搜档网
当前位置:搜档网 › 二次函数的存在性问题(平行四边形与相似)

二次函数的存在性问题(平行四边形与相似)

二次函数的存在性问题(平行四边形与相似)
二次函数的存在性问题(平行四边形与相似)

二次函数存在性问题(平行四边形)

已知三个定点,再找一个定点构成平行四边形(平面内有三个点满足)

1.【08湖北十堰】已知抛物线b ax ax y ++-=22与x 轴的一个交点为A (-1,0),与y 轴

的正半轴交于点C .

⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标; ⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式;

⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由. 解:⑴对称轴是直线:1=x ,点B 的坐标是(3,0). ……2分

说明:每写对1个给1分,“直线”两字没写不扣分.

⑵如图,连接PC ,∵点A 、B 的坐标分别是A (-1,0)、B (3,0),

∴AB =4.∴.AB PC 242

1

21=?==

在Rt △POC 中,∵O P =PA -OA =2-1=1, ∴.PO PC OC 3122222=-=-=

∴b =.3 ………………………………3分 当01=-=,y x 时,,a a 032=+--

∴.a 3

3

=

………………………………4分 ∴.

x x y 33

3

2332++-= ………………5分 ⑶存在.……………………………6分

理由:如图,连接AC 、BC .设点M 的坐标为),(y x M .

①当以AC 或BC 为对角线时,点M 在x 轴上方,此时CM ∥AB ,且CM =AB . 由⑵知,AB =4,∴|x |=4,3==OC y .

∴x =±4.∴点M 的坐标为)3,4()3,4(-或M .…9分

说明:少求一个点的坐标扣1分.

②当以AB 为对角线时,点M 在x 轴下方. 过M 作MN ⊥AB 于N ,则∠MNB =∠AOC =90°.

∵四边形AMBC 是平行四边形,∴AC =MB ,且AC ∥MB .

∴∠CAO =∠MBN .∴△AOC ≌△BNM .∴BN =AO =1,MN =CO ∵OB =3,∴0N =3-1=2.

∴点M 的坐标为(2,M . ……………………………12分

说明:求点M 的坐标时,用解直角三角形的方法或用先求直线解析式,

然后求交点M 的坐标的方法均可,请参照给分.

综上所述,坐标平面内存在点M ,使得以点A 、B 、C 、M 为顶点的四边形是平行四边形.其坐标

为123((2,M M M -.

说明:①综上所述不写不扣分;②如果开头“存在”二字没写,但最后解答全部正确,不扣分。

2.【09浙江湖州】已知抛物线22y x x a =-+(0a <)与y 轴相交于点A ,顶点为M .

直线1

2

y x a =-分别与x 轴,y 轴相交于B C ,两点,并且与直线AM 相交于点N .

(1)填空:试用含a 的代数式分别表示点M 与N 的坐标,则()()M N , , , ;

(2)如图,将NAC △沿y 轴翻折,若点N 的对应点N ′恰好落在抛物线上,AN ′与x 轴交于点D ,连结CD ,求a 的值和四边形ADCN 的面积;

(3)在抛物线22y x x a =-+(0a <)上是否存在一点P ,使得以P A C N ,,,为顶点的四边形是平行四边形?若存在,求出P 点的坐标;若不存在,试说明理由.

(1)()41113

3M a N a a ??--

???,,,.……………4分

(2)由题意得点N 与点N ′关于y 轴对称,N '∴4

13

3a a ??-- ???,,

将N ′的坐标代入22y x x a =-+得21168

393a a a a -=

++, 10a ∴=(不合题意,舍去)

,29

4

a =-.……………2分 334N ?

?∴- ??

?,,∴点N 到y 轴的距离为3.

904A ??- ???,,N ' 334??

???

,,∴直线AN '的解析式为94y x =-,

它与x 轴的交点为904D ??

∴ ???

,,点D 到y 轴的距离为94.

19199189

32222416

ACN ACD ADCN S S S ∴=+=??+??=△△四边形.……………2分

(3)当点P 在y 轴的左侧时,若ACPN 是平行四边形,则PN 平行且等于AC ,

∴把N 向上平移2a -个单位得到P ,坐标为4

73

3a a ??- ???,,代入抛物线的解析式, 得:27168

393

a a a a -=

-+ 10a ∴=(不舍题意,舍去)

,238a =-, 12P ??

∴- ???

7,8.……………2分 当点P 在y 轴的右侧时,若APCN 是平行四边形,则AC 与PN 互相平分, OA OC OP ON ∴==,.

第(2)题

备用图

P ∴ 与N 关于原点对称,4133P a a ??

∴- ???

,,

将P 点坐标代入抛物线解析式得:21168

393a a a a =

++, 10a ∴=(不合题意,舍去),2158a =-,5528P ??

∴- ??

?,.……………2分

∴存在这样的点11728P ??- ?

??,或25528P ??

- ???

,,能使得以P A C N ,,,为顶点的四边形是平行四边形. 二、已知两个定点,再找两个点构成平行四边形

①确定两定点连接的线段为一边,则两动点连接的线段应和已知边平行且相等)

1.【09福建莆田】已知,如图抛物线23(0)y ax ax c a =++>与y 轴交于C 点,与x 轴交于A 、

B 两点,A 点在B 点左侧。点B 的坐标为(1,0),OC=30B . (1)求抛物线的解析式;

(2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值:

(3)若点E 在x 轴上,点P 在抛物线上。是否存在以A 、C 、E 、P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.

解:(1)∵对称轴33

22

a x a =-=-………1分 又∵OC=3OB=3,0a >,

∴C (0,-3)………2分

方法一:把B(1,0)、C(0,-3)代入23y ax ax c =++得:

330

c a a c =-??

++=? 解得:3

34a c ==-,

∴239

344

y x x =+-…………………4分

方法二:∵B (1,0),∴A(-4,0)

可令(4)(1)y a x x =+- 把C(0,-3)代入得:

34a =

∴3

(4)(1)4y x x =+-………………4分

239

344x x =+- (2)方法一:过点D 作DM ∥y 轴分别交线段AC 和x 轴于点M 、N 。 ∵ABC ACD ABCD S S S +四边形=

=15115

()2222

DM AN ON DM +??+=+=

……………5分 ∵A(-4,0),C(0,-3)

设直线AC 的解析式为y kx b =+

代入求得:3

34

y x =

-……………6分 令239(3)44D x x x +-,,3

(3)4M x x --,

223393

3(3)(2)34444

DM x x x x =---+-=-++ …………7分

当2x =-时,DM 有最大值3

此时四边形ABCD 面积有最大值

27

2

。…………8分 方法二:过点D 作DQ ⊥y 轴于Q ,过点C 作1CC ∥x 轴交抛物线于1C ,从图象中可判断当嗲D 在1CC 下方

的抛物线上运动时,四边形ABCD 才有最大值。 则OBC DQC ABCD AOQD S S S S

+四边形梯形=-=

311

(4)(3)222

DQ OQ DQ OQ +?+?-??- =

33

222

OQ DQ ++ …………5分 令239

(3)44

D x x x +-,

则22

33933272(3)(2)244222

ABCD S x x x x -+--=-++四边形=…………7分

当2x =-时,四边形ABCD 面积有最大值27

2

。…………8分

(3)如图所示,讨论:①过点C 作1CP ∥x 轴交抛物线于点1P ,过点1P 作11PE

∥AC 交x 轴于点1E ,此时四边形11ACPE 为平行四边形,…………9分 ∵C(0,-3)

239

3344x x +-=-得: 1203x x ==, ∴13CP =。∴1(33)P

--, 2.【09福建南平】已知抛物线:x x y 22

1

21+-=

(1)求抛物线1y 的顶点坐标.

(2)将抛物线1y 向右平移2个单位,再向上平移1个单位,得到抛物线2y ,求抛物线2y 的解析式.

(3)如下图,抛物线2y 的顶点为P ,x 轴上有一动点M ,在1y 、2y 这两条抛物线上是否存在点N ,使O (原点)、P 、M 、N 四点构成以OP 为一边的平行四边形,若存在,求出N 点的坐标;若不存在,请说明理由.

【提示:抛物线c bx ax y ++=2

(a ≠0)的对称轴是,a b

x 2-=顶点坐标是??

? ?--b ac b 4,2】 解:(1)依题意 0,2,2

1

==-=c b a ……………1分

∴2)

2

1(22

2=-?-=-a b ,

2)21(4204422=-?-=-a b ac ……∴顶点坐标是(2,2)………………………4分

(2)根据题意可知

y 2解析式中的二次项系数为2

1

-…………………5分

且y 2的顶点坐标是(4,3)……………………6分 ∴y 2=-

3)4(212+-x ,即:y 2=542

1

2-+-x x ……8分

(3)符合条件的N 点存在……………………………………9分 如图:若四边形OPMN 为符合条件的平行四边形, 则OP ∥MN ,且MN OP = ∴BMN POA ∠=∠,

作x PA ⊥轴于点A ,x NB ⊥轴于点B

∴0

90=∠=∠MBN PAO ,

则有NMB POA ???(AAS ) ∴BN PA = ∵点P 的坐标为(4,3)∴3==PA NB ……10分 ∵点N 在抛物线1y 、2y 上,且P 点为

1y 、2y 的最高点 ∴符合条件的N 点只能在x 轴下方 ①点N 在抛物线1y 上,则有:322

12

-=+-x x 解得:102-=x 或102+=x …………………………………………………11分

②点N 在抛物线2y 上,则有:33)4(2

12

-=+--x

解得:324-=x 或324+=x …………………13分

∴符合条件的N 点有四个:

)

3,324();

3,102();3,324();3,102(4321-+-+----N N N N ……………………………………………14分

②两定点连接的线段没确定为平行四边形的边时,则这条线段可能为平行四边形得边或对角线

1.【07浙江义乌】如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物

线交于A 、C 两点,其中C 点的横坐标为2.

(1)求A 、B 两点的坐标及直线AC 的函数表达式;

(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点, 求线段PE 长度的最大值;

(3)点G 抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样 的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由. 解:(1)令y=0,解得11x =-或23x =(1分) ∴A (-1,0)B (3,0);(1分)

将C 点的横坐标x=2代入223y x x =--得y=-3,∴C (2,-3)(1分) ∴直线AC 的函数解析式是y=-x-1 (2)设P 点的横坐标为x (-1≤x ≤2)(注:x 的范围不写不扣分) 则P 、E 的坐标分别为:P (x ,-x-1),(1分) E (2

(,23)x x x --(1分)

∵P 点在E 点的上方,PE=2

2

(1)(23)2x x x x x -----=-++(2分) ∴当12x =

时,PE 的最大值=9

4

(1分) (3)存在4个这样的点F ,当AF 为平行四边形的边时:123(1,0),(3,0),(47),(47)

F F F F -+- 当AF

为平行四边形的对角线时:1234(1,0),(3,0),(4(4F F F F -

2.【09辽宁抚顺】已知:如图所示,关于x 的抛物线2(0)y ax x c a =++≠与x 轴交于点(20)A -,、点(60)B ,

,与y 轴交于点C . (1)求出此抛物线的解析式,并写出顶点坐标;

(2)在抛物线上有一点D ,使四边形ABDC 为等腰梯形,写出点D 的坐标,并求出直线AD

的解析式;

(3)在(2)中的直线AD 交抛物线的对称轴于点M ,抛物线上有一动点P ,x 轴上有一动点Q .是否存在以A M P Q 、、、为顶点的平行四边形?如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由.

解:(1)根据题意,得

420

3660a c a c -+=??

++=?

·············································· 1分 解得143

a c ?

=-???=? ·

·················································· 3分 ∴抛物线的解析式为21

34

y x x =-++ ·

········· 4分 顶点坐标是(2,4) ··············································································································· 5分

(2)(43)D ,

……………………………………6分 设直线AD 的解析式为(0)y kx b k =+≠

直线经过点(20)A -,、

点(43)D , 20

43k b k b -+=?∴?+=?……………………………………7分 121k b ?=?∴??=?

……………………………………8分

1

12

y x ∴=+··························································································································· 9分

(3)存在. ·························································································································· 10分

120)Q , ······················································································································ 11分

2(2)Q -,0 ·

··············································································································· 12分

3(6Q - ······················································································································ 13分

4(6Q + ······················································································································ 14分

二次函数的存在性问题(相似)

已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一交点为B。

(1)求抛物线的解析式;

(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四

边形,求D点的坐标;

(3)连接OA、AB,如图②,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,

求出P点的坐标;若不存在,说明理由。

[07江苏苏州]设抛物线22y ax bx =+-与x 轴交于两个不同的点A(一1,0)、B(m ,0), 与y 轴交于点C .且∠ACB=90°. (1)求m 的值和抛物线的解析式;

(2)已知点D(1,n )在抛物线上,过点A 的直线1y x =+交抛物线 于另一点E .若点P 在x 轴上,以点P 、B 、D 为顶点的三角形与 △AEB 相似,求点P 的坐标.

(3)在(2)的条件下,△BDP 的外接圆半径等于________________. 解:(1)令x=0,得y=-2 ∴C(0,一2).∵ACB=90°,CO ⊥AB,.

∴ △AOC ∽△COB,.∴OA 2OB=OC 2

;∴OB=

22

241

OC OA == ∴m=4.

x

y

F -2 -4

-6

A

C

E P

D

B

5 2

1 2

4 6 G [08年湖南省湘潭]已知抛物线2y ax bx c =++经过点A (5,0)、B (6,-6)和原点. (1)求抛物线的函数关系式;

(2)若过点B 的直线y kx b '=+与抛物线相交于点C (2,m ),请求出

?OBC 的面积S 的值.

(3)过点C 作平行于x 轴的直线交y 轴于点D ,在抛物线对称轴右侧位于 直线DC 下方的抛物线上,任取一点P ,过点P 作直线PF 平行于y 轴交x 轴 于点F ,交直线DC 于点E . 直线PF 与直线DC 及两坐标轴围成矩形OFED (如图),是否存在点P ,使得?OCD 与?CPE 相似?若存在,求出点P 的 坐标;若不存在,请说明理由.

解:(1)由题意得:255036600a b c a b c c ++=??++=??=?

解得1

50a b c =-??

=??=?

故抛物线的函数关系式为25y x x =-+

(2)C 在抛物线上,2252,6m m ∴-+?=∴=

C ∴点坐标为(2,6),B 、C 在直线y kx b '=+上 ∴6266k b k b '

=+??

'

-=+? 解得3,12k b '=-= ∴直线BC 的解析式为312y x =-+

设BC 与x 轴交于点G ,则G 的坐标为(4,0)

11

46462422

OBC

S

∴=??+??-= (3)存在P ,使得OCD ∽CPE 设P (,)m n ,90ODC E ∠=∠=?

故2,6CE m EP n =-=-

若要OCD ∽CPE ,则要OD DC CE EP =或OD DC

EP CE

= 即6226m n =--或62

62n m =-- 解得203m n =-或123n m =-

又(,)m n 在抛物线上,22035m n n m m =-??=-+?或2

1235n m

n m m

=-??=-+? 解得1221102

3,,6

509m m n n ?=?=????=??=??

或121226,66m m n n ==????

==-?? 故P 点坐标为1050

(39

,和(6,6)- ················································································ 10分

(只写出一个点的坐标记9分)

[08江苏苏州]如图,抛物线(1)(5)y a x x =+-与x 轴的交点为M N ,.直线y kx b =+与x 轴交于

(20)P -,,与y 轴交于C .若A B ,两点在直线y kx b =+

上,且AO BO ==AO BO ⊥.D 为线段MN 的中点,OH 为Rt OPC △斜边上的高.

(1)OH 的长度等于 ;k = ,b = . (2)是否存在实数a ,使得抛物线(1)(5)y a x x =+-

满足以D N E ,,为顶点的三角形与AOB △相似?

同时探索所求得的抛物线上是否还有符合条件的E 点

(简要说明理由);并进一步探索对符合条件的每一个 E 点,直线NE 与直线AB 的交点G 是否总满足 10PB PG < 解:(1)1OH =;k =,b =

(2)设存在实数a ,使抛物线(1)(5)y a x x =+-上有一点E ,满足以D N E ,,为顶点的三角形与等腰直角AOB △相似.

∴以D N E ,,为顶点的三角形为等腰直角三角形,且这样的三角形最多只有两类,一类是以DN 为直角边的等腰直角三角形,另一类是以DN 为斜边的等腰直角三角形. ①若DN 为等腰直角三角形的直角边,则ED DN ⊥.

由抛物线(1)(5)y a x x =+-得:(10)M -,,(50)N ,.(20)D ∴,,3ED DN ∴==.E ∴的坐标为(23),.

把(23)E ,

代入抛物线解析式,得13a =-.∴抛物线解析式为1

(1)(5)3

y x x =-+-. 即2145

333

y x x =-++.

②若DN 为等腰直角三角形的斜边,则DE EN ⊥,DE EN =.E ∴的坐标为(3.51.5),.

把(3.51.5)

E ,代入抛物线解析式,得2

9

a =-. ∴抛物线解析式为2(1)(5)9y x x =-+-,即22810

999

y x x =-++

当13a =-时,在抛物线2145

333

y x x =-++上存在一点(23)E ,

满足条件,如果此抛物线上还有满足条件的E 点,不妨设为E '点,那么只有可能DE N '△是以DN 为斜边的等腰直角三角形,由此得(3.51.5)

E ',,显然E '不在抛物线2145333y x x =-++上,故抛物线2145

333

y x x =-++上没有符合条件的其他的E 点.

当29a =-时,同理可得抛物线22810

999

y x x =-++上没有符合条件的其他的E 点.

当E 的坐标为(23),

,对应的抛物线解析式为2145

333

y x x =-++时, EDN △和ABO △都是等腰直角三角形,45GNP PBO ∴∠=∠=.又N P G B P O ∠=∠,

NPG BPO ∴△∽△.PG PN

PO PB

∴=,2714PB PG PO PN ∴==?=,∴总满足10PB PG <

当E 的坐标为(3.51.5)

,,对应的抛物线解析式为22810

999

y x x =-++时, 同理可证得:2714PB PG PO PN ==?=,∴总满足10PB PG <

[08年内蒙锡林郭勒盟]如图,抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B . (1)求抛物线的解析式;

(2)在抛物线上求点M ,使△MOB 的面积是△AOB 面积的3倍;

(3)连结OA ,AB ,在x 轴下方的抛物线上是否存在点N ,使△OBN 与△OAB 相似?若存在,求出N 点的坐标;若不存在,说明理由.

解:(1)由题意可设抛物线的解析式为1)2(2+-=x a y ∵抛物线过原点

∴01)20(2=+-a ∴41

-=a

∴抛物线的解析式为1)2(4

1

2+--=x y

即x x y +-=24

1

.

(2)∵△AOB 与△MOB 同底不等高 又∵S △MOB =3 S △AOB

∴△MOB 的高是△AOB 高的3倍 即点M 的纵坐标是3-

∴x x +-=-24

1

3

01242=--x x

解得 61=x ,22-=x

∴)36(1-,

M )32(2--,M (3)由抛物线的对称性可知:

AO =AB

ABO AOB ∠=∠ 若△OBN 与△OAB 相似

必须有BNO BOA BON ∠=∠=∠

显然 )12('-,

A ∴直线ON 的解析式为x y 2

1

-= …(10分)

由x x x +-=24

1

21,得01=x ,62=x

∴)36(-,N

过N 作NE ⊥x 轴,垂足为E . 在Rt △BEN 中,BE =2,NE =3,

∴133222=+=NB 又OB =4 ∴NB ≠OB

∴∠BON ≠∠BNO

∴△OBN 与△OAB 不相似

同理说明在对称轴左边的抛物线上也不存在符合条件的N 点. 所以在抛物线上不存在N 点,使得△OBN 与△OAB 相似

[09湖北鄂州]如图所示,将矩形OABC 沿AE 折叠,使点O 恰好落在BC 上F 处,以CF 为边作正方形CFGH , 延长BC 至M ,使CM =|CE —EO |,再以CM 、CO 为边作矩形CMNO. (1)试比较EO 、EC 的大小,并说明理由 (2)令CMNO

CFGH S S m 四边形四边形=

,请问m 是否为定值?若是,请求出m 的值;

若不是,请说明理由

(3)在(2)的条件下,若CO =1,CE =

31,Q 为AE 上一点且QF =3

2, 抛物线y =mx 2+bx+c 经过C 、Q 两点,请求出此抛物线的解析式. (4)在(3)的条件下,若抛物线y =mx 2+bx+c 与线段AB 交于点P , 试问在直线BC 上是否存在点K ,使得以P 、B 、K 为顶点的三角 形与△AEF 相似?若存在,请求直线KP 与y 轴的交点T 的坐标? 若不存在,请说明理由。 1)EO >EC ,理由如下:

由折叠知,EO=EF ,在Rt △EFC 中,EF 为斜边,∴EF >EC , 故EO >EC …2分 (2)m 为定值

∵S 四边形CFGH =CF 2=EF 2-EC 2=EO 2-EC 2=(EO+EC)(EO ―EC)=CO 2(EO ―EC) S 四边形CMNO =CM 2CO=|CE ―EO|2CO=(EO ―EC) 2CO ∴1

==

CMNO

CFGH S S m

四边形四边形 ……………………………………………………4分

(3)∵CO=1,323

1

==QF CE , ∴EF=EO=QF ==-3

2

311 ∴cos ∠FEC=

21

∴∠FEC=60°, ∴?=∠∠=?=?

-?=

∠30602

60180EAO OEA FEA , ∴△EFQ 为等边三角形,32

=EQ

…………………………………………5分

作QI ⊥EO 于I ,EI=3121=EQ ,IQ=3

3

23=

EQ ∴IO=313132=- ∴Q 点坐标为)31,33(

……………………………………6分

∵抛物线y=mx 2+bx+c 过点C(0,1), Q )31

,33(

,m=1

∴可求得3-=b ,c=1

∴抛物线解析式为1

32+-=x x y

……………………………………7分

(4)由(3),3323==EO AO

当332=x 时,3

113323)332(2=+?-=y <AB ∴P 点坐标为)31

,332(

…………………8分 ∴BP=3

2

311=-AO

方法1:若△PBK 与△AEF 相似,而△AEF ≌△AEO ,则分情况如下:

①3

3

232

32=BK 时,932=BK ∴K 点坐标为)1,934(或)

1,93

8( ②3232

3

32=BK 时,332=BK ∴K 点坐标为)1,33

4(或)1,0(…………10分

故直线KP 与y 轴交点T 的坐标为

)1,0()31

,0()37,0()35,0(或或或--

…………………………………………12分

方法2:若△BPK 与△AEF 相似,由(3)得:∠BPK=30°或60°,过P 作PR ⊥y 轴于R ,则∠RTP=60°或30°

①当∠RTP=30°时,2333

2=?=

RT ②当∠RTP=60°时,32

3332=

÷=RT

∴)1,0()31

,0()35,0()37,0(4321T T T T ,,,--

……………………………12分

[09湖南长沙]如图,二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴相交于点

C .连结AC BC A C 、,、两点的坐标分别为(30)A -,

、(0C ,且当4x =-和2x =时二次函数的函数值y 相等.

(1)求实数a b c ,,的值;

(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将BMN △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;

(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.

[09辽宁十二市]已知:在平面直角坐标系中,抛物线32+-=x ax y (

≠a A 、B 两点,交y 轴于点C ,且对称轴为直线2x =-.

(1)求该抛物线的解析式及顶点D 的坐标;

(2)若点P (0,t )是y 轴上的一个动点,请进行如下探究: 探究一:如图1,设△P AD 的面积为S ,令

W =t ·S ,当0<t <4时, W 是否有最大值?如果有,求出W 的最大值和此时t

的值; 如果没有,说明理由;

探究二:如图2,是否存在以P 、A 、D 为顶点的三角形与Rt △AOC

相似?如果存在,求点P 的坐标;如果不存在,请说明理由.

(参考资料:抛物线)0(2

≠++=a c bx ax y 对称轴是直线x =2b a -)

解:(1)∵抛物线23y ax x =-+(0a ≠)的对称轴为直线2x =-.

∴122a --=-,∴1

4

a =-, ∴2

134y x x =--+.

∴(24)D -,

. (2)探究一:当04t <<时,W 有最大值.

∵抛物线2

134y x x =--+交x 轴于A B 、两点,交y 轴于点C ,

∴(60)A -,

,(20)B ,,(03)C ,, ∴63OA OC ==,. ················································ 4分 当04t <<时,作DM y ⊥轴于M , 则24DM OM ==,. ∵(0)P t ,,

∴4OP t MP OM OP t ==-=-,. ∵PAD AOP DMP OADM S S S S =--△△△梯形

111

()222DM OA OM OA OP DM MP =

+-- 111

(26)462(4)222

t t =+?-??-??-

122t =- ·················································································································· 6分

∴2

(122)2(3)18W t t t =-=--+ ······················································································· 7分 ∴当3t =时,W 有最大值,18W =最大值. ········································································ 8分

探究二:

存在.分三种情况: ①当190PDA ∠=°时,作DE x ⊥轴于E ,则2490OE DE DEA ==∠=,,°, ∴624AE OA OE DE =-=-==.

∴45DAE ADE ∠=∠=°,AD ==, ∴11904545PDE PDA ADE ∠=∠-∠=-=°°°. ∵DM y ⊥轴,OA y ⊥轴,

∴DM OA ∥,∴90MDE DEA ∠=∠=°, ∴11904545MDP MDE PDE ∠=∠-∠=-=°°°. ∴12PM DM ==,1PD == 此时

1

4OC OA PD AD ==,又因为1

90AOC PDA ∠=∠=°, 图2

图1

∴1Rt Rt ADP AOC △∽△,∴11422OP OM PM =-=-=,∴1(02)P ,. ∴当190PDA ∠=°时,存在点1P ,使1Rt Rt ADP AOC △∽△,

此时1P 点的坐标为(0,2). ····················································· 10分(结论1分,过程1分) ②当290P AD ∠=°时,则245P AO ∠=°,

∴2cos 45OA P A =

26

P A OA ==

∵AD OC =

,∴2P A AD OC OA ≠. ∴2P AD △与AOC △不相似,此时点2P 不存在.

················· 12分(结论1分,过程1分) ③当390AP D ∠=°时,以AD 为直径作1O ⊙,则1

O ⊙

的半径2

AD

r ==, 圆心1O 到y 轴的距离4d =.∵d r >,∴1O ⊙与y 轴相离.

不存在点3P ,使390AP

D ∠=°. ∴综上所述,只存在一点(02)P ,

使Rt ADP △与Rt AOC △相似. ································································· 14分(结论1分,过程1分)

(其它方法可参照此答案给分)

[09青海]矩形OABC 在平面直角坐标系中位置如图13所示,

A C 、两点的坐标分别为(60)A ,,(03)C -,,直线34

y x =-

与BC 边相交于D 点. (1)求点D 的坐标; (2)若抛物线2

94

y ax x =-经过点A

(3)设(2)中的抛物线的对称轴与直线OD 交于点M , 点P 为对称轴上一动点,以P O M 、、为顶点的三角形 与OCD △相似,求符合条件的点P 的坐标.

解:(1)点D 的坐标为(43)-,. ······

··········································································· (2分) (2)抛物线的表达式为239

84y x x =-. ··································(3)抛物线的对称轴与x 轴的交点1P 符合条件.

∵OA CB ∥, ∴1

POM CDO ∠=∠. ∵1

90OPM DCO ∠=∠=°, ∴1

Rt Rt POM CDO △∽△. ····························· (6分) ∵抛物线的对称轴3x =,

∴点1P 的坐标为1(30)P ,. ···························································过点O 作OD 的垂线交抛物线的对称轴于点2P . ∵对称轴平行于y 轴, ∴2P MO DOC ∠=∠. ∵2

90POM DCO ∠=∠=°, ∴21Rt Rt P M O DOC △∽△. ···················································································· (8分) ∴点2P 也符合条件,2OP M ODC ∠=∠. ∴121

390PO CO P PO DCO ==∠=∠=,°, ∴21Rt Rt P PO DCO △≌△. ······················································································ (9分) ∴124PP CD ==.

∵点2P 在第一象限, ∴点2P 的坐标为2P (3

4),, ∴符合条件的点P 有两个,分别是1(30)P ,,2P (34),. (11分)

二次函数-平行四边形存在性问题

专题:二次函数中的平行四边形存在性问题 类型一:已知三个定点,再找一个定点构成平行四边形(平面内有三个点满足) 1.已知抛物线b ax ax y ++-=22与x 轴的一个交点为A (-1,0),与y 轴的正半轴交于点C. ⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标; ⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式; ⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A、B、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由. 类型:已知两个定点,再找两个点构成平行四边形 1.已知,如图抛物线2 3(0)y ax ax c a =++>与y 轴交于C 点,与x 轴交于A、B 两点,A 点在B 点左侧。点B 的坐标为(1,0),OC=30B. (1)求抛物线的解析式; (2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值: (3)若点E 在x 轴上,点P 在抛物线上。是否存在以A、C、E、P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.

2、练习如图,抛物线:c bx x y ++=22 1与x 轴交于A、B(A 在B 左侧),顶点为C(1,﹣2)。(1)求此抛物线的关系式;并直接写出点A、B 的坐标; (2)求过A、B、C 三点的圆的半径; (3)在抛物线上找点P,在y 轴上找点E,使以A、B、P、E 为顶点的四边形是平行四边形,求点P、E 的坐标。 1.如图,抛物线2 23y x x =--与x 轴交A、B 两点(A 点在B 点左侧),直线l 与抛物线交于A、C 两点,其中C 点的横坐标为2. (1)求A、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值; (3)点G 抛物线上的动点,在x 轴上是否存在点F,使A、C、F、G 这样的四个点为顶点的四边形是平行 四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.

二次函数与特殊四边形综合问题专题训练(有答案)

二次函数中动点与特殊四边形综合问题解析与训练 一、知识准备: 抛物线与直线形的结合表形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊四边形,有以下常风的基本形式 (1)抛物线上的点能否构成平行四边形 (2)抛物线上的点能否构成矩形,菱形,正方形 特殊四边形的性质与是解决这类问题的基础,而待定系数法,数形结合,分类讨论是解决这类问题的关键。 二、例题精析 ㈠【抛物线上的点能否构成平行四边形】 例一、(2013河南)如图,抛物线2 y x bx c =-++与直线 1 2 2 y x =+交于,C D两点,其 中点C在y轴上,点D的坐标为 7 (3,) 2 。点P是y轴右侧的抛物线上一动点,过点P作 PE x ⊥轴于点E,交CD于点F. (1)求抛物线的解析式; (2)若点P的横坐标为m,当m为何值时,以,,, O C P F为顶点的四边形是平行四边形?请说明理由。 【解答】(1)∵直线 1 2 2 y x =+经过点C,∴(0,2) C ∵抛物线2 y x bx c =-++经过点(0,2) C,D 7 (3,) 2

∴22727 332 2c b b c c =?? =? ?∴??=-++??=?? ∴抛物线的解析式为2 7 22 y x x =-++ (2)∵点P 的横坐标为m 且在抛物线上 ∴2 71 (,2),(,2)22 P m m m F m m -+ ++ ∵PF ∥CO ,∴当PF CO =时,以,,,O C P F 为顶点的四边形是平行四边形 ① 当03m <<时,2 271 2(2)322 PF m m m m m =-+ +-+=-+ ∴2 32m m -+=,解得:121,2m m == 即当1m =或2时,四边形OCPF 是平行四边形 ② 当3m ≥时,2 217 (2)(2)32 2 PF m m m m m =+--+ +=- 232m m -= ,解得:123322 m m += =(舍去) 即当132 m += 时,四边形OCFP 是平行四边形 练习1:(2013?盘锦)如图,抛物线y=ax 2+bx+3与x 轴相交于点A (﹣1,0)、B (3,0), 与y 轴相交于点C ,点P 为线段OB 上的动点(不与O 、B 重合),过点P 垂直于x 轴的直线与抛物线及线段BC 分别交于点E 、F ,点D 在y 轴正半轴上,OD=2,连接DE 、OF . (1)求抛物线的解析式; (2)当四边形ODEF 是平行四边形时,求点P 的坐标;

专题:二次函数中的动点问题2(平行四边形存在性问题)

y x O 二次函数中的动点问题(二) 平行四边形的存在性问题 一、技巧提炼 1、二次函数y=ax 2 +bx+c 的图像和性质 a >0 a <0 图 象 开 口 对 称 轴 顶点坐标 最 值 当x = 时,y 有最 值是 当x = 时,y 有最 值是 增减 性 在对称轴左侧 y 随x 的增大而 y 随x 的增大而 在对称轴右侧 y 随x 的增大而 y 随x 的增大而 2、平行四边形模型探究 如图1,点A ()11,x y 、B ()22,x y 、C ()33,x y 是坐标平面内不在同一直线上的三点。平面直角坐标系中是否存在点D ,使得以A 、B 、C 、D 四点为顶点的四边形为平行四边形,如果存在,请求出点D 的坐标。 A B C x y 图1 图2 如图2,过A 、B 、C 分别作BC 、AC 、AB 的平行线,则以不在同一直线上的三点为顶点的平行四边形有三个。

由已知的三点坐标可根据图形平移的坐标性质,直接写出第四个顶点的坐标。 3、平面直角坐标系中直线和直线l2: 当l1∥l2时k1= k2;当l1⊥l2时k1·k2= -1 4、二次函数中平行四边形的存在性问题: 解题思路:(1)先分类(2)再画图(3)后计算 二、精讲精练 1、已知抛物线y=ax2+bx+c与x轴相交于A、B两点(A、B分别在原点的左右两侧),与y轴正半轴相交于C 点,且OA:OB:OC=1:3:3,△ABC的面积为6,(如图1) (1)求抛物线的解析式; (2)坐标平面内是否存在点M,使得以点M、A、B、C为顶点四边形是平行四边形若存在,请求出点M的坐标;若不存在,请说明理由; (3)如图2,在直线BC上方的抛物线上是否存在一动点P,△BCP面积最大如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.

(完整版)二次函数与三角形的存在性问题的解法

二次函数与三角形的存在性问题 一、预备知识 1、坐标系中或抛物线上有两个点为P (x1,y ),Q (x2,y ) (1)线段对称轴是直线2x 2 1x x += (2)AB 两点之间距离公式:221221)()(y y x x PQ -+-= 中点公式:已知两点 ()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++222121y y ,x x 。 2、两直线的解析式为11b x k y +=与 22b x k y += 如果这两天两直线互相垂直,则有121-=?k k 3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2 (1)当k1=k2,b1≠b2 ,L1∥L2 (2)当k1≠k2, ,L1与L2相交 (3)K1×k2= -1时, L1与L2垂直 二、三角形的存在性问题探究: 三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形 (一)三角形的性质和判定: 1、等腰三角形 性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。 判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。 2、直角三角形 性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。 判定:有一个角是直角的三角形是直角三角形。 3、等腰直角三角形 性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。 判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形 4、等边三角形 性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。 判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。

二次函数与四边形综合压轴题专题汇编(含答案)

72 x = B(0,4) A(6,0) E F x y O 二次函数与四边形综合压轴题专题汇编 一.二次函数与四边形的形状 例1.(浙江义乌市) 如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2. (1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平 行线交抛物线于E 点,求线段PE 长度的最大值; (3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由. 练习1.(河南省实验区) 23.如图,对称轴为直线7 2 x = 的抛物线经过点 A (6,0)和 B (0,4). (1)求抛物线解析式及顶点坐标; (2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围; ①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形? ②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由. A

练习 2.(四川省德阳市)25.如图,已知与x 轴交于点(10)A ,和(50)B ,的抛物线1l 的顶点为 (34)C ,,抛物线2l 与1l 关于x 轴对称,顶点为C '. (1)求抛物线2l 的函数关系式; (2)已知原点O ,定点(04)D ,,2l 上的点P 与1l 上的点P '始终关于x 轴对称,则当点P 运动到何处时,以点D O P P ',,,为顶点的四边形是平行四边形? (3)在2l 上是否存在点M ,使ABM △是以AB 为斜边且一个角为30 的直角三角形?若存, 求出点M 的坐标;若不存在,说明理由. 练习3.(山西卷)如图,已知抛物线1C 与坐标轴的交点依次是(40)A -, ,(20)B -,,(08)E ,. (1)求抛物线1 C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于 C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的 面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写 出自变量t 的取值范围; (3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值; (4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由. 5- 4- 3- 2- 1- 1 2 3 4 5 5 4 3 2 1 A E B C ' 1- O 2l 1l x y

中考数学二次函数存在性问题 及参考答案

中考数学二次函数存在性问题 及参 考答案
一、二次函数中相似三角形的存在性问题 1.如图,把抛物线 向左平移 1 个单位,再向下平移 4 个单位,得到抛物线 . 所得抛物线与 轴交于 A,B 两点(点 A 在点 B 的左边),与 轴交于点 C,顶点为 D. (1)写出 的值;(2)判断△ACD 的形状,并说明理由; (3)在线段 AC 上是否存在点 M,使△AOM∽△ABC?若存在,求出点 M 的坐标;若不存在, 说明理由.
2.如图,已知抛物线经过 A(﹣2,0),B(﹣3,3)及原点 O,顶点为 C. (1)求抛物线的解析式; (2)若点 D 在抛物线上,点 E 在抛物线的对称轴上,且 A、O、D、E 为顶点的四边形是平行 四边形,求点 D 的坐标; (3)P 是抛物线上的第一象限内的动点,过点 P 作 PM x 轴,垂足为 M,是否存在点 P, 使得以 P、M、A 为顶点的三角形△BOC 相似?若存在,求出点 P 的坐标;若不存在,请说明 理由.
1 / 13

二、二次函数中面积的存在性问题 3.如图,抛物线 与双曲线 相交于点 A,B.已知点 B 的坐标为(-2,-2),点 A 在第一象限内,且 tan∠AOX=4.过点 A 作直线 AC∥ 轴,交抛物线于另一点 C. (1)求双曲线和抛物线的解析式; (2)计算△ABC 的面积; (3)在抛物线上是否存在点 D,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点 D 的坐标;若不存在,请你说明理由.
4.如图,抛物线 y=ax2+c(a>0)经过梯形 ABCD 的四个顶点,梯形的底 AD 在 x 轴上, 其中 A(-2,0),B(-1, -3). (1)求抛物线的解析式;(3 分) (2)点 M 为 y 轴上任意一点,当点 M 到 A、B 两点的距离之和为最小时,求此时点 M 的坐
2 / 13

二次函数与平行四边形综合.

【例1】 已知:如图,在平面直角坐标系xOy 中,直线3 64 y x =-+与x 轴、y 轴的交点分 别为A B 、, 将OBA ∠对折,使点O 的对应点H 落在直线AB 上,折痕交x 轴于点.C (1)直接写出点C 的坐标,并求过A B C 、、三点的抛物线的解析式; (2)若抛物线的顶点为D ,在直线BC 上是否存在点P ,使得四边形ODAP 为平行四边形?若存在,求出点P 的坐标;若不存在,说明理由; (3)设抛物线的对称轴与直线BC 的交点为T Q , 为线段BT 上一点,直接写出QA QO -的取值范围. 【例2】 如图,点O 是坐标原点,点(0)A n ,是x 轴上一动点(0)n <.以AO 为一边作矩形AOBC ,点C 在第二象限,且2OB OA =.矩形AOBC 绕点A 逆时针旋转90?得矩形AGDE .过点A 的直线y kx m =+(0)k ≠交y 轴于点F ,FB FA =.抛物线2y ax bx c =++过点E 、F 、G 且和直线AF 交于点H ,过点H 作HM x ⊥轴,垂足为点M . ⑴ 求k 的值; ⑵ 点A 位置改变时,AMH ?的面积和矩形AOBC 的面积的比值是否改变?说明你的理由. 【例3】 如图1,Rt ABC ?中,90A ∠=?,3 tan 4 B = ,点P 在线段AB 上运动,点Q 、R 分别在线段BC 、AC 上,且使得四边形APQR 是矩形.设AP 的长为x ,矩形APQR 的面积为y ,已知y 是x 的函数,其图 象是过点()1236,的抛物线的一部分(如图2所示). (1)求AB 的长; (2)当AP 为何值时,矩形APQR 的面积最大,并求出最大值. R Q B C A 二次函数与平行四边形综合

二次函数的存在性问题(面积)及答案

图12-2 x C O y A B D 1 1 二次函数的存在性问题(面积问题) 1、[08云南双柏]已知:抛物线y =ax 2 +bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴 的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB

二次函数中考平行四边形含答案

二次函数(平行四边形) 1.如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标; (2)求DE的长? (3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形? 解答:解:(1)当m=2时,y=(x﹣2)2+1, 把x=0代入y=(x﹣2)2+1,得:y=2, ∴点B的坐标为(0,2). (2)延长EA,交y轴于点F, ∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE, ∴△AFC≌△AED, ∴AF=AE, ∵点A(m,﹣m2+m),点B(0,m), ∴AF=AE=|m|,BF=m﹣(﹣m2+m)=m2, ∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°, ∴△ABF∽△DAE, ∴=,即:=, ∴DE=4. (3)①∵点A的坐标为(m,﹣m2+m), ∴点D的坐标为(2m,﹣m2+m+4), ∴x=2m,y=﹣m2+m+4, ∴y=﹣?++4, ∴所求函数的解析式为:y=﹣x2+x+4, ②作PQ⊥DE于点Q,则△DPQ≌△BAF,

(Ⅰ)当四边形ABDP为平行四边形时(如图1), 点P的横坐标为3m, 点P的纵坐标为:(﹣m2+m+4)﹣(m2)=﹣m2+m+4, 把P(3m,﹣m2+m+4)的坐标代入y=﹣x2+x+4得: ﹣m2+m+4=﹣×(3m)2+×(3m)+4, 解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8.(Ⅱ)当四边形ABDP为平行四边形时(如图2), 点P的横坐标为m, 点P的纵坐标为:(﹣m2+m+4)+(m2)=m+4, 把P(m,m+4)的坐标代入y=﹣x2+x+4得: m+4=﹣m2+m+4, 解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=﹣8,综上所述:m的值为8或﹣8.

(完整版)二次函数中的存在性问题(答案)

二次函数中的存在性问题姓名 1.已知抛物线y=﹣x2+x﹣3与x轴交于A,B两点,与y轴交于点C.在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,请说明理由. 2.已知y=ax2+bx+c(a≠0)图象与直线y=kx+4相交于A(1,m),B(4,8)两点,与x轴交于原点及点C.(1)求直线和抛物线解析式; (2)在x轴上方的抛物线上是否存在点D,使S△OCD=2S△OAB?如果存在,求出点D坐标,如果不存在,说明理由. 3.已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C. (1)求此抛物线的解析式; (2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.

4.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),过点A的直线y=kx+1交抛物线于点C(2,3). (1)求直线AC及抛物线的解析式; (2)若直线y=kx+1与抛物线的对称轴交于点E,以点E为中心将直线y=kx+1顺时针旋转90°得到直线l,设直线l与y轴的交点为P,求△APE的面积; (3)若G为抛物线上一点,是否存在x轴上的点F,使以B、E、F、G为顶点的四边形为平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由. 5.如图,在平面直角坐标系中,抛物线交x轴于A,B两点(A在B的左侧),交y轴于点C. (1)求直线BC的解析式; (2)求抛物线的顶点及对称轴; (3)若点Q是抛物线对称轴上的一动点,线段AQ+CQ是否存在最小值?若存在,求出点Q的坐标;若不存在,说明理由; (4)若点P是直线BC上方的一个动点,△PBC的面积是否存在最大值?若存在,求出点P的坐标及此时△PBC 的面积;若不存在,说明理由.

二次函数的存在性问题(面积问题)

二次函数的存在性问题(面积问题) [08湖北荆州]已知:如图,R t △AOB 的两直角边OA 、OB 分别在x 轴的正半轴和y 轴的负 半轴上,C 为OA 上一点且OC =OB ,抛物线y=(x -2)(x -m )-(p-2)(p-m)(m 、p 为常数且m+2≥2p>0)经过A 、C 两点. (1)用m 、p 分别表示OA 、OC 的长; (2)当m 、p 满足什么关系时,△AOB 12220.(1)0 2)()(2)()0 )(2)0,222020 2,1(2),2 11 (2) 2211 (2)22 1 (2) 1 2(2)1 2 2()2 AOB AOB AO y x x m p p m x p x m p x p x m p m p m p p OA m p OC P OC OB S OA OB S OA OB P m p P m P m p m S =-----=---+=∴==+-+>>∴+->>∴=+-===∴==+-=-+++∴=-=+?-令得:(整理得:(当时,. B 最大 [08湖北荆州]如图,等腰直角三角形纸片AB C 中,AC =BC =4,∠ACB =90o,直角边AC 在x 轴上,B 点在第二象限,A (1,0),AB 交y 轴于E ,将纸片过E 点折叠使BE 与EA 所在直线重合,得到折痕EF (F 在x 轴上),再展开还原沿EF 剪开得到四边形BCFE ,然后把四边形BCFE 从E 点开始沿射线EA 平移,至B 点到达A 点停止.设平移时间为t (s ),移动速度为每秒1个单位长度,平移中四边形BCFE 与△AEF 重叠的面积为S. (1)求折痕EF 的长; (2)是否存在某一时刻t 使平移中直角顶点C 经过抛物线243y x x =++的顶点?若存在, 求出t 值;若不存在,请说明理由; (3)直接写出....S 与t 的函数关系式及自变量t 25.145101ABC BE EA FE EA Rt AC BC CAB EF EA A OA OE AE EF ∴⊥=∴∠=?∴=∴===∴=()折叠后与所在直线重合又中(,) ,折痕 ∥BA 交Y 轴于P , 2()存在.设CP 413 POC C CP AC OA OC OP ==∴==则为等腰直角三角形,直角顶点在射线上移动 ,

(完整版)二次函数中平行四边形通用解决方法

●探究 (1)在图1中,已知线段AB,CD,其中点分别为E,F。 ①若A(-1,0),B(3,0),则E点坐标为__________; ②若C(-2,2),D(-2,-1),则F点坐标为__________; (2)在图2中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程; ●归纳 无论线段AB处于直角坐标系中的哪个位置, 当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,x=_________,y=___________;(不必证明) ●运用 在图2中,一次函数y=x-2与反比例函数的图象交点为A,B。 ①求出交点A,B的坐标; ②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标。

图 2 图 3 图1 以二次函数为载体的平行四边形存在性问题是近年来中考的热点,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.由于先要画出草图,若考虑不周,很容易漏解.为此,笔者另辟蹊径,借助探究平行四边形顶点坐标公式来解决这一类题. 1 两个结论,解题的切入点 数学课标,现行初中数学教材中没有线段的中点坐标公式,也没有平行四边形的顶点坐标公式,我们可帮助学生来探究,这可作为解题的切入点。 1.1 线段中点坐标公式 平面直角坐标系中,点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则线段AB 的中点坐标为(221x x +,2 21y y +). 证明 : 如图1,设AB 中点P 的坐标为(x P ,y P ).由x P -x 1=x 2-x P ,得x P = 2 21x x +,同理y P =221y y +,所以线段AB 的中点坐标为(221x x +,221y y +). 1.2 平行四边形顶点坐标公式 □ABCD 的顶点坐标分别为A (x A ,y A )、B (x B ,y B )、C (x C ,y C )、D (x D ,y D ),则:x A +x C =x B +x D ;y A +y C =y B +y D . 证明: 如图2,连接AC 、BD ,相交于点E . ∵点E 为AC 的中点, ∴E 点坐标为(2C A x x +,2 C A y y +). 又∵点E 为B D 的中点, ∴ E 点坐标为( 2D B x x +,2D B y y +). ∴x A +x C =x B +x D ;y A +y C =y B +y D . 即平行四边形对角线两端点的横坐标、纵坐标之和分别相等. 2 一个基本事实,解题的预备知识 如图3,已知不在同一直线上的三点A 、B 、C ,在平面内另找一个点D ,使以A 、B 、C 、D 为顶点的四边形是平行四边形.答案有三种:以AB 为对角线的□ACBD 1,以AC 为对角线的□ABCD 2,以BC 为对角线的□ABD 3C .

二次函数(存在性问题)

函数图象中点的存在性问题(强化训练) 切入点一:利用基本图形来作图(充分利用图形的特殊性质),并描述作图方法 切入点二:做好数据准备,计算尽量利用相似、数形结合(交轨法) 切入点三:紧扣不变量,善于使用前题所采用的方法或结论 切入点四:在题目中寻找多解的信息(不重不漏) 1.1因动点产生的平行四边形问题 1. 如图1,直线L:y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线G:y=ax2+bx+c 与x轴的另一交点为A,顶点为P,且对称轴是直线x=2. (1)该抛物线G的解析式为; (2)将直线L沿y轴向下平移个单位长度,能使它与抛物线G只有一个公共点; (3)若点E在抛物线G的对称轴上,点F在该抛物线上,且以点A、B、E、F为顶点的四边形为平行四边形,求点E与点F坐标并直接写出平行四边形的周长. (4)连接AC,得△ABC.若点Q在x轴上,且以点P、B、Q为顶点的三角形与△ABC相似,求点Q 的坐标.

2. 在平面直角坐标系xOy中,已知二次函数y=ax2-2ax+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),AB=4,与y轴交于点C,且过点(2,3). (1)求此二次函数的表达式; (2)若抛物线的顶点为D,连接CD、CB,问抛物线上是否存在点P,使得∠PBC+∠BDC=90°?若存在,求出点P的坐标;若不存在,请说明理由; (3)点K为抛物线上C关于对称轴的对称点,点G抛物线上的动点,在x轴上是否存在点F,使A、K、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.

二次函数与平行四边形综合

第十八讲二次函数与平行四边形综合 一、教学内容 1.二次函数的表示 , 二次函数图像与性质; 2.平行四边形的性质和判定; 3.函数图像与平行四边形的综合应用,典型应用、图像题; 二、例题细看 【例 1】已知:如图,在平面直角坐标系 将OBA 对折,使点O的对应点xOy 中,直线 y 3 与 x 轴、y轴的交点分别为 A、B , x 6 4 H 落在直线 AB 上,折痕交x 轴于点C. ( 1)直接写出点 C 的坐标,并求过A、B、C 三点的抛物线的解析式; ( 2)若抛物线的顶点为 D ,在直线BC上是否存在点P ,使得四边形ODAP 为平行四边形?若存在,求出点P 的坐标;若不存在,说明理由; ( 3)设抛物线的对称轴与直线BC的交点为 T ,Q 为线段BT上一点,直接写出 QA QO 的取值范围 . 【考点分析】二次函数综合题 y B H 1 O1 C A x D T 【PEC分析】( 1)点 A 的坐标是纵坐标为 0,得横坐标为 8,所以点 A 的坐标为( 8, 0); 点B 的坐标是横坐标为 0,解得纵坐标为 6,所以点 B 的坐标为( 0, 6); 由题意得: BC是∠ ABO的角平分线,所以OC=CH, BH=OB=6 ∵AB=10,∴ AH=4,设 OC=x,则 AC=8-x 由勾股定理得: x=3 ∴点 C 的坐标为( 3, 0)将此三点代入二次函数一般式,列的方程组即可求得;

( 3)如图,由对称性可知QO=QH,|QA-QO|=|QA-QH| .当点 Q与点 B 重合时, Q、 H、 A 三点共线,|QA-QO|取得最大值4(即为 AH的长);设线段OA的垂直平分线与直线 BC的交点为 K,当点 Q与点 K 重合时, |QA-QO|取得最小值 0. 【跟踪练习】例 1.(浙江义乌市 ) 如图,抛物线y x22x 3与x轴交A、B两点(A点在B点左侧),直线 l 与抛物线交于A、C两点,其中C点的横坐标为2. ( 1)求 A 、 B 两点的坐标及直线AC 的函数表达式; ( 2)P 是线段 AC 上的一个动点,过 P 点作 y 轴的平行线交抛物线于 E 点,求线段 PE 长度的最大值; ( 3)点 G 是抛物线上的动点,在x 轴上是否存在点F,使 A 、C、 F、 G 这样的四个点为顶点的四边 形是平行四边形?如果存在,求出所有满足条件的 F 点坐标;如果不存在,请说明理由. A 【例 2】如图,点O是坐标原点,点A(n ,0) 是 x 轴上一动点(n 0) .以 AO 为一边作矩形AOBC ,点C在第二象限,且OB 2OA .矩形AOBC 绕点 A 逆时针旋转90 得矩形AGDE .过点 A 的直线 y kx m ( k 0) 交y轴于点F,FB FA .抛物线y ax 2bx c 过点E、F、G且和直线AF 交于点 H ,过点 H 作 HM x 轴,垂足为点M . ⑴求 k 的值; ⑵点 A 位置改变时,AMH 的面积和矩形AOBC的面积的比值是否改变?说明你的理由. y C B D G M F E A O x H 【 PEC分析】( 1 )由题意知O B=2OA=2n,在直角三角形AEO 中, OF=OB-BF=-2n-AF,因此可用勾股定理求出AF 的表达式,也就求出了FB 的长,由于 F 的坐标为( 0 , m )据此可求出m , n 的关系式,可用 n 替换掉一次函数中m 的值,然后将 A 点的坐标代入即可求出k 的值. ( 2 )思路同( 1)一样,先用n 表示出 E、 F、 G 的坐标,然后代入抛物线的解析式中,得出 a ,b , c 与n 的函数关系式,然后用n 表示出二次函数的解析式,进而可用n 表示出 H 点的坐标,然后求出△AMH

二次函数中动点问题——平行四边形(练习)

2018年04月28日187****6232的初中数学组卷 一.解答题(共5小题) 1.如图,已知抛物线y=ax2+bx+c经过点A(﹣1,0),点B(3,0)和点C(0,3). (1)求抛物线的解析式和顶点E的坐标; (2)点C是否在以BE为直径的圆上?请说明理由; (3)点Q是抛物线对称轴上一动点,点R是抛物线上一动点,是否存在点Q、R,使以Q、R、C、B为顶点的四边形是平行四边形?若存在,直接写出点Q、R 的坐标,若不存在,请说明理由. 2.如图,已知抛物线y=ax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),其顶点为D. (1)求抛物线的解析式; (2)设点M(1,m),当MB+MD的值最小时,求m的值; (3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值;(4)若抛物线的对称轴与直线AC相交于点N,E为直线AC上任意一点,过点E 作EF∥ND交抛物线于点F,以N,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由.

3.如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为2. (1)求A,B两点的坐标及直线AC的函数表达式; (2)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值; (3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ 的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由. (4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由. 4.如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧).

-几何图形在二次函数中的存在性问题探解

---几何图形在二次函数中的存在性问题探解 二次函数是初中数学的重要内容,更是中考的重要考点之一,它以丰富的知识内涵,深远的知识综合,深厚的数学思想,灵活的解题方法,奇趣的知识背景等深深吸引着命题老师,更深刻启迪着每位同学.下面就把几何图形在二次函数中的存在性问题介绍给大家,供学习时借鉴. 一、.三角形的存在性 1.1 等腰三角形的存在性 例1 (2017年淮安)如图1-1,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=2x +bx+c 与x 轴的另一个交点为A ,顶点为P . (1)求该抛物线的解析式; (2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由; (3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图1-2、1-3供画图探究). 分析: 第一问考查的是待定系数法确定函数的解析式,思路有几个待定系数,解答时就需要确定几个点的坐标; 第二问探析等腰三角形的存在性,解答时,要做到一先一后,先清楚动点的位置与特点,后对等腰三角形进行科学分类,一是按边分类,一是按角分类; 第三问探求三角形面积的最大值,这是二次函数的看家本领,只需将三角形的面积适当分割,恰当表示,最后将三角形面积最大问题转化为二次函数的最值问题求解即可. 解: (1)因为直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,所以B (3,0),C (0,3), 所以{c =39a+3b+c =0,解得{c =3b =4-,所以抛物线解析式为y=2x ﹣4x+3; (2)因为y=2x ﹣4x+3=2(x 2)-﹣1,所以抛物线对称轴为x=2,顶点P (2,﹣1), 设M (2,t ),因为△CPM 为等腰三角形,如图2所示, ①当MC=PC 时,过C 作CQ ⊥对称轴,垂足为Q ,则Q(2,3),所以QP=MQ=3-(-1)=4,所以M 到x 轴的距离8-1=7,所以1M 的坐标(2,7); ②当MP=MC 时,作PC 的垂直平分线交对称轴于点M ,所以222(t+1)2+(t-3)=,解得t=32,所以2M 的坐标(2, 32 );

中考数学二次函数与四边形综合专题汇总-共17页

72 x = B(0,4) A(6,0) E F x y O 二次函数与四边形综合专题 一.二次函数与四边形的形状 例1. 如图,抛物线2 23y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2. (1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值; (3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由. 解:(1)令y=0,解得11x =-或23x =∴A (-1,0)B (3,0);将C 点的横坐标x=2代入2 23y x x =-- 得y=-3,∴C (2,-3)∴直线AC 的函数解析式是y=-x-1 (2)设P 点的横坐标为x (-1≤x ≤2)则P 、E 的坐标分别为: P (x ,-x-1),E (2(,23)x x x -- ∵P 点在E 点的上方,PE=22(1)(23)2x x x x x -----=-++ ∴当12x =时,PE 的最大值=9 4 (3)存在4个这样的点F ,分别是1234(1,0),(3,0),(470),(47,0)F F F F -+-, 练习1.如图,对称轴为直线7 2 x = 的抛物线经过点A (6,0)和B (0,4). (1)求抛物线解析式及顶点坐标; (2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围; ①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形? ②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由. A

二次函数中的平行四边形存在性问题

二次函数中的平行四边形存在性问题 目标:1、通过本节课的学习,提高学生分析问题,解决问题的能力。 2、能总结出解决平行四边形存在性问题的一般方法和思路。重点:解决平行四边形存在性问题的一般方法及思路。 难点:根据条件求平行四边形的顶点坐标。 过程: 一、复习 1、平行四边形的性质 角: 边; 对角线: 2、二次函数的相关知识点 表达式、顶点坐标、对称轴、增减性 二、探索新知 1、単动点(知3点求1点) (1)已知平面上有不在同一条直线上的三点A、B、C,点D是平面上任一点,若此四点能构成平行四边形则符合条件的D点有几个? ()

学生画图说明 思考:如何找第四点?找第四点的方法? (2)类题 (1)已知抛物线与坐标轴分别交于A(-1、0)、B (3、0)、C (0、3)三点,能否在平面内在找一点D使得它们四点围成的四边形为平行四边形? 学生分析总结规律、思路。 ①、根据平行四边形的边、对角线的性质(对边平行且相等, 对角线互相平分)我们可以选择一种情况作为画图的依据。 ②、在求点的坐标时(以边为例)我们先满足对边平行再用对 边相等求出要求的点的坐标。

2、 双动点(知2点求2点) (1) 学生再次画图说明(给出两点画出另外两点) (2)类题 如图,抛物线y= 13 x 2-mx+n 与x 轴交于A 、B 两点,与y 轴交于点C (0.-1).且对称轴x=l . ① 求出抛物线的解析式及A 、B 两点的坐标; ② 点Q 在y 轴上,点P 在抛物线上,要使Q 、P 、A 、B 为顶点的四边形是平行四边形,请求出所有满足条件的点P 的坐标。

点A,点B是定点 点P,点Q是动点 分两种情况:AB为边,AB为对角线 3、小结 4、布置作业 5、

二次函数存在性问题总结

已知,抛物线322 --=x x y 交x 轴于点A 、B ,交y 轴于点C. 1、线段最值 ①线段和最小 点P 是抛物线对称轴上一动点,当点P 坐标为多少时,PA+PC 值最小. A B C O x y ②线段差最大 点Q 是抛物线对称轴上一动点,当点Q 坐标为多少时,|QA -QC|值最大. A B C O x y ③线段最值 连接BC,点M 是线段BC 上一动点,过点M 作MN//y 轴,交抛物线于点N,求线段MN 的最大值及点N 的坐标. A B C O x y N M 变式① 点N 是第四象限内抛物线上一动点,连接BN 、CN,求BCN S ?的最大值及点N的坐标 A B C O x y N

变式② 点N是第四象限内抛物线上一动点,求点N到线段BC 的最大距离及点N的坐标 A B C O x y N M 2、等腰三角形的存在性问题 点D 为抛物线322 --=x x y 的顶点,连接BC ,点P 是直线B C上一动点,是否存在点P,使△PAD 为等腰三角形,若存在,求出点P 的坐标,若不存在,说明理由. A B C O x y D 3、菱形的存在性问题 点D为抛物线322 --=x x y 的顶点,连接BC 点P 是直线BC 上一动点,点Q 为坐标平面内一点,是否存在以A 、D、P、Q 为顶点的四边形是菱形,若存在,求出点P 坐标,若不存在,说明理由. A B C O x y D 4、平行四边形的存在性问题 点D 为抛物线322 --=x x y 的顶点,点M 是抛物线上一动点,点N 为直线BC 上一动点,是否存在以O 、D 、M、N 为顶点的四边形是平行四边形,若存在,求出点M 坐标,若不存在,说明理由. A B C O x y D 5、直角三角形的存在性问题

二次函数与四边形的动点问题

二次函数与四边形 一.二次函数与四边形的形状 例1.(浙江义乌市)如图,抛物线y x2 2x 3与x轴交A B两点(A点在B点左侧),直线I与抛物线交于A、 C两点,其中C点的横坐标为2. (1)求A B两点的坐标及直线AC的函数表达式; (2) P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值; (3)点G是抛物线上的动点,在x轴上是否存在点F,使A C F、G这样的四个点为顶点的四边形是平行 四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由. 练习1.(河南省实验区)23 ?如图,对称轴为直线x 7的抛物线经过点 2 A (6, 0)和 B ( 0, 4). (1) 求抛物线解析式及顶点坐标; x

(2) 设点E ( x , y )是抛物线上一动点,且位于第四象限,四边形是以 OA为对角线的平行四边形?求平行四边形系式,并写出自变量x的取值范 围; ①当平行四边形OEAF勺面积为24时,请判 断平行四边形OEAF是否为菱 形? ②是否存在点E,使平行四边形OEAF为正方 形?若存在,求出点 E O 的坐标;若不存在,请说明理由. B(0,4) A(6,0) OEAF OEAF的面积S与x之间的函数关

练习2.(四川省德阳市) 25.如图,已知与x轴交于点A(1,0)和B(5,0)的抛物线11的顶点为 C(3,4),抛物线12与l i关于x轴对称,顶点为C . (1) 求抛物线12的函数关系式; (2)已知原点0,定点D(0,4), 12上的点P与l i上的点P始终关于x轴对称,则当点P运动到 何处时,以点D, 0, P, P为顶点的四边形是平行四边形? (3) 在12上是否存在点M,使△ ABM是以AB为斜边且一个角为30°的直角三角形?若存, 求出点M的坐标;若不存在,说明理由. 练习3.(山西卷)如图,已知抛物线C i与坐标轴的交点依次是A( 4,0) , B( 2,0) , E(0,8). (1)求抛物线G关于原点对称的抛物线C2的解析式; (2)设抛物线G的顶点为M,抛物线C2与x轴分别交于 C, D两点(点C在点D的左侧),顶点为N,四边形MDNA的面积为S .若点A,点D同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位 的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为 止?求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围; (3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值; (4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由. 二.二次函数与四边形的面积 2 例1.(资阳市)25.如图10,已知抛物线P: y=ax+bx+c(a丰0)与x轴交于A B两点(点A在x 轴的正半轴上),与y轴交于点C,矩形DEFG勺一条边DE在线段AB上,顶点F、G分别在线段BC AC上,抛物线P 上部分点的横坐标对应的纵坐标如下:

相关主题