搜档网
当前位置:搜档网 › 费托合成铁基催化剂浆态床反应性能的研究_朱加清

费托合成铁基催化剂浆态床反应性能的研究_朱加清

费托合成铁基催化剂浆态床反应性能的研究_朱加清
费托合成铁基催化剂浆态床反应性能的研究_朱加清

流化床反应器的设计定稿版

流化床反应器的设计 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

丙烯腈流化床反应器的设计 学院:化工与药学院 班级: 2012化学工程与工艺1、2班 学生姓名:翟鹏飞肖畅裴一歌 徐嘉星廖鹏飞田仪长 指导教师: 张丽丽 完成日期: 2015年12月10日 指导教师评语: _______________________________________________ ________________________________________________ ________________________________________________ 成绩: 教师签名:

目录 1 设计生产能力及操作条件 (1) 2 操作气速的选择 (1) 3 流化床床径的确定 (1) 3.1 密相段直径的确定 (1) 3.2 稀相段直径的确定 (2) 3.3 扩大段直径的确定 (2) 4 流化床床高 (2) 4.1 流化床的基本结构 (2) 4.2 催化剂用量及床高 (3) 5 床层的压降 (4) 6 选材及筒体的设计 (4) 7 封头的设计 (5) 8 裙座的选取 (5) 9 水压试验及其强度校核 (5) 10 旋风分离器的计算 (5)

11 主反应器设计结果 (6)

丙烯腈流化床反应器的设计 1 设计生产能力及操作条件 反应温度为:440℃ 反应压力为:1atm 丙烯腈氨氧化法催化剂选用:sac-2000 催化剂粒径范围为:44~88μm 催化剂平均粒径为:50μm 催化剂平均密度为:1200kg/m3 催化剂装填密度为:640kg/m3 催化性能:丙烯腈单收>78.0%;乙腈单收<4.0%;氢氰酸单收<7.0% 耐磨强度<4.0wt% 接触时间:10s 流化床反应器设计处理能力:420.5kmol/h 2 操作气速的选择 流化床的操作气速U =0.6m/s,为防止副反应的进行,本流化床反应器设计 密相和稀相两段,现在分别对其直径进行核算。

固定床流化床浆态床的优缺点

固定床反应器 定义:气体流经固定不动的催化剂床层进行催化反应的装置。 特点:结构简单、操作稳定、便于控制、易实现大型化和连续化生产等优点,是现代化工和反应中应用很广泛的反应器。 应用:主要用于气固相催化反应。 基本形式:轴向绝热式、径向绝热式、列管式。 固定床反应器缺点: 床层温度分布不均匀; 床层导热性较差; 对放热量大的反应,应增大换热面积,及时移走反应热,但这会减少有效空间。 流化床反应器(沸腾床反应器) 定义:流体(气体或液体)以较高流速通过床层,带动床内固体颗粒运动,使之悬浮在流动的主体流中进行反应,具有类似流体流动的一些特性的装置。 应用:应用广泛,催化或非催化的气—固、液—固和气—液—固反应。 原理:固体颗粒被流体吹起呈悬浮状态,可作上下左右剧烈运动和翻动,好象是液体沸腾一样,故流化床反应器又称沸腾床反应器。 结构:壳体、气体分布装置、换热装置、气—固分离装置、内构件以及催化剂加入和卸出装置等组成。 优点:传热面积大、传热系数高、传热效果好。进料、出料、废渣排放用气流输送,易于实现自动化生产。 缺点:物料返混大,粒子磨损严重;要有回收和集尘装置;内构件复杂;操作要求高等。 固定床: 一、固定床反应器的优缺点 凡是流体通过不动的固体物料形成的床层面进行反应的设备都称为固定床反应器,而其中尤以利用气态的反应物料,通过由固体催化剂所构成的床层进行反应的气固相催化反应器在化工生产中应用最为广泛。气固相固定床反应器的优点较多,主要表现在以下几个方面: 1、在生产操作中,除床层极薄和气体流速很低的特殊情况外,床层内气体的流动皆可看成是理想置换流动,因此在化学反应速度较快,在完成同样生产能力时,所需要的催化剂用量和反应器体积较小。 2、气体停留时间可以严格控制,温度分布可以调节,因而有利于提高化学反应的转化率和选择性。 3、催化剂不易磨损,可以较长时间连续使用。 4、适宜于高温高压条件下操作。 由于固体催化剂在床层中静止不动,相应地产生一些缺点: 1、催化剂载体往往导热性不良,气体流速受压降限制又不能太大,则造成床层中传热性能较差,也给温度控制带来困难。对于放热反应,在换热式反应器的入口处,因为反应物浓度较高,反应速度较快,放出的热量往往来不及移走,而使

流化床反应器的设计

mf U R = 1000 p d ep ρ μ > 年产3.5 万吨烯烃流化床反应器设计 1 操 作工艺参数 反应温度为:450℃ 反应压力为:0.12MPa(绝压) 操作空速为:1~5h -1 MTO 成型催化剂选用Sr-SAPO-34 催化剂粒径范围为:30~80μm 催化剂平均粒径为60μm 催化剂颗粒密度为1500kg/m 3 催化剂装填密度为 750kg/m 3 催化性能:乙烯收率,67.1wt%;丙烯收率,22.4wt%;总收率,89.5wt%。 水醇质量比为0.2 甲醇在450℃下的粘度根据常压下气体粘度共线图查得为24.3μPa.s 甲醇450℃下的密度根据理想气体状态方程估算为0.54kg/m 3 甲醇处理量:根据催化剂的催化性能总受率为89.5wt%,甲醇的用量=烯烃质量×(32/14)/0.895 烯烃的生产要求是35000t/a ,甲醇的量为89385/a 。 2 操作气速 2.1 最小流化速度计算 当流体流过颗粒床层的阻力等于床层颗粒重量时,床层中的颗粒开始流动起来,此时流体的流速称为起始流化速度,记作U mf 起始流化速度仅与流体和颗粒的物性有关,

mf U R =20p d ep ρμ<其计算公式如下式所示: 对于的小颗粒 ()2 U 1650p p mf d g ρρμ -= (1) 对于的大颗粒 ()1/2 d U 24.5p p mf g ρρρ??-=?? ???? (2) 式中:d p 为颗粒的平均粒径;ρp ,ρ分别为颗粒和气体的密度;μ为气体的粘度假设颗粒的雷诺数R ep <20,将已知数据代入公式(1), 校核雷诺数: 将U mf 带入弗鲁德准数公式作为判断流化形式的依据散式流化, F rmf <0.13;聚式流化,F rmf >0.13。 代入已知数据求得 根据判别式可知流化形式为散式流化。 2.2 颗粒的带出速度Ut 床内流体的速度等于颗粒在流体中的自由沉降速度(即颗粒的重力等于流体对颗粒的曳力)时,颗粒开始从床内带出,此时流体的速度成为颗粒的带出速度U t 其最大气速不能超过床层最小颗粒的带出速度U t ,其计算公式如下式所示: 当U R = 0.4 d p t ep ρ μ <时, 2U 18d g p p t ρρμ??- ???= (3) 当 U 0.4

第七章 费托合成

第七章 F-T合成试题 一、填空题 1、F T合成是和在1925年首先研究成功的。 2、20世纪50年代初期,中国建成了一个F-T合成工厂即。 3、F-T合成可能得到的产品包括和,以及、。 4、F-T合成催化剂分为和。 5、复合催化剂采用制成。 6、沉淀铁系催化剖根据助剂和载体的不同,主要分为、和。 7、液态油通过蒸馏分离可得到和。 8、SASOL一厂工艺经净化后的煤制合成气分两路进入 和。 9、在F-T合成中,反应器类型有多种,在SASOL厂生产中使用了和两种装置。 10、催化剂组成为9.0~Fe;0. 9%K/硅沸石-2,硅沸石-2具有,具有较小的, 有利于。 11、熔铁型催化剂主要应用的装置是。 12、铁催化剂是活性很好的催化剂,用在固定床反麻器的中压合成时,反应温度为。 13、柴油的十六烷值约为,汽油的辛烷值为。 14、F-T合成原料气中新鲜气占,循环气占。 15、SASOL二厂工艺流程中净化后的合成气经反应后,合成产物首先.将反应生成 的和冷凝下来。水经氧化得和,液态油经、 可得汽油。 16、在SMFT合成模试工艺流程中一段反应器为,采用;二段反应器为,采用, 对一段产物进行改质以提高油品质量和收率,简化后处理工序。 17、F-T合成采用沉淀铁催化剂的固定床反应器,空速为;采用熔铁催化剂的气流床 反应器,空速为。 二、名词解释 1、F-T合成法 2、MFT合成

3、SMFT合成 4、担载型催化剂 5、熔铁型催化剂的制备原理 6、积炭反应 三、判断正误 1、单一催化剂主要有钌、镍、铁和钴.其中只有钌被用于工业生产。() 2、SASOL一厂的合成产物中的蜡经减压蒸馏可生产中蜡(370~500℃)和硬蜡(>500℃), 可分别加氢精制。() 3、SASOL一厂工艺的气流床反应器主要产物为柴油。() 4、F-T合成反应温度不宜过高,一般不超过400℃,否则易使催化剂烧结,过早失去 活性。() 5、当合成气富含氢气时,有利于形成烷烃。() 6、用含碱的铁催化剂生成含氧化合物的趋势较大,采用低的V(H2)/V(CO)比,高压和大空 速条件进行反应,有利于醇类生成,一般主要产物为甲醇。() 7、积炭反应为放热反应。() 8、从动力学角度考虑,温度升高,反应速度加快,同时副反应速度也随之加快。() 9、SASOL一厂流程中将冷凝后的余气先脱除C02.二厂流程中将余气直接分离,然后进 行深冷分离成富甲烷、富氢、C2和C3~C4馏分,可以获得高产值的乙烯和乙烷组分。 () 10、浆态床反应器结构复杂,投资费用高。() 11、气流床反应器由反应器和催化剂沉降室组成。() 12、原料气中的(CO+H2)含量高,反应速度快,转化率高,但反应放出的热量少,易使 催化剂床层温度降低。() 四、回答问题 1、简述F-T合成的反应原理。 2、F-T合成应中铁系催化剂包括哪些类型? 3、简述复合催化剂的作用。 4、简述F-T合成反应需在等温条件下进行的原因。

鼓泡塔反应器

学年论文 学 院 化学化工学院 专 业 化学工程与工艺 年 级 2012级 姓 名 题 目 鼓泡塔反应器的发展 成 绩 2015 年 6 月 15 日 学号:

目录 1.鼓泡塔反应器 (1) 2.鼓泡塔反应器特点与结构 (1) 2.1鼓泡塔反应器特点 (1) 2.2鼓泡塔反应器结构 (2) 2.2.1简单鼓泡塔反应器基本结构 (2) 2.2.2最佳空塔气速应满足的两个条件 (2) 2.3影响传质的因素 (2) 3.鼓泡塔的优缺点 (2) 3.1优点 (2) 3.2缺点 (3) 4.鼓泡塔的分类 (3) 5.鼓泡塔反应器的历史发展及应用 (4) 5.1历史发展 (4) 5.2应用 (5) 6.结语 (5) 参考文献 (5)

鼓泡塔反应器的发展 摘要:本文通过对鼓泡塔反应器以及对其发展前景进行的论述,使能够更容易的对该反应器进行研究,达到推动反应器发展的目的。 关键词:鼓泡塔、反应器、发展 Abstract:In this paper, the reactor and its development prospects of bubble column reactor are discussed, which make it easier to study the reactor, and achieve the purpose of promoting the development of the reactor. Keywords:Bubble column、Reactor、Development 前言 鼓泡塔反应器广泛用于发酵、生物化学、制药以及有机化合物的氢化、加氢、氯化等生产过程。另外,湿法冶金和废水处理也常用这种反应器。所以,鼓泡塔反应器的使用广泛,应该加以深入研究。 1.鼓泡塔反应器 气体鼓泡通过含有反应物或催化剂的液层,以液相为连续相,气相为分散相来实现气液相反应过程的反应器[1]。 有槽型鼓泡反应器、鼓泡管式反应器、鼓泡塔等多种结构型式,其中鼓泡塔应用最广。 2.鼓泡塔反应器特点与结构 2.1鼓泡塔反应器的特点 (1)液体分批加入,气体连续通入的称为半连续操作鼓泡塔。 (2)连续操作的鼓泡塔气体和液体连续加入,流动方向可以为向上并流或逆流。 (3)鼓泡塔多为空塔,一般在塔内设有挡板,以减少液体返混;为加强液体循环和传递反应热,可设外循环管和塔外换热器[2]。 (4)鼓泡塔中也可设置填料来增加气液接触面积减少返混。气体一般由环形气体分散器、单孔喷嘴、多孔板等分散后通入。 (5)塔内充满液体,气体从反应器底部通入,分散成气泡沿着液体上升,既与液相接触进行反应同时搅动液体以增加传质速率。这类反应器适用于液体相也参与反应的中速、慢速反应和放热量大的反应。

关于费托合成催化剂再生活化的问题

1. 对于催化剂再生有很多说法。在F-T反应中,Co基催化剂的活性与其粒径有很大关系,由于Co催化剂在10nm左右有相变过程即催化剂堆积方式,FCC和HCP的变换转折点),因此不同的再生条件可能对催化剂造成不同的活性。 对于氧再生过程:积碳燃烧是一个放热过程,如果氧量太大造成催化剂热点温度太高(当然这与催化剂载体也有关,若载体的导热性非常好,利于催化剂热点消除;反之,则不利!),热点温度造成催化剂表面纳米颗粒烧结。因此,如果载体的导热性较差,要选用低浓度氧进行长时间再生;若载体导热性好,也不能选用太高浓度的氧,10%为最佳! 对于H2再生,易于造成催化剂团聚长大,主要与氢分压有关! 2. 催化剂的失活原因一般分为中毒、烧结和热失活、结焦和堵塞三大类。 2.1 中毒引起的失活 (1)暂时中毒(可逆中毒) 毒物在活性中心上吸附或化合时,生成的键强度相对较弱可以采取适当的方法除去毒物,使催化剂活性恢复而不会影响催化剂的性质,这种中毒叫做可逆中毒或暂时中毒。 (2)永久中毒(不可逆中毒) 毒物与催化剂活性组份相互作用,形成很强的化学键,难以用一般的方法将毒物除去以使催化剂活性恢复,这种中毒叫做不可逆中毒或永久中毒。 (3)选择性中毒 催化剂中毒之后可能失去对某一反应的催化能力,但对别的反应仍有催化活性,这种现象称为选择中毒。在连串反应中,如果毒物仅使导致后继反应的活性位中毒,则可使反应停留在中间阶段,获得高产率的中间产物。 2.2 结焦和堵塞引起的失活 催化剂表面上的含碳沉积物称为结焦。以有机物为原料以固体为催化剂的多相催化反应过程几乎都可能发生结焦。由于含碳物质和/或其它物质在催化剂孔中沉积,造成孔径减小(或孔口缩小),使反应物分子不能扩散进入孔中,这种现象称为堵塞。所以常把堵塞归并为结焦中,总的活性衰退称为结焦失活,它是催化剂失活中最普遍和常见的失活形式。通常含碳沉积物可与水蒸气或氢气作用经气化除去,所以结焦失活是个可逆过程。与催化剂中毒相比,引起催化剂结焦和

费托合成工艺学习报告(本科)

关于煤间接液化技术“费-托合成”的学习报告 报告说明 F-T合成作为煤的间接液化的重要工艺,有着广泛的应用。本文将分别报告作者在F-T合成的基本原理、高低温工艺、催化剂以及F-T合成新工艺的学习情况。在以上学习的基础上,报告末尾有本人对F-T合成工艺改进的一点设想和建议。 一、F-T合成的基本原理 主反应 生成烷烃: nCO+2n+1H2==C n H2n+2+nH2O(1) n+1H2+2nCO==C n H2n+2+nCO2(2) 生成烯烃: nCO+2n H2==C n H2n+nH2O(3) n H2+2nCO==C n H2n+nCO2(4) 副反应 生成含氧有机物: nCO+2n H2==C n H2n+nH2O(5) nCO+(2n?2)H2=C n H2n O2+(n?2)H2O(6) n+1CO+2n+1H2==C n H2n+1CHO+nH2O(7) 生成甲烷: CO+3H2==CH4+H2O(8) 积碳反应: CO+H2==C+H2O(9) 歧化反应: 2CO==C+C O2(10) F-T合成利用合成气在炉内反应生成液体燃料,1-4式为目标反应,其中1

和3是生产过程中主要反应。其合成的烃类基本为直链型、烯烃基本为1-烯烃。5-7式会生成含氧有机物的反应会降低产品品质;8式生成甲烷虽然是优质燃料但价值不高(原料合成气也为气体),往往需要分离出来进行制氢,构成循环;积碳反应主要是会对催化剂产生影响,温度过高时积碳反应产生的碳会镀在催化剂上(结焦现象),堵塞孔隙,造成催化剂失效。 二、高温工艺与低温工艺 反应温度不同,F-T 合成液体产物C 数目也不同(或者说选择性不同),基本上呈温度变高,碳链变短的趋势。低温工艺约在200-240摄氏度下反应,即可使用Fe 催化剂也可用Co 系催化剂,后者效果较好,产物主要是柴油、润滑油和石蜡等重质油品。高温工艺约在350摄氏度情况下反应,一般使用熔铁催化剂,产品主要是小分子烯烃和汽油。 由于温度不同,高低温工艺采用的反应器也有所不同,低温工艺主要采用固定床反应器、浆态床反应器;高温工艺主要用循环流化床、固定流化床反应器。 下面关于首先报告我对反应基本流程的认识 首先无论何种反应器都需要先将合成气和循环气加热到一定温度后输入反应器,再经过均布装置将合成气均匀散开,之后进入反应段。由于炉内反应基本为强放热反应,对于低温工艺需要设置通水的管道利用水汽蒸发转移热量提高效率,而高温工艺由于强烈的对流换热所以并不要求特殊的冷却系统。 反应段过后主要是催化剂回收和产品分离的问题,这一点主要是利用旋分器、重力沉降(反应中催化剂结团结块)等方式。图1为反应器的基本结构示意图 图1反应器基本结构示意图 这里再简要报告我对以上提到的四类反应器认识 2 46 5 3 1 1-合成气注入通道;2-均布段;3-冷却管道;4- 反应段;5-分离段;6-输出通道;(吴尧绘制)

流化床反应器的设计

流化床反应器的设计 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

丙烯腈流化床反应器的设计学院:化工与药学院 班级: 2012化学工程与工艺1、2班 学生姓名:翟鹏飞肖畅裴一歌 徐嘉星廖鹏飞田仪长 指导教师: 张丽丽 完成日期: 2015年12月10日 指导教师评语: _______________________________________________ ________________________________________________ ________________________________________________ 成绩: 教师签名:

目录

丙烯腈流化床反应器的设计 1 设计生产能力及操作条件 反应温度为:440℃ 反应压力为:1atm 丙烯腈氨氧化法催化剂选用:sac-2000 催化剂粒径范围为:44~88μm 催化剂平均粒径为:50μm 催化剂平均密度为:1200kg/m3 催化剂装填密度为:640kg/m3 催化性能:丙烯腈单收>%;乙腈单收<%;氢氰酸单收<% 耐磨强度<% 接触时间:10s 流化床反应器设计处理能力:h 2 操作气速的选择 流化床的操作气速U0=s,为防止副反应的进行,本流化床反应器设计密相和稀相两段,现在分别对其直径进行核算。

3 流化床床径的确定 密相段直径的确定 本流化床反应器设计处理能力为h原料气体,根据公式: V-气体体积流量,m3/s U0-流化床操作气速,m/s 即流化床反应器浓相段的公称直径为DN= 稀相段直径的确定 稀相段直径和密相段直径一样,即D T1= 即流化床反应器稀相段的公称直径为DN= 扩大段直径的确定 在该段反应器中,扩大反应器的体积,可以减缓催化剂结焦,以及抑制副 反 应的生产,可采用经验把此段操作气速取为稀相段操作气速的一半。即: 将流速带入公式中: 即流化床反应器扩大段的公称直径为DN= 4 流化床床高 流化床的基本结构 床高分为三个部分,即反应段,扩大段以及锥形段高度。

费托合成生产人造石油的化学工艺

费托合成生产人造石油 的化学工艺 1 费托合成的概念、历史背景及技术现状 费托合成(Fischer-Tropsch synthesis)是煤间接液化技术之一,它以合成气(CO和H )为原料在催化剂(主要是铁系) 和适当反应条件下合成以石蜡烃为 2 主的液体燃料的工艺过程。其反应过程可以表示:nCO+2nH2─→[-CH2 -]n+nH2O 副反应有水煤气变换反应 H2O + CO → H2 + CO2 等。费托合成总 的工艺流程主要包括煤气化、气体净化、变换和重整、合成和产品精制改质等 部分。 费托合成总的工艺流程主要包括煤气化、气体净化、变换和重整、合成和 产品精制改质等部分。合成气中的氢气与一氧化碳的摩尔比要求在2~2.5。反 应器采用固定床或流化床两种形式。如以生产柴油为主,宜采用固定床反应器;如以生产汽油为主,则用流化床反应器较好。此外,近年来正在开发的浆态反 应器,浆态床反应器比管式固定床反应器结构简单、易于制作,而且价格便宜 易于放大。则适宜于直接利用德士古煤气化炉或鲁奇熔渣气化炉生产的氢气与 一氧化碳之摩尔比为 0.58~0.7的合成气。铁系化合物是费托合成催化剂较好 的活性组分。 传统费托合成法是以钴为催化剂,所得产品组成复杂,选择性差,轻质液 体烃少,重质石蜡烃较多。其主要成分是直链烷烃、烯烃、少量芳烃及副产水 和二氧化碳。50年代,中国曾开展费托合成技术的改进工作,进行了氮化熔铁 催化剂流化床反应器的研究开发,完成了半工业性放大试验并取得工业放大所 需的设计参数。南非萨索尔公司在1955年建成SASOL-I小型费托合成油工厂,1977年开发成功大型流化床 Synthol反应器,并于1980年和1982年相继建成两座年产 1.6Mt的费托合成油工厂(SASOL-Ⅱ、SASOL-Ⅲ)。此两套装置皆采 用氮化熔铁催化剂和流化床反应器。反应温度320~340℃,压力 2.0~2.2MPa。产品组成为甲烷11%、C2~C4烃33%、C5~C8烃44%、C9以上烃6%、以及含氧 化合物6%。产品组成中轻质烃较多,适宜于生产汽油、煤油和柴油等发动机燃料,并可得到醇、酮类等化学品。 目前,以煤为原料通过费托合成法制取的轻质发动机燃料,在经济上尚不 能与石油产品相竞争,但对具有丰富廉价煤炭,而石油资源贫缺的国家或地区 解决发动机燃料的需要,费托合成法也是可行的。另外,近年来南非SASOL公 司改良费托合成,其创造的巨大经济效益,正在吸引全世界的瞩目。 2006年4月,利用中科院山西煤炭化学研究所自创技术(费托合成、煤基 液体燃料合成浆态床技术),由煤化所牵头联合产业界伙伴内蒙古伊泰集团有

费托合成(FT合成)工艺说明

费-托合成(煤或天然气间接液化)介绍 间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气(一氧化碳和氢气的混合物),然后再在催化剂的作用下合成为液体燃料的工艺技术。 间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。 在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。煤间接液化技术的发展 煤间接液化中的合成技术是由德国科学家Frans Fischer 和Hans Tropsch 于1923 首先发现的并以他们名字的第一字母即F-T命名的,简称F-T合成或费-托合成。依靠间接液化技术,不但可以从煤炭中提炼汽油、柴油、煤油等普通石油制品,而且还可以提炼出航空燃油、润滑油等高品质石油制品以及烯烃、石蜡等多种高附加值的产品。 自从Fischer和Tropsch发现在碱化的铁催化剂上可生成烃类化合物以来,费-托合成技术就伴随着世界原油价格的波动以及政治因素而盛衰不定。费-托合成率先在德国开始工业化应用,1934年鲁尔化学公司建成了第一座间接液化生产装置,产量为7万吨/年,到1944年,德国共有9个工厂共57万吨/年的生产能力。在同一时期,日本、法国、中国也有6套装置建成。 二十世纪五十年代初,中东大油田的发现使间接液化技术的开发和应用陷入低潮,但南非是例外。南非因其推行的种族隔离政策而遭到世界各国的石油禁运,促使南非下决心从根本上解决能源供应问题。考虑到南非的煤炭质量较差,不适宜进行直接液化,经过反复论证和方案比较,最终选择了使用煤炭间接液化的方法生产石油和石油制品。SASOL I厂于1955年开工生产,主要生产燃料和化学品。20世纪70年代的能源危机促使SASOL建设两座更大的煤基费-托装置,设计目标是生产燃料。当工厂在1980和1982年建成投产的时候,原油的价格已经超过了30美元/桶。此时SASOL的三座工厂的综合产能已经大约为760万吨/年。由于SASOL 生产规模较大,尽管经历了原油价格的波动但仍保持赢利。南非不仅打破了石油禁运,而且成为了世界上第一个将煤炭液化费-托合成技术工业化的国家。1992 和1993年,又有两座基于天然气的费-托合成工厂建成,分别是南非Mossgas 100万吨/年和壳牌在马来西亚Bintulu 的50万吨/年的工厂。 除了已经运行的商业化间接液化装置外,埃克森-美孚(Exxon-Mobil),英国石油(BP-Amoco),美国大陆石油公司(ConocoPhillips)和合成油公司(Syntroleum)等也正在开发自己的费-托合成工艺,转让许可证技术,并且计划在拥有天然气的边远地域来建造费-托合成天然气液化工厂。 F-T合成的主要化学反应 F-T合成的主反应: 生成烷烃:nCO+(2n+1)H2 = CnH2n+2+nH2O 生成烯烃:nCO+(2n)H2 = CnH2n+nH2O 另外还有一些副反应,如: 生成甲烷:CO+3H2 = CH4+H2O 生成甲醇:CO+2H2 = CH3OH 生成乙醇:2CO+4H2 = C2H5OH+ H2O 积炭反应:2CO = C+CO2 除了以上6个反应以外,还有生成更高碳数的醇以及醛、酮、酸、酯等含氧化合物的副反应。

固定床-流化床-浆态床的优缺点

固定床-流化床-浆态床的优缺点

固定床反应器 定义:气体流经固定不动的催化剂床层进行催化反应的装置。 特点:结构简单、操作稳定、便于控制、易实现大型化和连续化生产等优点,是现代化工和反应中应用很广泛的反应器。 应用:主要用于气固相催化反应。 基本形式:轴向绝热式、径向绝热式、列管式。 固定床反应器缺点: 床层温度分布不均匀; 床层导热性较差; 对放热量大的反应,应增大换热面积,及时移走反应热,但这会减少有效空间。 流化床反应器(沸腾床反应器) 定义:流体(气体或液体)以较高流速通过床层,带动床内固体颗粒运动,使之悬浮在流动的主体流中进行反应,具有类似流体流动的一些特性的装置。 应用:应用广泛,催化或非催化的气—固、液—固和气—液—固反应。 原理:固体颗粒被流体吹起呈悬浮状态,可作上下左右剧烈运动和翻动,好象是液体沸腾一样,故流化床反应器又称沸腾床反应器。 结构:壳体、气体分布装置、换热装置、气—固分离装置、内构件以及催化剂加入和卸出装置等组成。 优点:传热面积大、传热系数高、传热效果好。进料、出料、废渣排放用气流输送,易于实现自动化生产。 缺点:物料返混大,粒子磨损严重;要有回收和集尘装置;内构件复杂;操作要求高等。 固定床: 一、固定床反应器的优缺点 凡是流体通过不动的固体物料形成的床层面进行反应的设备都称为固定床反应器,而其中尤以利用气态的反应物料,通过由固体催化剂所构成的床层进行反应的气固相催化反应器在化工生产中应用最为广泛。气固相固定床反应器的优点较多,主要表现在以下几个方面: 1、在生产操作中,除床层极薄和气体流速很低的特殊情况外,床层内气体的流动皆可看成是理想置换流动,因此在化学反应速度较快,在完成同样生产能力时,所需要的催化剂用量和反应器体积较小。 2、气体停留时间可以严格控制,温度分布可以调节,因而有利于提高化学反应的转化率和选择性。 3、催化剂不易磨损,可以较长时间连续使用。 4、适宜于高温高压条件下操作。 由于固体催化剂在床层中静止不动,相应地产生一些缺点: 1、催化剂载体往往导热性不良,气体流速受压降限制又不能太大,则造成床层中传热性能较差,也给温度控制带来困难。对于放热反应,在换热式反应器的入口处,因为反应物浓度较高,反应速度较快,放出的热量往往来不及移走,

流化床反应器的设计

流化床反应器的设计 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

丙烯腈流化床反应器的设计学院:化工与药学院 班级: 2012化学工程与工艺1、2班 学生姓名:翟鹏飞肖畅裴一歌 徐嘉星廖鹏飞田仪长 指导教师: 张丽丽 完成日期: 2015年12月10日 指导教师评语: _______________________________________________ ________________________________________________ ________________________________________________ 成绩: 教师签名:

目录

丙烯腈流化床反应器的设计 1 设计生产能力及操作条件 反应温度为:440℃ 反应压力为:1atm 丙烯腈氨氧化法催化剂选用:sac-2000 催化剂粒径范围为:44~88μm 催化剂平均粒径为:50μm 催化剂平均密度为:1200kg/m3 催化剂装填密度为:640kg/m3 催化性能:丙烯腈单收>%;乙腈单收<%;氢氰酸单收<% 耐磨强度<% 接触时间:10s 流化床反应器设计处理能力:h 2 操作气速的选择 流化床的操作气速U0=s,为防止副反应的进行,本流化床反应器设计密相和稀相两段,现在分别对其直径进行核算。 3 流化床床径的确定 密相段直径的确定 本流化床反应器设计处理能力为h原料气体,根据公式: V-气体体积流量,m3/s U0-流化床操作气速,m/s

即流化床反应器浓相段的公称直径为DN= 稀相段直径的确定 稀相段直径和密相段直径一样,即D T1= 即流化床反应器稀相段的公称直径为DN= 扩大段直径的确定 在该段反应器中,扩大反应器的体积,可以减缓催化剂结焦,以及抑制副 反 应的生产,可采用经验把此段操作气速取为稀相段操作气速的一半。即: 将流速带入公式中: 即流化床反应器扩大段的公称直径为DN= 4 流化床床高 流化床的基本结构 床高分为三个部分,即反应段,扩大段以及锥形段高度。 催化剂用量及床高 催化剂的总体积V R (m 3)是决定反应器主要尺寸的基本依据。原料气体处理 量为V=s 。其中静床高度计算式为: 催化剂堆体积为:33.681083.6m t V V r =?=?=接触气体 催化剂质量为:kg V m r 437123.68640=?=?=堆催化剂ρ 故静床高度为: 密相段的高度:m H H mf 4.117.5221=?== 稀相段的高度:m D H T 8.79.32212=?==

费托合成中的钴基催化剂

费托合成中的钴基催化剂 Co基催化剂通常为负载型催化剂,金属Co是费托反应的活性中心, 由金属Co原子组成的活性位的数量和大小决定了催化剂的性能。适合 费托反应的最小Co颗粒尺寸范围为6~8nm。Co基催化剂的费托性 能受到钴源、载体、助剂等诸多因素的影响。载体织构物性、载体表 面Co颗粒的大小分布、以及与载体相互作用引起催化剂中Co颗粒分 散度及还原度变化,将成为影响Co基催化剂费托合成反应活性与产物 选择性的主要因素。 常用的钴源除了硝酸钴等无机盐外,还有乙酸钴、羰基钴、Co-EDTA 配合物、乙酰丙酮钴配合物等。钴源可影响金属钴的还原度和分散度,不同钴源和载体的吸附作用不同,影响催化剂的活性和选择性。以常 用的钴源制备的费托反应负载型催化剂,最终都需要在氢气气氛中还 原来得到有CO加氢活性的金属钴原子,且还原过程中无法控制钴的还原度,使钴完全被还原。而通过钴羰基簇合物制备的费托反应催化剂,在低温时只需通过在保护气下加热脱羰基便可得到钴金属粒子,不需 要焙烧,可降低钴与载体间的作用。羰基钴做前驱体不仅可以提高催 化剂的分散度、还原度,而且还有一些特殊的性质。但是羰基钴价格 昂贵仅存在于实验室制备。从费托性能和成本角度考虑,现有工业费 托合成Co基催化剂多用硝酸钴做前体。 载体是催化剂的重要组成部分,载体种类和性质的差异将对催化剂的 活性、寿命和选择性产生很大的影响。载体对费托反应催化剂活性和 产物选择性的影响非常复杂,催化剂的结构和性能都和催化剂载体的 比表面、酸度、孔结构、电子修饰作用以及金属与载体之间的强相互 作用等密切相关。载体的主要作用是提高钴的分散度、增加活性组分 的比表面积,并在还原后产生稳定的活性金属离子,防止烧结;载体 可以改善费托催化剂的机械强度,这对浆相费托反应至关重要;也可 改善催化剂的热稳定性,提供更多的活性中心,节省活性组分用量, 降低成本,增加催化剂抗毒能力;此外,费托反应是一个强放热反应,催化剂载体在反应过程中可起导热的作用,减小固定床反应器中的温 度梯度。

固定床、流化床、移动床、浆态床比较

四种反应器形式比较 一、固定床反应器 (一)概念 凡是流体通过不动的固体物料形成的床层面进行反应的设备都称为固定床反应器。而其中尤以利用气态的反应物料,通过由固体催化剂所构成的床层进行反应的气固相催化反应器在化工生产中应用最为广泛。例如石油炼制工业中的加氢裂化、歧化、异构化、加氢精制等;无机化学工业中的合成氨、硫酸、天然气转化等;有机化学工业中的乙烯氧化制环氧乙烷、乙烯水合制乙醇、乙苯脱氧制苯乙烯、苯加氢制环己烷等。 (二)特点 结构简单、操作稳定、便于控制、易实现大型化和连续化生产等优点,是现代化工和反应中应用很广泛的反应器。 1、优点主要表现在以下几个方面: 1)在生产操作中,除床层极薄和气体流速很低的特殊情况外,床层内气体的流动皆可看成是理想置换流动,因此在化学反应速度较快,在完成同样生产能力时,所需要的催化剂用量和反应器体积较小。 2)气体停留时间可以严格控制,温度分布可以调节,因而有利于提高化学反应的转化率和选择性。 3)催化剂不易磨损,可以较长时间连续使用。 4)适宜于高温高压条件下操作。

2、由于固体催化剂在床层中静止不动,相应地产生一些缺点: 1)催化剂载体往往导热性不良,气体流速受压降限制又不能太大,导致床层中传热性能较差,也给温度控制带来困难。对于放热反应,在换热式反应器的入口处,因为反应物浓度较高,反应速度较快,放出的热量往往来不及移走,而使物料温度升高,这又促使反应以更快的速度进行,放出更多的热量,物料温度继续升高,直到反应物浓度降低,反应速度减慢,传热速度超过了反应速度时,温度才逐渐下降。所以在放热反应时,通常在换热式反应器的轴向存在一个最高的温度点,称为“热点”。如设计或操作不当,则在强放热反应时,床内热点温度会超过工艺允许的最高温度,甚至失去控制而出现“飞温”。此时,对反应的选择性、催化剂的活性和寿命、设备的强度等均极不利。 2)不能使用细粒催化剂,否则流体阻力增大,破坏了正常操作,所以催化剂的活性内表面得不到充分利用。 3)催化剂的再生、更换均不方便。 (三)形式 轴向绝热式、径向绝热式、列管式。 绝热式固定床反应器结构简单,催化剂均匀堆置于床内,一般有下列特点:床层直径远大于催化剂颗粒直径;床层高度与催化剂颗粒直径之比一般超过100;与外界没有热量交换,床层温度沿物料的流向而变化。换热式固定床反应器以列管式为多,通常管内装催化剂,管间走载热体,一般有下列特点:催化剂的粒径小于管径的8倍;利

(完整版)费托合成中的钴基催化剂

费托合成中的钴基催化剂 Co 基催化剂通常为负载型催化剂,金属Co 是费托反应的活性中心,由金属Co 原子组成的活性位的数量和大小决定了催化剂的性能。适合费托反应的最小Co颗粒尺寸范围为6?8 nm。Co基催化剂的费托性能受到钴源、载体、助剂等诸多因素的影响。载体织构物性、载体表面Co颗粒的大小分布、以及与载体相互作用引起催化剂中Co颗粒分 散度及还原度变化,将成为影响Co基催化剂费托合成反应活性与产物选择性的主要因素。 常用的钴源除了硝酸钴等无机盐外,还有乙酸钴、羰基钴、Co-EDTA 配合物、乙酰丙酮钴配合物等。钴源可影响金属钴的还原度和分散度,不同钴源和载体的吸附作用不同,影响催化剂的活性和选择性。以常用的钴源制备的费托反应负载型催化剂,最终都需要在氢气气氛中还原来得到有CO加氢活性的金属钻原子,且还原过程中无法控制钻的还原度,使钴完全被还原。而通过钴羰基簇合物制备的费托反应催化剂,在低温时只需通过在保护气下加热脱羰基便可得到钻金属粒子,不需要焙烧,可降低钻与载体间的作用。羰基钻做前驱体不仅可以提高催化剂的分散度、还原度,而且还有一些特殊的性质。但是羰基钻价格昂贵仅存在于实验室制备。从费托性能和成本角度考虑,现有工业费托合成Co基催化剂多用硝酸钻做前体。 载体是催化剂的重要组成部分,载体种类和性质的差异将对催化剂的活性、寿命和选择性产生很大的影响。载体对费托反应催化剂活性和产物选择性的影响非常复杂,催化剂的结构和性能都和催化剂载体的比表面、酸度、孔结构、电子修饰作用以及金属与载体之间的强相互作用等密切相关。载体的主要作用是提高钻的分散度、增加活性组分的比表面积,并在还原后产生稳定的活性金属离子,防止烧结;载体可以改善费托催化剂的机械强度,这对浆相费托反应至关重要;也可改善催化剂的热稳定性,提供更多的活性中心,节省活性组分用量,降低成本,增加催化剂抗毒能力;此外,费托反应是一个强放热反应,催化剂载体在反应过程中可起导热的作用,减小固定床反应器中的温度梯度。

浆态床鼓泡反应器中气含率的分布

一第23卷第3期 洁净煤技术 Vol.23一No.3一一2017年 5月 Clean Coal Technology May一 2017一 浆态床鼓泡反应器中气含率的分布 张奉波,卜亿峰,许一明,门卓武 (北京低碳清洁能源研究所,北京一102211) 摘一要:为了解浆态床鼓泡反应器中气含率的分布规律,在浆态床鼓泡反应器冷模试验装置中,以空气-液体石蜡-氧化铝微球为试验介质对装置内部的气含率进行研究三利用压差法研究了表观气速二浆液固含量等操作条件对反应器床层总体气含率的影响,利用光纤探针法研究了浆态床反应器不同操作条件对局部气含率的影响,总结了反应器内部气含率的分布规律,并由此对工业浆态床鼓泡反应器的设计进行了研究三结果表明:浆态床反应器的总体气含率随表观气速的增大而增大,固体细颗粒的加入能适当降低总体气含率;在反应器底部,分布器对气体的均布作用明显,但表观气速的增大能够弱化分布器的作用;在反应器的中上部气含率不受分布器的影响,沿反应器径向呈现 中间高,边缘低 的分布趋势;在工业费托浆态床中,表观气速不宜低于0.12m /s ,内过滤系统适宜设置于反应器中上部靠近器壁的位置三 关键词:浆态床鼓泡反应器;表观气速;总体气含率;局部气含率 中图分类号:TQ021.1一一一文献标志码:A一一一文章编号:1006-6772(2017)03-0061-05 Distribution of gas holdup in slurry bubble column reactor Zhang Fengbo,Bu Yifeng,Xu Ming,Men Zhuowu (National Institute of Clean -and -Low -Carbon Energy ,Beijing 一102211,China ) Abstract :In order to study distribution law of gas holdup in slurry bubble column reactor,the gas holdup in slurry bubble column reactor was studied under cold -state experiment with the aid of an air -liquid paraffin -alumina microspheres 3-phase system.The effects of super-ficial gas velocity and solid concentration on total gas holdup were investigated using differential pressure transmitter.The distribution of lo-cal gas holdup under different operating condition was also systematically elucidated by means of an optical fiber probe.Based on these ex-perimental results,the design of an industrial slurry bubble column reactor was also proposed.Results show that total gas holdup increases with increasing of superficial gas velocity,while the addition of solid fine particles slightly decreases the total gas holdup.In the bottom area of the reactor,a significant effect of gas sparger on gas holdup distribution presents.Such effects partly decrease with the increasing of su-perficial gas velocity.In the middle and upper area of the reactor,the gas holdup shows higher in the middle,while lower at the edge distri-bution status along the radial direction,which means there is no obvious effect from the gas sparger in this area.For an industrial Fischer - Tropsch synthesis reactor,the filtration system should be better located at the area near the middle /upper reactor wall,with the operating superficial velocity higher than 0.12m /s. Key words :slurry bubble column reactor;superficial gas velocity;total gas holdup;local gas holdup 收稿日期:2017-01-20;责任编辑:白娅娜一一DOI :10.13226/j.issn.1006-6772.2017.03.012基金项目:神华集团科技创新项目(ST930012SH12) 作者简介:张奉波(1987 ),男,山东淄博人,工程师,硕士,从事煤间接液化研究工作三E -mail :zhangfengbo@nicenergy.com 引用格式:张奉波,卜亿峰,许明,等.浆态床鼓泡反应器中气含率的分布[J].洁净煤技术,2017,23(3):61-65. Zhang Fengbo,Bu Yifeng,Xu Ming,et al.Distribution of gas holdup in slurry bubble column reactor [J].Clean Coal Technology,2017,23(3):61-65. 0一引一一言 浆态床鼓泡反应器(slurry bubble column reactor,SBCR)具有结构简单二传热效果好二生产能 力大和相间接触充分等优点[1-3],逐步成为费托合成(Fischer -Tropsch synthesis)技术的发展方向三国外的Sasol二Exxonmobil二Syntroleum [4-5]以及国内的中国科学院山西煤炭化学研究所[6]二神华集团[7]二兖 1 6

相关主题