搜档网
当前位置:搜档网 › 位移传感器的原理

位移传感器的原理

位移传感器的原理
位移传感器的原理

位移传感器

位移传感器又称为线性传感器,它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器。

电感式位移传感器是一种属于金属感应的线性器件,接通电源后,在开关的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。

电感式位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。位移传感器主要应用在自动化装备生产线对模拟量的智能控制。

位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用。

原理

计量光栅是利用光栅的莫尔条纹现象来测量位移的。“莫尔”原出于法文Moire,意思是水波纹。几百年前法国丝绸工人发现,当两层薄丝绸叠在一起时,将产生水波纹状花样;如果薄绸子相对运动,则花样也跟着移动,这种奇怪的花纹就是莫尔条纹。一般来说,只要是有一定周期的曲线簇重叠起来,便会产生莫尔条纹。计量光栅在实际应用上有透射光栅和反射光栅两种;按其作用原理又可分为辐射光栅和相位光栅;按其用途可分为直线光栅和圆光栅。下面以透射光栅为例加以讨论。透射光栅尺上均匀地刻有平行的刻线即栅线,a为刻线宽,b为两刻线之间缝宽,W=a+b称为光栅栅距。目前国内常用的光栅每毫米刻成10、25、50、100、250条等线条。光栅的横向莫尔条纹测位移,需要两块光栅。一块光栅称为主光栅,它的大小与测量范围相一致;另一块是很小的一块,称为指示光栅。为了测量位移,必须在主光栅侧加光源,在指示光栅侧加光电接收元件。当主光栅和指示光栅相对移动时,由于光栅的遮光作用而使莫尔条纹移动,固定在指示光栅侧的光电元件,将光强变化转换成电信号。由于光源的大小有限及光栅的衍射作用,使得信号为脉动信号。如图1,此信号是一直流信号和近视正弦的周期信号的叠加,周期信号是位移x的函数。每当x变化一个光栅栅距W,信号就变化一个周期,信号由b点变化到b’点。由于bb’= W,故b’点的状态与b点状态完全一样,只是在相位上增加了2π。

信号处理

1、辨向原理在实际应用中,位移具有两个方向,即选定一个方向后,位移有正负之分,因此用一个光电元件测定莫尔条纹信号确定不了位移方向。为了辨向,需要有π/2

相位差的两个莫尔条纹信号。如图2,在相距1/4条纹间距的位置上安放两个光电元件,得到两个相位差π/2的电信号u01和u02,经过整形后得到两个方波信号u01’和u02’。光栅正向移动时u01超前u02 90度,反向移动时u02超前u01 90度,故通过电路辨相可确定光栅运动方向。

2、细分技术随着对测量精度要求的提高,以栅距为单位已不能满足要求,需要采取适当的措施对莫尔条纹进行细分。所谓细分就是在莫尔条纹信号变化一个周期内,发出若干个脉冲,以减少脉冲当量。如一个周期内发出n个脉冲,则可使测量精度提高n备,而每个脉冲相当于原来栅距的1/n。由于细分后计数脉冲频率提高了n倍,因此也称n倍频。

通常用的有两种细分方法:其一、直接细分。在相差1/4莫尔条纹间距的位置上安放两个光电元件,可得到两个相位差90o的电信号,用反相器反相后就得到四个依次相差9 0o的交流信号。同样,在两莫尔条纹间放置四个依次相距1/4条纹间距的光电元件,也可获得四个相位差90o的交流信号,实现四倍频细分。其二、电路细分。

专用集成电路

四倍频专用集成电路QA740210同时具有辨相和四倍频细分的功能,可将两路正交的方波进行四倍频后产生两路加、减计数信号,可送双时钟可逆计数器进行加、减计数,也可直接送微型计算机(包括单片机)进行数据处理。

1、特点:

⑴、数字化微分电路:4路微分信号脉宽由主频周期决定,因此,是一致的,而且可在很大范围里方便地选择。

⑵、临界报警与过速报警两档速度提示:可在光栅运动速度接近极限值时给出临界报警信息,以便操作者及时控制光栅运动快慢。在速度超过极限值时本电路将给出出错信息。

⑶、绝对零位控制:绝对零位的设置将给操作者带来许多方便,如故障断电后的重新定位等。本电路有“到绝对零位开始计数”和“到绝对零位停止计数”,以及“与绝对零位无关”三种工作模式。

⑷、片选:本电路设有片选端,可以构成多标数显系统。

⑸、COMS工艺:输入输出的电压电流与4000系列CMOS及LSTTL电路兼容。

位移传感器的原理与应用

位移传感器的分类

1、根据运动方式分类:

直线位移传感器

1、根据运动方式分类:

直线位移传感器

原理:

直线位移传感器的功能在于把直线机械位移量转换成电信号。为了达到这一效果,通常将可变电阻滑轨定置在传感器的固定部位,通过滑片在滑轨上的位移来测量不同的阻值。传感器滑轨连接稳态直流电压,允许流过微安培的小电流,滑片和始端之间的电压,与滑片移动的长度成正比。将传感器用作分压器可最大限度降低对滑轨总阻值精确性的要求,因为由温度变化引起的阻值变化不会影响到测量结果。

LT直线位移传感器:

⊙广泛应用于注塑、机床及机械加工等行业

⊙无限分辨率

⊙行程:50至900mm

⊙独立线性度:±0.05%

⊙位移速度达到:5m/s、10 m/s可选

⊙工作温度:-30至+100℃

⊙多种电气连接方式

⊙保护等级:IP60(IP65可选)

角度位移传感器

2、根据材质分类:

金属膜传感器、导电塑料传感器、光电式传感器、磁敏式传感器、金属玻璃铀传感器、绕线传感器

电位器式位移传感器它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。图1中的电位器式位移传感器的可动电刷与被测物体相连。物体的位移引起电位器移动端的电阻变化。阻值的变化量反映了位移的量值,阻值的增加还是减小则表明了位移的方向。通常在电位器上通以电源电压,以把电阻变化转换为电压输出。线绕式电位器由于其电刷移动时电阻以匝电阻为阶梯而变化,其输出特性亦呈阶梯形。如果这种位移传感器在伺服系统中用作位移反馈元件,则过大的阶跃电压会引起系统振荡。因此在电位器的制作中应尽量减小每匝的电阻值。电位器式传感器的另一个主要缺点是易磨损。它的优点是:结构简单,输出信号大,使用方便,价格低廉。

霍耳式位移传感器它的测量原理是保持霍耳元件(见半导体磁敏元件)的激励电流不变,并使其在一个梯度均匀的磁场中移动,则所移动的位移正比于输出的霍耳电势。磁场梯度越大,灵敏度越高;梯度变化越均匀,霍耳电势与位移的关系越接近于线性。图2

中是三种产生梯度磁场的磁系统:a系统的线性范围窄,位移Z=0时,霍耳电势≠0;b系统当Z<2毫米时具有良好的线性,Z=0时,霍耳电势=0;c系统的灵敏度高,测量范围小于1毫米。图中N、S分别表示正、负磁极。霍耳式位移传感器的惯性小、频响高、工作可靠、寿命长,因此常用于将各种非电量转换成位移后再进行测量的场合。

光电式位移传感器它根据被测对象阻挡光通量的多少来测量对象的位移或几何尺寸。特点是属于非接触式测量,并可进行连续测量。光电式位移传感器常用于连续测量线材直径或在带材边缘位置控制系统中用作边缘位置传感器。

主要特性参数:

标称阻值:电位器上面所标示的阻值。

重复精度:此参数越小越好.

分辨率:位移传感器所能反馈的最小位移数值.此参数越小越好.导电塑料位移传感器

分辨率为无穷小.

允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电位器的精度。允许误差一般只要在

±20%以内就符合要求,因为一般位移传感器是以分压的方式来使用,具体电阻的大小

对传感器的数据采集没有影响.

线性精度:直线性误差.此参数越小越好.

寿命:导电塑料位移传感器都在200万次以上.

常用传感器特性:

导电塑料位移传感器:

用特殊工艺将DAP(邻苯二甲酸二稀丙脂)电阻浆料覆在绝缘机体上,加热聚合成电阻膜,或将DAP电阻粉热塑压在绝缘基体的凹槽内形成的实心体作为电阻体。特点是:平滑性好、分辩力优异耐磨性好、寿命长、动噪声小、可靠性极高、耐化学腐蚀。用于宇宙装置、导弹、飞机雷达天线的伺服系统等。

绕线位移传感器:是将康铜丝或镍铬合金丝作为电阻体,并把它绕在绝缘骨架上制成。绕线电位器特点是接触电阻小,精度高,温度系数小,其缺点是分辨力差,阻值偏低,高频特性差。主要用作分压器、变阻器、仪器中调零和工作点等。

金属玻璃铀位移传感器:

用丝网印刷法按照一定图形,将金属玻璃铀电阻浆料涂覆在陶瓷基体上,经高温烧结而成。特点是:阻值范围宽,耐热性好,过载能力强,耐潮,耐磨等都很好,是很有前途的电位器品种,缺点是接触电阻和电流噪声大。

金属膜位移传感器:

金属膜电位器的电阻体可由合金膜、金属氧化膜、金属箔等分别组成。特点是分辨力高、耐高温、温度系数小、动噪声小、平滑性好。

磁敏式位移传感器:

消除了机械接触,寿命长、可靠性高,缺点:对工作环境要求较高.

光电式位移传感器:

消除了机械接触,寿命长、可靠性高,缺点:数字信号输出,处理烦琐.

[编辑本段]

传感器市场发展前景

咨询公司INTECHNOCONSULTING的传感器市场报告显示,2008年全球传感器市场容量为506亿美元,预计2010年全球传感器市场可达600亿美元以上。调查显示,东欧、亚太区和加拿大成为传感器市场增长最快的地区,而美国、德国、日本依旧是传感器市场分布最大的地区。就世界范围而言,传感器市场上增长最快的依旧是汽车市场,占第二位的是过程控制市场,看好通讯市场前景。

一些传感器市场比如压力传感器、温度传感器、流量传感器、水平传感器已表现出成熟市场的特征。流量传感器、压力传感器、温度传感器的市场规模最大,分别占到整个传感器市场的21%、19%和14%。传感器市场的主要增长来自于无线传感器、MEMS(Micr o-Electro-MechanicalSystems,微机电系统)传感器、生物传感器等新兴传感器。其中,无线传感器在2007-2010年复合年增长率预计会超过25%。

目前,全球的传感器市场在不断变化的创新之中呈现出快速增长的趋势。有关专家指出,传感器领域的主要技术将在现有基础上予以延伸和提高,各国将竞相加速新一代传感器的开发和产业化,竞争也将日益激烈。新技术的发展将重新定义未来的传感器市场,比如无线传感器、光纤传感器、智能传感器和金属氧化传感器等新型传感器的出现与市场份额的扩大。

数字激光位移传感器

激光位移传感器可精确非接触测量被测物体的位置、位移等变化,主要应用于检测物的位移、厚度、振动、距离、直径等几何量的测量。

按照测量原理,激光位移传感器原理分为激光三角测量法和激光回波分析法,激光三角测量法一般适用于高精度、短距离的测量,而激光回波分析法则用于远距离测量。

1、激光三角测量法原理:

激光发射器通过镜头将可见红色激光射向被测物体表面,经物体反射的激光通过接收器镜头,被内部的CCD线性相机接收,根据不同的距离,CCD线性相机可以在不同的角度下“看见”这个光点。根据这个角度及已知的激光和相机之间的距离,数字信号处理器就能计算出传感器和被测物体之间的距离。同时,光束在接收元件的位置通过模拟和数字电路处理,并通过微处理器分析,计算出相应的输出值,并在用户设定的模拟量窗口内,按比例输出标准数据信号。如果使用开关量输出,则在设定的窗口内导通,窗口之外截止。另外,模拟量与开关量输出可独立设置检测窗口。
贝特威拥有业界最为齐全的高精度激光三角测量传感器,最高分辨率可以达到0.03um,最远检测距离可以达到5.4m,为高精度测量检测提供全面的解决方案。

2、激光位移传感器采用回波分析原理来测量距离以达到一定程度的精度。传感器内部是由处理器单元、回波处理单元、激光发射器、激光接收器等部分组成。激光位移传感器通过激光发射器每秒发射一百万个激光脉冲到检测物并返回至接收器,处理器计算激光脉冲遇到检测物并返回至接收器所需的时间,以此计算出距离值,该输出值是将上千次的测量结果进行的平均输出。激光回波分析法适合于长距离检测,但测量精度相对于激光三角测量法要低。

位移传感器的主要分类

位移传感器的主要分类 根据运动方式 直线位移传感器: 直线位移传感器的功能在于把直线机械位移量转换成电信号。 为了达到这一效果,通常将可变电阻滑轨定置在传感器的固定部位,通过滑片在滑轨上的位移来测量不同的阻值。传感器滑轨连接稳态直流电压,允许流过微安培的小电流,滑片和始端之间的电压,与滑片移动的长度成正比。将传感器用作分压器可最大限度降低对滑轨总阻值精确性的要求,因为由温度变化引起的阻值变化不会影响到测量结果。 角度位移传感器: 角度位移传感器应用于障碍处理:使用角度传感器来控制你的轮子可以间接的发现障碍物。原理非常简单:如果马达角度传感器构造运转,而齿轮不转,说明你的机器已经被障碍物给挡住了。此技术使用起来非常简单,而且非常有效;唯一要求就是运动的轮子不能在地板上打滑(或者说打滑次数太多),否则你将无法检测到障碍物。一个空转的齿轮连接到马达上就可以避免这个问题,这个轮子不是由马达驱动而是通过装置的运动带动它:在驱动轮旋转的过程中,如果惰轮停止了,说明你碰到障碍物了。 根据材质 电位器式位移传感器:它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。图1中的电位器式位移传感器的可动电刷与被测物体相连。物体的位移引起电位器移动端的电阻变化。阻值的变化量反映了位移的量值,阻值的增加还是减小则表明了位移的方向。通常在电位器上通以电源电压,以把电阻变化转换为电压输出。线绕式电位器由于其电刷移动时电阻以匝电阻为阶梯而变化,其输出特性亦呈阶梯形。如果这种位移传感器在伺服系统中用作位移反馈元件,则过大的阶跃电压会引起系统振荡。因此在电位器的制作中应尽量减小每匝的电阻值。电位器式传感器的另一个主要缺点是易磨损。它的优点是:结构简单,输出信号大,使用方便,价格低廉。 霍耳式位移传感器:它的测量原理是保持霍耳元件(见半导体磁敏元件)的激励电流不变,并使其在一个梯度均匀的磁场中移动,则所移动的位移正比于输出的霍耳电势。磁场梯度越大,灵敏度越高;梯度变化越均匀,霍耳电势与位移的关系越接近于线性。图2中是三种产生梯度磁场的磁系统:a系统的线性范围窄,位移Z=0时,霍耳电势≠0;b系统当Z<2毫米时具有良好的线性,Z=0时,霍耳电势=0;c系统的灵敏度高,测量范围小于1毫

位移传感器原理与分类

位移传感器原理与分类 传感器之家中将位移传感器分为线位移跟物位移两类,这是按照位移的特征分的。位移传感器就是测量空间中距离的大小,线位移就是在一条线上移动的长度,角位移就是转动的角度。下面就线位移做下介绍,线位移按原理分主要有电阻式、电容式、电感式、变压器式、电涡流式、激光式等等。前面三种主要用来测量小位移,中位移一般则用变压器式,大的位移则用电位器式的比较多,对于精密的场合,则需要选择激光式。 电容式位移传感器是把位移的变化换作电容的变化进行制作的。对于振动频率很高的环境条件下,最适合选用这种类型的传感器。它具有灵敏度高、能实现非接触量的测量,而且可以在恶劣场合下工作。它也有一些缺点,比如对连接线缆有很高的要求,它要有屏蔽性能;而且最好选用高频电源用来供电。现在做的最好的电容式位移传感器可以测量0.001微米的位移,误差非常小。 电感式位移传感器是将测量量换作互感的变化的传感器,它既可以测量角位移也可以测量线位移。目前常用到的电感式位移传感器有气隙式,面积式,螺管式三种。变气隙型中电感的变化与传感器中活动衔铁的位移相对应。变面积型是用铁芯与衔铁之间重合面积的变化来反映位移。螺管型是衔铁插入长度的变化导致电感变化的原理。

变压器式位移传感器是用途最广的一种位移传感器,线圈中感应电动势随着位移的变化而变化。这种传感器它的灵敏度都很高,有时都不用放大器。缺点在于质量一般比较大,不应用于高频场合。 电涡流式位移传感器是基于电涡流效应,它的感应参数是阻抗的变化,尽量使阻抗是位移的函数,它还与被测物体的形状跟尺寸有关。该传感器的量程一般在0到80毫米。 电阻式位移传感器是通过测量变化的电阻值来计算位移的变化,它通常分为电位器式跟应变式。前面一种适合测量位移大、精度要求不高的场合;后面一种是利用电阻应变效应,它具有线性度跟分辨率都比较高,失真小的优点。

位移传感器原理及应用课程设计[1]

题目:位移传感器的设计设计人员: 学号: 班级: 指导老师:许晓平、高宏才、陈焰日期:

位移传感器—光栅的原理和应用 一、概述 位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用(1)。 二、原理 计量光栅是利用光栅的莫尔条纹现象来测量位移的。“莫尔”原出于法文Moire,意思是水波纹。几百年前法国丝绸工人发现,当两层薄丝绸叠在一起时,将产生水波纹状花样;如果薄绸子相对运动,则花样也跟着移动,这种奇怪的花纹就是莫尔条纹。一般来说,只要是有一定周期的曲线簇重叠起来,便会产生莫尔条纹。计量光栅在实际应用上有透射光栅和反射光栅两种;按其作用原理又可分为幅射光栅和相位光栅;按其用途可分为直线光栅和圆光栅。下面以透射光栅为例加以讨论。透射光栅尺上均匀地刻有平行的刻线即栅线,a为刻线宽,b 为两刻线之间缝宽,W=a+b称为光栅栅距。目前国内常用的光栅每毫米刻成10、25、 50、100、250条等线条。光栅的横向莫尔条纹测位移,需要两块光栅。一块光栅称为主光栅,它的大小与测量范围相一致;另一块是很小的一块,称为指示光栅。为了测量位移,必须在主光栅侧加光源,在指示光栅侧加光电接收元件。当主光栅和指示光栅相对移动时,由于光栅的遮光作用而使莫尔条纹移动,固定在指示光栅侧的光电元件,将光强变化转换成电信号。由于光源的大小有限及光栅的衍射作用,使得信号为脉动信号。如图1,此信号是一直流信号和近视正弦的周期信号的叠加,周期信号是位移x的函数。每当x变化一个光栅栅距W,信号就变化一个周期,信号由b点变化到b’点。由于bb’=W,故b’点的状态与b点状态完全一样,只是在相位上增加了2π(2)。由图1可得光电信号为 u0=U平均+Umsin(π/2+2πX/W) 式中u0—光电元件输出的电压信号;

直线位移传感器

Sense it! Connect it! Bus it! Solve it!

2 公 司 简 介 TURCK·图尔克 TURCK (图尔克)是全球著名的自动化品牌,旗下囊括近15000种丰富多样的传感器产品、工业现场总线产品、过程自动化产品和各类接口及接插件产品,为工厂自动化及过程自动化提供了高效率和系统化的全方位解决方案。目前,总部位于德国的图尔克集团已在世界27个国家建立分公司、拥有超过3000名雇员,并通过代理与另外60个国家建立商业往来,年营业额近4亿欧元。 TURCK (图尔克)作为工业自动化领军企业已有40多年的历史。凭借世界一流的设计、生产技术、全系列的产品线、优异的质量和遍布全球的销售服务网络,TURCK 不仅能为用户提供及时专业的技术支持与定制产品,还能确保直接在现场为世界各地的客户提供优质的系统化解决方案。 秉承“信任、专业、忠诚、成功”的企业理念,TURCK (图尔克)总是力求为不同用户提供最切合需要的优质产品与服务,通过为客户增值而致力于客户的成功发展。TURCK (图尔克)产品已广泛应用于世界各国的不同行业,包括汽车制造、电力、食品饮料、石油化工、冶金、烟草、航空航天、机械、纺织、造纸、印刷、包装、轨道交通、物流、水泥建材、造船、电线及电缆制造、采矿、市政等行业,成为深受用户信赖的首选品牌。 图尔克·中国 1994年图尔克集团正式在中国投资设立分公司,以便最大化地满足中国市场的需求,并为本地客户提供零距离的定制化服务。同年9月8日,图尔克(天津)传感器有限公司作为德国图尔克集团的全资子公司,在天津经济技术开发区注册成立。 历经17年的稳健发展,集生产、销售、系统集成、工程服务为一体的图尔克中国公司,已逐步发展成为图尔克集团在亚太地区的生产及销售中心。目前,图尔克中国公司包括从事销售及市场营销的图尔克(天津)传感器有限公司、从事产品设计生产的图尔克(天津)科技有限公司、以及从事自控系统集成的图尔克(天津)自动化系统有限公司三家下属公司。 目前,图尔克中国公司年销售额逾4.6亿人民币、员工500余人,并分别在北京、上海、广州、武汉、沈阳、无锡、成都、西安等23个城市设立办事处,已成功为10000多家中国客户提供专业的产品和服务,客户遍布全国各行业。 图尔克是值得您信赖的“自动化元器件全系列供应商”和“全方位解决方案提供商”!

位移传感器的工作原理都有哪些

电位器式位移传感器,位移传感器它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。电位器式位移传感器的可动电刷与被测物体相连。 下面笔者来跟大家讲一下位移传感器的工作原理都有哪些 由于作为确定位置的活动磁环和敏感元件并无直接接触,位移传感器因此传感器可应用在极恶劣的工业环境中,不易受油渍、溶液、尘埃或其它污染的影响,IP防护等级在IP67以上。此外,传感器采用了高科技材料和先进的电子处理技术,因而它能应用在高温、高压和高振荡的环境中。传感器输出信号为绝对位移值,即使电源中断、重接,数据也不会丢失,更无须重新归零。由于敏感元件是非接触的,就算不断重复检测,也不会对传感器造成任何磨损,可以大大地提高检测的可靠性和使用寿命。 磁致伸缩位移传感器,是利用磁致伸缩原理、通过两个不同磁场相交产生一个应变脉冲信号来准确地测量位置的。测量元件是一根波导管,波导管内的敏感元件由特殊的磁致伸缩材料制成的。测量过程是由传感器的电子室内产生电流脉冲,该电流脉冲在波导管内传输,从而在波导管外产生一个圆周磁场,当该磁场和套在波导管上作为位置变化的活动磁环产生的磁场相交时,由于磁致伸缩的作

用,波导管内会产生一个应变机械波脉冲信号,这个应变机械波脉冲信号以固定的声音速度传输,并很快被电子室所检测到。 磁致伸缩位移传感器是根据磁致伸缩原理制造的高精度、长行程绝对位置测量的位移传感器。它采用非接触的测量方式,由于测量用的活动磁环和传感器自身并无直接接触,不至于被摩擦、磨损,因而其使用寿命长、环境适应能力强,可靠性高,安全性好,便于系统自动化工作,即使在恶劣的工业环境下,也能正常工作。此外,它还能承受高温、高压和强振动,现已被广泛应用于机械位移的测量、控制中。 杭州奥仕通自动化系统有限公司成立于2011年,是一家专业提供塑料机械行业自动化系统解决方案的高科技技术企业。公司为意大利杰佛伦(GEFRAN)和法国赛德(CELDUC)在中国大陆地区的核心代理商,主要产品有塑料机械控制器(PLC)、伺服驱动器、位移传感器、压力传感器、注射力和合模力传感器、高温熔体压力传感器、固态继电器(SSR)、温控表等。

电涡流位移传感器的原理

电涡流位移传感器的工作原理: 电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。 在高速旋转机械和往复式运动机 械状态分析,振动研究、分析测 量中,对非接触的高精度振动、 位移信号,能连续准确地采集到 转子振动状态的多种参数。如轴 的径向振动、振幅以及轴向位置。 电涡流传感器以其长期工作可靠 性好、测量围宽、灵敏度高、分辨率高等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。 根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。而根据电涡流效应制成的传感器称为电涡流式传感器。

前置器中高频振荡电流通过延伸电缆流入探头线圈, 在探头头部的线圈中产生交变的磁场。当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I和频率ω参数来描述。则线圈特征阻抗可用Z=F(τ, ξ, б, D, I, ω)函数来表示。通常我们能做到控制τ, ξ, б, I, ω这几个参数在一定围不变,则线圈的特征阻抗Z就成为距离D的单值函数,虽然它整个函数是一非线性的,其函数特征为“S”型曲线,但可以选取它近似为线性的一段。于此,通过前置器电子线路的处理,将线圈阻抗Z的变化,即头部体线圈与金属导体的距离D的变化转化成电压或电流的变化。输出信号的大小随探头到被测体表面之间的间距而

直线位移传感器的接线方法与注意事项

1、直线位移传感器(俗称电子尺),供电电压一般在5v——36v为宜,不要超过36v,否则容易烧坏线路。 2、供电电压要稳定,工业电源要求±0.1%的稳定性,比如基准电压10v,允许有±0.01v的波动,否则,会导致显示的较大波动。如果这时的显示波动幅度不超过波动电压的波动幅度,直线位移传感器(电子尺)就属于正常。 3、供电电源要有足够的容量,如果电源容量太小,容易发生如下情况:合模运动会导致射胶直线位移传感器(电子尺)显示跳动,或熔胶运动会导致合模电子尺的显示波动。特别是电磁阀驱动电源于电子尺供电电源在一起时容易出现上述情况,严重时可以用万用表的电压档测量到电压的波动。如果在排除了静电干扰、高频干扰、对中性不好的情况下仍不能解决问题,也可以怀疑是电源的功率偏小。 4、不能接错直线位移传感器(电子尺)的三条线,1#、3#线是电源线,2#是输出线除1#、3#线电源线可以调换外,2#线只能是输出线。上述线一旦接错,将出现线性误差大,控制精度差,容易显示跳动等现象。如果出现控制非常困难,就应该怀疑是接错线。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.sodocs.net/doc/9b18224003.html,。

2021年LVDT式位移传感器的原理之令狐采学创编

LVDT式位移传感器的原理 欧阳光明(2021.03.07) Linearity Variable Differential Transducers 简称 LVDT,中文译名为差动变压器式位移传感器,在世界范围内盛销数十年而不衰,足以看出它的各项性能在当前工业过程检测与试验领域中的适应性。随着系统对检测元件提出越来越高的要求同时,它的技术性能在不断的完善与发展,应用领域也在不断地更新与扩大。 差动变压器(LVDT)的原理比较简单。它就是在一个线圈骨架(1)上均匀绕制一个一次线圈(2)作励磁。再在两侧绕制两个二次线圈(3与4),与线圈同轴放置一个铁芯(5),通过测杆(6)与可移动的物体连接。线圈外侧还有一个磁罩(7)作屏蔽,如图1-1示。 在未引入铁芯以前,一次线圈通入交流电流后产生一个左右对称的沿轴向分布的交变磁场。交变磁场在两个对称放置的二次线圈上产生的感应电动势当然相等,引入铁芯后,铁芯在一次交变磁场的激励下,产生沿铁芯中心轴(当然也是线圈的中心轴)分布并与铁芯对称的交变磁场。这样,线圈中心轴上的磁感应强度就成为铁芯位置的轴向分布函数,于是两个二次线圈的感应电动势Es1与Es2也成了铁芯位置的函数。如果设计得当,两者可成为线性函数关系。将两个二次线圈差接后,即可获得与铁芯位移成线性关系的二次输出:Es=Es1Es2。这就是LVDT的简单工作原理(如图12示)。 LVDT式位移传感器的原理二 差动变压器式位移传感器(LVDT)为电磁感应原理,其结构示意见图一。

(图一:LVDT工作原理图) 采用环氧树脂,不锈钢等材料作为线圈骨架,用不同线径的漆包线在骨架上绕制线圈。与传统的电力变压器不同。LVDT是一种开磁路弱磁耦合的测量元件。在骨架上绕制一组初级线圈,两组次级线圈,其工作方式依赖于在线圈骨架内磁芯的移动,当初级线圈供给一定频率的交变电压(激励电压)时,铁芯在线圈内移动就改变了空间磁场分布从而改变了初,次级线圈之间的互感量,次级线圈就产生感应电动势,随着铁芯位置的不同,互感量也不同, 刺激产生的感应电动势也不同,这样就将铁芯的位移量(实际的铁芯是通过测杆与被测物保持相接触,也就是被测物体的位移量)变成电压信号输出,由于两个次级线圈电压极性相反,所以传感器的输出是两个次级线圈电压之差,其电压差值与位移量成线性关系 (图二LVDT电原理图) 当铁芯处在线圈正中间位置时两次级线圈感应电压相等但相位相反,其电压差值为零,当铁芯往右移动时,右边的次级线圈感应的电压大于左边。两线圈输出的电压差值大小随铁芯位移而成线性变化(第一象限的实线段部分),这是LVDT 有效的测量范围(一半)。当铁芯继续往右移动时两级线圈输出电压的差值不与铁芯位移成线性关系,此为缓冲,非测量区(虚线段)。反之,当铁芯自线圈中间位置向左边移动亦然。零点两边的实线段一般是对称的测量范围,只不过两者都是交流信号而相位差180″。

位移传感器的工作原理

位移传感器又称为线性传感器,它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器. 该位移传感器是一种属于金属感应的线性器件,接通电源后,在开关的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。 该位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。位移传感器主要应用在自动化装备生产线对模拟量的智能控制。 磁致伸缩线性位移传感器的工作原理 磁致伸缩线性位移传感器的工作原理:当工作时,由电子仓内电子电路产生一起始脉冲,此起始脉冲在波导丝中传输时,同时产生了一沿波导丝方向前进的旋转磁场,当这个磁场与磁环或浮球中的永久磁场相遇时,产生磁致伸缩效应,使波导丝发生扭动,这一扭动被安装在电子仓内的拾能机构所感知并转换成相应的电流脉冲,通过电子电路计算出两个脉冲之间的时间差,即可精确测出被测的位移和液位。该产品主要应用于要求测量精度高、使用环境较恶劣的位移和液位测量系统中。具有精度高、重复性好、稳定可靠、非接触式测量、寿命长、安装方便、环境适应性强等特点。它的输出信号是一个真正的绝对位置输出,而不是比例的或需要再放大处理的信号,所以不存在信号漂移或变值的情况,因此不必像其它液位传感器一样需要定期重标和维护;正是因为它的输出信号为绝对值,所以即使电源中断重新接通也不会对数据接收构成问题,更无须重新归回零位。与其它液位变送器或液位计相比有明显的优势,它可广泛应用于石油、化工、制药、食品、饮料等行业,对各种液罐的液位进行计量和控制。作为位移传感器,它不但可以测量运动物体的直线位移,而且还可同时给出运动物体的速度模拟信号。 电涡流传感器是由DJ型前置放大器和电涡流探头组合构成,它是一种趋近式传感系统。由于其长期工作可靠性好,灵敏度高,抗干扰能力强,采用非接触测量,响应速度快,耐高温,能在油、汽、水等恶劣环境下长期连续工作,检测不受油污、蒸汽等介质的影响,已广泛应用于电力、石化、冶金、钢铁、航空航天等大中型企业,对各种旋转机械的轴位移、振动、转速、胀差、偏心、油膜厚度等进行在线监测和安全保护,为精密诊断系统提供了全息动态特性,有效地对设备进行保护。电涡流位移传感器系统主要包括探头、延伸电缆(可选)、前置器和附件。线性范围宽、动态响应好、抗干扰能力强。 电涡流传感器是以高频电涡流效应为原理的非接触式位移传感器。前置器内产生的高频电流从振荡器流入探头线圈中,线圈就产生了一个高频电磁场。当被测金属的表面靠近该线圈时,由于高频电磁场的作用,在金属表面产生感应电流,即电涡流。该电流产生一个交变磁场,方向与线圈磁场相反,这二个磁场相互迭加就改变了原线圈的阻抗。所以探头与被测金属表面距离的变化可通过探头线圈阻抗的变化来测量。前置器根据探头线圈阻抗的变化输出一个与距离成正比的直流电压。 此下为电阻式位移传感器:

激光位移传感器的工作原理

ZLDS10河定制激光位移传感器 量程:2?1000m(可定制) 精度:最高0.1% (玻璃0.2%) 分辨率:最高0.03% 频率响应:2K.5K.8K.10K 基本原理是光学三角法: 半导体激光器1被镜片2聚焦到被测物体6。反射光被镜片3收集,投射到CCD 阵列4上;信号处理器5通过三角函数计算阵列4上的光点位置得到距物体的距离。 激光传感器原理与应用 激光传感器是利用激光技术进行测量的传感器。它由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。 激光和激光器一一激光是20世纪60年代出现的最重大的科学技术成就之一。它发展迅速,已广泛应用于国防、生产、医学和非电测量等各方面。激光与普通光不同,需要用激光器产生。激光器的工作物质,在正常状态下,多数原子处于稳定的低能级E1,在适当频率的外界光线的作用下,处于低能级的原子吸收光子能量受激发而跃迁到高能级E2。光子能量E=E2-E1=hv,式中h为普朗克常数,v为光子频率。反之,在频率为v的光的诱发下,处于能级E2的原子会跃迁到低能级释放能量而发光,称为受激辐射。激光器首先使工作物质的原子反常地多数处于高能级(即粒子数反转分布),就能使受激辐射过程占优势,从而使频率为v 的诱发光得到增强,并可通过平行的反射镜形成雪崩式的放大作用而产生强大的受激辐射光,简称激光。激光具有3个重要特性: (1)高方向性(即高定向性,光速发散角小),激光束在几公里外的扩展范围不过几厘米; (2)高单色性,激光的频率宽度比普通光小10倍以上; (3)高亮度,利用激光束会聚最高可产生达几百万度的温度。

光栅尺的工作原理

光栅尺工作原理 常见光栅的工作原理都是根据物理上莫尔条纹的形成原理进行工作的。图4-9是其工作原理图。当使指示光栅上的线纹与标尺光栅上的线纹成一角度 来放置两光栅尺时,必然会造成两光栅尺上的线纹互相交叉。在光源的照射下,交叉点近旁的小区域内由于黑色线纹重叠,因而遮光面积最小,挡光效应最弱,光的累积作用使得这个区域出现亮带。相反,距交叉点较远的区域,因两光栅尺不透明的黑色线纹的重叠部分变得越来越少,不透明区域面积逐渐变大,即遮光面积逐渐变大,使得挡光效应变强,只有较少的光线能通过这个区域透过光栅,使这个区域出现暗带。这些与光栅线纹几乎垂直,相间出现的亮、暗带就是莫尔条纹。莫尔条纹具有以下性质: (1) 当用平行光束照射光栅时,透过莫尔条纹的光强度分布近似于余弦函数。 (2) 若用W表示莫尔条纹的宽度,d表示光栅的栅距,θ表示两光栅尺线纹的夹角,则它们之间的几何关系为W=d/sin当 角很小时,上式可近似写W=d/θ 若取d=0.01mm,θ=0.01rad,则由上式可得W=1mm。这说明,无需复杂的光学系统和电子系统,利用光的干涉现象,就能把光栅的栅距转换成放大100倍的莫尔条纹的宽度。这种放大作用是光栅的一个重要特点。 (3) 由于莫尔条纹是由若干条光栅线纹共同干涉形成的,所以莫尔条纹对光栅个别线纹之间的栅距误差具有平均效应,能消除光栅栅距不均匀所造成的影响。 (4) 莫尔条纹的移动与两光栅尺之间的相对移动相对应。两光栅尺相对移动一个栅距d,莫尔条纹便相应移动一个莫尔条纹宽度W,其方向与两光栅尺相对移动的方向垂直,且当两光栅尺相对移动的方向改变时,莫尔条纹移动的方向也随之改变。 根据上述莫尔条纹的特性,假如我们在莫尔条纹移动的方向上开4个观察窗口A,B,C,D,且使这4个窗口两两相距1/4莫尔条纹宽度,即W/4。由上述讨论可知,当两光栅尺相对移动时,莫尔条纹随之移动,从4个观察窗口A,B,C,D可以得到4个在相位上依次超前或滞后(取决于两光栅尺相对移动的方向)1/4周期(即π/2)的近似于余弦函数的光强度变化过程,用表示,见图4-9(c)。若采用光敏元件来检测,光敏元件把透过观察窗口的光强度变化 转换成相应的电压信号,设为 。根据这4个电压信号,可以检测出光栅尺的相对移动。 1.位移大小的检测 由于莫尔条纹的移动与两光栅尺之间的相对移动是相对应的,故通过检测 这4个电压信号的变化情况,便可相应地检测出两光栅尺之间的相对移动。 每变化一个周期,即莫尔条纹每变化一个周期,表明两光栅尺相对移动了一个栅距的距离;若两光栅尺之间的相对移动不到一个栅距,因 是余弦函数,故根据 之值也可以计算出其相对移动的距离。 2. 位移方向的检测 在图4-9(a)中,若标尺光栅固定不动,指示光栅沿正方向移动,这时,莫尔条纹相应地沿向下的方向移动,透过观察窗口A和B,光敏元件检测到的光强度变化过程 和及输出的相应的电压信号和如图4-10(a)所示,在这种情况下,滞后的相位为/2;反之,若标尺光栅固定不动,指示光栅沿负方向移动,这时,莫尔条纹则相应地沿向上的方向移动,透过观察窗口A和B,光敏元件检测到的光强度变化过程和 及输出的相应的电压信号和如图4-10(b)所示,在这种情况下,超前的相位为/2。因此,根据和两信号相互间的超前和滞后关系,便可确定出两光栅尺之间的相对移动方向。 工作原理: 直线光栅尺和旋转编码器均依据相对运动的原理来产生光信号,这些信号经过光电器件的转换处理后,用来检测机械装置的位移。FAGOR公司反馈产品采用两种不同的材料来产生反馈信

直线位移传感器常见使用问题

直线位移传感器常见问题 问题一:传感器供电电源容量小 供电电源容量不足,就会造成以下的情况:熔胶的运动会使合模电子尺的显示变换,有波动,或者合模的运动会使射胶电子尺的显示波动,造成测量误差变大。如果电磁阀的驱动电源与直线位移传感器供电电源共用的时候,更容易出现这种情况。 问题二、调频干扰和静电干扰 调频干扰和静电干扰都有可能让直线位移传感器的电子尺的显示数字跳动的。所以,电子尺的信号线与设备的强电线路要分开线槽。电子尺必须强制性地接地。信号线需要使用屏蔽线,而且电箱的一段应该跟屏蔽线接地的。如果有高频干扰的时候,通常使用万用表的电压测量就会显示正常,但是显示数字就是会跳动不停的;而出现静电干扰时,出现的情况也是跟高频干扰一样的。要证明看是否是静电干扰时,只需用一段电源线把电子尺的封盖螺丝跟机器上的某一些的金属短接起来就可以了,只要一短接起来,静电干扰就会马上消除掉。但是如果要消除掉高频干扰就很难用上面的方法了,直链淀粉检测仪可以试下暂停高频干扰源,看显示结果会不会更好,以此来判断是不是高频干扰的问题。 问题三、显示数据有规律地跳动,或者是没有显示数据 出现这种情况就需要检查连接线绝缘是不是出现破损的现象,并且跟机器的外壳很有规律地接触而导致的对地短路。 问题四、传感器的对中性、平行度以及角度有那些要求 安装直线位移传感器的对中性需要很好,但是平行度可以允许有±0.5mm的误差,角度可以允许有±12°的误差。但是如果平行度误差和角度误差都是偏大的话,这样会出现显示数字跳动的情况。粘度测定仪那么出现这样的情况的时候,必须要对平行度和角度进行调整了。 问题五、传感器接线错误 直线位移传感器的三条线是不可以接错的,电源线和输出线是不可以调换的。如果上面的线接错的话,就会出现线性误差很大的情况,要控制的话是很难的,控制的精度也会变得很差,而显示很容易出现跳动的现象等等。 以上回答仅供参考。

LVDT式位移传感器的原理

L V D T式位移传感器的原 理 The Standardization Office was revised on the afternoon of December 13, 2020

LVDT式位移传感器的原理 Linearity Variable Differential Transducers简称 LVDT,中文译名为差动变压器式位移传感器,在世界范围内盛销数十年而不衰,足以看出它的各项性能在当前工业过程检测与试验领域中的适应性。随着系统对检测元件提出越来越高的要求同时,它的技术性能在不断的完善与发展,应用领域也在不断地更新与扩大。 差动变压器(LVDT)的原理比较简单。它就是在一个线圈骨架(1)上均匀绕制一个一次线圈(2)作励磁。再在两侧绕制两个二次线圈(3与4),与线圈同轴放置一个铁芯(5),通过测杆(6)与可移动的物体连接。线圈外侧还有一个磁罩(7)作屏蔽,如图1-1示。 在未引入铁芯以前,一次线圈通入交流电流后产生一个左右对称的沿轴向分布的交变磁场。交变磁场在两个对称放置的二次线圈上产生的感应电动势当然相等,引入铁芯后,铁芯在一次交变磁场的激励下,产生沿铁芯中心轴(当然也是线圈的中心轴)分布并与铁芯对称的交变磁场。这样,线圈中心轴上的磁感应强度就成为铁芯位置的轴向分布函数,于是两个二次线圈的感应电动势Es1与Es2也成了铁芯位置的函数。如果设计得当,两者可成为线性函数关系。将两个二次线圈差接后,即可获得与铁芯位移成线性关系的二次输出:Es=Es1-Es2。这就是LVDT的简单工作原理(如图1-2示)。

LVDT式位移传感器的原理二 差动变压器式位移传感器(LVDT)为电磁感应原理,其结构示意见图一。

激光位移传感器的工作原理复习进程

激光位移传感器的工 作原理

ZLDS10X可定制激光位移传感器 量程: 2~1000mm(可定制) 精度: 最高0.1%(玻璃0.2%) 分辨率: 最高0.03% 频率响应: 2K.5K.8K.10K 基本原理是光学三角法: 半导体激光器1被镜片2聚焦到被测物体6。反射光被镜片3收集,投射到CCD 阵列4上;信号处理器5通过三角函数计算阵列4上的光点位置得到距物体的距离。 激光传感器原理与应用 激光传感器是利用激光技术进行测量的传感器。它由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。 激光和激光器——激光是20世纪60年代出现的最重大的科学技术成就之一。它发展迅速,已广泛应用于国防、生产、医学和非电测量等各方面。激光与普通光不同,需要用激光器产生。激光器的工作物质,在正常状态下,多数原子处于稳定的低能级E1,在适当频率的外界光线的作用下,处于低能级的原子吸

收光子能量受激发而跃迁到高能级E2。光子能量E=E2-E1=hv,式中h为普朗克常数,v为光子频率。反之,在频率为v的光的诱发下,处于能级 E2的原子会跃迁到低能级释放能量而发光,称为受激辐射。激光器首先使工作物质的原子反常地多数处于高能级(即粒子数反转分布),就能使受激辐射过程占优势,从而使频率为v的诱发光得到增强,并可通过平行的反射镜形成雪崩式的放大作用而产生强大的受激辐射光,简称激光。激光具有3个重要特性: (1)高方向性(即高定向性,光速发散角小),激光束在几公里外的扩展范围不过几厘米; (2)高单色性,激光的频率宽度比普通光小10倍以上; (3)高亮度,利用激光束会聚最高可产生达几百万度的温度。 激光器按工作物质可分为4种: (1)固体激光器:它的工作物质是固体。常用的有红宝石激光器、掺钕的钇铝石榴石激光器 (即YAG激光器)和钕玻璃激光器等。它们的结构大致相同,特点是小而坚固、功率高,钕玻璃激光器是目前脉冲输出功率最高的器件,已达到数十兆瓦。 (2)气体激光器:它的工作物质为气体。现已有各种气体原子、离子、金属蒸气、气体分子激光器。常用的有二氧化碳激光器、氦氖激光器和一氧化碳激光器,其形状如普通放电管,特点是输出稳定,单色性好,寿命长,但功率较小,转换效率较低。 (3)液体激光器:它又可分为螯合物激光器、无机液体激光器和有机染料激光器,其中最重要的是有机染料激光器,它的最大特点是波长连续可调。 (4)半导体激光器:它是较年轻的一种激光器,其中较成熟的是砷化镓激光器。特点是效率高、体积小、重量轻、结构简单,适宜于在飞机、军舰、坦克上以及步兵随身携带。可制成测距仪和瞄准器。但输出功率较小、定向性较差、受环境温度影响较大。 应用——利用激光的高方向性、高单色性和高亮度等特点可实现无接触远距离测量。激光传感器常用于长度、距离、振动、速度、方位等物理量的测量,还可用于探伤和大气污染物的监测等。 激光测长—— 精密测量长度是精密机械制造工业和光学加工工业的关键技术之一。现代长度

对位移传感器的认识

对位移传感器的认识 桥梁试验是指应用测试手段,对桥梁结构的整体或主要部件进行检测,了解桥梁结构及其部件的工作状态和承载能力,以验证桥梁结构的设计计算理论,检验施工质量和发现运用中存在的问题等。 桥梁试验用的设备可分为机械式测试仪器,电测仪器和光测仪器三大类。桥梁常使用的机械式测试仪器,主要有应变计、位移计和振动仪等三大类。电测仪器一般由传感器、电子测量仪器(主机)和指示记录装置组成。 一,概述 传感器。根据其测试内容的不同,可分为应变传感器、反力传感器、位移传感器、振动传感器等。根据其转换的原理不同,可分为电阻式传感器、电感式传感器、电容式传感器、磁电式传感器、压电式传感器等。其中电阻应变片是在桥梁电测中应用最广泛的一种传感器,它是利用一些金属丝的电阻随其在长度方向的应变,在一定范围内保持线性关系的原理制成的。为了增大电阻的变化量和减少应变片的长度,通常采用高电阻率的电阻丝绕制成栅状,做成应变片。测试时,把它牢固地粘贴在测点上,当测点处的基材发生应变时,电阻应变片随之发生应变,其电阻值也作相应的改变,这就达到了非电量向电量的转换。电阻应变片不但可以测量应变,而且在加上一些附件之后,可以对位移和振动等进行测量。 位移传感器又称为线性传感器,它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,位移传感器超声波式位移传感器,霍尔式位移传感器。电感式位移传感器是一种属于金属感应的线性器件,接通电源后,在开关的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。 二,各种传感器的特点 电感式位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。位移传感器主要应用在自动化装备生产线对模拟量的智能控制。 光电式位移传感器利用激光三角反射法进行测量,对被测物体材质没有任何要求,主要影响为环境光强和被测面是否平整。比如公路测量用到真尚有的激光位移传感器,就对传感器进行了特殊配置,与普通情况不一样。 位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用。 三,辨向原理 在实际应用中,位移具有两个方向,即选定一个方向后,位移有正负之分,因此用一个光电元件测定莫尔条纹信号确定不了位移方向。为了辨向,需要有π/2相位差的两个莫尔条纹信号。如图2,在相距1/4条纹间距的位置上安放两个光电元件,得到两个相位差π/2的电信号u01和u02,经过整形后得到两个方

位移传感器的发展现状.doc

《材料工程检测技术》课程作业(二): 位移传感器的发展现状概述 课程: 任课老师: 学院(系): 专业: 学生姓名: 学号:

1 位移传感器 位移是指物体位置对参考点产生的偏移量,是指物体相对于某参考坐标系一点的距离的变化量,它是描述物体空间位置变化的物理量。位移传感器又称为线性传感器,是将位移转换成电量的传感器。位移传感器的发展经历了两个阶段,经典位移传感器阶段和半导体位移传感器阶段。 2 位移传感器的分类 2.1 电位器式 电位器位移传感器分为绕线电位器和非绕线电位器2种:绕线电位器一般由电阻丝烧制在绝缘骨架上,由电刷引出与滑动点电阻对应的输入变化。电刷由待测量位移部分拖动,输出与位移成正比的电阻或电压的变化;常见的非线绕式电位器位移传感器是在绝缘基片上制成各种薄膜元件,如合成膜式、金属膜式、导电塑料和导电玻璃釉电位器等。 2.2 电阻应变式 传感器是由弹性敏感元件和电阻应变片构成,当测量杆随试件产生位移时,弹性敏感元件在感受到测量杆变化而产生变形,其表面产生的应变与测量杆的位移成线性关系。这种传感器具有线性好、分辨率较高、结构简单和使用方便等特点,其位移测量范围较小,通常在0.1um-0.1mm之间,测量精度小于2% ,线性度为0.1%一0.5%。 2.3 电容式 电容传感器通过位移来改变电容两个极板之间的距离,即将位移量转换成电容变化量进行测量的。 它具有功率小、阻抗高、动态特性好、可进行非接触测量等优点;但是电容传感器存在寄生电容和分布电容,会影响测量精度,且常用的变隙式电容传感器存在测量量程小,存在非线性误差等缺点。一般使用极距变化型电容式位移传感器和面积变化型电容式位移传感器。 2.4 电感式 电感式传感器利用电磁感应将被测位移转换成线圈的自感系数和互感系数的变化,再由电路转换为电压或电流的变化量输出,实现非电量到电量的转换。

光栅尺工作原理

光栅尺位移传感器原理简介及维护注意事项 一、光栅尺是什么? 轨道旁边的黄色金属条,与其对 应部位,在移载台底部装有光读 头 定义: 光栅尺位移传感器(简称光栅尺),是利用光栅的光学原理工作的测量反馈装置。 光栅尺位移传感器经常应用于机床与现在加工中心以及测量仪器等方面,可用作 直线位移或者角位移的检测。其测量输出的信号为数字脉冲,具有检测范围大, 检测精度高,响应速度快的特点。 二、光栅尺的分类、构造 1)分类: 光栅尺位移传感器按照制造方法和光学原理的不同,分为透射光栅和反射光栅。 ●透射光栅指的玻璃光栅. ●反射光栅指的钢带光栅 2)结构: 光栅尺位移传感器是由标尺光栅和光栅读数头两部分组成。标尺光栅一般固定在机 床活动部件上,光栅读数头装在机床固定部件上,指示光栅装在光栅读数头中。下图所示的 就是光栅尺位移传感器的结构。

三、光栅尺的工作原理? 常见光栅的工作原理都是根据物理上莫尔条纹的形成原理进行工作的。(关于莫尔条纹的原理,可参考相关文献) 简单的说:光读头通过检测莫尔条纹个数,来“读取”光栅刻度,然后再根据驱动电路的作用,计算出光栅尺的位移和速度。 莫尔条纹 四、光栅尺的维护 1)尽可能外加保护罩,并及时清理溅落在尺上的切屑和油液,严格防止任何异物进入光栅尺传感器壳体内部。 2)定期检查各安装联接螺钉是否松动、定期使用干燥的洁净布擦拭表。 3)光栅尺位移传感器严禁剧烈震动及摔打、踩踏,以免破坏光栅尺,如光栅尺断裂,光

栅尺传感器即失效了。 4)不要自行拆开光栅尺位移传感器,更不能任意改动主栅尺与副栅尺的相对间距,否则一方面可能破坏光栅尺传感器的精度;另一方面还可能造成主栅尺与副栅尺的相对摩擦,损坏铬层也就损坏了栅线,以而造成光栅尺报废。 5)应注意防止油污及水污染、硬物划伤光栅尺面,以免破坏光栅尺线条纹分布,引起测量误差。 6)光栅尺位移传感器应尽量避免在有严重腐蚀作用的环境中工作,以免腐蚀光栅铬层及光栅尺表面,破坏光栅尺质量。

角度传感器工作原理及应用简介

角度传感器工作原理及应用简介 角度位移传感器是利用角度变化来定位物体位置的电子元件。适用于汽车,工程机械,宇宙装置、导弹、飞机雷达天线的伺服系统以及注塑机,木工机械,印刷机,电子尺,机器人,工程监测,电脑控制运动器械等需要精确测量位移的场合。本文介绍角度位移传感器原理及其应用实例。角度位移传感器原理 角度传感器用来检测角度的。它的身体中有一个孔,可以配合乐高的轴。当连结到RCX 上时,轴每转过1/16圈,角度传感器就会计数一次。往一个方向转动时,计数增加,转动方向改变时,计数减少。计数与角度传感器的初始位置有关。当初始化角度传感器时,它的计数值被设置为0,如果需要,你可以用编程把它重新复位。 角度位移传感器实例 如果把角度传感器连接到马达和轮子之间的任何一根传动轴上,必须将正确的传动比算入所读的数据。举一个有关计算的例子。在你的机器人身上,马达以3:1的传动比与主轮连接。角度传感器直接连接在马达上。所以它与主动轮的传动比也是3:1。也就是说,角度传感器转三周,主动轮转一周。角度传感器每旋转一周计16个单位,所以16*3=48个增量相当于主动轮旋转一周。现在,我们需要知道齿轮的圆周来计算行进距离。幸运地是,每一个LEGO齿轮的轮胎上面都会标有自身的直径。我们选择了体积最大的有轴的轮子,直径是81.6CM(乐高使用的是公制单位),因此它的周长是81.6=81.63.14256.22CM。现在已知量都有了:齿轮的运行距离由48除角度所记录的增量然后再乘以256。我们总结一下。称R 为角度传感器的分辨率(每旋转一周计数值),G是角度传感器和齿轮之间的传动比率。我们定义I为轮子旋转一周角度传感器的增量。即: I=GR 在例子中,G为3,对于乐高角度传感器来说,R一直为16.因此,我们可以得到: I=316=48 每旋转一次,齿轮所经过的距离正是它的周长C,应用这个方程式,利用其直径,你可以得出这个结论。

直线位移传感器的使用要求

一、保证供电电源的稳定性 供电电源要求±0.1%的稳定性,要不然会导致显示的圈套波动。要保障显示圈套的波动幅度不超过波动电压的波动幅度。 二、预防静电导致的干扰 预防静电干扰的措施有:位移传感器的信号线采用屏蔽线,且与电源线分开线槽布置;电子尺安装在强制接地的支架上,保证电子尺外壳良好接地;信号的屏蔽线在电箱的一端接地。电子尺显示数字跳动的时候,一般就有干扰信号在里面,这时可用万用表进行电压。验证是不是静电产生的干扰,可以用一段电源线把电子尺的封盖螺丝与机器上某一点金属短接,这时静电干扰就会马上消除。 三、电子尺三条线的接法 “1”、“3”线是电源线,“2”是输出线。这三条线一旦接错,将会产生很大的线性误差。 四、供电电源容量的要求 如果电源容量过小,容易发生如下情况:合模运动会导致射胶电子尺显示跳动,或熔胶运动会导致合模电子尺的显示波动。特别是在当电磁阀驱动电源与电子尺供电电源在一起时容易出现这种情况,严重时用万用表的电压档可以测量到电压的波动。如果出现这种情况,首先排除是不是静电干扰和高频干扰,对中性不好的情况下仍不能解决问题,则可以怀疑是电源的功率过小。 五、安装对中性要好 角度容许有不超过12°的误差,平行度容许不超过0.5mm,如果两个误差都偏大,则会导致显示数字跳动。如果出现这种情况,就要对角度和平行度进行调整。 六、防止短路 直线位移传感器电子尺工作过程中,有规律的在某一点显示数据跳动或不显示数据,这种情况就要检查连接线绝缘是否有破损并与机器的金属外壳有规律的接触引发的对地短路。 七、避免老化 如果位移传感器长期处于环境恶劣的场合,容易发生老化现象,这会影响到电刷的接触电阻,引起显示数字跳动。所以,要经常对其进行维护。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游

相关主题