搜档网
当前位置:搜档网 › 未来是属于算法的,不是代码

未来是属于算法的,不是代码

未来是属于算法的,不是代码
未来是属于算法的,不是代码

未来是属于算法的,不是代码

大数据的时代已经来临。数据带来的狂潮就犹如又一次工业革命一样席卷着人类。在大数据的时代,人类对世界的理解方法从有限具体向抽象过渡,这也就是为什么算法比代码更加重要的原因。

说到大数据……

如果把人类的历史压缩到一天,那么我们可以忽略之前的时间,直接从晚上11点07分开始说起。这本该是安静的一天,但是就在这一天快结束的短短的时段里,突然产生出大量的知识和信息,需要在人与人之间进行传播。你可以想象一下,之前,人类的知识和信息的传播方式是通过口口相传,代代相传,由父到子,师授徒承的方式来进行的。而在某一个时刻,人类社会所产生出的知识和信息的体量已经达到了传统方式无法承载的地步。

我们需要某种方式来对如此规模的知识和信息进行存储和传播。以前,采用书写的方式记录知识和信息,被认为是人类社会的重大技术革新。然而,柏拉图在《斐德罗篇》中写道:“苏格拉抵对采用书本进行知识传承的方法表示担忧,因为他认为书本并不能激发真正的知识和智慧,正确的方法应该是口口相传。”

他的观点正好代表了知识和信息的有限传播方法。你和你认识的人通过说话进行直接交流,那么在交流对话过程中就有正向和反向的观点产生。而一本书,则完全不同,这是一种抽象的交流传播方法,因为读者和作者之间并没有直接的交流。书的作者不可能知道是谁,多少人,在什么时候什么地点读了他们的作品。书的作者也许可以根据读者们的情况对作品进行一些优化调整,但是总的来说这还是一种抽象的知识传播和学习的方法。

大数据和等腰三角形

大数据时代产生的另外一项重要变革,就是我们会从简单计算向抽象计算过度。也就是形成了定理、符号、算法等等被称之为数学的思想。人类历史上有记载的最早的计算始于公元前2500 年的美索不达米亚。当时美索不达米亚人需要算出一个装满的谷仓能够养活多少人。

美索不达米亚人的问题是非常具体的。他们的计算问题是为了解决生活中的相应问题。这种一个计算问题对应一个生活中具体问题的模式,就被称作是有限具体问题。这也是为什么很多专家认为美索不达米亚人的计算并不是数学的起源。这种有限具体的计算模式一直持续了很久,直到公元前500年的古希腊。那时的毕达哥拉斯学派的学者们开始研究奇怪的三角形的问题。比如:等腰三角形的边长是不是都是整数。

如果你采用有限具体的方法来解答这类问题,就要像毕达哥拉斯学派的学者们当时做的那样,通过把具体的数字代入进去看情况是不是满足。不过,随着代入数字的数量越来越多,复杂性的问题出现了。你究竟需要代入多少数据,才能最终证明这个命题是真还是假呢?(顺便说一下,这个命题是假的,不可能所有等腰三角形的边长都是整数。)等腰三角形边长问题的不同之处在于,它是不具体的。因为这个命题没有限定三角形的面积,也没有限定边长范

围。因此可能的情况是无穷多的。不过一旦你开始把理性思维应用到大量数字上,那么就形成了数学思想。这也就是大数据的意思。毕达哥拉斯学派的思维方式将人类带向了更接近抽象的数学本质,我们今天也在用符号、规则系统以及理性的思维来解决这类抽象的问题。

也许你能在人类历史上找出更多关于大数据的例子,但是从本文的目的出发,我则要直接跳到20世纪,来看看编码是如何兴起,以及如何在现代科技世界中扮演重要角色的。

编程的兴起

编码,或者叫编程(我们在这里认为这两个词是一个意思)首次出现在历史舞台,要追溯到美国女海军少将Grace Hooper女士1945年在哈佛Mark I型计算机上工作的那个年代。在此之前,电脑(Computer)这个词,现在大家都这么叫,就是单纯的“计算机器”。第二次世界大战期间,发射火炮需要参照一个弹道表来计算弹道。弹道表上的数据,是用偏微分方程代入上百个不同的参数因子算出来的,这些参数包括:距离,海拔,风速,温度,湿度等等。顺便说一下,“电脑”(Computer)这个词,是军方用来形容那些战争期间操作计算机器的女性操作员的。这些女性操作员以“电脑”而闻名。她们需要把计算卡插入计算机器,然后摇动手柄解出方程。制作一张计算卡当时需要170个人月的工作量。

编程的出现,源于人们想找到一种更简单的方式来执行计算过程。如果我们能够为计算机器设计一套指令,让硬件能够根据指令来执行操作,那么那些对机器的手工操作就可以淘汰了。

这种方式听上去是不是很耳熟?美索不达米亚人采用泥板来进行计算,而编程则是20世纪人类使用的“新泥板”。尽管编程看上去比泥板要先进多了,但是本质上都是对具体问题进行的有限计算。只是用编程的方式计算效率更高。编程淘汰了手动计算的方式,让人类有能力去处理大量的数据。

算法vs. 代码

算法:用一系列步骤来描述解决某种问题的思想,执行这些步骤后可以达到问题的正确性条件和终结条件。算法是对计算的一种抽象描述,与具体的实现无关。

代码:计算机的一套指令集。在特定平台上使用特定的计算机语言对计算问题进行具体实现。计算机提供的指令操作的方式让人类可以通过算法来实现复杂的计算。而算法本身却是远在编程发明之前就存在的。穆斯林数学家Al-Khawarizm在公元820年就提出了一次和二次方程的求根算法。而算法(Algorithm)这个词就是从Al-Khawarizm的名字的拉丁语译名“Algoritmi”演变而来,“代数”(Algebra)这个词则是来自于阿拉伯语“al-jabr”,这是Al-Khawarizm在解二次方程时所用的一个步骤的名称。算法要求其步骤或指令是有限的,可实现的,而且能得到结果。正如我们所见,编程可以直接给计算机下指令。这种方式正好对实现算法非常有利,因为从本质上来说,编程就是让计算机按照一定的顺序执行不同的指令。

在大数据时代的早期,我们要处理的信息量大大增加。不过通过设计和应用,可以让我们在编程方面取得优势,再加上“摩尔定律”带来的机器性能上的进步,让我们有能力处理人类世界日益增长的数字化需求。但是用计算机解决有限具体问题的本质并没有变,因为人类是通过写代码来告诉计算机硬件具体需要执行哪些操作。不管这些操作本身有多复杂,但是终究还是来自于人类的指令。不过,算法已经展示出了巨大的潜力,或许能开创一个全新的抽

象时代。

算法的兴起

从下面这个角度,我们可以看到算法与编码的巨大不同:你可以用代码实现算法。并且,算法的不同实现方式会影响算法的性能。例如,使用binary heap来搜索序列中的最大或最小元素就比较高效,用来排序则没那么高效。但是你会编程并不意味着你能设计算法,这和你能唱歌不一定就能写歌是一个道理。

所有人都知道,“摩尔定律”预言的硬件性能的增长刺激了数字化经济的发展,但是很少有人知道,在很多领域,算法带来的性能增长远比硬件来得更高。实际上,根据2010年的联邦报告显示,算法在语音识别,自然语言处理,物流等方面都带来了显著的性能增长。

“尽管公众的理解程度并不高,但是仍然不能掩盖其卓越的效果——在许多领域,算法的进步带来的性能增长要远超CPU计算速度增长的贡献。”——节选自“致总统和国会的报告:设计数字化未来”

抽象算法

我们在目前的这个时代需要处理的数据量,让我们必须放弃之前具体有限的思维方式。这是大数据迫使我们这么做的。大数据迫使我们必须后退一步,这是抽象的一步,以便于我们能够找到一种有效的方法,来处理当今时代汹涌泛滥的数据潮流。传统的做法是,你写一段代码,通过特定的参数或模式来对数据库进行搜索。比如,你要搜索“客户数据库”,找出在两周内购买2件以上物品,且支出超过30欧元的客户有哪些。你想给这类客户提供一些建议。所以你提供一种模式去搜索这些用户的数据。但是,大数据的方式是正好相反的,你需要通过大量的数据来找出模式是什么样的。

试想一下。这里有海量的数据,人类无法从中直观地找出模式。这时你就必须再退一步。这抽象的一步是为了让我们利用聚类,分类,机器学习等为基础的新方法(而不是具体的程序代码),从数据中找出有用的模式。这一步的关键在于,要找出你我看不见的模式。就像是光谱里的波长一样,人的肉眼是看不出来的,如果数据超过了一定的体量,那模式就不再直观了。这种超过一定体量,我们无法直接看出模式的数据,就叫做大数据。

这抽象算法的一步会走得更远。它不仅能帮我们找出数据中隐藏的模式,甚至还能帮我们写算法的代码。在Pedro Domingos写的“终极算法”这本书里,描述了一种“学习算法”,通过机器学习的手段,这种算法不但能够创造新的算法,而且还能写出我们需要的代码,这样计算机就能“自己写代码了,就把人类从编码中解放出来。”为了达到这样的目的,我们就必须对这些算法的工作原理有更好的了解,并通过改进这些算法,让它们能够更贴合我们的需要。不然,我们就没法充分发挥这种抽象转变的巨大潜力。

“工业革命把人类从手工劳动中解放出来,而信息革命将人类从脑力劳动中解放出来,但是机器学习则是让计算机解放了自己。如果没有机器学习,程序员将成为革命进程的瓶颈;有了它,进度就不成问题。”——Pedro Domingos, “终极算法”

关于算法的思考

在从具体有限的计算向抽象计算过度的过程中,我们还是需要各种各样的程序员的。不过这不是问题的关键。我不是要说编程不重要,也不是说编程不会做出贡献了。我想表达的观点是,我们需要开始对算法加以重视。算法并不仅仅是数学家需要关心,或者在学校里面才会用的东西。其实我们在编程的时候,算法就在我们周围,只是大家觉得不需要知道算法的实现或者原理罢了。目前,已经有人在致力于把更先进的技术(例如遗传算法)应用到大数据上,从而探索在不同领域进行优化和改进的可能了。甚至有人对金属冷却的过程进行建模,然后创建了效率更好的优化算法。(这种算法叫做“退火法”,这是一个从非常规角度思考算法的好例子,感兴趣的可以了解一下。)

目前,编程已经被提高到了和读书、写字一样的地位,在新的数字化经济时代成为了一个关键技能。这种热度反而掩盖了我们对算法的看法。算法逐渐成为我们生活的一部分:想想那些网上电影推荐,新闻推荐,正是算法根据我们的行为归纳了我们的模式。我们需要对算法加深理解,只有这样,我们才能更加深刻地理解我们的未来。

遗传算法的c语言程序

一需求分析 1.本程序演示的是用简单遗传算法随机一个种群,然后根据所给的交叉率,变异率,世代数计算最大适应度所在的代数 2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的命令;相应的输入数据和运算结果显示在其后。3.测试数据 输入初始变量后用y=100*(x1*x1-x2)*(x1*x2-x2)+(1-x1)*(1-x1)其中-2.048<=x1,x2<=2.048作适应度函数求最大适应度即为函数的最大值 二概要设计 1.程序流程图 2.类型定义 int popsize; //种群大小 int maxgeneration; //最大世代数 double pc; //交叉率 double pm; //变异率 struct individual

{ char chrom[chromlength+1]; double value; double fitness; //适应度 }; int generation; //世代数 int best_index; int worst_index; struct individual bestindividual; //最佳个体 struct individual worstindividual; //最差个体 struct individual currentbest; struct individual population[POPSIZE]; 3.函数声明 void generateinitialpopulation(); void generatenextpopulation(); void evaluatepopulation(); long decodechromosome(char *,int,int); void calculateobjectvalue(); void calculatefitnessvalue(); void findbestandworstindividual(); void performevolution(); void selectoperator(); void crossoveroperator(); void mutationoperator(); void input(); void outputtextreport(); 4.程序的各函数的简单算法说明如下: (1).void generateinitialpopulation ()和void input ()初始化种群和遗传算法参数。 input() 函数输入种群大小,染色体长度,最大世代数,交叉率,变异率等参数。 (2)void calculateobjectvalue();计算适应度函数值。 根据给定的变量用适应度函数计算然后返回适度值。 (3)选择函数selectoperator() 在函数selectoperator()中首先用rand ()函数产生0~1间的选择算子,当适度累计值不为零时,比较各个体所占总的适应度百分比的累计和与选择算子,直到达到选择算子的值那个个体就被选出,即适应度为fi的个体以fi/∑fk的概率继续存在; 显然,个体适应度愈高,被选中的概率愈大。但是,适应度小的个体也有可能被选中,以便增加下一代群体的多样性。 (4)染色体交叉函数crossoveroperator() 这是遗传算法中的最重要的函数之一,它是对个体两个变量所合成的染色体进行交叉,而不是变量染色体的交叉,这要搞清楚。首先用rand ()函数产生随机概率,若小于交叉概率,则进行染色体交叉,同时交叉次数加1。这时又要用rand()函数随机产生一位交叉位,把染色

计算机图形学裁剪算法详解

裁剪算法详解 在使用计算机处理图形信息时,计算机部存储的图形往往比较大,而屏幕显示的只是图的一部分。因此需要确定图形中哪些部分落在显示区之,哪些落在显示区之外,以便只显示落在显示区的那部分图形。这个选择过程称为裁剪。最简单的裁剪方法是把各种图形扫描转换为点之后,再判断各点是否在窗。但那样太费时,一般不可取。这是因为有些图形组成部分全部在窗口外,可以完全排除,不必进行扫描转换。所以一般采用先裁剪再扫描转换的方法。 (a)裁剪前 (b) 裁剪后 图1.1 多边形裁剪 1直线段裁剪 直线段裁剪算法比较简单,但非常重要,是复杂图元裁剪的基础。因为复杂的曲线可以通过折线段来近似,从而裁剪问题也可以化为直线段的裁剪问题。常

用的线段裁剪方法有三种:Cohen-Sutherland,中点分割算法和梁友栋-barskey 算法。 1.1 Cohen-Sutherland裁剪 该算法的思想是:对于每条线段P1P2分为三种情况处理。(1)若P1P2完全在窗口,则显示该线段P1P2简称“取”之。(2)若P1P2明显在窗口外,则丢弃该线段,简称“弃”之。(3)若线段既不满足“取”的条件,也不满足“弃”的条件,则在交点处把线段分为两段。其中一段完全在窗口外,可弃之。然后对另一段重复上述处理。 为使计算机能够快速判断一条直线段与窗口属何种关系,采用如下编码方法。延长窗口的边,将二维平面分成九个区域。每个区域赋予4位编码CtCbCrCl.其中各位编码的定义如下:

图1.2 多边形裁剪区域编码图5.3线段裁剪 裁剪一条线段时,先求出P1P2所在的区号code1,code2。若code1=0,且code2=0,则线段P1P2在窗口,应取之。若按位与运算code1&code2≠0,则说明两个端点同在窗口的上方、下方、左方或右方。可判断线段完全在窗口外,可弃之。否则,按第三种情况处理。求出线段与窗口某边的交点,在交点处把线段一分为二,其中必有一段在窗口外,可弃之。在对另一段重复上述处理。在实现本算法时,不必把线段与每条窗口边界依次求交,只要按顺序检测到端点的编码不为0,才把线段与对应的窗口边界求交。 Cohen-Sutherland裁减算法 #define LEFT 1 #define RIGHT 2 #define BOTTOM 4

计算机图形学实验--橡皮筋技术(完整代码,准确无误)

计算机图形学上机实验报告 橡皮筋技术 计算机科学与技术学院 姓名: xxx 完成日期: 2010-12-7

实验:橡皮筋技术 一、实验目的与要求 实验目的:1.学会使用OpenGL,进一步掌握基本图形的绘制方法, 2.理解glut程序框架 3.理解窗口到视区的变换 4.理解OpenGL实现动画的原理 5.学会基于鼠标和键盘实现交互的实现方法 二、实验内容: 利用OpenGL实现折线和矩形的皮筋绘制技术,并采用右键菜单实现功能的选择 实现方法:1.橡皮筋技术的实现采用双缓存技术,绘制图形时分别绘制到两个缓存,交替显示。 2.右键菜单控制选择绘制折线还是绘制矩形,实现方法:通过菜单注册函数创建一个弹出式菜单,然后使用函数加入菜单项,最后使用函数讲菜单与鼠标右键关联起来,GLUT通过为菜单提供一个整数标识符实现对菜单的管理,在main主函数通过标识符用函数指定对应的菜单为当前的菜单。 2. 折线的橡皮筋绘制技术实现:鼠标所在位置确定一个点,移动鼠标时,每次移动时将点的信息保存在数组中,连接当前鼠标所在点和前一个点的直线段。 3.矩形的橡皮筋绘制技术:每个矩形由两个点唯一确定,鼠标当前点为第一个点,移动鼠标确定第二个点的位置,由这两点的坐标绘制出举行的四条边(直线段),矩形即绘制完毕。 三、实验结果

图鼠标右键菜单 图绘制矩形 四、体会 1> 经过这次实验,逐步对opengl软件有了一定的了解,而且对于理论知识有了很好的巩固,并非仅仅会C语言就能编写画图程序,gult程序有自己特殊的框架与实现过程.在这次试验中,虽然没有完全理解其原理,但在一定程度上已经为我们今后的学习应用打下了基础. 2>初步了解了如何在OpenGL实现基本的绘图功能,以及鼠标和键 盘灯交互设备的实现,还有如何由初始生成元绘制分形物体。在这个过 程中遇到了很多问题,程序的调试也是困难重重,通过自己看书思考和 老师、同学的帮助最终完成了程序的调试,在这一过程中加深了对理论 知识的理解,以及理清了理论到实践转换的一点点思路,再一次体会到 理论与实践的结合的重要性,今后要多多提高提高动手能力。

最短路径规划实验报告

电子科技大学计算机学院标准实验报告 (实验)课程名称最短路径规划 电子科技大学教务处制表

实验报告 学生姓名:李彦博学号:2902107035 指导教师:陈昆 一、实验项目名称:最短路径规划 二、实验学时:32学时 三、实验原理:Dijkstra算法思想。 四、实验目的:实现最短路径的寻找。 五、实验内容: 1、图的基本概念及实现。 一、图的定义和术语 图是一种数据结构。 ADT Graph{ 数据对象V :V是据有相同特性的数据元素的集合,称为顶点集。 数据关系R : R={VR} VR={|v,w∈V且P(v,w), 表示从v到w的弧,P(v,w)定义了弧的意义或信息} 图中的数据元素通常称为顶点,V是顶点的有穷非空集合;VR是两个顶点之间的关系的集合,若顶点间是以有向的弧连接的,则该图称为有向图,若是以无向的边连接的则称为无向图。弧或边有权值的称为网,无权值的称为图。 二、图的存储结构 邻接表、邻接多重表、十字链表和数组。这里我们只介绍数组表示法。 图的数组表示法: 用两个数组分别存储数据元素(顶点)的信息和数据元素之间的关系(边或弧)的信息。其形式描述如下: //---------图的数组(邻接矩阵)存储表示---------- #define INFINITY INT_MAX //最大值 #define MAX_VERTEX_NUM 20 //最大顶点个数 Typedef enum{DG,DN,UDG,UDN} GraphKind; //有向图,有向网,无向图,无向网Typedef struct ArcCell{ VRType adj; //顶点关系类型,对无权图,有1或0表示是否相邻; //对带权图,则为权值类型。 InfoType *info; //弧相关信息的指针

MATLAB课程遗传算法实验报告及源代码

硕士生考查课程考试试卷 考试科目: 考生姓名:考生学号: 学院:专业: 考生成绩: 任课老师(签名) 考试日期:年月日午时至时

《MATLAB 教程》试题: A 、利用MATLA B 设计遗传算法程序,寻找下图11个端点最短路径,其中没有连接端点表示没有路径。要求设计遗传算法对该问题求解。 a e h k B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 C 、利用MATLAB 编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河? D 、结合自己的研究方向选择合适的问题,利用MATLAB 进行实验。 以上四题任选一题进行实验,并写出实验报告。

选择题目: B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 一、问题分析(10分) 这是一个简单的三元函数求最小值的函数优化问题,可以利用遗传算法来指导性搜索最小值。实验要求必须以matlab 为工具,利用遗传算法对问题进行求解。 在本实验中,要求我们用M 函数自行设计遗传算法,通过遗传算法基本原理,选择、交叉、变异等操作进行指导性邻域搜索,得到最优解。 二、实验原理与数学模型(20分) (1)试验原理: 用遗传算法求解函数优化问题,遗传算法是模拟生物在自然环境下的遗传和进化过程而形成的一种自适应全局优化概率搜索方法。其采纳了自然进化模型,从代表问题可能潜在解集的一个种群开始,种群由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体;初始种群产生后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的解:在每一代,概据问题域中个体的适应度大小挑选个体;并借助遗传算子进行组合交叉和主客观变异,产生出代表新的解集的种群。这一过程循环执行,直到满足优化准则为止。最后,末代个体经解码,生成近似最优解。基于种群进化机制的遗传算法如同自然界进化一样,后生代种群比前生代更加适应于环境,通过逐代进化,逼近最优解。 遗传算法是一种现代智能算法,实际上它的功能十分强大,能够用于求解一些难以用常规数学手段进行求解的问题,尤其适用于求解多目标、多约束,且目标函数形式非常复杂的优化问题。但是遗传算法也有一些缺点,最为关键的一点,即没有任何理论能够证明遗传算法一定能够找到最优解,算法主要是根据概率论的思想来寻找最优解。因此,遗传算法所得到的解只是一个近似解,而不一定是最优解。 (2)数学模型 对于求解该问题遗传算法的构造过程: (1)确定决策变量和约束条件;

基于遗传算法的matlab源代码

function youhuafun D=code; N=50;%Tunable maxgen=50;%Tunable crossrate=0.5;%Tunable muterate=0.08;%Tunable generation=1; num=length(D); fatherrand=randint(num,N,3); score=zeros(maxgen,N); while generation<=maxgen ind=randperm(N-2)+2;%随机配对交叉 A=fatherrand(:,ind(1:(N-2)/2)); B=fatherrand(:,ind((N-2)/2+1:end)); %多点交叉 rnd=rand(num,(N-2)/2); ind=rnd tmp=A(ind); A(ind)=B(ind); B(ind)=tmp; %%两点交叉 %for kk=1:(N-2)/2 %rndtmp=randint(1,1,num)+1; %tmp=A(1:rndtmp,kk); %A(1:rndtmp,kk)=B(1:rndtmp,kk); %B(1:rndtmp,kk)=tmp; %end fatherrand=[fatherrand(:,1:2),A,B]; %变异 rnd=rand(num,N); ind=rnd[m,n]=size(ind); tmp=randint(m,n,2)+1; tmp(:,1:2)=0; fatherrand=tmp+fatherrand; fatherrand=mod(fatherrand,3); %fatherrand(ind)=tmp; %评价、选择 scoreN=scorefun(fatherrand,D);%求得N个个体的评价函数 score(generation,:)=scoreN; [scoreSort,scoreind]=sort(scoreN); sumscore=cumsum(scoreSort); sumscore=sumscore./sumscore(end); childind(1:2)=scoreind(end-1:end); for k=3:N tmprnd=rand; tmpind=tmprnd difind=[0,diff(t mpind)]; if~any(difind) difind(1)=1; end childind(k)=scoreind(logical(difind)); end fatherrand=fatherrand(:,childind); generation=generation+1; end %score maxV=max(score,[],2); minV=11*300-maxV; plot(minV,'*');title('各代的目标函数值'); F4=D(:,4); FF4=F4-fatherrand(:,1); FF4=max(FF4,1); D(:,5)=FF4; save DData D function D=code load youhua.mat %properties F2and F3 F1=A(:,1); F2=A(:,2); F3=A(:,3); if(max(F2)>1450)||(min(F2)<=900) error('DATA property F2exceed it''s range (900,1450]') end %get group property F1of data,according to F2value F4=zeros(size(F1)); for ite=11:-1:1 index=find(F2<=900+ite*50); F4(index)=ite; end D=[F1,F2,F3,F4]; function ScoreN=scorefun(fatherrand,D) F3=D(:,3); F4=D(:,4); N=size(fatherrand,2); FF4=F4*ones(1,N); FF4rnd=FF4-fatherrand; FF4rnd=max(FF4rnd,1); ScoreN=ones(1,N)*300*11; %这里有待优化

计算机图形学图形的几何变换的实现算法

实验二图形的几何变换的实现算法 班级 08 信计 学号 59 姓名 _____ 分数 _____ 一、 实验目的和要求: 1、 掌握而为图形的基本几何变换,如平移,旋转,缩放,对称,错切变换;< 2、 掌握OpenG 冲模型变换函数,实现简单的动画技术。 3、 学习使用OpenGL 生成基本图形。 4、 巩固所学理论知识,加深对二维变换的理解,加深理解利用变换矩阵可 由简单图形得到复杂图形。加深对变换矩阵算法的理解。 编制利用旋转变换绘制齿轮的程序。编程实现变换矩阵算法,绘制给出形体 的三视图。调试程序及分析运行结果。要求每位学生独立完成该实验,并上传实 验报告。 二、 实验原理和内容: .原理: 图像的几何变换包括:图像的空间平移、比例缩放、旋转、仿射变换和图像插值。 图像几何变换的实质:改变像素的空间位置,估算新空间位置上的像素值。 图像几何变换的一般表达式:[u,v ]=[X (x, y ),Y (x, y )],其中,[u,v ]为变换后图像 像素的笛卡尔坐标, [x, y ]为原始图像中像素的笛卡尔坐标。这样就得到了原始图像与变 换后图像的像素的对应关系。 平移变换:若图像像素点(x, y )平移到(x x 。,y ■ y 。),则变换函数为 u = X (x, y ) =x 沟, v 二丫(x, y ) = y ■ y 。,写成矩阵表达式为: 比例缩放:若图像坐标 (x,y )缩放到(S x ,s y )倍,则变换函数为: S x ,S y 分别为x 和y 坐标的缩放因子,其大于1表示放大, 小于1表示缩小。 旋转变换:将输入图像绕笛卡尔坐标系的原点逆时针旋转 v 角度,则变换后图像坐标为: u COST 内容: :u l :Sx k ;0 其中,x 0和y 0分别为x 和y 的坐标平移量。 其中,

一个简单实用的遗传算法c程序完整版

一个简单实用的遗传算 法c程序 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

一个简单实用的遗传算法c程序(转载) 2009-07-28 23:09:03 阅读418 评论0 字号:大中小 这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita (University of North Carolina at Charlotte)修正。代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用Gaussian变异替换均匀变异,可能得到更好的效果。代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。读者可以从,目录 coe/evol中的文件中获得。要求输入的文件应该命名为‘’;系统产生的输出文件为‘’。输入的文件由几行组成:数目对应于变量数。且每一行提供次序——对应于变量的上下界。如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。 /**************************************************************************/ /* This is a simple genetic algorithm implementation where the */ /* evaluation function takes positive values only and the */ /* fitness of an individual is the same as the value of the */ /* objective function */ /**************************************************************************/ #include <> #include <> #include <> /* Change any of these parameters to match your needs */ #define POPSIZE 50 /* population size */

计算机图形学实验C++代码

一、bresenham算法画直线 #include #include #include void draw_pixel(int ix,int iy) { glBegin(GL_POINTS); glVertex2i(ix,iy); glEnd(); } void Bresenham(int x1,int y1,int xEnd,int yEnd) { int dx=abs(xEnd-x1),dy=abs(yEnd-y1); int p=2*dy-dx; int twoDy=2*dy,twoDyMinusDx=2*dy-2*dx; int x,y; if (x1>xEnd) { x=xEnd;y=yEnd; xEnd=x1; } else { x=x1; y=y1; } draw_pixel(x,y); while(x

} void myinit() { glClearColor(0.8,1.0,1.0,1.0); glColor3f(0.0,0.0,1.0); glPointSize(1.0); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluOrtho2D(0.0,500.0,0.0,500.0); } void main(int argc,char **argv ) { glutInit(&argc,argv); glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB); glutInitWindowSize(500,500); glutInitWindowPosition(200.0,200.0); glutCreateWindow("CG_test_Bresenham_Line example"); glutDisplayFunc(display); myinit(); glutMainLoop(); } 二、中点法绘制椭圆 #include #include #include inline int round(const float a){return int (a+0.5);} void setPixel(GLint xCoord,GLint yCoord) { glBegin(GL_POINTS); glVertex2i(xCoord,yCoord); glEnd(); } void ellipseMidpoint(int xCenter,int yCenter,int Rx,int Ry) { int Rx2=Rx*Rx; int Ry2=Ry*Ry; int twoRx2=2*Rx2; int twoRy2=2*Ry2; int p; int x=0; int y=Ry; int px=0; int py=twoRx2*y; void ellipsePlotPoints(int,int,int,int);

计算机图形学 直线的生成算法的实现

实验二 直线的生成算法的实现 班级 08信计2班 学号 59 姓名 分数 一、实验目的和要求 1.理解直线生成的基本原理。 2.掌握几种常用的直线生成算法。 3.利用Visual C++实现直线生成的DDA 算法。 二、实验内容 1.了解直线的生成原理,尤其是Bresenham 画线法原理。 2.掌握几种基本的直线生成算法:DDA 画线法、Bresenham 画线法、中点画线法。 3.利用Visual C++实现直线生成的DDA 算法,在屏幕上任意生成一条直线。 三、实验步骤 1.直线的生成原理: (1)DDA 画线法也称数值微分法,是一种增量算法。是一种基于直线的微分方程来生成直线的方法。 (2)中点画线法原理 以下均假定所画直线的斜率[0,1]k ∈,如果在x 方向上的增量为1,则y 方向上的增量只能在01 之间。中点画线法的基本原理是:假设在x 坐标为p x 的各像素点中,与直线最近者已经确定为(,)p p P x y ,用小实心圆表示。那么,下一个与直线最近的像素只能是正右方的1(1,)p p P x y +,或右上方的2(1,1)p p P x y ++,用小空心圆表示。以M 为1P 和2P 的中点,则M 的坐标为(1,0.5)p p x y ++。又假设Q 是理想直线与垂直线1p x x =+的交点。显然,若M 在Q 的下方,则2P 离直线近,应取2P 为下一像素点;若M 在Q 的上方,则1P 离直线近,应取1P 为下一像素点。 (3)B resenham 画线法原理 直线的中点Bresenham 算法的原理:每次在主位移方向上走一步,另一个方向上走不走步取决于中点偏差判别式的值。 给定理想直线的起点坐标为P0(x0,y0),终点坐标为P1(x1,y1),则直线的隐函数方程为: 0b kx y y)F(x,=--= (3-1) 构造中点偏差判别式d 。 b x k y y x F y x F d i i i i M M -+-+=++==)1(5.0)5.0,1(),(

计算机图形学 实验一:生成彩色立方体(含源代码)

实验一 实验目的:生成彩色立方体 实验代码://ColorCube1.java import java.applet.Applet; //可以插入html import java.awt.BorderLayout; //窗口采用BorderLayout方式布局import com.sun.j3d.utils.applet.MainFrame; //application import com.sun.j3d.utils.geometry.ColorCube;//调用生成ColorCube的Utility import com.sun.j3d.utils.geometry.Primitive; import com.sun.j3d.utils.universe.*; //观测位置的设置 import javax.media.j3d.*; //核心类 import javax.vecmath.*; //矢量计算 import com.sun.j3d.utils.behaviors.mouse.*; public class ColorCube1 extends Applet { public BranchGroup createSceneGraph() { BranchGroup objRoot=new BranchGroup(); //BranchGroup的一个对象objRoot(放置背景、灯光)BoundingSphere bounds=new BoundingSphere(new Point3d(0.0,0.0,0.0),100.0);//有效范围 TransformGroup objTrans=new TransformGroup(); objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); objRoot.addChild(objTrans); MouseRotate behavior = new MouseRotate(); behavior.setTransformGroup(objTrans); objRoot.addChild(behavior); behavior.setSchedulingBounds(bounds); MouseZoom behavior2 = new MouseZoom(); behavior2.setTransformGroup(objTrans); objRoot.addChild(behavior2); behavior2.setSchedulingBounds(bounds); MouseTranslate behavior3 = new MouseTranslate(); behavior3.setTransformGroup(objTrans); objRoot.addChild(behavior3); behavior3.setSchedulingBounds(bounds);

计算机图形学课程教学大纲

《计算机图形学》课程教学大纲一、课程基本信息 课程代码:110053 课程名称:计算机图形学 英文名称:Computer Graphics 课程类别:专业课 学时:72 学分: 适用对象:信息与计算科学专业本科生 考核方式:考试(平时成绩占总成绩的30%) 先修课程:高级语言程序设计、数据结构、高等代数 二、课程简介 中文简介: 计算机图形学是研究计算机生成、处理和显示图形的学科。它的重要性体现在人们越来越强烈地需要和谐的人机交互环境:图形用户界面已经成为一个软件的重要组成部分,以图形的方式来表示抽象的概念或数据已经成为信息领域的一个重要发展趋势。通过本课程的学习,使学生掌握计算机图形学的基本原理和基本方法,理解图形绘制的基本算法,学会初步图形程序设计。 英文简介: Computer Graphics is the subject which concerned with how computer builds, processes and shows graphics. Its importance has been shown in people’s more and more intensively need for harmony human-machine interface. Graphics user interface has become an important part of software. It is a significant trend to show abstract conception or data in graphics way. Through the learning of this course, students could master Computer Graphics’basic theories and methods,understand graphics basic algorithms and learn how to design basic graphics program. 三、课程性质与教学目的 《计算机图形学》是信息与计算科学专业的一门主要专业课。通过本课程的学习,使学生掌握基本的二、三维的图形的计算机绘制方法,理解光栅图形生成基本算法、几何造型技术、真实感图形生成、图形标准与图形变换等概念和知识。学会图形程序设计的基本方法,为图形算法的设计、图形软件的开发打下基础。 四、教学内容及要求 第一章绪论 (一)目的与要求 1.掌握计算机图形学的基本概念; 2.了解计算机图形学的发展、应用; 3.掌握图形系统的组成。

遗传算法C语言源代码(一元函数和二元函数)

C语言遗传算法代码 以下为遗传算法的源代码,计算一元代函数的代码和二元函数的代码以+++++++++++++++++++++++++++++++++++++为分割线分割开来,请自行选择适合的代码,使用时请略看完代码的注释,在需要更改的地方更改为自己需要的代码。 +++++++++++++++++++++++++++++++一元函数代码++++++++++++++++++++++++++++ #include #include #include #include #define POPSIZE 1000 #define maximization 1 #define minimization 2 #define cmax 100 #define cmin 0 #define length1 20 #define chromlength length1 //染色体长度 //注意,你是求最大值还是求最小值 int functionmode=minimization; //变量的上下限的修改开始 float min_x1=-2;//变量的下界 float max_x1=-1;//变量的上界 //变量的上下限的修改结束 int popsize; //种群大小 int maxgeneration; //最大世代数 double pc; //交叉率 double pm; //变异率 struct individual { char chrom[chromlength+1]; double value; double fitness; //适应度 }; int generation; //世代数 int best_index; int worst_index;

遗传算法的C语言程序案例

遗传算法的C语言程序案例 一、说明 1.本程序演示的是用简单遗传算法随机一个种群,然后根据所给的交叉率,变异率,世代数计算最大适应度所在的代数 2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的命令;相应的输入数据和运算结果显示在其后。3.举个例子,输入初始变量后,用y= (x1*x1)+(x2*x2),其中-2.048<=x1,x2<=2.048作适应度函数求最大适应度即为函数的最大值 4.程序流程图

5.类型定义 int popsize; //种群大小 int maxgeneration; //最大世代数 double pc; //交叉率 double pm; //变异率 struct individual { char chrom[chromlength+1]; double value; double fitness; //适应度 }; int generation; //世代数 int best_index; int worst_index; struct individual bestindividual; //最佳个体 struct individual worstindividual; //最差个体 struct individual currentbest; struct individual population[POPSIZE]; 3.函数声明 void generateinitialpopulation(); void generatenextpopulation(); void evaluatepopulation(); long decodechromosome(char *,int,int); void calculateobjectvalue(); void calculatefitnessvalue(); void findbestandworstindividual(); void performevolution(); void selectoperator(); void crossoveroperator(); void mutationoperator(); void input(); void outputtextreport(); 6.程序的各函数的简单算法说明如下: (1).void generateinitialpopulation ()和void input ()初始化种群和遗传算法参数。 input() 函数输入种群大小,染色体长度,最大世代数,交叉率,变异率等参数。 (2)void calculateobjectvalue();计算适应度函数值。 根据给定的变量用适应度函数计算然后返回适度值。 (3)选择函数selectoperator() 在函数selectoperator()中首先用rand ()函数产生0~1间的选择算子,当适度累计值不为零时,比较各个体所占总的适应度百分比的累计和与选择算子,直到达到选择算子的值那个个

计算机图形学 圆周算法的实现

《计算机图形学实验报告》样例 实验名称:圆周画法的实现 1.实验内容 1.画出圆心坐标为(75,90)和半径为50的红色圆周 2.画出圆心坐标为(‐40,‐80)和半径为60的蓝色圆周 2.程序的基本思路和功能 先用MFC构建界面外观,然后在相应位置分别用Bresenham和DDA编辑画圆的程序然后编译运行。 3.关键代码及说明 void Circle::circleMinPoint(CDC* pDC) { xCenter = (float)(400 + x); yCenter = (float)(300 - y); //绘制圆心 drawCenter(pDC); //r = 50; //设置颜色 color = RGB(red,green,blue); float m_x = 0; float m_y = r; float d = 1.25 - r; circlePoint(m_x,m_y,pDC);

while(m_x <= m_y){ if(d<=0){ d = d + 2 * m_x + 3; }else{ d = d + 2 * ( m_x - m_y ) + 5; m_y = m_y - 1; } m_x = m_x + 1; circlePoint(m_x,m_y,pDC); } } void Circle::circleBresenham(CDC* pDC) { //确认圆心坐标 xCenter = (float)(400 + x); yCenter = (float)(300 - y); //绘制圆心 drawCenter(pDC); //r = 50; //设置颜色 color = RGB(red,green,blue); float m_x = 0; float m_y = r;

计算机图形学常用算法及代码大全

2.1.1 生成直线的DDA算法 数值微分法即DDA法(Digital Differential Analyzer),是一种基于直线的微分方程来生成直线的方法。 一、直线DDA算法描述: 设(x1,y1)和(x2,y2)分别为所求直线的起点和终点坐标,由直线的微分方程得 可通过计算由x方向的增量△x引起y的改变来生成直线: 也可通过计算由y方向的增量△y引起x的改变来生成直线: 式(2-2)至(2-5)是递推的。 二、直线DDA算法思想: 选定x2-x1和y2-y1中较大者作为步进方向(假设x2-x1较大),取该方向上的增量为一个象素单位(△x=1),然后利用式(2-1)计算另一个方向的增量(△y=△x·m=m)。通过递推公式(2-2)至(2-5),把每次计算出的(x i+1,y i+1)经取整后送到显示器输出,则得到扫描转换后的直线。 之所以取x2-x1和y2-y1中较大者作为步进方向,是考虑沿着线段分布的象素应均匀,这在下图中可看出。 另外,算法实现中还应注意直线的生成方向,以决定Δx及Δy是取正值还是负值。 三、直线DDA算法实现: 1、已知直线的两端点坐标:(x1,y1),(x2,y2) 2、已知画线的颜色:color 3、计算两个方向的变化量:dx=x2-x1 dy=y2-y1 4、求出两个方向最大变化量的绝对值: steps=max(|dx|,|dy|) 5、计算两个方向的增量(考虑了生成方向): xin=dx/steps

yin=dy/steps 6、设置初始象素坐标:x=x1,y=y1 7、用循环实现直线的绘制: for(i=1;i<=steps;i++) { putpixel(x,y,color);/*在(x,y)处,以color色画点*/ x=x+xin; y=y+yin; } 五、直线DDA算法特点: 该算法简单,实现容易,但由于在循环中涉及实型数的运算,因此生成直线的速度较慢。 //@brief 浮点数转整数的宏 实现代码 #define FloatToInteger(fNum) ((fNum>0)?static_cast(fNum+0.5):static_cast(fNum-0.5)) /*! * @brief DDA画线函数 * * @param pDC [in]窗口DC * @param BeginPt [in]直线起点 * @param EndPt [in]直线终点 * @param LineCor [in]直线颜色 * @return 无 */ void CDrawMsg::DDA_DrawLine(CDC *pDC,CPoint &BeginPt,CPoint &EndPt,COLORREF LineCor) { l ong YDis = (EndPt.y - BeginPt.y); l ong XDis = (EndPt.x-BeginPt.x); l ong MaxStep = max(abs(XDis),abs(YDis)); // 步进的步数 f loat fXUnitLen = 1.0f; // X方向的单位步进 f loat fYUnitLen = 1.0f; // Y方向的单位步进

相关主题