你变换前视和站点,然后人工将其位置变换。 (4)位置变换好后,在操作仪器上点击后视点复位,全站仪将自动测量后视点坐标以核实。核实完毕后点 击后视点确认。搬站工作完毕。 二:盾构始发姿态测量。 盾构姿态测量成果是盾构施工的一项重要依据,值班工程师、盾

盾构机姿态控制总结

盾构机姿态控制总结 始发前的盾构姿态主要是靠盾体始发托架和反力架的的安装精度来控制的,同时反力架的安装精度还直接影响到环片的拼装姿态,因此对于盾体始发托架及反力架的控制尤为重要。 在进行完始发定向联系测量后,根据底板平面及高程控制点对始发托架进行定位。在盾体组装完成前,开始进行反力架的定位。始发托架及反力架的安装过程全过程进行监控,保证始发托架和反力架的左右偏差控制在±10mm之内,高程偏差控制在±5mm之内,反力架的与隧道设计轴线法平面偏差<2‰。盾构机已经从始发井到天府广场,前一段盾构机的姿态控制的很好。 但是在68环后盾构机的姿态就不是很理想了。在成都这种砂卵石地层,不同于粘土和岩石地层,在砂卵石地层,掘进过程中盾构机的盾体与砂卵石是紧密接触的,这使盾构机在偏移隧道中心线的时候很难快速的纠正过来,这就要求盾构机司机在掘进过成中,一定要掌握好掘进的路线,出现小的偏移要及时进行纠偏。盾构导向系统是隧道质量保证的重要因素之一,在掘进过程中对导向系统的监控及维护尤为重要。对VMT导向系统运行的可靠性进行定期检查,即盾构姿态的人工检测。盾构姿态人工检测工作一周进行一次,同时利用环片检测的方法每天对导向系统运行的可靠性进行检测。在前200m掘进过程中,VMT导向系统运行正常。 VMT工程师每次的移站都要快速准确完成,隧道中心线要经过多次测量并达到准确。在68环的时候由于VMT出现事故盾构机出

现忙掘的情况,使盾构机的方向与隧道中心先有了较大的偏差,在这种情况下,应当选择好纠偏曲线慢慢的使盾构机的姿态慢慢的纠正过来,我们却选择了强行快速纠偏,使得管片出现了大错台的情况,在一个就是由于管片的选型不是很完美,使得盾构机的姿态越来越差。除了定期对盾构姿态进行人工检测,同时还对TCA激光站及定向棱镜的稳定性进行检查。在始发前,导向系统的激光站及定向棱镜安装在始发井内,不会轻易发生碰动。在盾构掘进了30环后,进行了第一次激光站的移站,激光站固定在环片顶部,定向棱镜仍旧安装在始发井内,由于环片不稳定使得TCA激光站不稳定。在掘进过程利用导向系统自带方位检查功能对激光站及定向棱镜的稳定性进行检查。当偏差值超过限值时,利用井内控制点及时独立的对激光站及定向棱镜的位置进行复测。

关于盾构机实时姿态测量和计算方法的研究示范文本

文件编号:RHD-QB-K8696 (安全管理范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 关于盾构机实时姿态测量和计算方法的研究示 范文本

关于盾构机实时姿态测量和计算方 法的研究示范文本 操作指导:该安全管理文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 随着社会经济的发展和城市建设的加快,城市规模不断扩大,人口不断增多,交通越来越来拥挤。一些地方的城市建设者为了治理交通拥堵,分散交通压力。不断寻求解决方式,修建地铁成为了一些城市建设者的主要的选择方式。但是在修建地铁的过程中,工程量非常大,施工难度相对较高。在地铁施工过程中,采用盾构技术,与传统的施工技术相比,有着许多优势,逐渐成为地铁修建过程中的主要施工方法。本文将主要分析盾构姿态的测量的原理和方法,探究盾构姿态的测量的精度分析。

盾构机姿态简介 盾构施工过程就像生活中的目标运动,先进行重心平移,然后在运动的过程中偏航,最后进行自身重心的滚动。因此,在盾构施工过程中,需要监测的数据是盾构机位置和姿态的参数。主要是三维坐标和滚动角、偏航角和俯仰角。 盾构机姿态的控制对整个工程施工意义重大,它决定着施工的质量和隧道推进方向的精度。一旦控制不好,容易导致隧道偏差过大和盾尾间隙过小而相碰。 盾构机液压系统 液压系统是盾构机的核心部分,盾构机的工作机构主要是由液压系统驱动完成,对盾构机系统的运行起着很大的作用。盾构机的液压系统主要包括两大系统,一是推进系统,二是主动铰接系统。

盾构管片拼装和姿态控制的要点

盾构管片拼装和姿态控制的要点 盾构管片拼装质量和姿态控制是相互关联,密不不可分的。为保证拼装质量和姿态,我们可以从人、机、物、法、环几个方面进行控制。 1、人的控制 首先人是控制工程质量的第一因素,在这里我认为主要是责任心和技能素质。责任心与自身所受的教育,家庭责任感和社会责任感及公司的管理制度有很大的关系。你的用心操作和一丝不苟的作风,将直接影响到拼装质量。所以拼装负责人和机械操作手要掌握质量标准,以质量求进度,质量不达标准不进行下一环的拼装。 在技能方面,你们公司是第一次在上海做盾构,盾构机又是新购进的,人员也是新配备的,机械性能等方面都需要调试和一个熟悉的过程。这里固然有有利的因素,那就是机械性能先进,自动化程度高。但我们也要看到不利的因素,就是新的人员要驾御这匹性能还不完全熟悉的盾构机。一是需要专家的现场指导,二是在干中学学中干。并要结合实际,积累经验,达到熟练操作的程度。 2、管片拼装 1)、管片拼装的前期准备 盾构推进的后座应与后壁密实贴紧,后座的环面应与推进轴线垂直,同时开口段的上半部应设有稳固的后座支撑体系。 盾构在基座导轨上推进时应同步垫实管片脱出盾尾后与导轨之间的空隙,不使管片下沉,垫实材料宜用木楔。 盾构的出洞施工由于后座条件的限制,一般盾构的上部千斤顶在一定期间内不能使用,为此要精心调整盾构正面土体反力以少用或不用底部范围千斤顶,防止盾构上飘以及后座因受力不均而遭破坏。当上飘较大而开口副环又没到位时,要临时在上部加支撑和使用上部千斤顶。. 盾构管片的第一环(包括副环),管片的横向轴线一定要垂直于隧道设计的纵向轴线。这一环致关重要,首次拼装一定要千万注意。 施工人员要加强对前一环管片环面进行质量检查和确认,及时通知地面管片进行调整接缝弹性密封垫厚度的调整。同时本环的第一块管片定位前,应观察管片与盾构四周的空隙情况及上环管片的成果报表来决定本环的纠偏方法和纠偏

盾构机姿态控制测量计算EXCEL程序

盾构机姿态控制测量计算EXCEL程序 本程序是我在无锡地铁建设工地学习和实践时与测量主管范伶俐共同编制的,程序的针对性和专业性相当强,恕不完全公开,如有从事隧道盾构机施工的工程师可与我进一步联系和探讨。 基本原理阐述: 1.地铁隧道分左线和右线,分别有线型要素,线型要素同公路一样,也是交点型的直曲表和纵断面图(有变坡点相关参数); 2.隧道断面也很简单,就是一个圆,这个圆的位置由圆心轴线控制,圆心轴线与设计线有几何关系,主要就是一个高程差,平面上是一致的,但在弯道处有一个向曲线内侧的偏移; 3.盾构机挖掘的断面也是一个圆,其圆心轴线理论上应与理论圆心轴线一致,但实际上会有所偏差,程序的目的就是要控制与预测这种偏差; 4.盾构机的几何形状可简化理解为一个圆柱体,其关键几何要素是:切口断面、盾尾断面、旋转轴线; 5.理论上讲,如果能测得盾构机切口断面和盾尾断面处轴线点的三维坐标(平面坐标和高程),盾构机的几何位置就确定了,并可根据理论上的路线位置比较,可的其偏差并进行相应的调整; 6.实际上,我们无法直接测得切口断面和盾尾断面处轴线点的三维坐标,因此在盾构机另外便于测量的位置设置两个观测标记,记为前标、后标,两个标记与盾构机的几何尺寸是确定的 ,因而可以通过测量前标和后标后,再通过相应的几何计算求得盾构机的实际位置,并进一步与理论位置进行比较; 7.实际上,盾构机本身有一套测量控制系统,就是在日志“无锡地铁一号线项目的学习与实践”中我们看到的那台自动跟踪的无键盘的天宝全站仪,这套自动控制系统已经能够满足盾构机的姿态控制了,但测量讲究校核,本程序就是利用人工观测数据的计算结果,来进行校核。 .

盾构人工姿态测量及测量精度研究20090416

基于前后标尺法的盾构姿态测量及精度研究 王维1,2 高俊强1 1)南京工业大学土木工程学院,江苏南京210009 2)同济大学测量与国土信息工程系,上海200092 【摘要】前后尺法是人工导向测量的传统方法,它的原理简单,容易操作,目前仍然是一种广泛使用姿态测量方法。文中详细讨论了前后尺法的测量原理和盾构姿态计算方法,并以导出的理论公式分析旋转角、平面偏差与高程偏差的测量精度,同时结合工程实践分析了姿态测量的最低精度,即盾构姿态平面精度约±10 mm,高程精度约±15 mm。上述结论对指导盾构推进和盾构姿态测量有重要的实际意义。 【关键词】盾构隧道,姿态测量,人工导向,前后尺法 Research on Shield Attitude Determination and Accuracy Based on Pre and Post Scale Method WANG Wei1,2 GAO Jun-qiang1 1)College of Civil Engineering, Nanjing University of Technology, Nanjing 210009, China; 2)Department of Surveying and Geo-informatics, Tongji University, Shanghai, 200092 【Abstract】Pre and post scale method is a traditional method of manual orientation measurement. Because of its convenience, it is still widely used to determine the attitude of the shield machine. The article discusses measuring principle of pre and post scale method and calculation method of attitude determination in detail, also discusses measuring accuracy of rotation angle, plane deviation and elevation deviation, then gives a theoretical formula. It analyses possible lowest accuracy combined with engineering practice, that is ±10 mm plane accuracy and ±15 mm elevation accuracy. The result is practical significance in shield attitude determination. 【Key words】shield tunnel, attitude determination, manual orientation, pre and post scale method 1.引言 前后尺法是人工测量盾构姿态的传统方法,它原理简单、操作简便,目前仍被施工单位广泛采用。在盾构始发前测量盾构机始发姿态,包括旋转角、坡度角,同时根据测量控制点测出盾尾、盾首中心(预先采用几何方法定出中心)以及前后水平尺中心平面坐标,利用井下水准点测量盾首、盾尾及标尺高程,通过坐标转换,得到前后标尺在盾构局部坐标系中的坐标[1,2]。 2.前后尺法测量原理 2.1前后尺 在盾构机内壁顶部中心轴线上,固定一根水平前尺和水平后尺(图1、2),测定中心坐标,并根据盾尾和盾首坐标计算出距盾尾2.051 m、距盾首2.572m,再分别计算出在盾构 王维,女(1982-),在读博士,南京工业大学土木工程学院,主要研究方向:精密工程测量,GPS精密定轨E-Mail:wangwei_nj@https://www.sodocs.net/doc/9b11853510.html, 江苏省测绘局科研项目,项目号:JSCHKY200808

地铁盾构施工中盾构机姿态定位测量的研究

地铁盾构施工中盾构机姿态定位测量的研究摘要:结合南京地铁一号线两个区间段地下隧道贯通的测量实践,简明地介绍了地铁建设中各种测量过程,并着重对盾构机姿态定位中的测量工作作了深入细致的研究,阐述了盾构机自动导向系统姿态定位测量的原理和方法,以及如何使用人工测量的方法来检核自动导向系统的准确性,分析了盾构机姿态定位检测的情况。关键词:地铁;自动导向系统;盾构 1 概述 随着城市建设的飞速发展,我国在各大城市都开展了地铁建设,为了满足盾构掘进按设计要求贯通(贯通误差必须小于芳O mm ),必须研究每一步测量工作所带来的误差,包括地面控制测量,竖井联系测量,地下导线测量,盾构机姿态定位测量 四个阶段。 本文主要以南京地铁南北线一期工程的 2 个区间隧道的贯通测量项目为背景探讨了地铁隧道施工中盾构机自动导向系统定位测量的功能及原理,并阐述了如何用棱镜法来检核自动导向系统的准确性。 2 盾构机自动导向系统的组成与功能现在的盾构机都装备有先进的自动导向系统,本区间盾构机上的自动导向系统为德国VMT公司的SLS -T系统,主要有以下四部分组成:(1)具有自动照准目标的全站仪。主要用于测量(水平和垂直的)角度和距离、发射激光束。(2)EL S (电子激光系统),亦称为标板或激光靶板。这是一台智能型传感器,ELS接受全站仪发出的激光束,测定水平方向和垂直方向的入射点。坡度和旋转也由该系统内的倾斜仪测量,偏角由ELS上激光器的入射角确认°ELS固定在盾构机的机身内,在安装时其位置就确定了,它相对于盾构机轴线的关系和参数就可以知道。(3)计算机及隧道掘进软件°SLS -T软件是自动导向系统的核心,它从全站仪和ELS等通信设备接受数据,盾构机的位置在该软件中计算,并以数字和图形的形式显示在计算机的屏幕上,操作系统采用Windows 2000,确保用户操作简便。(4)黄色箱子。它主要给全站仪供电,保证计算机和全站仪之间的通信和数 据传输。 3 盾构机自动导向定位的基本原理地铁隧道贯通测量中的地下控制导线是一条支导线,它指示着盾构的推进方向,导线点随着盾构机的推进延伸,导线点通常建立在管片的侧面仪器台上和右上侧内外架式的吊篮上,仪器采用强制归心(见图1),为了提高地下导线点的精度,应 尽量减少支导线点,拉长两导线点的距离(但又不能无限制的拉长),并尽可能布设近乎直伸的导线。一般两导线点的间距宜控制在150 m左右。

相关主题