搜档网
当前位置:搜档网 › SmaartV7新手入门-配置声卡和测量通道

SmaartV7新手入门-配置声卡和测量通道

SmaartV7新手入门-配置声卡和测量通道
SmaartV7新手入门-配置声卡和测量通道

Smaart V7的面向对象的程序架构

新的Smaart V7平台的最强大之处,在于它采用了面向对象的程序架构。软件实质上是有很多独立的代码模块组成,每个模块程序(对象)独立运行并相互关联。数据采集由输入模块处理,单通道测量和双通道测量分别由独立的频谱和响应对象处理,图像和用户界面也都有独立的模块对象。

这种架构可以创建出更符合用户需求的测量环境。事实上,只要电脑和声卡硬件性能允许,你可以同时进行任意多个单通道(频谱)和双通道(响应)测量。

这也意味着Smaaart的测量图像也是独立的对象,因此用户可以随时改变显示参数(包括平滑、带宽、摄谱图范围、相干性掩蔽、曲线颜色等),而无须重新进行测量。

Smaart V7基本测量配置方法

使用Smaart V7的第一步,是对单通道测量(频谱模式)或双通道测量(频率响应、相位响应、脉冲响应等)进行配置。这里详细介绍一下软件具体功能和设置方法。

之前版本的smaart软件里,都是假定用户使用了一台2进2出的声卡。但是在Smaart V7中,允许用户连接多台声卡,其中每台声卡都可以有多个输入输出通道。鉴于Smaart V7无法猜测用户声卡的特性和测量需求,所以在第一次运行V7的时候,初始状态未作定义。不过用户一旦根据初始向导功能设置好了输入输出通道之后,除非另作修改,否则这些状态在接下来的测量中都会被保留和继承下来。

只要是电脑操作系统本身能识别的声卡,无论.wav、CoreAudio或ASIO驱动,都可以为Smaart V7提供输入信号。事实上,Smaart V7支持同时从多个声卡获取多路信号。(注意:ASIO驱动的声卡一次只能使用一台。)

Smaart V7启动时,首先呈现在用户眼前的是

一个版权解释页面(如图)。与此同时,Smaart 也

在搜索操作系统下的可用声卡。Smaart 会把此时

搜索到的所有声卡加入设备列表,即使拔掉某个

声卡再重启软件,之前被搜索到的声卡仍然会保

留在设备列表里。

配置“音频输入/输出设备”

用户无需连接实际测量时用到的声卡,就可以在“Audio

Device Options”对话框中对声卡选项的整体参数进行配置。配

置内容包括Smaart 软件的全局采样率和量化比特(全局是指所

有声卡都必须支持这些设置参数),并把各声卡及其输入输出通

道名称改成更易识别的名字(Friendly Name),这样测量的时候

能更加直观些。另外,列表中用不到的声卡设备可以勾选它前面

的“ignored”(忽略)方框,这样它们就不会显示在其它测量选

项中了,或者也可以选中它之后点“REMOVE”,把它从本次测量

列表中删除掉。选中列表中的某一项,点击“Setting”按钮,可以打开该声卡的详细设置窗口,其中可以对每个输入通道进行校准(Calibrate),或指定“话筒校正曲线”(该校正文件可以从话筒厂家获得,或者用户自己按照规定的表格格式自己制作)。“音频输入/输出设备”对话框可以从Options 菜单下访问,或者直接用热键Altt+A 打开(热键是指Smaart 软件内图3:Options 菜单

置的键盘快捷命令)。

Options:Audio I/O 对话框

z 勾选ignore,可以将该声卡临时从

Smaart 的其它列表中隐藏。

z 用户可以给每个声卡和每个通道指

定一个易于理解的名称(Friendly

Name)。

z 用户可以查看各声卡设备的连接状

态(OK=已连接;N/C=未连接)。

配置“测量通道组”

在实际测量前,用户还必须进行“测量配置”。测量配置对话

框可以通过Options 菜单下的Measurement Config 选项打开(热

键是Alt+G),或者点击软件界面右侧控制区里的测量配置按钮(扳

手图标)打开。记住,Smaart V7不再采用固定的测量拓扑结构,

而是基于对象的架构体系,因此用户可以根据声卡通道数量,配置

出任意数量的单通道(频谱)以及双通道(响应)的测量对象。而

且,所有的这些通道既可以分别运行,也可以同时运行。

图5:测量配置按钮

在测量配置对话框里,用户可以定义测量通道对象,并把各通

道进一步组成“测量通道组”。

图6:测量配置对话框 –功能强大的界面,用于配置、控制和修改Smaart测量系统设置 在这个对话框的左边,是测量配置架构的树形图。从这里可以查看、创建、复制、删除各个频谱(Spectrum)和传递函数(TF)测量组,并查看每个组中包含的测量通道。

这个树形图同时也可以用作“测量通道组”整体的纵览和选择。

新建了某个测量组之后,用户可以从树形图里面选中该组,并向其中添加测量对象,方法是点击(频谱测量组中的)“New Spectrum Measurement”或(TF测量组中的)“New TF Measurement” 按钮。

图7:New Spectrum Measurement按钮可以 图8:New TF Measurement按钮可以 创建一个新的单通道测量对象。 创建一个新的双通道测量对象。

在频谱测量组中,新建的单通道测量对象可以设置对应的声卡以及输入通道。在双通道的TF测量组中,新建的测量对象需要设置对应的声卡以及“测量”和“参考”通道。在进行这些设置时,如果之前给声卡或声卡通道改过名字,那么这里显示的都是改名后的新名字。

在测量配置对话框中央的列表区里,用户可以管理每个测量组、调整测量对象的排列顺序(对应主程序窗口的排序)、改变输入通道、设置/更改每个测量对象的名称和曲线颜色、并设置实时的“平均”测量(通过“New Average”按钮)。实时平均测量的结果来自对该组内其它测量对象数据的平均值。

测量配置对话框中,每个测量对象都给基于独立的Smaart测量引擎,也就是说都有各自单独的参数定义。因此,组中的每个测量对象在该窗口中都具有独立的标签页,便于用户分别查看设置。关于这些全局参数和独立参数的设置,会在后面的文章中针对具体测量要求详细介绍。

图8:测量配置对话框的组列表窗口,其中设置了一个实时平均项。

室外采暖管道安装施工质量验收规范

建筑给水排水及采暖工程 施工质量验收规范 Code for acceptance of construction quality of Water supply drainage and heating works

目录 1 一般规定…………………………………………… 2 管道及配件安装……………………………………… 3 系统水压试验及调试…………………………………

四室外供热管网安装 1 一般规定 1.1 本章适用于厂区及民用建筑群(住宅小区)的饱和蒸汽 压力不大于0.7MPa、热水温度不超过130℃的室外供热管网安装工程的质量检验与验收。 1.2 供热管网的管材应按设计要求。当设计未注明时,应符合下列规定: 1)管径小于或等于40mm 时,应使用焊接钢管。 2)管径为50~200mm 时,应使用焊接钢管或无缝钢管。 3)管径大于200mm 时,应使用螺旋焊接钢管。 1.3 室外供热管道连接均应采用焊接连接。 2 管道及配件安装 主控项目 2.1 平衡阀及调节阀型号、规格及公称压力应符合设计要求。安装后应根据系统要求进行调试,并作出标志。 检验方法:对照设计图纸及产品合格证,并现场观察调试结果。 2.2 直埋无补偿供热管道预热伸长及三通加固应符合设计 要求。回填前应注意检查预制保温层外壳及接口的完好性。回填应按设计要求进行。 检验方法:回填前现场验核和观察。 2.3 补偿器的位置必须符合设计要求,并应按设计要求或产

品说明书进行预拉伸。管道固定支架的位置和构造必须符合设计要求。 检验方法:对照图纸,并查验预拉伸记录。 2.4 检查井室、用户入口处管道布置应便于操作及维修,支、吊、托架稳固,并满足设计要求。 检验方法:对照图纸,观察检查。 2.5 直埋管道的保温应符合设计要求,接口在现场发泡时,接头处厚度应与管道保温层厚度一致,接头处保护层必须与管道保护层成一体,符合防潮防水要求。 检验方法:对照图纸,观察检查。 一般项目 2.6 管道水平敷设其坡度应符合设计要求。 检验方法:对照图纸,用水准仪(水平尺)、拉线和尺量检查。 2.7 除污器构造应符合设计要求,安装位置和方向应正确。管网冲洗后应清除内部污物。 检验方法:打开清扫口检查。 2.8 室外供热管道安装的允许偏差应符合表11.2.8 的规定。表2.8 室外供热管道安装的允许偏差和检验方法

风道风压风速和风量的测定

风道风压、风速和风量的测定 一、实验的目的 了解和掌握通风系统风道内风压、风速和风量的测点布置方法及测定方法,测定数据的处理和换算。从而对通风系统气流分布是否均匀作出理论判断。 二、实验仪器和设备 1.U型压力计一台(测量范围在10000Pa) 2.倾斜式微压计一台(测量范围在250Pa) 3.热球式风速仪一台(测量范围在0.05-30.0m/s) 4.毕托管一支 5.外径φ10mm,壁后1mm的橡胶管或乳胶管数米。 6.蒸馏水500ml 7.纯酒精500ml 8.钢卷尺一把,长度值不小于2m 三、测试原理及方法 1.测试原理 风道风压、风速和风量的测定,可以通过毕托管、U型压力计、倾斜式微压计、热球式风速仪等仪器来完成。毕托管、U型压力计可以测试风道内的全压、动压和静压,由测出的全压可以知道风机工作状况,通风系统的阻力等。由测出的风道动压可以换算出风道的风量。也可以用热球式风速仪直接测量风道内风速,由风速换算出风道内风量。 2.测量位置的确定 由于风管内速度分布是不均匀的,一般管中心风速最大,越靠近管壁风速越小。在工程实践中所指的管内气流速度大都是指平均风速。为了得到断面的平均风速,可采用等截面分环法进行测定。 对圆形风管 可将圆管断面划分若干个等面积的同心环,测点布置在等分各小环面积的中心线上,如图1所 示,把圆面积分成m个等面积的环形,则:,然后将每个等分环面积再二等分,则此圆周距中心为Y n,与直径交点分别为1、2、3,…n点,这些点就是测点位置。 各小环划分的原则是:环数取决于风管直径,划分的环数越多,测得的结果越接近实际,但不能太多,否则将给测量和计算工作带来极大麻烦,一般参照表5分环。 表5 测量时不同管径所分环数 风管直径≦130 130-200 200-400 400-600 600-800

风量测量装置使用维护说明书

陕制00000442号YQL-4000型插入式多喉径流量测量装置 使用维护说明书 陕西弈楸科技发展有限公司

★产品特点: →计量精确度高、复现性好。 →工作稳定可靠,抗干扰能力强。 →直管段要求低。 →无可动部件,阻流部件小,测量中几乎无压力损失。 →小流速条件下,仍可输出大差压信号。 →可全量程动态修正。 →测量传感器内表面进行了抗磨处理,大大提高了产品寿命。★主要客户: →火电厂 →钢铁厂 →化工厂 →水厂 ★主要用途 →测量大、中、小型圆(矩)管道常温、高温气体及水流量测量→适用于空气、蒸汽、天然气、煤气、烟气、水等介质

YQL-4000型插入式多喉径流量测量装置说明书 一、概述 YQL-4000型插入式多喉径流量测量装置,是我公司科研人员结合多年流量测量的现场实践,基于流体力学原理,参考国际标准ISO5167及国标GB2624-93,采用航空气动理论和飞机发动机内流流体力学等学科的最新研究成果,依据大型计算机技术和风洞实验,研究和生产出的可实现点面结合、高精度测量的异型文丘里差压式智能流量测量系统,是一种新型实用的专利产品(专利号:200620079061.2)。 (YQL-4000-Ⅲ型)(YQL-4000-Ⅰ/Ⅱ型) 二、组成 YQL-4000型插入式多喉径流量测量装置,主要有五部分组成:①、YQL-4000型插入式流量传感器;②、差压变送器(另选配);③、温度变送器(另选配); ④、取压装置;⑤、二次仪表(或连接DCS系统)(另选配)。YQL-4000型插入式流量传感器主测元件主要由一个型面特殊的内文丘里管和一个文丘里喷嘴前后嵌套组成,附测元件采用具有抽吸作用的变径管。主测元件和附测元件依靠机翼型支撑柄及两个静压导出管固定、连接,并外加矩形固定法兰(法兰内表面根据工矿管道内型面作相应加工)。 三、用途 YQL-4000系列插入式多喉径流量测量装置,是一种基于伯努力方程、运用现代航空技术———空气动力学理论和流体力学理论,实现点面结合高精度测量、流速型的文丘里差压式智能流量计。它广泛适用于火电厂、钢铁厂、化工厂的大、中、小型管道常温或高温气体(空气、蒸汽、天然气、煤气、烟气)流量测量,特别适用于火电厂一次风、二次风流量测量,也适用于大型水电站、大型水库水流量的精确计量。 四、特点

室外给水管道安装工程施工方案2

专业文档 目录 一、室外给水系统工程概况 (2) 1.1市政给水管道简介 (2) 1.2主要设备(或用水点)简介 (2) 1.3管材及安装 (2) 二、编制依据 (2) 三、施工准备 (3) 四、施工工艺流程: (3) 五、施工工艺及方法 (4) 5.1管道的安装 (4) 5.2管道的连接 (5) 5.3沟槽的开挖、回填 (5) 5.4其它注意事项 (6) 六、管道系统水压试验和冲洗消毒 (7) 6.1试验前准备工作 (7) 6.2水压试验 (8) 6.3管道冲洗和消毒 (8) 七、质量保证措施 (9) 八、安全及文明施工措施 (9) 九、成品保护 (10)

一、室外给水系统工程概况 1.1市政给水管道简介 本工程室外给水管道接自两路市政自来水管道,常年水压为0.30MPa;两路供水管路的水表井水表前管道及设备由市政施工,水表以后室外给水管道由我单位施工。 1.2主要设备(或用水点)简介 1.2.1 本工程用水分室内和室外两部分,室外用水分为消防和绿化用水,室外 消防用水量为30升/秒。 1.2.2 室内用水本工程设计最高日生活用水量为1450立方米,最大小时用水量 为270立方米;生活用水标准为50升/人.天。室内消防用水量为40升/秒; 火灾延续时间为3小时。 1.3管材及安装 本工程室外给水管道采用高密度HDPE给水管及相应接口。 二、编制依据 2.1设计说明及施工图;

2.2《给水排水管道施工及验收规范》GB50268-97; 2.3《建筑排水用硬聚氯乙烯(PVC-U)管道安装》96S406; 2.4《室外消火栓安装》01S201; 2.5国标图集02S515 2.6HDPE管厂家提供的相关管道安装工艺及方法 三、施工准备 3.1掌握外线各管线坐标走向,并结合设计要求及相关规范和现场情况编制切实可 行的施工方案。 3.2工程材料、施工机械等应在开始施工前准备齐全。 3.3施工供水、供电等必须保证可以正常投入使用。 3.4施工人员必须认真熟悉图纸,掌握管线的走向及安装要求。 3.5施工前由厂家对施工人员进行安装技术培训,保证施工质量及避免不必要的材 料浪费。 3.6土建专业在开工前做好除管道安装和试验以外的其余施工各项的相关准备工 作。 四、施工工艺流程:

电风扇风量测量方法

电风扇风量参数检测方法 电风扇风量检测方法及影响风量试验数据的因素分析 1 台扇、落地扇风量检测方法 考虑到电风扇的送风结构是不带内部风道的,工作时气流是大空间自由进气和大空间自由排气,因此风量测试不采用通过在测试风管中设置孔板或喷嘴等节流件产生压差的测量方法,而是直接用风速仪测量电风扇的排风风速来计算风量。根据GB13380-2007,风量测试系统的检测原理采用风速表法,利用风速仪测量出通过模拟圆形平面上各圆环的平均风速,再乘以相应的圆环面积得到通过该圆环的风量,电风扇的总输出风量为通过直到读数限度的所有圆环的风量总和。 式中:Q——通过圆环的风量,m3/mm;V——同一半径上圆环的平均风速,m/ min;r——圆环的平均半径,mm;d——圆环的宽度,等于40mm;S——圆环的面积,m2。 试验程序是:试验前,将被测电风扇在额定电压、额定频率下至少运转1 小时;试验时,从距离扇叶轴线20mm左右两点处开始测量,以每40mm的增量沿着水平直线逐点向两边移动,直到所测得的平均风速下降到低于24m/min(0.4m/ s)为止。 2风量检测设备及影响风量试验数据的因素分析 目前实验室普遍采用自动智能风量测试仪,这种风量测试仪由计算机控制实现了全自动测试,以减少由于检测持续时间长而造成的人为读数误差。该装置的风速仪探头采用步进电机驱动,可由距离扇翼轴线20mm处开始以每40mm的增量沿着水平直线逐点向两边移动采样。数据由计算机处理自动计算平均风速、风量、能效值、评定能效等级等值,并自动生成、打印测试报告。 在电风扇风量检测中,由于存在着人员操作的熟练度不尽相同,测试条件、环境和电源性能无法完全满足标准规定的要求等因素,导致检测数据不可避免存在不确定性。

通风系统的风量风压测量

实验一 通风系统的风量风压测量 一、实验目的: 通过实验掌握通风系统的风量风压测量方法 二、实验内容: 选择某一通风系统风管断面进行静压、动压、全压的测量。计算该断面的平均风速及风量。 三、通风系统全压、静压、动压的测定 (一) 毕托管的结构如图1所示,把毕托管按规定放入通风管道内。测头对准气 流。A 、B 两端分别连接微压计时,A 端测出的压力值为全压,B 端测出的压力值为静压,把A 、B 两端连接在同一个微压计上时,测出的压差值就是动压。即: q j d P P P -= (二) 倾斜式微压计的工作原理如图2所示。微压计感受压力或压差时,玻璃管 内液面从零点上升。其垂直高度,容器内的液面则从零点下降,下降到高度为h 2 1 22 F h Z F = (1-1) 式中,F 1——玻璃管断面积; F 2——容器的断面积。 B A 图1 毕托管 图2 倾斜式微压计原理图

因此,两端的液面差 1122sin F h h h Z F α?? =+=+ ??? (1-2) 被测的压差值 12s i n F p h Z g F γγρρα?? ?==+ ??? 式中,γρ——液体的密度,kg/m 3 令 12sin a F K F γρα? ? + = ?? ? (1-3) 则 a p K Zg ?= Pa (1-4) 由(1-3)可以看出,a K 值是随α角及γρ的变化而变化的。对应不同的α值及γρ会有不同的a K 值。 在y-1型微压计中,以3 0.81/kg m γρ=的酒精作为工作介质。不同的α角所对应的a K 值直接在微压计上标出。 测定的压力值大于大气压力时,应接在M 上。测定的压力值小于大气压时,应接在N 上。在测定压差值时,压力大的一端接M 上,压力小的一端接N 上。 在通风机的吸入段或压出段进行测量时,测压管与微压计的连接方式见“工业通风”P184图3-4。 (三) 测定断面的选择 为了减少气流扰动对测定结果的影响,测定断面应选择在气流平直扰动少的直管段 上。测定断面设在局部构件前,距离要大于3倍以上管道直径,设在局部构件后相隔 距离应大于6倍管道直径。详见“工业通风”图8-1。 四、用动压法测定管道内的风量 通风系统内某一点的动压 2 2 d v P ρ= Pa (1-5) 式中, v ——某一点的空气流速,m/s ρ——空气的密度,3/kg m 因此 v = (1-6) 由于气流速度在测定断面上的分布是不均匀的,为了测得该断面上的平均风速,必须多点测量,测点位置按“工业通风”第八章中图8-2、图8-3来确定。 测定断面的平均风速 p v = ? m/s (1-7)

FL型多点式风量测量装置在600MW机组中的应用

FL型多点式风量测量装置在600MW机组中的应用 朱玉辉1伍绍斌2王丹秋3 (1华北电力大学北京 102206; 2华能重庆珞璜电厂重庆 402283 3南京瓦特科技有限公司南京 21008;) 摘要:该文章主要阐述了对直吹式双进双出钢球磨通风量的测量,详细阐述了如何准确有效对负荷风的测量和控制策略,从而为能成功地投入送风和燃料自动,进而投入机组协调控制.采用双入双出直吹送粉600MW机组的即时进入炉膛的燃料量无法直接计算,只能采用测量携带煤粉的容量风量进而折算成煤量的方式来获得即时燃料量,这就对磨煤机的容量风量测量提出较高要求,华能重庆珞璜电厂三期原来所采用的风量测量装置无法满足控制要求,现采用了FLI型自清灰风量测量装置后,满足了测量精度的要求,能够投入送风和燃料自动。 关键字:协调控制燃料量FL型风量测量装置自清灰防堵等截面多点风煤交叉限制 1 概述 1.1华能重庆珞璜电厂600MW机组及原容量风测量系统简介 华能重庆珞璜电厂三期工程新建的2台600MW机组分别于于2006年12月8日和2007年1月26日顺利通过168小时试运行。机组锅炉由东方锅炉厂引进美国福斯特·惠勒公司技术制造设计,形式为“W”火焰、亚临界参数、中间一次再热、自然循环固态排渣燃煤汽包炉,蒸发量为2030 t/h。制粉系统采用双入双出钢球磨煤机正压直吹式制粉系统,每台锅炉配置6台双进双出钢球磨煤机。每台磨煤机配置左、右侧一次风测量装置各1套和左、右侧负荷风测量测量装置各1套。风量测量装置采用是插入式双喉径文丘利风量测量装置,由于没有足够的直管段,并且被测量对象均为含尘气流,测量装置容易堵塞增加维护工作量,测量结果不稳定、且不准确,而机组自动基于风煤比、煤水比控制策略,结果导致锅炉不能燃烧自动、给水自动,机组无法自动协调运行。经多方调研比较后,我厂于2007年4月在#5机组小修期间改装了FL型多点式自清灰风量测量装置,由于在风道截面上采用标准的网格多点式布置、且测量装置本身具备的自清灰和防堵塞功能,装置性能可靠,调节线性好,风量显示稳定,试运行状况良好,协调控制系统自动投入率100%,取得明显效果。 1.2原容量风测量系统存在的问题 1.2.1测量精度差:由于现场直管段较短,流场速度分布各不相同,风场紊乱不均,一次总风量和容量风量采用单测点多候径文丘里测量装置,测量精度无法满足机组使用要求。 1.2.2调节线性不好:磨煤机通风量的变化对磨煤机出力、煤粉细度和磨煤单耗的影响是较大的.当通过增大挡板开度增加通风量时,筒体压力也增加,磨煤机出力随之增加,但此时所显示的通风量增加幅度不明显,当风门挡板开度减小时,风量变化也无规律可循;测量线性不好,导致风量测量不准确。1.2.3测量元件堵塞严重:由于文丘里测量装置自身的测量原理,对含尘气流的测量时,灰尘只进不出,造成感压管路堵塞,再加上锅炉启、停炉时,冷、热态的变化,所形成的水气与测风装置感压管路中的

室外给水管道安装施工方案

室外消防管道施工方案 一、范围 天鹅湖小镇室外消防管网,工作压力不大于0.6MPa 的室外给水和消防管网的给水管铺设安装。 二、施工准备 1、材料设备要求: (1)给水PE及PPR管及管件规格品种应符合设计要求,管壁薄厚均匀,内外光滑整洁,不得有砂眼、裂纹、飞刺和疙瘩。 (2)阀门无裂纹,开关灵活严密,铸造规矩,手轮无损坏,并有出厂合格证。 (3)地下消火栓,地下闸阀、水表品种、规格应符合设计要求,并有出厂合格证。 2、作业条件: (1)管沟平直,管沟深度、宽度符合要求,阀门井、表井垫层,消火栓底座施工完毕。 (2)管沟沟底夯实,沟内无障碍物。且应有防塌方措施。 (3)管沟两侧不得堆放施工材料和其它物品。 3 、操作工艺 (1)工艺流程: 安装准备→清扫管膛→管材、管件、阀门、消火栓等就位→管道连接→水压试验→管道冲洗 (2)根据施工图检查管沟坐标、深度、平直程度、沟底管基密实度是否符合要求。

(3)把阀门、管件稳放在规定位置,作为基准点。 (4)根据PE及PPR长度,确定管段工作坑位置,铺管前把工作坑挖好。 (5)用大绳把清扫后的铸铁管顺到沟底,清理承插口,然后对插安装管路,将承插接口顺直定位。 (6)安装管件、阀门等应位置准确,阀杆要垂直向上。 (7)室外地下消火栓底座下设有预制好的混凝土垫块或现浇混凝土垫层,下面的土层要求夯实。(图1-41)。 图1-41 1—消火栓;2—弯头底座;3—法兰接管;4—圆形阀门井 (8)单元水表安装: 单元水表安装于表井底中心(见图1-42)。

图1-42 (9)水压试验: 对已安装好的管道应进行水压试验,试验压力值按设计要求及施工规范规定确定。 (10)管道冲洗: 管道安装完毕,验收前应进行冲洗,使水质达到规定洁净要求。并请有关单位验收,作好管道冲洗验收记录。 4 质量标准 1、保证项目: (1)埋地管沟敷设管道的水压试验结果,必须符合设计要求和施工规范规定。 检验方法:检查管网或分段试验记录。 (2)管道及管道支座(墩),严禁铺设在冻土和未经处理的松土上。 检验方法:观察检查或检查隐蔽工程记录。 (3)给水管网竣工验收前,必须对系统进行冲洗。 检验方法:检查冲洗记录。 2、基本项目: (1)管道的坡度应符合设计要求。 检验方法:用水准仪(水平尺)、拉线和尺量检查或检查测量记录。 检验方法:观察和尺量检查。 (2)阀门安装质量要求达到型号、规格、耐压强度和严密性试验结果符合设计要求和施工规范规定,位置、进出口方向正确,连接牢固、紧密。启闭灵活、朝向合理、表面洁净。 检验方法:手扳检查和检查出厂合格证、试验单。 (3)允许偏差项目:

DT-620系列专业风速风量风温测试仪

DT-620系列专业风速风量风温测试仪 图片由青岛聚创环保网站提供 特征 测量风速和温度,保持读数和查找最大值/最小值 1.高的灵敏度和精确测量 2.简易设计 3.风速测量柄可与机身分开,方便测量 4.双显示读数液晶显示屏 5.风速测量用2米可延长的螺旋线 6.低电能消耗 7.数据保持,最大值和最小值保持功能 8.低电池指示 轴承: 兰宝石轴承 温度感应器: K型热电偶 操作温度:0 ~50oC (32 ~122oF) 操作湿度:小于80%RH 存储温度: -40 oC~60oC (-40oF ~140oF) 电池型号:9V 电池寿命:50个小时(300mA-hrs 电池) 风速平均测量的时间: m/s 大约0.6sec. knots 大约1.2sec. km/hr 大约2.2sec 技术指标 风速量程范围: 单位量程范围:分辨率 最小测 量值 精确度 m/s0.3 – 45.00.10.3±3% ±0.1

knots0.6 - 88.00.10.6±3% ±0.1 km/hr 1.0 - 140.00.1 1.0±3% ±0.1 m/s: 米/秒 knots: 海里/小时 km/hr:公里/小时 单位换算表: m/s knots km/hr 1 m/s1 1.944 3.60 1 knot0.51441 1.8519 1 km/hr0.27780.541 温度量程范围: 单位 Range 范围分辨率精确度 oC -20 – 200.0 0 to 60.00.1±2oC -20.0 to -1;0.1± 5oC 60 to 2000.1±(2%+2oC) oF -4.0– 200.0 32.0 to 140.00.1±4oF -4.0 to 31.0;0.1±9oF 140.0to199.90.1±(2%+4oF) 尺寸 风速仪: 150x 72 x 35mm 风扇: 66x 132 x 29.2mm 重量:350g (电池包括在内)

风量检测标准操作规程

1. 目的 建立洁净室风量检测的标准操作程序。 2.适用范围 本规程适用于洁净室风量和换气次数的检测。 3. 职责 洁净区风量检测人员执行本规程。 4. 工作程序 (1)风量检测必须首先进行,各项净化效果都是在设计的风量下获得。 (2)检测前必须检查风机运行是否正常。 (3)万级和十万级洁净室检测风量和换气次数。 4.1 检测方法与仪器操作 4.1.1洁净室风量的检测 每一洁净室装有过滤器的送风口进行风量测试。如果洁净室有多个送风口,每个送风口单独测试,将每个送风口的风量相加,计算出总风量。(洁净室风口数及面积见表1)。风口数为n,第1个送风口风量为A1,第2个送风口风量为A2,第n个送风口风量为An。 总风量(m3/h)= A1+A2+…+An 4.1.2换气次数计算 单位时间内室内空气的更换次数,即通风量与容积的比值。 换气次数(次/h)= 总风量/房间容积 4.2检测仪器组成与安装 4.2.1风量罩组成 加野MODEL6705风量罩由风罩(标配610×610 mm)、玻璃纤维支杆、便携把手、底座(含16个测量点)及测量仪主机组成。 4.2.2支杆安装 将一根支杆的一端插入到支杆安装槽内如下图①,将另一端插入到框架角如下图②(框架角的位置参考下图③)。剩余3根支杆安装位置参考下图③,安装步骤同上。支杆要交叉安装,支杆拆卸顺序与之相反。

4.2.3便携把手安装 便携把手安装顺序参考下图,其拆卸顺序与之相反。 4.3检测仪器操作 4.3.1开机前准备: 确认风量罩已按要求安装好。测量仪主机确认有电,用4节AA型电池供电。 4.3.2开机: 按住“ POWER”键 2 秒钟,进入测试主界面。 4.3.3风量检测: 按键操作包括测量仪主机上的按键操作及底座按键操作。底座左键,此按键用于控制风量测试的开始、停止。底座右键,此按键用于控制风量测试值的保存。 在测试设置中确认测试模式为“ Single”,实际、标准风量设置为“Std”。按“START”键或底座左键,仪器开始测量,风量显示区显示“- - - - ”。风量值在8秒内稳定后,测试自动停止。风量显示区显示稳定后的风量值,风向图标显示稳定后的风向。测试停止后,按“SAVE”键或底座右键将本次测得风量值保存。 4.3.4关机: 在任何测量模式下,按住“ POWER”键2 秒钟,仪器将自动关机。

风管内风量测定实验

实验三 风管内风量测定实验 一、实验目的 1.了解流量测量装置,学会采用椭圆喷嘴流量测量。 2.学会使用斜管微压计。 二、实验装置简图 实验采用国际流行的空调系统椭圆喷嘴测流量装置,本装置是93年承接省教委课题《可调式复合流送风分布器》而自行设计制作安装的,该装置分为风量测量段、风机段和标准实验管段三部分,如上图所示。本实验为测量风量段的风量。 1.测量段:接收室、流量喷嘴、排放室:为了使得测量段内气流均匀,流量喷嘴前后加装了孔径Φ25,穿孔率为39.8%的均流板。喷嘴尺寸:Φ150,3个;Φ100,2个;Φ70,1个,共6个。 本次实验开三个:Φ150、Φ100、Φ70各一个。 测量室断面为:1230mm 1230? 2.风机段:风机型号为4-72 NO-5A 离心式风机,最大风量12720/h m 3(是目前国内最大),采用最先进的变频调速器SVF113-80A ,对风机风量实行无级调速。 3.标准实验管段:采用管径Φ600的镀锌铁皮,加装整流装置,以保证气流均匀。整个装置经过打压实验,漏风率不足1%,保证测试准确性。 三、实验原理: 系统风量:P A C Q n n ?=ρ2 其中,C n ——椭圆喷嘴流量系数,98.0=n C

A——喷嘴喉部流通面积(2m) n ?——喷嘴两端压差。(Pa) P ρ——空气密度(Kg/m3) ρ——酒精密度(Kg/m3) j L——斜管压力计读数(mm) 四、实验步骤 1.调整斜管式微压计(调水平、调零点),用橡胶管将喷嘴前后静压环接口与已调整好的斜管微压计相连接。 2.合上实验装置电源 3.慢慢调整变频调速器旋扭,使频率值从小到大变化,一般频率间隔5HZ,记下在不同频率下的斜管式微压计读数。 4.反复调节变频调速器频率(一般5次),并记录斜管式微压计读数。 5.关闭实验装置电源。 五、实验数据和实验结果

室外燃气管道工程设计施工及验收标准

xxxx公司企业标准 室外燃气管道工程设计、施工及验收标准 钢质管道 Q/BC J01-2006 xxxx年xxx月1 1范围 1.0.1为规范室外燃气管道工程的设计、施工及验收工作,便于公司统一管理,提高技术水平,确保工程质量,特制定本标准。

1.0.2本标准适用于设计压力小于0.01MPa的室外燃气管道工程(小区调压箱至引入管)的设计、施工及验收。 2 引用标准 2.0.1城镇燃气设计规范 GB50028-93 2.0.2城镇燃气输配工程施工及验收规范 CJJ33-2005 2.0.3现场设备、工业管道焊接工程施工及验收规范 GB50236-98 2.0.4低压流体输送用焊接钢管 GB/T3091 2.0.5输送流体用无缝钢管 GB/T8163 2.0.6石油天然气工业输送钢管交货技术条GB/T9711.1-1997 2.0.7涂装前钢材表面锈蚀等级和除锈等级GB/T8923-1998 3室外燃气管道工程设计、施工及验收 3.1 设计 3.1.1 室外燃气管道宜采用聚乙烯管、钢管或钢骨架聚乙烯塑料复合管,并应符合下列要求:(1)聚乙烯燃气管应符合现行国家标准《燃气用埋地聚乙烯管材》GB15558.1和《燃气用埋地聚乙烯管件》GB15558.2的规定。 (2)钢管采用焊接钢管、镀锌钢管或无缝钢管时,应符合现行的国家标准《低压流体输送用焊接钢管》GB/T3091 《输送流体用无缝钢管》GB/T8163 的规定。 (3)钢骨架聚乙烯塑料复合管应符合国家现行标准,《燃气用钢骨架聚乙烯塑料复合管》 CJ/T125 和《燃气用钢骨架聚乙烯塑料复合管件》CJ/T126的规定。 3.1.2 地下燃气管道不得从建筑物和大型构筑物下面穿越,地下燃气管道与建筑物、构筑物或相邻管道之间的水平和垂直净距见下表: 序号项目水平净距(m) 垂直净距(m) _ 1 0.7 建筑物的基础0.15 2 0.5 给水管0.15 3 1.0 污水、雨水排水管0.5 4 0.5 电力电缆0.5 5 0.5 通信电缆0.15 6 1.0 热力管_ 1.0 7 通讯照明电杆_ 8 0.75 树0.15 0.4 9 其他燃气管道 3.1.3 地下燃气管道埋设的最小覆土厚度(路面与管顶)应符合下列要求:1()0.9埋设在车行道下时,不得小于m;1 (2)埋设在非车行道(含人行道)下时,不得小于0.6m; (3)埋设在庭院(绿化地及载货汽车不能进入之地),不得小于0.3m。 3.1.4 燃气管道坡向不宜小于0.003。 3.1.5 地下燃气管道的地基宜为原土层,凡可能引起管道不均匀沉降的地段,其地基应进行处理。 3.1.6 地下燃气管道不得在堆积易燃、易爆材料和具有腐蚀性液体的场地下面穿越,不宜与其他管道或电缆同沟敷设。 3.1.7 地下燃气管道穿越排水管、热力管沟、联合地沟、隧道及其他各种用途沟槽时,应将燃

整体式多点等截面专用风量测量装置技术介绍

整体式多点等截面专用风量测量装置技术介绍 济南第三仪表厂有限公司成立于1958年,是原机械工业部节流装置八大定点生产企业之一. 我公司从事节流装置的设计生产已有33的历史,是《节流装置国家标准GB/2624》的起草单位之一,是机械工业部节流装置定点生产企业,有丰富的生产和技术经验.同时,我公司也生产多种形式的插入式流量测量装置(插入式三喉径、插入式多喉径、插入式双文丘里、插入式多孔流量测量装置、巴系列之威力巴、阿牛巴、均速管、横断面风量测量装置等等),在技术上本着实事求是的负责任的态度,我们认为在火力发电厂的大管径、低流速、含粉尘的特殊工况条件下使用任何形式的插入式流量测量装置是不妥的,理由如下: 1. 插入式流量测量装置其原理是把其核心节流元件或取压孔插入到整个流场的平均流速点位置上以获得该流场的平均流速,再乘以该测点截面的管道面积,最终换算得到其流量.关于一、二次风矩形管道的风量测量迄今为止仍然是流体力学传感器未能彻底解决的一个问题.主要原因是在如此大的管道尺寸(如1200×800×4mm, 3900×2700×4 mm等等)中流场的分布情况十分复杂,且其有效前直管段十分有限,加之在如此巨大的管道中布置了大量的加强筋和支撑架,这样一来流场又进一步被破坏,最终导致在这样的工况条件下流场伴有奇变、湍流、漩涡等等现象根本不存在平均流速点.也就是说在这样的工况条件下使用任何形式的插入式流量测量装置从原理上讲是不妥的. 2. 插入式流量测量装置的取压孔均布置在与流场方向垂直的位置上,其取压孔一般直径为6-8mm,即使采用任何方式的防堵塞装置或发吹扫装置,这样的结构形式也会随着时间的推移在取压孔产生堵塞情况,一旦形成堵塞则该测量装置将形同虚设无法使用.例如机翼风量测量装置的动压取压点的位置和结构与插入式流量测量装置的取压孔基本一致,机翼风量测量装置在电厂累计近40 余年实际使用情况完全证明了该取压孔的堵塞只是时间的问题,最终机翼风量测量装置结束了其历史使命退出了流量测量装置的历史舞台. 3. 插入式流量测量装置是靠流体撞击节流元件产生的微弱的差压(一般其差压为300 —600 Pa),我们知道在机组带负荷的过程中,流量的巨大变化会导致差压信号的跳动.即便是只有30-50 Pa的跳动,也很难保证插入式流量测量装置的精度能达到5%.显然,在这些测量位置使用插入式流量测量装置其测量精度无法得到保证.另外,整个机组在带负荷的过程中风量是由小变大的其平均流速点也随之不断变化,那么插入式流量测量装置布置在平均流速点上的取压孔就无法获得时时同步的差压信号,因而无法真实的反映风量的这一变化过程. 4. 在目前已投产的300MW、600MW机组中插入式流量测量装置已经表现出各种上述的缺陷,致使DCS系统中与风量数据相关的部分单元无法投入自动化控制,即使彻底改造风量测量装置也只能在机组大修时进行,业主单位为此苦恼不堪. 为了解决现在火力发电厂一次风、二次风、磨煤机风量等在测量上存在管道截面大、直管段短、流速低、含粉尘大等难题,我公司组织多名专家,历经三年技术攻关终于推出了整体式多点等截面专用风量测量装置系列专利产品,其优点如下: 1. 该设备基本结构基于“中国国家计量院”认可的面积流测量原理.该设备在风量测量装置的动压与静压的两个截面上通过特殊的取压孔全面的考核了该截面的压力信号,两个截面之间形成了非常理想的差压信号.这样一来不管是否存在前直管段、流场如何的不规则、是否存在平均流速点,我们都会得到通过节流面积的变化而产生的真实可靠的差压信号. 2. 该设备在其动压与静压的两个截面上分别布置了三组均压环室,这样一来使得其所需要的前后直管段大大缩短(一般只需要0.5D),而且经过均压环室之后取得的差压信号不会产生跳动,信号非常稳定.这是其他插入式风量测量装置无法达到的. 3. 基于面积流的测量原理,该设备所提供的差压信号大大超越了所有的插入式流量测量装置,达到了1.5-2.5KPa.在这种情况下即使差压信号有30-50 Pa的跳动,也不会影响该设备的精度保持在1%-2%.众所周知,文丘里管的结构形式是节流装置中所产生压力损失最低的,基本

室外给排水管道施工方案(1)

室外给排水管道施工方案 一、概述 雅保化工(南京)有限公司PAM 1项目,位于南京化学工业园内,我公司工作范围为PAM 1项目的装置区和辅助生产区。本工程室外给水排水包括:生活给水系统、生产给水系统、消防给水系统、循环水系统、脱盐水系统、雨水系统以及生活生产污水系统。管道材质主要有:不锈钢、碳钢、聚乙烯以及钢筋砼;管道连接形式主要为焊接、熔接、承插粘接。除脱盐水不锈钢管试验压力为3.9MPa,其余管试验压力均不大于1.2MPa。主要工程量如下表: 二、编制依据 1.设计的给排水图纸(图号:2006088-700-80) 2.《给水排水管道工程施工及验收规范》GB50268-97 3.《埋地钢质管道聚乙烯防腐层技术标准》SY/T4013-1995,

4.《室外硬聚乙烯给水管道工程施工及验收规范》CECS18:90, 5.《建筑给排水及采暖工程施工质量验收规范》GB50242-2002, 6.《建筑排水硬聚氯乙烯管道工程技术规程》CJJ/T29-98, 7.《埋地塑料排水管道工程技术规程》DG/TJ08-308-2002, 8.《埋地聚乙烯给水管道工程技术规程》CJJ101-2004, 9.《建筑给水排水设计规范》GB50015-2003 10.标准图S系《给水排水标准图集》:05S502;02S515;04S516;95S518;01S201;02S404。 三、施工准备 3.1图纸资料的准备 3.1.1 熟悉图纸、施工技术标准及验收规范,了解设计意图,理解图纸提出的施工要求; 3.1.2 参加由业主组织的设计交底工作,澄清设计图纸上存在的问题确定特殊管道的施工方法; 3.1.3根据设计图纸和设计交底会议纪要,编制详细的施工图材料预算,确定所需材料的品种、规格、数量和有关标准; 3.1.4 考虑与其它专业的配合,编制施工进度计划,编制详细施工方案,准备施工机具材料; 3.1.5 对施工人员进行安全教育,特殊工种上岗前培训、取证。焊工必须持有劳动部门颁发的焊工合格证,其合格项目与管道焊接相适应,其他工种如起重工、电工、探伤工、架子工和吊车司机等特殊工种必须持有劳动部门颁发的特殊性工种操作证; 3.1.6制定质量控制点,严格按照控制点的要求进行施工; 3.1.7 组织工程技术人员对施工班组进行技术交底,务必使其理解技术要求、施工方法及施工中应特别注意的事项。 3.2材料准备、检验及保管

风速风量在线监测系统技术方案

电站锅炉 风速风量在线监测系统 技 术 方 案 南京朗坤自动化

目录 1概述 (2) 1.1国内电站锅炉一二次风监测现状 (2) 1.2电站锅炉增设风速风量在线监测系统的益处 (2) 1.3电站锅炉风速风量在线监测的难点及解决方案 (3) 2风速风量测量 (4) 2.1测量原理 (4) 2.2数学模型公式 (4) 2.3测量装置特点 (5) 2.4系统组成 (6) 3主要功能 (7) 3.1设计条件 (7) 3.2主要功能及性能 (7) 4安装技术要求 (8) 5供需双方工作范围 (8) 5.1需方承担的任务和责任 (8) 5.2供方承担的任务和责任 (9) 6供货范围 (9) 7质量保证 (9) 8部分工程业绩 (10) 9部分用户证明 ........................................................................................................... 错误!未定义书签。

1概述 1.1国内电站锅炉一二次风监测现状 大量运行实践表明:锅炉燃烧的安全性和经济性与一二次风的调整有密切关系。对于一次风来说,风速过低易造成堵管、喷口着火距离过近甚至在一次风管内燃烧,风速过低易造成断流、熄火放炮、送风管磨损严重,风速不均易造成燃烧中心的偏移、局部结焦、锅炉爆漏等,因此对于携带煤粉的一次风检测有着较为严格的要求。对于二次风来说,配风不当会造成锅炉燃烧效率降低、锅炉结焦和加剧炉膛出口烟气残余扭转等问题。虽然电厂试验人员在新建锅炉投运前或每次锅炉大修后会认真地对锅炉进行试验以调平配风,但锅炉经过一段时间运行后,当初的调试设定工况就会改变,因此要满足锅炉维持良好的运行状态,应该提供实时监测随时调整的手段。 目前国内燃煤电厂的锅炉运行风管内的风速(量)缺乏监测,运行操作几乎都是运行人员根据总风压、风机电流和调节挡板开度、给粉机转速、一二次风静压等参数来组织和调整燃烧。然而众所周知,由于各风管上静压的大小随着风管的长短、弯头的多少、风门挡板的开度大小等因素的变化,会变得各不相同,各风管的静压变化相当大,静压的大小不能直接反映管内风速(量)的大小,因此利用传统的静压测量仪表很难合理地指导锅炉运行,直接影响锅炉燃烧稳定性、经济性和安全可靠性。 另外,由于系统最关键的测量装置的防堵防磨技术的障碍,导致测量装置易磨损,使用寿命短以至经常要更换,在生产中的运行维护工作量极大,使得该类型系统在电站锅炉迟迟不能得到大量应用。 1.2电站锅炉增设风速风量在线监测系统的益处 1.2.1 使锅炉配风合理,燃烧比较稳定,可有效地降低排烟温度、降低飞灰含碳量、降低煤粉的机械及化学不完全燃烧热损失,提高锅炉效率。 1.2.2 能合理地调整风粉比例。将一次风管道系统中的阻力调平后,各一次风管内的流速大小能间接地反映出管内煤粉浓度的大小。若某一管内煤粉浓度增加,由于输送煤粉的阻力增加,则管内风速就会降低,反之,就会升高。同时通过热平衡原理,对一次风管内的煤粉浓度进一步计算,供司炉人员监测使用。 1.2.3 能有效地防止堵管或断粉现象的发生。当某一次风管内煤粉浓度过大,流速降低出现堵管迹象,或管内煤粉浓度过稀,流速过大出现断粉迹象时,司炉能依据风速的变化作出正确的判断。1.2.4 能有效地控制锅炉燃烧火焰中心,防止锅炉局部结焦,同时也能有效地防止火焰偏斜,降低炉堂出口两侧烟温的偏差。防止水冷壁及过热器爆管。

室外管道施工方法

室外管道施工方法 一、管线土石方工程及管道基础施工 1、管道测量放线管线测量应依据管道线路控制点的坐标进行。 为了准确掌握管沟的控制点,在工程场地内引进、设置永久性基准桩位,妥善维护,工程竣工后交业主。 上述工作结束后,请监理公司人员验线,确认后进行管沟开挖工作。 2、管沟的开挖方法开挖前应进行调查研究,充分了解挖槽段的土质、地下水位、地下构筑物、沟槽附近地下建筑及施工环境等情况,发现问题及时与建设单位取得联系,研究处理措施。 为防止超挖,开挖前要划出沟槽开口边线,按开口坡度逐层下挖并随时测量挖深。 二、管线阀门井的施工 1、阀门井的砌筑 (1)。安装管道时,准确地测定井的位置。(2)。砌筑时认真操作,管理人员严格检查,选用同厂同规格的合格砖,砌体上下错缝,内外搭砌、灰缝均匀一致,水平灰缝凹面灰缝,宜取5——8cm,井里口竖向灰缝宽度不小于 5mm,边铺浆边上砖,一揉一挤,使竖缝进浆,收口时,层层用尺测量,每层收进尺寸,四面收口时不大于3cm,三面收口时不大于4cm,保证收口质量。 (3)。安装井圈时,井墙必须清理干净,湿润后,在井圈与井墙之间摊铺水泥浆后稳井圈,露出地面部分的检查井,周围浇筑注砼,压实抹光。 2、管线关键工序,测量放线工程 (1)。开工之前,对监理(业主)提供的坐标点、水准点进 行复测。

(2)。平面施工控制测量:对坐标控制点测放护桩,施工测量严格执行测量双检制,确保测量成果的准确性。 (3)。高程测量控制:以复测报告为依据,在管线区内测放4个临时水准测量点,并埋设标石。 (4)。竣工测量:单项工程完工后,在管沟回填前,对管顶标高及控制点坐标进行竣工测量,绘制竣工测量成果表,依此绘制竣工图。3、管道的安装在管沟土石方工程施工的同时,及时做好施工各项准备,施工人员和机械及时进场,施工人员熟悉施工图和本方案的技术要求,对管材及成品管件及时组织进厂验收,一旦管沟成型,及时进行管道安装工作。 (1)。管材和管件的验收对管件进场后的质量标准进行检验。 管材应质地良好、管道内外壁应光洁、平整无裂纹、无脱皮和 无明显痕纹凹陷,管材的色泽基本一致。 管材轴向不得有异向弯曲,管端口必须平整,并且垂直于轴线。 为了保证管的安装质量,对管材的承插口的几何加工尺寸,尤其要严格检查。 管材和管件检验合格后,应加标识堆放。已不合格的管材和管件应交由生产厂家修复,不合格的管材、管件不准使用。 (2)。管道安装 a.在管沟成型,管基施工经监理验收后,可进行管道的安装工 作。b.管道下沟后,组对前,在第一根管的插口端设靠背、靠背与管承口间加堵板,在管道对口时不发生位移,保证管口对接的严密性。 c.安装时,清洗干净承口内侧凹槽及插口外侧,接口采用胶圈接口,施工时,接口处内外均应用抹布擦试干净,涂抹润滑油,胶圈安装时,也应擦试干净。将胶圈正确安装在承口凹槽内,注意不得将胶圈扭曲、反装,划上插入位

空气净化器风量测试台(风量测量装置试验台)厂家技规书

空气净化器风量测试台(风量测量装置试验台)厂家技规书 1.货物名称:空气净化器风量测试台(风量测量装置试验台) 2.货物厂家:东莞市环仪仪器科技有限公司 3.技术指标: 3.1 风量测试范围:100——1700(m3/h); 3.2 风压测试范围:0——2000Pa; 3.3 箱体泄漏率:≤1.0%。 4.检测项目: 4.1 风量; 4.2 风压; 4.3 输入功率。 5.用途:空气净化器风量测试台(风量测量装置试验台)要主用于测试家用、车用以及商用空气净化器出风量。 6.测量原理 6.1防堵风速风量测量装置是基于S形毕托管测量原理,当管内有气流流动时,迎风面受气流冲击,在此处气流的动能转换成压力能,因而迎面管内压力较高,其压力称为“全压”,背风侧由于不受气流冲压,其管内的压力为风管内的静压力,其压力称为“静压”,全压和静压之差称为差压,其大小与管内风速有关,风速越大,差压越大;风速小,差压也小,风速与差压的关系符合伯努利方程。 7.结构形式 7.1风速风量测量装置根据不同的使用场合、不同工况条件和安装方式分为多种结构。 7.2防堵陈列式风量测量装置: 7.3基于毕托管的测量原理; 7.4测量精度高、良好的线性度与重要性; 7.5可以任意角度安装;

7.6很高的性价比,非常经济的运行成本; 7.7可以忽略不计的管道压力损失,有效降低风机能耗; 7.8管道内截面多点阵列分布,测量速度平均。 7.9靠背测速管,笛形测速管:两种都是非标准型测速装置。 7.11笛行管安装在管道内可一次性测量气流平均流速。双笛形管是将全压测管和静压测管组装在一起,在全压管的迎流面开有一排全压测孔,在静压管背面开有一派静压测管。 7.12靠背管原理与毕托管相似,通过测量总压与静压之差得到动压值。它带有动压放大性质,使用前需标定。 7.13双文丘里测速管:用于电厂锅炉供风和烟气流速测量; 7.15结果简单; 7.16压力损失小,只占其产生差压体积的1%左右; 7.17对直管段的要求不严格; 7.18动压放大倍数最高,是皮托管、均速管装置的几倍甚至十几倍; 7.19每支双文丘里测速管在出厂前均经过标定,附有检测报告,安装后一般无须再进行现场标定。 8.横截面式流量计:可以满足任何一个二次风管道的安装要求,不需要进行现场标定,不受不规则流体甚至是多向旋转气流的影响,压力损失小 9.产品特点: 9.1 S型防堵塞结构设计确保在管道介质浓度大于50%的工况下,测速装置长期运行不会出现堵塞现象。 9.2 压力损失极小,大大降低风机电耗,节能效果明显。 9.3 核心部件采用耐磨材质特殊制造,确保连续使用一个大修周期以上。 9.4 准确稳定的信号输出,良好的线性及复现性。 9.5 采用多点网格法测量大尺寸管道,等截面多点布置精确测量气体流速。

相关主题