搜档网
当前位置:搜档网 › 新法脱除硫酸根技术国内外进展

新法脱除硫酸根技术国内外进展

新法脱除硫酸根技术国内外进展
新法脱除硫酸根技术国内外进展

除尘技术与设备的发展

N A N C H A N G U N I V E R S I T Y 期中考试 《大气污染控制工程》 班级:环境工程141班 学生姓名:康秋云 学号: 2017年4月

除尘技术与设备的发展 学生姓名:康秋云学号: 摘要:介绍了目前主要的空气除尘设备的工作原理、除尘性能和适应场合,从环境保护角度简要分析了各类除尘器的存在的不足以及当今社会除尘技术发展的新趋势。 关键词:除尘技术、除尘设备、大气污染 我国是一个能源生产与消费大国,大气环境污染基本特征是直接燃煤的煤烟型大气污染。20世纪末,国内大中城市由煤烟型大气污染向煤烟与汽车尾气复合型污染转移,这些空气中、微煤粉尘,尤其是直径为的飘尘对人体健康有极大危害。如何防治大气污染、洁净空气环境也是人们不断研究的课题。 工业除尘技术应用于气体中含有粉尘的情况,如加工木制品、打磨、焊接、粉碎等操作过程为保护人的健康,维护设备的性能,实际中有必要去除气体中悬浮的粉尘微粒。目前,工业中应用的除尘设备种类很多,可以有效地截留和去除很宽范围的一些粒子污染物。但为了适应现代工业的要求,仍急需开发一些新的技术,以进一步的节约能源,简化维修,提高效率,降低投资。另外,难以用现有除尘技术处理的情况也层出不穷,这也就要求开发一些新的相关除尘技术。 1.空气除尘设备研究现状 按捕集粉尘的作用力及原理,除尘设备可分为4类:机械式除尘、电除尘、过滤式除尘和湿式洗涤除尘设备。按除尘效率可分为:高效除尘设备,包括电除尘、袋式除尘、高效文丘里除尘等;中效除尘设备,包括旋风除尘及其他湿式除尘等;低效除尘设备,包括重力沉降、惯性除尘等。 沉降室

沉降室也叫重力除尘器,是一种借助重力作用使含尘气体中粉尘自然沉降以达到净化气体目的的装置。当含尘气体水平通过沉降室时,尘粒受沉降力的作用向下运动,经过一定时间后尘粒沉降到沉降室的底部而分离,净化后的气体通过出口排出。沉降室的沉降速度太小,一般只用于分离50um以上的尘粒。因此沉降室通常用于粗尘粒的预除尘。 惯性除尘器 惯性除尘器是利用粉尘在运动中惯性力大于气体惯性力的作用,将粉尘从含尘气体中分离出来的设备。其利用一系列的挡板,惯性大的颗粒被阻挡下落,小的颗粒绕板而过。粉尘粒径越大、气流速度越大、挡板数越多和距离越小,则除尘效率越高,但压力损失也越大。这种除尘器结构简单,分离临界粒径为20--30um,压力损失为100--1000Pa。 旋风分离器 旋风分离器是利用旋转的含尘气体所产生的离心力,将粉尘从气流中分离出来的一种干式气-固分离装置。当含尘气体进入旋风分离器时,气流将由直线运动变为圆周运动。含尘气体在旋转过程中产生离心力,将密度大于气体的尘粒甩向器壁,进入排灰管。旋风分离器用于工业生产已有100余年历史。对于捕集、分离5--10um粉尘的效率较高,一般能达85%,但对于5um以下的颗粒效率只有50%。同时,旋风分离器的理论与实验研究十分困难,其应用也因此受到限制。旋风分离器有如下特点:结构简单,不需特殊的附属设备;操作、维护简单,压力损失中等,动力消耗不大;操作弹性大,性能稳定,不受含尘气体的浓度和温度等影响。旋风分离器对粉尘的物理性质无特殊要求,作为一种重要的二级除尘设备被广泛应用于化工、石油、冶金、建筑、矿山、机械、轻纺等工业部门。 湿式除尘器 湿式除尘器是使含尘气体与水或其他液体接触,利用水滴和尘粒的惯性碰撞等作用把尘粒从气流中分离出来的设备。其除尘机理是:当含有悬浮

为什么检验硫酸根要用这两种方法

【为什么检验硫酸根要用这两种方法?】 【为什么检验硫酸根要用这两种方法?】 1.硝酸钡溶液和稀硝酸。 2.先滴加稀盐酸再滴入氯化钡 加入硝酸钡后生成沉淀可能是钡盐的不溶物,钡盐的不溶物中只有硫酸钡不溶于稀硝酸,就可以排除是其他的不溶物,所以如果沉淀不溶解说明有硫酸根 滴加稀盐酸如果没有生成沉淀说明没有银离子,因为氯盐中只有氯化银不溶,再加入氯化钡生成的沉淀就只可能是硫酸钡了,因为初中化学上就只认为氯化银和硫酸钡这两种盐不溶于酸,因为它本来就有盐酸再生成沉淀又不溶解就只可能是硫酸钡了,从而检验出硫酸根 能用盐酸酸化的硝酸钡溶液检验硫酸根离子吗? 对于硫酸根离子的检验我们都知道不能采用硝酸酸化的氯化钡溶液或硝酸钡溶液,原因防止亚硫酸根等带来的干扰。 在教学中学生认为能用盐酸和硝酸钡来检验,学生认为加入盐酸后CO32-、SO32-转化为CO2、SO2气体从体系中逸出排除了干扰。可以用盐酸酸

化的硝酸钡溶液检验。为此师生做了如下实验: ①用试管取适量的饱和Na2SO3溶液,加入适量的盐酸酸化的氯化钡溶液,溶液中不产生白色沉淀。 ②用试管取适量的饱和Na2SO3溶液,加入适量盐酸酸化后,然后加入硝酸钡溶液,看到有白色沉淀。这时候学生产生疑惑,一部分学生认为亚硫酸根和H+、NO3-反应生成SO42-,部分学生认为亚硫酸根生成SO2后没有逸出转化为SO32-?。 ③用试管取适量的饱和Na2SO3溶液,加入适量盐酸酸化,然后加热看不到气泡冒出,在滴加Ba(NO3)2溶液,产生白色沉淀。 说明亚硫酸根生成SO2后没有逸出转化为SO32-,进而转化为SO42-,生成白色沉淀。说明不能用盐酸酸化的硝酸钡溶液检验硫酸根离子,同时也说明实验室制SO2酸的浓度要足够大,不然SO2不会从体系中逸出。 为什么检测Cl-离子时首先要加入硝酸溶液? 检测Cl-I-离子时,先加入硝酸,再加入硝酸银溶液。为什么呢?加入硝酸的目的是什么? 因为溶液中可能会有碳酸根和氢氧根,碳酸银与氢氧化银都是白色沉淀,虽然氢氧化银极易分解成氧化银(黑色沉淀)和水,是会对氯离子的检验造成干扰。所以要加入硝酸去除以上两种离子,而又不引进新杂质。其实,

井筒钻井新技术介绍

钻井新技术介绍 交流材料 编写人:刘修善刘月军 华北石油管理局钻井工艺研究院 2001年11月

目录 一、水平井钻井技术·····························································································2 二、分支井钻井技术·····························································································5 三、大位移井钻井技术···························································································8 四、地质导向钻井技术······················································································11 五、深井超深井钻井技术 ··················································································14 六、欠平衡钻井技术··························································································18 七、小井眼钻井技术··························································································21 八、连续油管钻井技术······················································································24

氯碱工艺中脱除硫酸根方法的研究

盐 水 氯碱工艺中脱除硫酸根方法的研究 吴家全*,衣守志 (天津科技大学材料科学与化学工程学院,天津300457) [关键词]盐水精制;硫酸根;溶解度;钙法 [摘 要]在试验温度为5~50!的条件下测定了硫酸钠在3种不同氯化钠浓度溶液中的溶解度,确定了氯化钙和氧化钙+盐酸为原料的钙法脱除硫酸根的适宜原料加入量,探讨了用某工厂含钙废渣代替氯化钙来脱除硫酸根的方法。 [中图分类号]TQ114.261 [文献标志码]B [文章编号]1008-133X(2010)11-0007-03 Studies on s ulfate radical re m ovi n g i n chlor alkali process WU J iaquan,YI Shouzhi (College o fM aterial Sc i e nce&Che m ical Eng ineeri n g, T ian jin Un iversity of Science&Techno logy,T ian ji n300457,Ch i n a) K ey word s:brine refining;su lfate radica;l so l u b ility;ca lci u m m et h od Abstrac t:The so l u b ility o f sod i u m sulfate in three kinds o f different oncentration of sodi u m chloride solution is tested i n the range o f5~50!.The su itab le ra w m aterial additi o n for re m ov ing su lfate radica l by calc i u m m ethod wh ich takes ca lci u m ch l o r i d e,calcium ox i d e and hydr och l o ric ac i d as ra w m ateria l is deter m i n ed.And the m e t h od of re m ov i n g su lfate rad i c al by w aste resi d ues conta i n i n g ca lci u m fro m certa i n facto r y is d iscussed instead of calc i u m chloride. Foundati m ite m:supported by national natural sc i e nce f u nd progra m o f China(20676101) 硫酸根是氯碱生产过程中存在于盐水中的杂质,如果大量存在于电解后的淡盐水中而重新被送往化盐工序,就会造成硫酸根在盐水中的积累,并会在电解槽的离子膜或隔膜中产生硫酸钠沉积,致使隔膜电流效率下降,离子膜强度降低,缩短使用寿命[1];但是,硫酸根含量过低也不利于硫酸根有效阻止盐水中的离子对离子膜的入侵,所以硫酸根的质量浓度应控制在5g/L以下[2],多余的硫酸根必须从系统中除去。传统除SO2-4的方法有钡法、钙法和冷冻法。钡法脱除硫酸根主要是用B a2+与盐水中的SO2-4发生化学反应生成BaSO4沉淀,将硫酸根以硫酸钡的形式除去。该法去除硫酸根效果较好,目前国内大部分氯碱企业采用该方法去除盐水中的硫酸根[3]。钡法又分为氯化钡法和碳酸钡法。虽然氯化钡法去除硫酸根的效果好、反应率高,但是氯化钡有较强的毒性,储存条件要求高,操作不当会造成盐水中产生乳白色返混,还会引起Ba2+含量超标,影响盐水质量,对离子膜造成伤害。并且,氯化钡用量大,处理费用高。碳酸钡的溶解度较小,在实际使用中经常堵塞管道;硫酸钡沉淀中含有一定比例的碳酸钡,需要对沉淀进行处理后方可排放,操作复杂,并需要增加设备,且该工艺尚不成熟。上述问题需要在生产中进一步摸索解决。钙法除硝可以满足工艺指标要求,但在工艺设置上需将形成的C aSO4沉淀尽量除去,避免在后续精制工序中C aSO4与精制剂碱反应重新生成Na2SO4。虽然氯化钙法去除硫酸根的效果差,但是可以满足精盐水中 (SO2-4)?5g/L的要求,且成本低于氯化钡法。应用氯化钙法处理硫酸根是降低处理硫酸根成本的有效方法,具有很强的可操作性。冷冻法脱除硫酸 7 第46卷第11期2010年11月 氯碱工业 Ch l o r A l k ali I ndustry Vo.l46,No.11 N ov.,2010 *[作者简介]吴家全(1972#),男,讲师,博士,现从事物性估算、水处理的研究工作。 [收稿日期]2009-04-18 [基金项目]国家自然科学基金资助项目:20676101

硫酸根去除法

目前,比较成熟的分离去除硫酸根的技术方法主要有6种,即氯化钡法、氯化钙法、冷冻法、碳酸钡法、离子交换法和膜分离法。 2 s* v, w- u7 U# K 1、氯化钡法7 f& a, i k4 Q* |& V 氯化钡法是用与盐水中的发生反应生成沉淀,由于化合物溶度积很小,所以采用该法去除效果较好,2000年前国内大部分氯碱企业采用该方法去除硫酸根。但是,使用该方法时应注意要防止过量,因为过量的会与电槽中的NaOH 反应生成沉淀,堵塞电槽隔膜。尤其重金属离子钡将会沉积在金属阳极表面,形成不导电的化合物,使阳极涂层活性降低,电压升高。同样钡离子对离子膜也有严重的影响。法去除虽然效果好,反应率高,但是本身有较强的毒性,贮存条件要求高,操作不当还会引起Ba超标现象,对离子膜造成伤害;其最大的缺点是使用成本高,以100kt/a离子膜烧碱装置为例,每年处理的成本达1100多万元。该法可副产硫酸钡。 4 [% w" k" |: z9 F; a5 N8 y 氯化钡用量相应增加,运行成本高,且该物质属于剧毒物质,副产物及氯化钡的包装袋回收较困难,给生产和现场管理带来较大难度。0 I% K* c+ }3 `) U$ q) X 2、氯化钙法 1 z5 b( @6 @" D+ N5 u, `! R# m 该法是用与反应生成沉淀,由于溶度积较大,尤其在盐水中的溶解度要增大三四倍,故该法去除不如法彻底,但是如果卤水使用量不大,经该法处理后的盐水中的质量浓度也可达7 g/L以下的要求,一般情况下达不到5 g/L以下。该法去除工艺与法相似氯化钙法去除硫酸根投资省,又因氯化钙价格相对便宜,因此有一定的竞争力,其缺点是由于硫酸钙的溶度积较大,由于生成的是微溶沉淀,由于盐效应,在饱和盐水中溶解度高于水溶液中2~3倍.去除硫酸根的效率不高,又增加了盐水中的钙离子,盐泥量增加并且很难处理,不符合国家的减排政策,效果较氯化钡法差。! V: J2 N6 h' t" ~9 m/ V3 M 为了适应的结晶与反溶问题,xx公司设计了一种均相流反应器,该反应器是反应与预澄清合二为一的装置,有效地解决了结晶的粒径。又使澄清达到较为理想的效果。均相反应器的预澄清脱硝盐水进入HVM膜过滤器,过滤后的脱硝盐水中SS的质量分数小于l ,实现了结晶与盐水的彻底分离。这一工艺设备已被国内多家氯碱、纯碱厂家使用。据了解该均相流反应器已申请了专利。均相流反应器是膜钙法除硝的专用设备。钙法除硝比钡法除硝的经济性表现在盐(卤)水中的含量越高越经济。由于的价格偏低,采用HVM膜的一次性投资比钡法低10万碱项目,如果每吨烧碱需处理的为24 kg,其HVM膜投资费用不到半年即可回收.另外,苏恒熙研究了多组分无机盐复合体系,添加以脱除硫酸根离子,并对用量、反应温度、反应时间等因素进行了研究,实验室数据表明可以达到企业对脱除硫酸根离子的要求。 文震等人研究了利用废盐泥来脱除卤水中的工艺。其实质利用盐泥的钙离子,本质仍然属于氯化钙法。 3、碳酸钡法+ t0 p6 _+ t: h+ M% C4 ] 碳酸钡法是利用碳酸钡与硫酸钡的溶度积差而实现分离硫酸根的目的.xx 化工股份有限公司xx等人发明了一种用碳酸钡去除盐水中的硫酸根的方法,其特征是:在碳酸钡混合槽里所装入65~80℃的离子膜烧碱装置的淡盐水或石棉隔膜烧碱装置的回收盐水中,盐水浓度在150~250g/L,加入适量的碳酸钡,在搅拌下使碳酸钡与盐水充分混合,制成碳酸钡悬浊液;将碳酸钡悬浊液从上部加入到含有硫酸根及钙离子盐水的反应槽中,使盐水中的硫酸根与碳酸钡进行反

高温高压钻井技术研究

高温高压钻井技术研究 发表时间:2017-07-20T11:51:32.830Z 来源:《基层建设》2017年第9期作者:金振华 [导读] 摘要:高温岩体地热开发中首先需要解决的问题是深钻施工。根据中国高温岩体地热资源赋存的地质特征云南地质工程勘查设计研究所云南昆明 650200 摘要:高温岩体地热开发中首先需要解决的问题是深钻施工。根据中国高温岩体地热资源赋存的地质特征,提出高温岩体地热钻井施工中两大关键技术问题:1.钻井围岩稳定性控制技术;2.高温高压钻井液技术。由此提出解决高温岩体地热深钻施工的钻井技术要求。高温高压下深钻施工关键技术的研究,对于人类探索地球、开发地球深部的能源与资源具有重要的科学与工程意义。 关键词:高温岩体地热;高温高压;钻井围岩;钻井液 1 高温岩体地热开采中钻井围岩的稳定性控制技术 1.1高温岩体地热开采中钻井围岩失稳主要因素 高温岩体地热深钻施工过程中或投入使用后,其井壁围岩的稳定性受到多种因素的影响,钻井围岩的稳定性受到温度、渗透压力及原岩应力等多种因素的影响。因此,从传热学、渗流力学、热弹性力学、流变力学以及高温高压岩体力学出发,进而研究注水井、生产井及其两者之间岩体位移场的变化规律,为高温岩体钻井围岩在施工过程中及投入使用后井壁围岩的稳定性提供理论支持,找到合适的围岩加固技术,提高钻井围岩的稳定性。 (1)钻井施工过程中钻进阶段及裸井阶段 井壁围岩失稳现象大部分发生在钻井施工钻进过程及裸井阶段。井孔的失稳造成的损失最为严重,主要有 2 个方面的原因: ①高温遇钻井液后井壁围岩力学特性的变化 花岗岩在遇到钻井液或泥浆后,由于温度迅速降低,井壁围岩发生物理化学变化,力学特性发生变化。由于高温状态下花岗岩遇水产生热冲击作用,岩体内产生热破裂现象,力学性能劣化,弹性模量、抗压强度、抗拉强度随温度的升高而成减小的趋势。 ②钻进过程中井壁围岩的热破裂现象 在钻井施工过程中,由于水、温度及应力的共同作用,尤其是水的作用,钻井围岩产生热破裂现象,使钻井围岩发生失稳。 因此,高温岩体地热开发深钻施工中,由于钻井液及钻井泥浆的使用,在钻进过程中井壁围岩极易产生热破裂,从孔壁掉落下来,造成卡钻,甚至造成钻井围岩失稳。 (2)钻井建成投入使用阶段 高温岩体地热井建成投入使用后,在温度场–渗流场–应力场耦合作用下,井壁围岩系统随时间发生流变变形,井孔直径逐渐缩小,挤压套管,很容易将套管挤毁或形成“缩颈”现象,这是钻井建成投入使用后井壁围岩失稳的主要因素。 1.2高温高压下钻井围岩流变特性 高温岩体地热开采中钻井的变形破坏规律和稳定性准则: (1)高温相同埋深静水应力下,花岗岩中钻井围岩的蠕变特性存在温度阈值为400℃~500℃。 (2)高温相同温度静水应力下,钻井围岩蠕变存在应力阈值为4000~5000m埋深,即加载应力100~125MPa。 (3)钻井围岩在高温静水应力下,花岗岩体最终发生破坏的应力条件为5000~6000m埋深,静水应力(125~150 MPa),温度条件为500℃~600℃,其破坏形式为压裂破坏、压剪破坏或两者相结合。 1.3高温高压下钻井围岩变形破坏规律与失稳临界条件 高温高压下钻井围岩变形破坏规律与失稳临界条件 (1)4000m埋深及400℃温度范围内钻井围岩的变形规律 4000m埋深静水应力400℃温度范围内,随着时间的延长,花岗岩中钻井孔径逐渐缩小,钻井处于收缩状态。对于直径为40mm的钻井,孔壁最大位移量为1.88mm,即最大蠕变应变为1.88%。 (2)4000~5000m 埋深,400℃~500℃时钻井围岩的变形规律 4000~5000m埋深静水应力,400℃~500℃时,随着时间的推移,钻井围岩在距孔壁较远的部位表现为黏弹性变形,距孔壁较近的部位发生塑性变形,同时在蠕变压力的影响下,孔径有扩大的趋势。当达到5000m埋深静水应力,500℃时,钻井直径由40mm缩减为 30mm,钻井孔壁最大蠕变变形量达到5mm,即最大蠕变应变为5%。 (3)高温高压下钻井围岩变形破坏失稳临界条件 通过对6000m埋深静水应力以内,600℃以内花岗岩中钻井变形规律及钻井破坏的研究可知:高温高压下花岗岩中钻井围岩变形破坏失稳临界条件为4000~5000 m埋深静水应力,400℃~500℃。 2 高温高压钻井液技术 2.1高温岩体地热钻井高温处理剂 (1)抗高温降黏剂 磺甲基单宁(SMT),简称磺化单宁,适于在各种水基钻井液中作降黏剂,在盐水和饱和盐水钻井液中仍能保持一定的降黏能力,抗钙可达1000mg/L,抗温可达180℃~200℃。其添加量一般在1%以下,使用的pH值范围为9~11。 磺甲基栲胶(SMK),简称磺化栲胶,抗温可达180℃。其降黏性能与SMT相似,可任选一种使用。 磺化苯乙烯马来酸酐共聚物(SSMA)是一种抗温可达230℃的稀释剂。该产品在美国某些行业领域应用比较广泛,国内也有应用,但成本较高。 (2)抗高温降滤失剂 磺甲基褐煤(SMC),简称磺化褐煤,既是抗高温降黏剂,同时又是抗高温降滤失剂,具有一定的抗盐、抗钙能力,抗温可达200℃~220℃,一般用量为3%~5%。 磺甲苯酚醛树脂,简称磺化酚醛树脂,分1型(SMP–1)和2型(SMP–2)产品。在200℃~220℃,甚至更高温度下,不会发生明显降解,并且抗盐析能力强。

硫酸根离子精确检测方法

2.重量法 2.1.原理概要 样品溶液调至弱酸性,加入氯化钡溶液生成硫酸钡沉淀,沉淀经过滤、洗涤、烘干、称重,计算硫酸根含量。 2.2.主要试剂和仪器 2.2.1.主要试剂 氯化钡:0.02mol/L溶液; 配制:称取2.40g氯化钡,溶于500mL水中,室温放置24h,使用前过滤; 盐酸:2mol/L溶液; 甲基红:0.2%溶液。 2.2.2.仪器 一般实验室仪器。 2.3.过程简述 吸取一定量样品溶液〔见附录A(补充件)〕,置于400mL烧杯中,加水至150mL,加2滴甲基红指示剂,滴加2mol/L盐酸至溶液恰呈红色,加热至近沸,迅速加入40mL(硫酸根含量>2.5%时加入60mL)0.02mol/L氯化钡热溶液,剧烈搅拌2min,冷却至室温,再加少许氯化钡溶液检查沉淀是否完全,用预先在120℃烘至恒重的4号玻璃坩埚抽滤,先将上层清液倾入坩埚内,用水将杯内沉淀洗涤数次,然后将杯内沉淀全部移入坩埚内,继续用水洗涤沉淀数次,至滤液中不含氯离子(硝酸介质中硝酸银检验)。以少量水冲洗坩埚外壁后,置电烘箱内于120±2℃烘1h后取出。在干燥器中冷却至室温,称重。以后每次烘30min,直至两次称重之差不超过0.0002g视为恒重。 2.4.结果计算 硫酸根含量按式(1)计算。 硫酸根(%)=(G1-G2)×0.4116 ×100 (1) W 式中:G1——玻璃坩埚加硫酸钡质量,g; G2——玻璃坩埚质量,g; W——所取样品质量,g; 0.4116——硫酸钡换算为硫酸根的系数。 2.5.允许差 允许差见表1。 表1 硫酸根,%允许差,% <0.50 0.03 0.50~<1.50 0.04 1.50~3.50 0.05 2.6.分析次数和报告值 同一实验室取双样进行平行测定,其测定值之差超过允许差时应重测,平行测定值之差如不超过允许差取测定值的平均值作为报告值。

钻井液技术新进展

钻井液技术新进展 摘要:钻井液技术的革新对加强石油勘探开发,提高石油采收率具有重要作用。本文介绍了国外钻井液技术的新进展,包括井壁稳定、防漏堵漏、抗高温钻井液、提高机械钻速的钻井液、低密度钻井液流体、储层保护等技术,同时介绍了国内钻井液技术的相关进展,通过分析比较,指出开发新型钻井液技术的关键在于研发新的处理剂,为钻井液技术的发展指明了方向。 关键词:水基钻井液;油基钻井液;钻井液处理剂;纳米技术 油气井工作液指在钻井、完井、增产等作业过程中所使用的工作流体,包括钻井液、钻井完井液、水泥浆、射孔液、隔离液、封隔液、砾石充填液、修井液、压裂液、酸液及驱替液等。近年来,钻井液在保障钻井井下安全、稳定井壁、提高钻速、保护储层等方面的作用日益突出,随着当前复杂地层深井、超深井及特殊工艺井越来越多,对钻井液技术提出了更高的要求。为此,国内外对应用基础理论和新技术方面进行了广泛的研究,取得了一系列的研究成果和应用技术,有效的解决了钻井过程中迫切的难题,并为钻井液技术的进一步发展奠定了基础指明了方向。本文在调研近几年国内外钻井液新技术的基础上,对国外和国内钻井液技术的新进展分别进行阐述[1-3]。 1国外钻井液技术新进展 1.1井壁稳定技术 1.1.1高性能水基钻井液技术 国外各大钻井液公司均研发了一种在性能、费用及环境保护方面能替代油基与合成基钻井液的高性能水基钻井液(HPWM)代表性技术有M-I公司的ULTRADRIL体系、哈利伯顿白劳德公司的HYDRO-GUADRTM体系[4-5]。该钻井液体系中,聚胺盐的胺基易被黏土优先吸附,促使黏土晶层间脱水,减小水化膨胀;铝酸盐络合物进入泥页岩内部后能形成沉淀,与地层矿物基质结合,增强井壁稳定性;钻速提高剂能覆盖在钻屑和金属表面,防止钻头泥包;可变形聚合物封堵剂能与泥页岩微孔隙相匹配,形成紧密填充[6]。 在墨西哥湾、美国大陆、巴西、澳大利亚及中国的冀东、南海等地的现场应用效果表明,高性能水基钻井液具备抑制性强、能提高机械钻速、高温稳定、保护储层及保护环境的特点[7-8]。 1.1.2成膜水基钻井液技术 通过在水基钻井液中加入成膜剂,使钻井液在泥页岩井壁表面形成较高质量的膜,以阻止钻井液滤液进入地层,从而在保护储层和稳定井壁方面发挥类似油基钻井液的作用。

硫酸盐的去除原理及方法

硫酸盐的去除原理及方法 1、硫酸盐在污水处理中的危害: 厌氧过程中的硫酸盐还原菌竞争产甲烷菌所需要的二氧化碳,影响甲烷的产生,同时硫酸盐还原菌不仅具有转化有机酸和乙酸的功能,同时,将硫酸盐还原为硫化物,对产甲烷菌造成危害。 工业有机废水中由于硫酸盐的存在而产生的主要问题包括: 含硫酸盐的工业废水,如果不经处理就直接被排入水体中,会产生具有腐蚀性和恶臭味的硫化氢气体,不仅如此,硫化氢还具较强的毒性,会直接危害人体健康和影响生态平衡。 含高浓度硫酸盐的工业有机废水,在应用厌氧处理工艺时,高浓度的硫酸盐对产甲烷菌(MPB)产生强烈的抑制,将会致使消化过程难以进行。 硫酸盐的还原是在SRB(硫酸盐还原菌)的作用下完成。 SRB是属专性厌氧菌,属于在厌氧消化过程起主要作用的4种微生物种群中的产氢产乙酸菌。 在不存在硫酸盐的厌氧环境中,SRB则呈现产氢产乙酸菌的功能;当厌氧消化中存在硫酸盐时,则SRB不仅具有了产氢产乙酸菌转化有机酸和乙酸的功能,而且具有还原硫酸盐为H2S的特性。 存在硫酸盐的厌氧消化过程中,本可能被MPB(产甲烷菌)利用还原二氧化碳生成甲烷的一切分子氢均被SRB所竞争利用,从而使还原二氧化碳生成甲烷的反应受阻。硫酸盐在SRB的作用下还原成硫化物,是污泥驯化的过程,硫化物浓度超过100mg/L时,对甲烷菌细胞的功能产生直接抑制作用。 相关的实验研究和工程实践表明,当原水SO42-含量≥400mg/L时就有可能转化为较高浓度的硫化物,并且是不可避免的。 2、硫酸盐的去除和转化: 利用水解酸化池的厌氧环境,硫酸盐还原菌 工艺的流程如下图所示: 微电解反应器管道混合器曝气池沉淀池水解池 该工艺是将水解池和微电解组合,微电解反应器通过微电解反应将产生大量的Fe2+,水解池中的硫酸盐还原菌(SRB)将硫酸盐还原成硫化物,含有大量硫化

国内外除尘技术进展-静电除尘

国内外除尘技术进展-静电除尘 前言: 在当今社会中,人类不断的在扩大生产规模,环境污染日益严重,包括:水资源污染、空气污染、噪音污染、垃圾污染、可再生资源污染等等,而对空气造成破坏的罪魁祸首就是粉尘。根据资料显示,全球一年中混入空气的各类污染物质加起来总共有6亿多吨,其中粉尘占的比重就达到了16%[1]。而如此之多的粉尘是从何而来的呢?在全国乃至全世界都存在许多产生粉尘污染的因素,包括煤炭的使用和无节制地开采、电为系统、化工厂所、造纸行业等,它们都涉及粉尘的排放。工业粉尘如此肆无忌偉地排向大气中,不仅会危害人体的健康,更会造成大自然系统的失衡,资源的流失,其结果是极其严重的。而现如今,大部分地区陷入雾靈的笼罩之下,环境保护己经刻不容缓了。 为了减少工业粉尘向大气中的投放,提高空气质量,各种样式的除尘装置因运而生,它们为空气治理提供了不少保障。由于除尘装置的多样性,可根据除尘理念的区别,分为湿式除尘器、旋风除坐器、沉降室、过滤式除尘器等,它们分别是利用水、颗粒自身的重力、各种过滤材料等手段来进行除尘,其中以静电除尘器的应用最为广泛,其原理则是利用静电场力的作用来除尘的。 1 除尘器简介 除尘器是将含尘气体里的粉尘分离出来,留下粉尘颗粒而排出干净气体的设备。除尘器的工作原理都是以对粉尘的作用力为理论依据,根据力的性质的不同,除尘器的种类也各式各样。工程除尘中常用的除尘器大多都是依靠各种作用力从含尘气体中过滤掉粉尘颗粒的,根据作用力的不同可以分为以下四种:机械除尘器、沉降室、惯性除尘器和旋风除尘器。 沉降室利用的是重力作用力,也就是地球对物体的吸引力,在重力的作用下含尘气体中的粉尘在沉降室中会逐渐地被分离出来;惯性除尘器是利用惯性作用力分离粉尘的,惯性作用力是指给物体赋予加速度时,物体本身的惯性力会使物体保持原有的运动状态,在相同的作用力下,惯性小的物体得到的加速度比惯性大的物体大,会更容易改变运动状态,这对粉尘分离来说是有利的;旋风除尘器利用的是离屯、力,离也力也是一种惯性力,但是是以圆周运动为方式来产生背离中也的作巧力,这类除尘器是根据物体在旋转过程中质量越大旋转速度越快,使得大颗粒粉尘会获得较大的离也力的原理进行除尘的。

硫酸根测定

硫酸根测定----EDTA滴定法 本方法适用于循环冷却水和天然水中硫酸根的测定,水样中硫酸根含量大于200mg/L时,可进行适当稀释。 1.原理 水样中加入氯化钡,与硫酸根生成硫酸钡沉淀。过量的离子在氯化镁存在下,以铬黑T为指示剂,用EDTA滴定。 2.试剂 1+1盐酸溶液 0.5%铬黑T乙醇溶液(同总硬度的测定) 氨—氯化铵缓冲溶液(PH=10.3)同总硬度的测定。 0.0125mol/L氯化钡溶液:称取3.054g氯化钡(BaCl2·2H2O)溶于100ml水中,移入1000ml容量瓶中,稀释至刻度。 0.01mol/LEDTA标准溶液。同总硬度的测定。 0.01mol/L氯化镁溶液的配制 称取2.1g氯化镁(MgCl2·6H2O)溶于少量水中,移入1000ml容量瓶中,稀释至刻度。同总硬度的测定 3.仪器 滴定管:酸式25ml。 电炉。 4.分析步骤 4.1 水样的测定 吸取经中速滤纸干过滤的水样50ml于250ml锥形瓶中,加入3滴1+1盐酸溶液,在电炉上加热微沸0.5分钟,再加入10ml 0.0125mol/L氯化钡溶液,微沸10分钟,冷却10分钟后,加入5ml 0.01mol/L氯化镁溶液,10ml氨—氯化铵缓冲溶液,6—10滴镉黑T指示剂,用0.01mol/LEDTA标准溶液滴定,溶液从酒红色至纯蓝色为终点。记录EDTA标准溶液的消耗量V4. 水样中硬度的测定 吸取经中速滤纸干过滤后水样50ml,加10ml氨—氯化铵缓冲溶液,6—10滴镉黑T指示剂,用0.01mol/LEDTA标准溶液滴定至纯蓝色。记录EDTA标

准溶液的消耗量V2. 氯化钡、氯化镁消耗EDTA标准溶液的体积V3。 准确吸取10ml 0.0125mol/L氯化钡溶液,5ml 0.01mol/L氯化镁溶液于250ml 锥形瓶中,加水50ml,再加入10ml氨—氯化铵缓冲溶液,6—10滴镉黑T 指示剂,用0.01mol/LEDTA标准溶液滴定至纯蓝色。 5.分析结果的计算 水样中硫酸根离子的含量X(毫克/升),按下式计算: 96×(V 2﹢V 3 - V 4 )×M 2 X = --------------------- ×1000 V W 式中; M 2 ---EDTA标准溶液的摩尔浓度,mol/L V W---水样体积,毫升 6.允许差 硫酸根含量在100mg/L范围内时,平行测定两结果差不大于4mg/L 7.结果表示 取平行测定两结果的算术平均值,作为水样的硫酸根含量。 8.注意事项 可根据实际水样中的硫酸根含量确定水样的吸取体积。

除氟技术汇总

处理方法 优点缺点 化学沉淀法石灰操作简单、方便、成本低出水15-20 mg/L(CaF2溶解度16.3 mg/L @18 o C)——不适用于饮水处理中性钙盐反应慢 混凝沉淀法铝盐药剂量小,处理量大,可达废水排放标 准(10 mg/L)单独处理出水难低于10 mg/L,废渣;适用于工业 铁盐 聚硅酸氯化物PAM 吸附法Al型活性氧化铝-传统除F剂,主要方法 OH->F->TOC>SO42->Cl->HCO3-技术成熟,适于大规模除氟处理,在我 国许多地区均有较大规模的活性氧化铝 除氟装置 pH值高、磷酸根(0.01 mg/L)、硫酸根等 阴离子影响吸附;Al易流失,Al对人体有 害;吸附容量小(0.8-2.0mg/g),导致再生 频繁、复杂;滤料易板结 氢氧化铝(pH 6.5-7.5)阴离子影响吸附,最佳pH 6.5-7.5 磷酸盐型羟基磷灰石(HAP)降氟容量大,不需调节pH值,易再生, 无二次污染 骨炭(主要成分为:碳酸磷灰石[Ca3(PO4)2·CaCO3]和羟基磷灰石[Ca10(PO4)6·(OH)2])价格较便宜,吸附容量较活性氧化铝高, 可达到2~3mg/g,吸附饱和后可用5% NaOH溶液再生;我国在70-80年代有很 多水厂采用 机械强度不如活性氧化铝,机械损耗率每 年可达5%,操作不当易造成骨炭流失, 且出水腥臭味 活性氧化镁类活性氧化镁吸附容量较高,约为6~14mg/g;最佳 pH值为6~7,操作简单,除氟后水中 往往残留少量镁离子,对人体预防和治 疗氟中毒有积极作用;在广大农村、厂 矿等一些分散地用作除氟剂使用 再生复杂,要在420-1000℃下进行灼烧

除硫酸根的方法

不同生石灰投加量对SO 42-去除率不同,生石灰对SO 4 2-的去除效果并不显著, 最大去除率仅为40%左右,最佳投加量为7g/L,因为在反应过程中,生成的硫酸钙为微溶物,吸附在生石灰表面而形成了一层致密的硫酸钙薄膜,影响了Ca2+与SO42-的继续反应,并且随着生石灰的继续投加,因硫酸钙薄膜的保护作用,去除率反而下降。 生石灰+PAC对SO42- 的去除效果 聚合氯化铝PAC能中和电荷和压缩双电层,导致胶体微粒相互凝聚和架桥,在一定的水力条件下能与SO 4 2-形成较大的絮凝体,沉淀达到去除效果 ,因此在生 石灰最佳投加量(7g/L)反应后, 加入聚合氯化铝协同研究对SO 4 2-的去除效果。生 石灰+PAC组合药剂对SO 4 2-的去除变化可以看出,PAC的最佳投加量为20mg/L,当PAC投加量小于20mg/L时,部分的胶体颗粒不能在压缩双电层等混凝机理的作用下去除,影响了去除效果,去除率较低;当混凝剂量大于20mg/L时,混凝的水解物不能以胶体为核,达到卷扫网捕的作用,悬浮在液体中,所形成的絮凝体吸附在颗粒的周围,达不到去除效果,去除率反而下降。 生石灰+PAC+PAM对SO42-的去除效果 为了增加絮凝的效果,提高矾花的形成和密实程度,在投加PAC后在投加助凝剂聚丙烯酰胺PAM,PAM是一种有机高分子絮凝剂,由丙烯酰胺聚合而成,在其分子的主链含烯酰胺PAM,PAM是有大量侧基----酰胺基,酰胺基的化学活性很强,可以和多种化合物反应而产生许多聚丙烯酰胺的衍生物,其分子链集团可在较远的各个颗粒间形成聚合物桥,增多了相互碰撞的次数,使部分中和胶粒迅速被吸附和桥接,能大大加强混凝絮状物的形成和沉淀。 在最佳生石灰投加量(7g/L)和最佳PAC投加量(20mg/L)反应后再加入PAM 进行试验研究,得出生石灰+PAC+PAM对SO 4 2-明显,最佳PAM投加量为10mg/L,小于10mg/L时,颗粒的碰撞机会少,絮凝体形成速度和沉降速度慢,去除率较低,但当PAM投加量大于10mg/L时,由于絮凝剂粒子的吸附点被迅速占领,减少了架桥的可能性,使得絮凝效果反而下降。

高温气体除尘技术及其研究进展

高温气体除尘是在高温条件下直接进行气固分离,实现气体净化的一项技术,它可以最大程度地利用气体的物理显热、化学潜热和动力能以及最有效地利用气体中的有用资源。因此,它不仅成为电力、能源和相关加工工业的研究热点,也是过滤行业的重要研究课题。 目前,整体煤气化燃气蒸汽联合循环发电技术(I G C C )和增压流化床燃烧联合循环发电技术(PFB C )是先进的能源转换系统,但在这两种技术中,煤、飞灰和脱硫吸附剂会夹带在燃烧(气化)产物中,易从燃烧器或气化炉带进燃气轮机。由于进入燃气轮机的气体中含有大量粉尘,会引起燃气轮机叶片的磨损,影响燃气轮机叶片的寿命及工作效率。为了解决这个问题,燃气中的粉尘含量必须限制在一定范围内,同时,为了满足I G C C 和PF B C 对燃气高温的要求,人们正在试图摆脱传统的湿法气体净化工艺,采用高温干法气体净化技术来解决制约I G C C 和PFB C 发展的关键问题。因此,有效的高温除尘技术的作用是至关重要的。 1陶瓷过滤除尘技术 陶瓷过滤器属于高性能阻挡式过滤器,是利用陶 瓷材料的多孔性进行除尘,其过滤元件的过滤是吸 附、表面过滤和深层过滤相结合的一种过滤方式,其过滤机理主要为惯性冲撞、扩散和截留。随着对研究的深入进行,陶瓷过滤除尘技术取得了很大的进展。1.1 过滤元件结构上的多样化 其多样的过滤元件可以满足不同条件的除尘要求,并且不同的过滤元件随着应用的推进而经过了改进,例如,陶瓷纤维布袋过滤器、陶瓷纤维毯过滤器、试管式过滤器、蜂窝式过滤器。1.1.1 陶瓷纤维布袋过滤器 美国B uel l 公司、美国西屋公司以及美国电力研究所等用直径为10μm ~12μm 陶瓷纤维(由质量分数为62%A l 2O 3、24%Si O 2、14%B 2O 3组成)编织成布袋,在816℃、0.98M P a 的条件下,用0.033m /s 的过滤速度进行试验,除尘效率高达99.7%,压力降为176.4P a ~1489.6Pa,清灰时用脉冲空气反吹[1]。1.1.2 陶瓷纤维毯过滤器 美国A cur ex 公司采用直径为3μm 的陶瓷纤维编织成毯,两面再蒙上一层陶瓷纤维布或者不锈钢丝网,在800℃、0.98M Pa 条件下试验,过滤速度为0.1m /s ,除尘效率可达99.9%,清灰时也采用脉冲空气反吹,在高温下反吹5×104次,纤维布和毯的强度仍可满足要求[2]。1.1.3 试管式过滤器 试管式过滤元件为一端封闭、一端开口的圆筒形 结构,典型尺寸为内径(或3),外径6,长为5。过滤气体穿过微孔滤管壁,由外向内流动而实现过滤,在滤管外表面形成粉尘层。早期的陶瓷滤管为单层结构,目前常采用双层结构,内层为平均孔 高温气体除尘技术及其研究进展 刘会雪 刘有智 孟晓丽 (中北大学山西省超重力化工工程技术研究中心,太原030051) 收稿日期作者简介刘会雪(—),女,5年毕业于河南农业大学,在读硕士研究生,主要研究方向为陶瓷膜高温气体除尘。 摘要 介绍了几种常用且有效的高温气体除尘技术及其研究进展,包括:陶瓷过滤除尘技术、颗粒层过 滤除尘技术、金属微孔过滤除尘技术、旋风除尘技术、静电除尘技术,其中,颗粒层过滤除尘技术是最有发展前途的可用于I G C C 和PF BC -C C(增压流化床联合循环)的高温除尘技术之一,指出高温除尘技术需要解决的问题是高温下延长滤材寿命、优化滤材再生技术、提高过滤效率。分析表明,高温除尘技术具有广阔的工业应用前景。 关键词 高温气体除尘 过滤 静电除尘 旋风除尘 文章编号:1005-9598(2008)-02-0014-05中图分类号:T Q 028.2文献标识码:A 第2期(总第135期) 2008年4月 煤化工 Co al Chemical Industry No.2(Total No.135) Apr.2008 40m m 0m m 0m m 1.m :2007-11-22 :1981200

硫酸根检测方法

MM_FS_CNG_0301 制盐工业通用试验方法硫酸根离子的测定 1.适用范围 本方法适用于制盐工业中工业盐、食用盐(海盐、湖盐、矿盐、精制盐)、氯化钾、工业氯化镁试样中硫酸根含量的测定。 2.重量法 2.1.原理概要 样品溶液调至弱酸性,加入氯化钡溶液生成硫酸钡沉淀,沉淀经过滤、洗涤、烘干、称重,计算硫酸根含量。 2.2.主要试剂和仪器 2.2.1.主要试剂 氯化钡:0.02mol/L溶液; 配制:称取2.40g氯化钡,溶于500mL水中,室温放置24h,使用前过滤; 盐酸:2mol/L溶液; 甲基红:0.2%溶液。 2.2.2.仪器 一般实验室仪器。 2.3.过程简述 吸取一定量样品溶液〔见附录A(补充件)〕,置于400mL烧杯中,加水至150mL,加2滴甲基红指示剂,滴加2mol/L盐酸至溶液恰呈红色,加热至近沸,迅速加入40mL(硫酸根含量>2.5%时加入60mL)0.02mol/L氯化钡热溶液,剧烈搅拌2min,冷却至室温,再加少许氯化钡溶液检查沉淀是否完全,用预先在120℃烘至恒重的4号玻璃坩埚抽滤,先将上层清液倾入坩埚内,用水将杯内沉淀洗涤数次,然后将杯内沉淀全部移入坩埚内,继续用水洗涤沉淀数次,至滤液中不含氯离子(硝酸介质中硝酸银检验)。以少量水冲洗坩埚外壁后,置电烘箱内于120±2℃烘1h后取出。在干燥器中冷却至室温,称重。以后每次烘30min,直至两次称重之差不超过0.0002g视为恒重。 2.4.结果计算 硫酸根含量按式(1)计算。 硫酸根(%)=(G1-G2)×0.4116 ×100 (1) W 式中:G1——玻璃坩埚加硫酸钡质量,g;G2——玻璃坩埚质量,g;W——所取样品质量,g;0.4116——硫酸钡换算为硫酸根的系数。 2.5.允许差 允许差见表1。 表 1 硫酸根,%允许差,% <0.50 0.03 0.50~<1.50 0.04 1.50~3.50 0.05 2.6.分析次数和报告值 同一实验室取双样进行平行测定,其测定值之差超过允许差时应重测,平行测定值之差如不超过允许差取测定值的平均值作为报告值。 3.容量法(EDTA络合滴定法) 3.1.原理概要 氯化钡与样品中硫酸根生成难溶的硫酸钡沉淀,过剩的钡离子用EDTA标准溶液滴定,间接测定硫酸根。 3.2主要试剂和仪器 3.2.1.主要试剂 氧化锌;标准溶液。 称取0.8139g于800℃灼烧恒重的氧化锌,置于150mL烧杯中,用少量水润湿,滴加盐酸(1∶2)至全部溶解,移入500mL

除硫酸根的方法

生石灰投加量对SO2-的去除效果 4 不同生石灰投加量对SO2-去除率不同,生石灰对SO2-的去除效果并不显着, 44 最大去除率仅为40%左右,最佳投加量为7g/L,因为在反应过程中,生成的硫酸钙为微溶物,吸附在生石灰表面而形成了一层致密的硫酸钙薄膜,影响了Ca2+与SO42-的继续反应,并且随着生石灰的继续投加,因硫酸钙薄膜的保护作用,去除率反而下降。 生石灰+PAC对SO42-的去除效果 聚合氯化铝PAC能中和电荷和压缩双电层,导致胶体微粒相互凝聚和架桥,在一定的水力条件下能与SO2-形成较大的絮凝体,沉淀达到去除效果,因此在生 4 石灰最佳投加量(7g/L)反应后,加入聚合氯化铝协同研究对SO2-的去除效果。生 4 石灰+PAC组合药剂对SO2-的去除变化可以看出,PAC的最佳投加量为20mg/L,当 4 PAC投加量小于20mg/L时,部分的胶体颗粒不能在压缩双电层等混凝机理的作用下去除,影响了去除效果,去除率较低;当混凝剂量大于20mg/L时,混凝的水解物不能以胶体为核,达到卷扫网捕的作用,悬浮在液体中,所形成的絮凝体吸附在颗粒的周围,达不到去除效果,去除率反而下降。 生石灰+PAC+PAM对SO42-的去除效果 为了增加絮凝的效果,提高矾花的形成和密实程度,在投加PAC后在投加助凝剂聚丙烯酰胺PAM,PAM是一种有机高分子絮凝剂,由丙烯酰胺聚合而成,在其分子的主链含烯酰胺PAM,PAM是有大量侧基----酰胺基,酰胺基的化学活性很强,可以和多种化合物反应而产生许多聚丙烯酰胺的衍生物,其分子链集团可在较远的各个颗粒间形成聚合物桥,增多了相互碰撞的次数,使部分中和胶粒迅速被吸附和桥接,能大大加强混凝絮状物的形成和沉淀。 在最佳生石灰投加量(7g/L)和最佳PAC投加量(20mg/L)反应后再加入PAM 进行试验研究,得出生石灰+PAC+PAM对SO2-明显,最佳PAM投加量为10mg/L,小于 4 10mg/L时,颗粒的碰撞机会少,絮凝体形成速度和沉降速度慢,去除率较低,但当PAM投加量大于10mg/L时,由于絮凝剂粒子的吸附点被迅速占领,减少了架桥的可能性,使得絮凝效果反而下降。

相关主题