搜档网
当前位置:搜档网 › 索末菲—量子力学史上一位重要的配角资料

索末菲—量子力学史上一位重要的配角资料

索末菲—量子力学史上一位重要的配角资料
索末菲—量子力学史上一位重要的配角资料

阿诺德·索末菲

量子力学史上一位重要的配角

摘要:索末菲是20世纪卓越的理论物理学家之一,他把玻尔原子理论扩充到包括椭圆轨道理论和相对论精细结构理论,从而确立了他在量子力学发展史上的地位.他思想开放,乐于追踪最新观点,并把感悟到的最新思想的重要之处传达给学生;从而使他当之无愧地成为20世纪物理学界最伟大的导师之一.

关键词:索末菲,椭圆轨道,量子条件,玻尔—索末菲原子理论

中图分类号:文献标识码:A文献编号:

著名理论物理学家阿诺德·索末菲(Arnold Sommerfeld,1868~1951),是德国慕尼黑大学理论物理研究院院长,他对玻尔原子理论的扩充和他所著的《原子结构和光谱线》这部深具影响的教科书,牢固地确立了他作为量子论专家的声誉,被他的学生誉为“原子物理学的圣经”.在量子力学史上,他没有获得诺贝尔奖,只不过是一位重要的配角.他赢得量子力学三大重要学派领袖之一的声誉,并不是依靠他提出自己的新颖见解,而在于他在培养人才方面是无与伦比的,他有能把像海森伯、泡利这样的毛头小伙子精雕细琢成杰出科学家的神奇本领.爱因斯坦1922年很赞赏地说道:“我特别欣赏您培养出了如此众多的青年才俊.”

1索末菲的生平

1868年12月5日,索末菲生于东普鲁士的柯尼斯堡(K?nigsberg)(今俄罗斯的加里宁格勒),是中欧理论物理的发源地,德国成立的第一个数学和物理研究班就诞生在这里.中学时代索未菲和德国实验物理学家维恩(W.Wien)是同学,1886年进入柯尼斯堡大学数学教授林德曼(C.Lindemann)指导的数学——物理研究班主修数学,同当时许多别的数学家一样,索未菲运用汤姆逊(W.Thomson)(开尔文勋爵)的数学物理理论对麦克斯韦电磁场方程的进行了概述,并对应用数学产生了浓厚的兴趣.于是,他从林德曼的数论领域转变到汤姆逊的数学对物理学的应用研究,他研究过电子波的物理特性和关于旋转陀螺的理论,对于应用复变函数理论解决边界问题颇有造诣.1891年,他在康尼斯堡的数学物理教授沃尔克曼(P.V olkmann)的指导下,完成了数学物理方面的博士学位论文.1893~1894年在格廷根的矿物研究所担任数学家克莱因(F.Klein)的助手.1897年任克劳斯塔尔矿业学校的数学教授.1900年由克莱因推荐,在亚琛工业大学任工程力学教授.在此期间,他致力于把数学和工程力学联系起来,使工程力学有坚实的数学基础;这是克莱因一贯的主张.1906年起任慕尼黑大学理论物理学教授,不久主持建立了理论物理研究院并任院长.

1905年爱因斯坦(A.Einstein)的关于狭义相对论的论著发表以后,在1907年德国自然研究者大会上,索末菲曾为爱因斯坦的理论辩护,而且他在这个领域所做的工作,为后来的轫致辐射理论提供了理论基础.1913年,玻尔(N.Bohr)的原子模型理论成功地解释了氢原子的光谱线系以后,索末菲在以后三四年间,对玻尔原子理论作了进一步的扩充,他引入椭圆轨道、轨道的空间量子化等概念,成功地解释了氢原子光谱和重元素X 射线谱的精细结构以及正常塞曼效应;这些成果在早期量子论对微观世界的探索作出了重要的贡献.1919年,索末菲出版了《原子结构和光谱线》一书,并在他所主持的高年级学生理论研讨班上使用,引导学生理解物理学的最新发展;而且也使他自己的研究工作与当时物理学的发展一同前进.1929年,他又写成了《波动力学补篇》一书,两书都多次修订再版,这些名著成为好几代学习物理学学生的“圣经”.1940年索末菲在慕尼黑大学退体,在第二次世界大战中,索末菲开始致力于编写《理论物理学讲义》,计5卷,但在最后一卷尚未完全定稿时,1951年4月26日因车祸在慕尼黑逝世,此书由他的学生续完这一工作;这是与他的《原子结构和光谱线》相媲美的又一部著作.

2玻尔原子理论

1913年3月6日,玻尔结合了普朗克(M.Planck)的量子概念、里德伯-里兹(Rydberg-Ritz)组合原则和卢瑟福(E.Rutherford)关于原子的核式结构模型,阐述氢原子结构的半经典理论,并把他《关于原子构造和分子构造》的论文寄给了卢瑟福,不久分三部分在英国著名的刊物《哲学杂志(Philotophical Magazine)》上发表,

史称“伟大的三部曲”.

三部曲的第一部分是从关于原子中电子的束缚过程的普遍考虑开始的,而且也叙述了在计算中用到的主要假设——定态的存在和频率条件;即原子核外的电子,只能在一系列无辐射的定态轨道上运动.并强调这种特殊的力学平衡状态可以用经典力学方法处理.第二部分,考察了多电子原子的理论,特别是它们的稳定性.即当一个原子从一个能量为E n 的定态,跃迁到另一个能量为E m 的定态时,就产生辐射(或吸收),辐射频率 v 与跃迁始末的两个定态能量之间的关系由下式决定:νh E E m n =-.第三部分,玻尔通过经典物理学和普朗克的作用量子设想,氢原子核外电子角动量应是量子化的.并假定轨道角动量满足关系:π

υ2h n

r m =,(n =1,2,3,……),此式称为角动量量子化条件.并由此给出电子在第n 定态轨道上的总能量为: ()),3,2,1(42241

22204220???=-=-=n h n m e r e E n n πεππε 玻尔理论的重大成就是把光谱观测的许多事实纳入了一个统一的理论体系;更重要的是,这一理论明白地指出了经典物理学对于原子内部现象的不适用性,并向反映微观客体的量子规律迈出了重要的第一步.1913年夏天,在英国曼彻斯特的莫塞莱(H .Moseley )用电离法和摄影法很快拍摄多种元素的X 射线谱的主要谱线,发现标识X 射线的波长随发射元素原子量的增大而均匀地减小,即标识X 射线的波长与核外电子数目有关,这是支持玻尔原子学说的直接证据;接着夫兰克(J .Frenck )和赫兹(G .Hertz ),在让具有确定的、受控电子通过一个电势差以后和惰性气体原子碰撞时的能级吸收,证实了玻尔的原子理论的正确性.

玻尔原子理论是建立在核外电子运动的园轨道上,该理论在解释氢光谱和较重元素的 X 射线谱方面获得巨大成功.但索末菲清楚地看出:玻尔原子理论在某些方面显示出一种缺口;就是说,一旦人们承认非圆形的轨道,就会出现问题;索末菲准备通过深化量子假说来弥补这一缺口.他经过两年多时间努力,把玻尔原子理论推广到多自由度的电子运动而得到了重要的进展.

3索末菲的椭圆轨道

在量子理论的最初十年中,物理学家们曾经处理了只有一个自由度的体系,作用量子以一个条件的形式出现在这些体系的描述中,普朗克把这个条件表达成:??=nh dpdq ,就是说,在相空间中求的积分(p 和q 分别

代表动量变量和位置变量)取有限值,普朗克只对谐振子应用了方程.而厄任菲斯特(P .Ehrenfest )于1913年把它应用到了平面上的刚性转子;通过研究相空间域的边界,他发现角动量p 的取值应为:π2h n

p =,式中量子数n =0,l ,2,3,……等等.

早在1911年第一届索尔维(Solvay )会议上,索未菲就通过提出一个包括了作用量积分的新量子假说而对量子理论作出了贡献;他继续作了这个课题方面的工作,1913年,他转入了通过推广洛伦兹(H .Lorentz )关于弹性束缚着的电子的原始理论,来建立反常塞曼效应的理论描述,他特别假设了电子是在原子中各向同性地被束缚着的;并准备将玻尔理论扩充到包括椭圆轨道理论和相对论精细结构理论.于是他于1915年12月6日向巴伐利亚科学院提交了关于对玻尔原子理论的扩充的第一篇论文,标题为:“关于巴耳末线系理论”.

索末菲在这篇论文的开头首先肯定了玻尔理论的成功,但他要将量子假说深化到非圆形的轨道上来弥补玻尔理论的不足.索末菲征引了普朗克1906年的想法,并在德拜(P .Debye )1914年提出的非谐振子和厄任菲斯特的刚体转子情况下对玻尔理论进行推广;他于1915年得出结论说:在动量变量p 和位置变量q 的相空间中,某些有限大小的“格胞”是由一些边界所圈定,在谐振子的事例中边界就是半长轴递增的同心椭圆,而它们的面积则由普朗克恒量的整数倍来给定,索未菲把这一条件叫做“量子条件”,并可重新表示成“相积分”:?

=nh pdq .于是,索末菲扩充了相空间的处理方法,以便描述具有两个自由度体系的量子理论,特别是描述电子在一个带正电的核的库仑场中的椭圆轨道.当应用于电子的方位角运动,也就是应用于?p 和?(此处?为方位角)这一对正则共轭的动力学变量时,量子条件就给出一个方程:

?==h n p d p ???π?2,

?p 为角动量,?n 为角量子数;于是角动量?p 就必须取等于π2h 这个量的整数倍的值.按照索未菲所经常说的格言:“对?挺好的东西对r 也应该不错”,引用关于径向自由度的相积分,即:

?=h n dr p r

r ; 式中r p 代表径向动量变量,而r 是从核到电子的距离,r n 为径量子数.

索末菲由此得到了氢原子能量项的一个简单公式,即:2

242)(12r e n n h e m n E +-=?;他评论这一公式如下:“这个结果是最为出人意外的,而且[同时]也是具有逼人的肯定性的.不但附加的允许能量值已经成为分立的和由整数来确定的,而且只依赖于?n +r n .因此,能量是由作用量子之和唯一确定.这些作用量子我们可以随意地分配给角坐标和径向坐标。在我看来,完全不存在这种影响深远的结果会是代数上的偶然性的问题.我倒是从这种结果中看到了量子假设对径向分量推广的证据.” 索末菲又从上述这种处理中得出了玻尔的氢光谱公式:)11(22222342m

n h e m m n e εεπν---=,其中n ε和m ε称为角量子数为n 和m 时的椭园轨道的离心率.他进一步推广了的量子条件使它满意地描述氢原子;就是说,定态中的电子是沿着椭圆而运动的,而椭圆的参数半长轴a (2

2224/)(e m n n h e r π?+=)和离心率ε是由量子条件来完全确定的.这种情况证实了他在1915年就表示过的意见:“……支配着原子内部的[运动的]那些规律,并不象人们按照玻尔的假设所可能设想的那样远地背离经典力学和经典电动力学的规律”.可见,量子条件并不限制经典力学的适用性,而只是确定动力学问题的初始值.

接着,索末菲把相对论效应应用到量子化椭圆轨道,详细推导了相对论效应中电子能量.一个电子(其动质量为:22/1/c m e υ-,此处e m 是电子的静止质量,υ是速度,而c 是真空中的光速)在电荷为Z 的固定核的库仑场中的运动时,得到了表示成一个量2

b 的升幂展式的电子总能量E .即: ??

??????????+-+--=)1(85)1(4312442220

εεr b r b r E E 式中))1)(2/((22240εφ

--=P Z e m E e 是非相对论能量,而2b )/(2242c p e Z ?=和)1(22b r -=在非相对论极限下(即对于小的电子速度)分别变为零和一.当把量子条件应用于相对论式的运动时,索末菲把它改写成了一个展式:???????????+???? ??++++-=?

??απn n n n Z n n h Z e m E r r r e 41)(1)(222242,式中α代表一个无量纲的小参数,hc e 22πα=,它取值为0.7 ×10-3.后来索末菲作了更详细的运算,并考虑到电子运动对原子核的干扰,而得到电子的相对论能量

为:()???

????????+???? ??-+-=????????-+++-=-431122222212222

222??αααμμn n n Z Rhc n Z Z n n Z c c E r n ,式中μ为电子与核

的静折合质量,R 为该原子的里德伯常数,?n n n r +=为主量子数,с为真空中光速,137

14202≈=ch e πεπα,称为精细结构常数.可见,相对论效应使得主量子数n 相同,但角量子数n φ不同的椭圆轨道具有不同的能量,即同一个n 值所标示的能级将分裂为n 个相近的能级;据此也能解释光谱的精细结构.索末菲的多自由度周期性体系的量子化方法,立即得到蒂宾根的物理学家帕邢(L .Paschen )的实验证实.后来,人们习惯于把玻尔原子理论和索末菲构造的椭圆轨道理论统称为玻尔—索末菲原子理论.随后,索末菲和格廷根天文学家史瓦西(K .Schwarischild )一起,把斯塔克(Stark )效应、复数积分方法及其条件周期体系的哈密顿—雅可比理论应用到原子光谱研究上,得到了索末菲—史瓦西理论,这一理论对后来的原子结构计算起到了主导作用. 4海森伯的叛逆

不论是玻尔原子理论还是索末菲椭园轨道,都存在着一大缺陷:它只能够预测最简单的原子光谱,而不能用来解释原子别的一些特性,如顺磁性、极性、三维构造等.索末菲的两个弟子沃尔夫冈·泡利((W .Pauli)和维纳·海森伯(W .Heisenbery )是玻尔一索末菲理论的主要杀手.他们俩在索末菲门下毕业后相继赴哥廷根跟随玻恩深造;由于受到这位新物理学的思想教父的影响,他们坚信:在描述原子时,使用的空间和时间概念不应当受到描述宏观物体时使用的相同概念的限制,从而使他们对于玻尔一索末菲的原子模型产生叛逆.他们本想下大功夫进一步完善这一理论,到了1924年,泡利和海森伯都已经把修补玻尔一索末菲原子理论的努力称之为“骗局”.

海森伯认为:这一谬误的症结,在于人们试图用一个编造出来的、电子沿轨道运行的模型来硬套越来越奇怪的实验结果.我们必须忘掉轨道,把模型抛到脑后,然后完全基于观测到的数据在脑海中构筑纯粹的数学公式.没有人能够看到在轨道上运行的电子,但是你可以看到它们发出的光.海森伯把注意力集中在光谱数据上.他曾患枯草热在北海一个多石的小岛上养病,就在那充满传奇色彩的几天里,仅仅依靠可观测的数据,创造了一种描述量子物理的新的数学方法.玻恩(M .Born)和他的一个学生帕斯卡尔·约尔丹(P .Jordan )对此又作了整理和推广,这就形成了后来人们所说的矩阵力学.这一新的体系,不仅可以用来更加令人信服地解释更多的光谱数据,而且本身也涵盖经典物理学原则,牛顿力学就是其一个极限情况.新量子力学最初的应用主要是预测十分简单的原子的光谱;随后,他们马上把这一技巧运用到较为复杂的原子上去也同样取得了成功.

5索末菲的风格

索末菲是慕尼黑理论物理研究院的院长,几代年轻原子物理学家心目中的圣人.他出身名门,浑身带着一股普鲁士贵族的派头,他对玻尔原子的贡献以及所著光谱学方面深具影响的教科书牢固地确立了作为量子论专家的声誉,他从来没有被认为是一流的理论家,但他是一名出色的数学家,他常常对他的弟子说:“如果你想成为物理学家,你必须做三件事情;第一,学习数学;第二,学习更多的数学;第三,坚持这样做.”他的才能更多地在于整理和阐述别人的重大突破,而不是提出自己的新颖见解.对玻尔的原子理论他就是这样做的:顺着别人总的思路,从数学上加以完善.在量子力学发展史上,历史学家把他贬为“数学雇佣军”.他的思想极其开放,乐于追踪科学上的最新观点,有感悟最新思想的重要性之本能,并把它传达给他的学生.他认识理论物理学界的所有要人,与许多人进行过合作,并与其他人保持着经常性的书信往来;在慕尼黑,不停流动的信息使这座城市成为这一新领域的神经中枢.他把来自爱因斯坦、玻尔、薛定谔、泡利和海森伯的书信和文章校样稿带到讨论会和讲座上供学生们阅读.这样,学生们早在这些文章正式发表之前就能了解学科的最新进展.

他身材矮小,微微有些败顶,但不怒自威;他的讲座富有传奇性,在课堂上他不是一个魔术师,而是组织规范和条理明晰的楷模.他的演讲风格足以引起学生们的兴趣,语速中等,思维清楚,引导他们理顺量子物理学的主要论点,每一步他都要仔细地把物理发现同数学解释联系起来.在20年代中期,索未菲六个学期一轮的量子物理学讲座是那些对这一领域真正有兴趣的学生的必修入门课.他在慕尼黑的研究院,与哥本哈根的玻尔研究院和哥廷根的玻恩研究院一起,被认为是世界上学习量子物理的三大中心.然而,同他的讲座风格同等重要的是,索末菲乐于与每个学生保持密切的联系.在普鲁士贵族拒人于千里之外的表象下,是一位热心、诚恳并善于鼓励学生的慈父般的老师.他喜欢在一家小咖啡馆里谈论物理,边讲边用铅笔在桌上写下算式,他还每星期抽出很长的时间与每个学生进行交谈.在这些研究讨论中,询问他们工作的进展,提出指导意见,并给予鼓励.索末菲具有一种独特的德国式的乐观精神:他坚信德国科学和德国音乐与哲学一样,代表了人类的最高成就.

他让学生们把精力集中在较小的、力所能及的问题上,而不允许他们把时间浪费在复杂的大理论问题上,从而帮助他们建立起信心.他常说:“当国王建造宫殿的时候,马车夫更忙.”在培养成功的物理学家方面,他的研究院是无与伦比的.据估计,第二次世界大战前在德国教书的所有物理学家中,有三分之一在索未菲的研究院里做过学生或助教.这些才俊包括劳厄(M.Laue)、德拜、泡利、海森伯、保罗·埃瓦尔德(P.Ewald)、汉斯·贝特(H.Bethe)、保罗·爱泼斯坦(P.Epstein)、格雷戈尔·文策尔、瓦尔特·海特勒(W.Heitler)、福里茨·伦敦(F.London)、卡尔·贝歇尔特以及外国学者爱德华德·康顿、埃西多·拉比(I.Rabi)、爱德华·泰勒(E.Teller).劳伦斯·布拉格(L.Bragg)和莱纳斯·鲍林(L.Pauling).他的许多学生在学术上超过了他,他们所有人都从他那里学到了没有什么是不可能的.同时,索末菲有着强烈的正义感,对科学无比真诚.他对当时纳粹德国的反犹太运动,以及由此用来统治德国科学家的“德意志物理学”,毫不畏缩地表明了自己不同的立场,因而受到当时当权人物的压制和打击,纳粹刊物攻击他是“文化界中犹太文化的代理人”.

参考书目:

[1]Mehra J.Rechenberg.H.The Historical Development of Quantum Theory[M].vol.1,Part 2,New York:Spring-Verlag Press,1982.198~230..

[2]Armin Hermann.The Genesis of quantum theory.Cambridge:Massachusetts institute of technology Press.102~118.

[3]White.H.E,Introduction to A tomic Spectra,New York:McGrawHill,1934.

[4]Finkelnburg.W,Einfübung in die Atomphysik,9/10 te Auflage, Springer-Verlag, Berlin, 1964.

[5]Jammer M.The Conceptuel Development of Quantum Mechanins.New York:John wiley & Sons Press.1974.92~133.

[6]G.赫兹堡著,汤拒非译:《原子光谱与原子结构》,科学出版社,北京,1959.(G.Herzberg,Atomic Spectraand AtomicStructure,Dover,New York, 1944.)

[7](美)托马斯·哈格著.周仲良郭宇峰郭镜明译.《鲍林——20世纪的科学怪杰》.上海:复旦大

学出版社,98~111.

[8]芶清泉编:《普通物理学(原子物理部分)》.北京:人民教育出版社,1965.

[9](美)埃米·塞格雷著.刘祖慰译.《物理名人和物理发现》,上海:知识出版社,146~151.

[10]褚圣麟编:《原子物理学》.北京:人民教育出版社,1979.

量子力学考试题

量子力学考试题 (共五题,每题20分) 1、扼要说明: (a )束缚定态的主要性质。 (b )单价原子自发能级跃迁过程的选择定则及其理论根据。 2、设力学量算符(厄米算符)∧ F ,∧ G 不对易,令∧K =i (∧F ∧G -∧G ∧ F ),试证明: (a )∧ K 的本征值是实数。 (b )对于∧ F 的任何本征态ψ,∧ K 的平均值为0。 (c )在任何态中2F +2 G ≥K 3、自旋η/2的定域电子(不考虑“轨道”运动)受到磁场作用,已知其能量算符为 S H ??ω= ∧ H =ω∧ z S +ν∧ x S (ω,ν>0,ω?ν) (a )求能级的精确值。 (b )视ν∧ x S 项为微扰,用微扰论公式求能级。 4、质量为m 的粒子在无限深势阱(0

(a )能量有确定值。力学量(不显含t )的可能测值及概率不随时间改变。 (b )(n l m m s )→(n’ l’ m’ m s ’) 选择定则:l ?=1±,m ?=0,1±,s m ?=0 根据:电矩m 矩阵元-e → r n’l’m’m s ’,n l m m s ≠0 2、(a )6分(b )7分(c )7分 (a )∧ K 是厄米算符,所以其本征值必为实数。 (b )∧ F ψ=λψ,ψ∧ F =λψ K =ψ∧ K ψ=i ψ∧F ∧ G -∧ G ∧F ψ =i λ{ψ∧ G ψ-ψG ψ}=0 (c )(∧F +i ∧G )(∧F -i ∧G )=∧ F 2 +∧ G 2 -∧ K ψ(∧F +i ∧G )(∧F -i ∧G )ψ=︱(∧ F -i ∧ G )ψ︱2≥0 ∴<∧ F 2 +∧ G 2-∧ K >≥0,即2F +2 G ≥K 3、(a),(b)各10分 (a) ∧ H =ω∧ z S +ν∧ x S =2ηω[1001-]+2ην[0110]=2η[ων ν ω -] ∧ H ψ=E ψ,ψ=[b a ],令E =2η λ,则 [λωννλω---][b a ]=0,︱λων ν λω---︱ =2λ-2ω-2ν=0 λ=±22νω+,E 1=-2η22νω+,E 2=2η 22νω+ 当ω?ν,22νω+=ω(1+22ων)1/2≈ω(1+222ων)=ω+ων22 E 1≈-2η[ω+ων22],E 2 =2η [ω+ων22] (b )∧ H =ω∧z S +ν∧ x S =∧H 0+∧H ’,∧ H 0=ω∧ z S ,∧ H ’=ν∧ x S ∧ H 0本征值为ωη21± ,取E 1(0)=-ωη21,E 2(0) =ωη21 相当本征函数(S z 表象)为ψ1(0)=[10],ψ2(0)=[01 ] 则∧ H ’之矩阵元(S z 表象)为

简述建立量子力学基本原理的思想方法

简述建立量子力学基本原理的思想方法 摘要:量子力学是大学物理专业的一门必修理论基础课程,它研究的对象是分子、原子和基本粒子。本文对建立量子力学基本原理的思想方法作一简单叙述,供学员在学习掌握量子力学的基本理论和方法时参考。 关键词:量子力学;力学量;电子;函数 作者简介 0引言 19世纪末,由于科学技术的发展,人们从宏观世界进入到微观领域,发现了一系列经典理论无法解释的现象,比较突出的是黑体辐射、光电效应和原子线光谱。普朗克于1900年引进量子概念后,上述问题才开始得到解决。爱凶斯坦提出了光具有微粒性,从而成功地解释了光电效应。 1量子力学 量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。 2玻尔的两条假设 玻尔在前人工作的基础上提出了两条假设,成功地解释了氢原子光谱,但对稍微复杂的原予(如氦原子)就无能为力。直到1924年德布罗意提出了微观粒子具有波粒二象性之后才得到完整解释。 1924年,德布罗意在普朗克和爱因斯坦假设的基础上提出了微观粒子具有波粒二象性的假设,即德布罗意关系。1927年,戴维孙和革末将电子作用于镍单晶,得到了与x射线相同的衍射现象,从而圆满地说明了电子具有波动性。 2.1自由粒子的波动性和粒子性 它的运动是最简单的一种运动,它充分地反映了自由粒子的波动性和粒子性,将波(平面波)粒( p,E) 二象性统一在其中。如果粒子不是自由的,而是在一个变化的力场中运动,德布罗意波则不能描写。我们将用一个能够充分反映二象性特点的

曾谨言量子力学(卷I)第四版(科学出版社)2007年1月...

曾谨言《量子力学》(卷I )第四版(科学出版社)2007年1月摘录 第三版序言 我认为一个好的高校教师,不应只满足于传授知识,而应着重培养学生如何思考问题、提出问题和解决问题。 这里涉及到科学上的继承和创新的关系。“继往”中是一种手段,而目的只能是“开来”。 讲课虽不必要完全按照历史的发展线索讲,但有必要充分展开这种矛盾,让学生自己去思考,自己去设想一个解决矛盾的方案。 要真正贯彻启发式教学,教师有必要进行教学与科学研究。而教学研究既有教学法的研究,便更实质性的是教学内容的研究。从教学法来讲,教师讲述一个新概念和新原理时,应力求符合初学者的认识过程。在教学内容上,至少对于像量子力学这样的现代物理课程来讲,我信为还有很多问题并未搞得很清楚,很值得研究。 量子力学涉及物质运动形式和规律的根本变革.20世纪前的经典物理学(经典力学、电动力学、热力学与统计物理学等),只适用于描述一般宏观 从物质波的驻波条件自然得出角动量量子化的条件及自然理解为什么束缚态的能量是量子化的:P17~18; 人类对光的认识的发展历史把原来人们长期把物质粒子看作经典粒子而没有发现错误的启发作用:P18; 康普顿实验对玻尔电子轨道概念的否定及得出“无限精确地跟踪一个电子是不可能的”:P21; 在矩阵力学的建立过程中,玻尔的对应原理思想起了重要的作用;波动力学严于德布罗意物质波的思想:P21; 微观粒子波粒二象性的准确含义:P29; 电子的双缝衍射实验对理解电子波为几率波的作用:P31 在非相对论条件下(没有粒子的产生与湮灭),概率波正确地把物质粒子的波动性与粒子性联系起来,也是在此条件下,有波函数的归一化及归一化不随时间变化的结果:P32; 经典波没有归一化的要领,这也是概率波与经典波的区别之一:P32; 波函数归一化不影响概率分布:P32 多粒子体系波函数的物理意义表明:物质粒子的波动性并不是在三维空间中某种实在的物理量的波动现象,而一般说来是多维的位形空间中的概率波。例如,两个粒子的体系,波函数刻画的是六维位形空间中的概率波。这个六维空间,只不过是标志一个具有6个自由度体系的坐标的抽象空间而已。 动量分布概率: 1 波包的频谱分析 具有一定波长的平面波可表示为: ()e x p ()k x i k x ψ= (A1.1) 波长2/k λπ=,其特点是是波幅(或强度)为常数.严格的平面波是不存在的,实际问题中碰到的都是波包,它们的强度只在空间有限区域不为0.例如,高斯波包 221()exp()2x a x ψ=- (A1.2) 其强度分布222()exp()x a x ψ=-,如图A.1所示.可以看出,波包主要集中在1 x a < 区域中. 所以波包宽度可近似估计为:

量子力学主要知识点复习资料(新)

大学量子力学主要知识点复习资料,填空及问答部分 1能量量子化 辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍εεεεεn ,,4,3,2,??? 对频率为ν 的谐振子, 最小能量ε为: νh =ε 2.波粒二象性 波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。在经典力学中,研究对象总是被明确区分为两类:波和粒子。前者的典型例子是光,后者则组成了我们常说的“物质”。1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。 德布罗意公式h νmc E ==2 λ h m p = =v 3.波函数及其物理意义 在量子力学中,引入一个物理量:波函数 ,来描述粒子所具有的波粒二象性。波函数满足薛定格波动方程 0),()](2[),(2 2=-?+??t r r V m t r t i ψψ 粒子的波动性可以用波函数来表示,其中,振幅 表示波动在空间一点(x ,y,z )上的强弱。所以, 应 该表示 粒子出现在点(x,y,z )附件的概率大小的一个量。从这个意义出发,可将粒子的波函数称为概率波。 自由粒子的波函数)](exp[Et r p i A k -?=ψ=ψ 波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义 常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z ) 附件出现概率的描述是相同的。 相位不定性如果常数 ,则 和 对粒子在点(x,y,z )附 件出现概率的描述是相同的。 表示粒子出现在点(x,y,z )附近的概率。 表示点(x,y,z )处的体积元 中找到粒子的概率。这就是波函数的统计诠释。自然要求该粒子在空间各点概率之总和为1 必然有以下归一化条件 5. 力学量的平均值 2|(,,)|x y z ψ2 |(,,)|x y z x y z ψ???x y z τ?=?? ?2 |(,,)|1 x y z dxdydz ψ∞=? (,,)x y z ψ(,,)c x y z ψαi e C =(,,)i e x y z αψ(,,)x y z ψ

量子力学简明教程

量子力学教案 主讲周宙安 《量子力学》课程主要教材及参考书 1、教材: 周世勋,《量子力学教程》,高教出版社,1979 2、主要参考书: [1] 钱伯初,《量子力学》,电子工业出版社,1993 [2] 曾谨言,《量子力学》卷I,第三版,科学出版社,2000 [3] 曾谨言,《量子力学导论》,科学出版社,2003 [4] 钱伯初,《量子力学基本原理及计算方法》,甘肃人民出版社,1984 [5] 咯兴林,《高等量子力学》,高教出版社,1999 [6] L. I.希夫,《量子力学》,人民教育出版社 [7] 钱伯初、曾谨言,《量子力学习题精选与剖析》,上、下册,第二版,科学出版社,1999 [8] 曾谨言、钱伯初,《量子力学专题分析(上)》,高教出版社,1990 [9] 曾谨言,《量子力学专题分析(下)》,高教出版社,1999 [10] P.A.M.Dirac,The Principles of Quantum Mechanics (4th edition), Oxford University Press (Clarendon),Oxford,England,1958;(《量子力学原理》,科学出版社中译本,1979) [11]https://www.sodocs.net/doc/9b9381947.html,ndau and E.M.Lifshitz, Quantum Mechanics (Nonrelativistic Theory) (2nd edition),Addison-Wesley,Reading,Mass,1965;(《非相对论量子力学》,人民教育出版社中译本,1980)

第一章绪论 量子力学的研究对象: 量子力学是研究微观粒子运动规律的一种基本理论。它是上个世纪二十年代在总结大量实验事实和旧量子论的基础上建立起来的。它不仅在进到物理学中占有及其重要的位置,而且还被广泛地应用到化学、电子学、计算机、天体物理等其他资料。 §1.1经典物理学的困难 一、经典物理学是“最终理论”吗? 十九世纪末期,物理学理论在当时看来已经发展到相当完善的阶段。那时,一般物理现象都可以从相应的理论中得到说明: 机械运动(v<

量子力学初步-作业(含答案)

量子力学初步 1. 设描述微观粒子运动的波函数为(),r t ψ ,则ψψ*表示______________________________________;(),r t ψ 须满足的条件是_______________________________; 其 归 一 化 条 件 是 _______________________________. 2. 将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将_______________________________. (填入:增大D 2倍、增大2D 倍、增大D 倍或不变) 3. 粒子在一维无限深方势阱中运动(势阱宽度为a ),其波函数为 ()()30x x x a a πψ= << 粒子出现的概率最大的各个位置是x = ____________________. 4. 在电子单缝衍射实验中,若缝宽为a =0.1 nm (1 nm = 10-9 m),电子束垂直射在单缝面上,则衍射的电子横向动量的最小不确定量y p ?= _________N·s. (普朗克常量h =6.63×10-34 J·s) 5. 波长λ= 5000 ?的光沿x 轴正向传播,若光的波长的不确定量λ?= 10-3 ?,则利用不确定关系式x p x h ??≥可得光子的x 坐标的不确定量至少为_________. 6. 粒子做一维运动,其波函数为 ()00 x Axe x x x λψ-≥= ≤ 式中λ>0,粒子出现的概率最大的位置为x = _____________. 7. 量子力学中的隧道效应是指______________________________________ 这种效应是微观粒子_______________的表现. 8. 一维无限深方势阱中,已知势阱宽度为a ,应用测不准关系估计势阱中质量为m 的粒子的零点能量为____________. 9. 按照普朗克能量子假说,频率为ν的谐振子的能量只能为_________;而

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

一、选择题 1.4185:已知一单色光照射在钠表面上, 测得光电子的最大动能是1.2 eV ,而钠的红限波 长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金 属片,其红限波长为λ0。今用单色光照射,发现 有电子放出,有些放出的电子(质量为m ,电荷 的绝对值为e )在垂直于磁场的平面内作半径为 R 的圆周运动,那末此照射光光子的能量是: (A) (B) (C) (D) [ ] 3.4383:用频率为ν 的单色光照射某种金 属时,逸出光电子的最大动能为E K ;若改用频 率为2ν 的单色光照射此种金属时,则逸出光电 子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光 波长是入射光波长的1.2倍,则散射光光子能量 ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 0λhc 0λhc m eRB 2)(2+0λhc m eRB +0λhc eRB 2+

5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光(B) 两种波长的光(C) 三种波长的光(D) 连续光谱[] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV,当氢原子从能量为-0.85 eV的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV,10.2 eV和1.9 eV (D) 12.1 eV,10.2 eV和 3.4 eV [] 9.4241:若 粒子(电荷为2e)在磁感应

量子力学期末复习资料

简答 第一章 绪论 什么是光电效应爱因斯坦解释光电效应的公式。 答:光的照射下,金属中的电子吸收光能而逸出金属表面的现象。 这些逸出的电子被称为光电子 用来解释光电效应的爱因斯坦公式:22 1 mv A h +=ν 第二章 波函数和薛定谔方程 1、如果1ψ和2ψ是体系的可能状态,那么它们的线性迭加: 2211ψψψc c +=(1c , 2c 是复数)也是这个体系的一个可能状态。 答,由态叠加原理知此判断正确 4、(1)如果1ψ和2ψ是体系的可能状态,那么它们的线性迭加:2211ψψψc c += (1c ,2c 是复数)是这个体系的一个可能状态吗(2)如果1ψ和2ψ是能量的本征态,它们的线性迭加:2211ψψψc c +=还是能量本征态吗为什么 答:(1)是(2)不一定,如果1ψ,2ψ对应的能量本征值相等,则2211ψψψc c +=还是能量的本征态,否则,如果1ψ,2ψ对应的能量本征值不相等,则2211ψψψc c +=不是能量的本征态 1、 经典波和量子力学中的几率波有什么本质区别 答:1)经典波描述某物理量在空间分布的周期性变化,而几率波描述微观粒子某力学量的 几率分布; (2)经典波的波幅增大一倍,相应波动能量为原来的四倍,变成另一状态,而微观 粒子在空间出现的几率只决定于波函数在空间各点的相对强度,几率波的波幅增大一倍不影响粒子在空间出现的几率,即将波函数乘上一个常数,所描述的粒子状态并不改变; 6、若)(1x ψ是归一化的波函数, 问: )(1x ψ, 1) ()(12≠=c x c x ψψ )()(13x e x i ψψδ= δ为任意实数 是否描述同一态分别写出它们的位置几率密度公式。

量子力学教程第二版答案及补充练习

第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学史简介

近代物理学史论文题目:量子力学发展脉络及代表人物简介 姓名: 学号: 学院: 2016年12月27

量子力学发展脉络 量子力学是研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。可以毫不犹豫的说没有量子力学和相对论的提出就没有人类的现代物质文明。而在原子尺度上的基本物理问题只有在量子力学的基础上才能有合理地解释。可以说没有哪一门现代物理分支能离开量子力学比如固体物理、原子核粒子物理、量子化学低温物理等。尽管量子力学在当前有着相当广阔的应用前景,甚至对当前科技的进步起着决定性的作用,但是量子力学的建立过程及在其建立过程中起重要作用的人物除了业内人对于普通得人却鲜为人知。本文主要简单介绍下量子力学建立的两条路径及其之间的关系及后续的发展,与此同时还简单介绍了在量子力学建立过程中起到关键作用的人物及其贡献。 通过本文的简单介绍使普通人对量子力学有个简单认识同时缅怀哪些对量子力学建立其关键作用的科学家。 旧量子理论 量子力学是在旧量子论的基础上发展起来的旧量子论包括普朗克量子假说、爱因斯坦光电效应光电子假说和波尔的原子理论。 在19世纪末,物理学家存在一种乐观情绪,他们认为当时建立的力学体系、统计物理、电动力学已经相当完善,而剩下的部分不过是提高重要物理学常数的观测精度。然而在物理的不断发展中有些科学家却发现其中存在的一些难以解释的问题,比如涉及电动力学的以太以及观测到的物体比热总小于能均分给出的值。对黑体辐射研究的过程中,维恩由热力学普遍规律及经验参数给出维恩公式,但随后的研究表明维恩公式只在短波波段和实验符合的很好,而在长波波段和实验有很大的出入。随后瑞利和金森根据经典电动力学给出瑞利金森公式,而该公式只在长波波段和实验符合的很好,而在短波波段会导致紫外光灾。普朗克在解决黑体辐射问题时提出了一个全新的公式普朗克公式,普朗克公式和实验数据符合的很好并且数学形式也非常简单,在此基础上他深入探索这背后的物理本质。他发现如果做出以下假设就可以很好的从理论上推导出他和黑体辐射公式:对于一定频率f的电磁辐射,物体只能以hf为单位吸收

量子力学复习提纲

1. 粒子的双缝实验的结论是什么? 答:粒子具有波动性 2. 在量子力学中,波函数的波动方程是什么?它是定态薛定谔方程吗? 答:量子力学中波函数的波动方程是),()](2[),(2 2t r r V m t r t i →→→+?- =??ψψ ,它不是定态薛定谔方程,定态薛定谔方程是假设势能V 不显含时间t ,其形式是: )()](2[)(2 2→→→ +?-=r r V m r E ψψ 3. 波函数除了归一化要求之外的三个标准条件是什么? 答:单值、连续、有限。 4. 写出一维无限深方势阱的能量本征函数及能量本征值。 答: 5. 写出一维线性谐振子的能量本征函数及能量本征值。 答: 6. 什么叫做粒子的共振穿透?请举例说明。 答:当粒子射入势阱时,将发生反射和折射,当粒子的能量满足一定的条件时会使透 2 ,1n n a μ={} 2 2 22222 21 ()2?,()()()(),0,1,2, ?11 (),0,1,2,2 ?22 n n n x n n n n x U x x H x E x x P H x N H x e n E n n α μωψμωψψ ωμα-= ====+ ==+

射系数T=1,这种现象就叫做共振穿透。如上图所示,粒子在有限深势阱中,我们设 22222 1 ) (2,2 o V E k E k -==μμ则透射系数l k k k k k k k T 22 2222122212 221sin )(44-+= 当πn L k =2即02 2)(2V L n E n += πμ 时,1=T ,产生共振穿透。 7. 什么叫做粒子的遂穿效应?请举例说明。 答:粒子在能量E 小于势垒高度时仍能贯穿势垒的现象,称为隧道效应。金属电子冷发射和ɑ衰变等现象等都是隧道效应产生的,还有基于两字隧道效应的扫描隧道显微镜。 8. 粒子的共振穿透与粒子的遂穿效应有何区别? 答:共振穿透的物理意义是,入射粒子进入势阱后,碰到两侧阱壁时将发生反射和透 射,如粒子能量合适,使它在阱内波长'λ满足a n 2' =λ(a 为阱的宽度),则经过各次反射而透射出去的波的相位相同,因而彼此相干叠加,使透射波波幅大增,从而出现共振透射。而遂穿效应其实是粒子具有波动性的表现。 9. 什么叫做厄米算符?它有什么性质? 答:如果算符∧F 满足??()F dv F dv ψ?ψ?* *=??,则称算符∧ F 为厄米算符。厄米算符 有三点性质,一是体系的任何状态下,其厄米算符的平均值必为实数;二是厄米算符 的本征值必为实数;三是厄米算符属于不同本征值的本征函数彼此正交。 10. 量子力学中两个基本力学量是什么?在坐标表象中,用什么算符表示? 答: 量子力学中两个基本力学量是坐标→r 和动量→p ,在坐标表象中,坐标→r 用坐标算符∧ r 表示,动量用动量算符?-=∧ 2 p 表示。 11. 动量算符的本征函数和本征值是什么?其本征函数如何归一? 答:动量算符的本征函数是:)ex p( ) 2(1)(2 3r p i r p ?= πψ ,其本征值为p 。其只能归以为函数δ函数,即 )()()('*' p p d r r p p -=?∞ δτ??。 12. 在三维直角坐标系中,角动量算符的表示式是什么?动量(矢量)算符的本征函数和 本征值是什么? 答:???????????????x z y y x z z y x L yp zp i y z z y L zp xp i z x x z L xp yp i x y y x ????=-=-- ? ????????=-=-- ?????????=-=-- ? ???? h h h

量子力学教程高等教育出版社周世勋课后答案详解

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:

011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ ? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

清华大学《大学物理》习题库试题及答案____10_量子力学习题

一、选择题 1.4185:已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? 2.4244:在均匀磁场B 内放置一极薄的金属片,其红限波长为λ0。今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0 λhc m eRB 2)(2 + (C) 0λhc m eRB + (D) 0λhc eRB 2+ 3.4383:用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用 频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K 4.4737: 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV 9.4241: 若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh 10.4770:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 11.4428:已知粒子在一维矩形无限深势阱中运动,其波函数为:a x a x 23cos 1)(π?= ψ ( - a ≤x ≤a ),那么粒子在x = 5a /6处出现的概率密度为 (A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1 12.4778:设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图? 13.5619:波长λ =5000 ?的光沿x 轴正向传播,若光的波长的不确定量?λ =10- 3 ?,则 利用不确定关系式h x p x ≥??可得光子的x 坐标的不确定量至少为: (A) 25 cm (B) 50 cm (C) 250 cm (D) 500 cm 14.8020:将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将 (A) 增大D 2倍 (B) 增大2D 倍 (C) 增大D 倍 (D) 不变 x (A) x (C) x (B) x (D)

量子力学总结

量子力学总结 第一部分 量子力学基础(概念) 量子概念 所谓“量子”英文的解释为:a fixed amount (一份份、不连续),即量子力学是用不连续物理量来描述微观粒子在微观尺度下运动的力学,量子力学的特征简单的说就是不连续性。 描述对象:微观粒子 微观特征量 以原子中电子的特征量为例估算如下: ○1“精细结构常数”(电磁作用常数), 1371~ 10297.73 2-?==c e α ○ 2原子的电子能级 eV a e me c e mc E 27~~02242 2 2==??? ? ?? 即:数10eV 数量级 ○ 3原子尺寸:玻尔半径: 53.0~2 2 0me a =?,一般原子的半径1?

○4速率:26 ~~ 2.210/137 e c V c m s c ?-? ○5时间:原子中外层电子沿玻尔轨道的“运行”周期 秒 160 0105.1~2~-?v a t π 秒 角频率16 102.4~~?a v c ω, 即每秒绕轨道转1016圈 (电影胶片21张/S ,日光灯频率50次/S ) ○6角动量: =??2 2 20~~e m me mv a J 基本概念: 1、光电效应 2、康普顿效应 3、原子结构的波尔理论 波尔2个假设: 定态轨道 定态跃迁 4、物质波及德布洛意假设(德布洛意关系)

“任何物体的运动伴随着波,而且不可能将物质的运动和波的传播分开”,认为物体若以大小为P 的动量运动时,则伴随有波长为λ的波动。 P h =λ,h 为普朗克常数 同时满足关系ω ==hv E 因为任何物质的运动都伴随这种波动,所以称这种波动为物质波(或德布罗意波)。 称P h h E v ==λ 德布罗意波关系 例题:设一个粒子的质量与人的质量相当,约为50kg ,并以12秒的百米速度作直线运动,求粒子相应的德布罗意波长。说明其物理意义。 答:动量v p μ= 波长m v h p h 3634101.1)1250/(1063.6)/(/--?=??===μλ 晶体的晶格常数约为10-10m ,所以,题中的粒子对应的德布罗意波长<<晶体的晶格常数,因此,无法观测到衍射现象。 5、波粒二象性 (1)电子衍射实验 1926年戴维逊(C ·J ·Davisson )和革末(L ·H ·Gevmer )第一个观察到了电子在镍单晶表面的衍射现象,证实了电子的波动性,求出电子的波长λ

量子力学教程周世勋_课后答案

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 '=???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλπρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2 c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 6 1051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学 第四版 卷一 习题答案

第一章 量子力学的诞生 1、1设质量为m 的粒子在谐振子势222 1 )(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。 提示:利用 )]([2,,2,1, x V E m p n nh x d p -===?? Λ )(x V 解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:222 1 )(a m x V E a x ω===。 a - 0 a x 由此得 2/2ωm E a = , (2) a x ±=即为粒子运动的转折点。有量子化条件 h n a m a m dx x a m dx x m E m dx p a a a a ==?=-=-=??? ?+-+-222222222)21(22πωπ ωωω 得ω ωπm n m nh a η22 = = (3) 代入(2),解出 Λη,3,2,1, ==n n E n ω (4) 积分公式: c a u a u a u du u a ++-=-? arcsin 2222 22 2 1、2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。 解:除了与箱壁碰撞外,粒子在箱内作自由运动。假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。利用量子化条件,对于x 方向,有 ()?==?Λ,3,2,1, x x x n h n dx p 即 h n a p x x =?2 (a 2:一来一回为一个周期) a h n p x x 2/=∴, 同理可得, b h n p y y 2/=, c h n p z z 2/=, Λ,3,2,1,,=z y x n n n 粒子能量

量子力学思考题及解答

量子力学思考题 1、以下说法是否正确: (1)量子力学适用于微观体系,而经典力学适用于宏观体系; (2)量子力学适用于 不能忽略的体系,而经典力学适用于 可以忽略的体系。 解答:(1)量子力学是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。 (2)对于宏观体系或 可以忽略的体系,并非量子力学不能适用,而是量子力学实际上已 经过渡到经典力学,二者相吻合了。 2、微观粒子的状态用波函数完全描述,这里“完全”的含义是什么? 解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。如已知单粒子(不考虑自旋)波函数)(r ψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其他力学量的概率分布也均可通过)(r ψ而完全确定。由于量子理论和经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。 3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。 解答:设1ψ和2ψ是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ和2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不是概率相加,而是波函数的叠加,屏上粒子位置的概率分布由222112 ψψψ c c +=确定,2 ψ中 出现有1ψ和2ψ的干涉项]Re[2* 21* 21ψψc c ,1c 和2c 的模对相对相位对概率分布具有重要作用。 4、量子态的叠加原理常被表述为:“如果1ψ和2ψ是体系的可能态,则它们的线性叠加 2211ψψψc c +=也是体系的一个可能态”。 (1)是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=; (2)对其中的1c 与2c 是任意与r 无关的复数,但可能是时间t 的函数。这种理解正确吗? 解答:(1)可能,这时)(1t c 与)(2t c 按薛定谔方程的要求随时间变化。 (2)如按这种理解 ),()(),()(),(2211t x t c t x t c t x ψψψ+=

相关主题